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Referee comments in boldface, author comments in normal typeface. 
	

1. I have a concern when setting NEE to missing values for shrubland vegetation 
classes, as this would mean that all simulated CO2 values containing influence from 
that vegetation class are missing as well. How is this handled in the model? Would it 
not be better to either set NEE in those cases to zero, or to a value that is somewhat 
in the range of the observed fluxes? 

	
Thank you for the comment. Shrublands constitute less than 1.5% of the domain land use 
area and do not appreciably affect the modeled atmospheric CO2 values. The 7-day-
backtrajectory vegetation effect in ppm for each measurement hour is the result of a 
spatiotemporal sum of footprint*fluxes -- as such, setting the NEE for these pixels to 0 is 
numerically the same as setting the pixels to missing. In order to estimate the influence 
on the CO2 mixing ratio at Miyun from the shrubland (IGBP-6, IGBP-7), needleleaf 
(IGBP-1, IGBP-3), and permanent wetland (IGBP-11) land classes, we compare the sum 
of surface influence from pixels corresponding to those land categories to the total 
average (2005 to 2009) annual STILT surface influence. We find that these five land 
classes only account for 4% of the total influence mostly from the two the shrubland 
classes. The croplands, grasslands and mixed forests that are best represented in the 
VPRM training data account for 86% of the total influence. 

 
We have edited the text in the manuscript to make this justification clearer.  
 
Specifically: 
 
P6 L13: “Pixels corresponding to these ecosystem types have NEE values set to missing. 
We justify this assumption in Sect. 3.” 
 
P14 L1 to L9: “As noted in Sect. 2.2.2, NEE values for shrubland ecosystems are set to 
missing. The vegetation effect on CO2 in ppm for each measurement hour is the result of 
a spatiotemporal sum of the product of the STILT footprint and surface fluxes. As such, 
an NEE pixel of ‘missing’ is numerically identical to an NEE pixel set to zero. Our 
choice to set these values as missing is based on the reasoning that a zero value (or a 
previously published value that has low confidence) implies that we know more about 
these shrubland ecosystems than we do in this domain. By comparing the sum of surface 
influence from shrubland, needleleaf, and permanent wetland ecosystems to the total 
average annual surface influence, we find these ecosystems contribute less than 5% to the 
total influence. As such, setting these classes to missing does not appreciably affect the 
conclusions.” 
 

2. P3 L29: please clarify what is meant by “hourly CO2 observations”. I assume 
atmospheric mole fractions have been measured.  

 
We have replaced this wording (P3 L29):  



“We evaluate performance of the VPRM-CHINA during the growing season using five 
years (2005-2009) of hourly averages of continuously measured CO2 (LI-COR 
Biosciences Li-7000).” 
 

3. Eq. 4a: LSWI_max should be described.  
 

Thank you, we have edited the text to clarify this (P5 L14): 
 
“Wscale is derived from both LSWI and the maximum LSWI (LSWImax) for a particular 
growing season” 

 
4. Fig. 4a: please mention what the colors (read, black) indicate  

 
Thank you for noting this. We have edited accordingly:  
“Aggregated mean modeled (red) and measured (black) PAR for each eddy flux 
calibration site by season” 

 
5. P19 L11: please explain in more detail what is meant by “unoptimized” 

 
We have clarified our usage of this term (now P20 L10): 
 
“We further examine the relative importance of the vegetation and anthropogenic 
influence by separately excluding each of the vegetation and anthropogenic components 
from the overall unoptimized (i.e., inventories uncorrected by observations) modeled 
hourly CO2 (Fig. 9).” 

	



Author responses to Anonymous Referee # 2 
Referee comments in boldface, author comments in normal typeface. 
	

1. This manuscript reported on parameters adapting and model diagnosing of VPRM-
CHINA for the eastern half of China.This paper is a well-presented and 
scientifically sound study and I recommend it for publication after minor revisions. 
However, I think the title ’...Using the Vegetation, Photosynthesis, and Respiration 
Model to partition contributions to CO2 measurements ...’ is not very proper for 
this paper: VPRM-CHINA model isn’t able to partition contributions of CO2 
concerntration. A more scientific titile should be needed for this manuscript . 

	
Thank you for pointing this out. We emphasize that this is an effort to model partitioning. 
The VPRM is a helpful tool to provide insight into modeled estimates of what the 
relative contributions of vegetation and anthropogenic activity are to the atmospheric 
signal. We explore this concept in more detail in Section 3.4 (Fig. 9 and Fig. 10). As you 
point out, we cannot partition this in the real world, but we are showing that the VPRM-
China model can do so to a certain extent and one of the purposes of the paper is to 
justify its use for this purpose by evaluating the vegetation-dominated growing season 
modeled time series relative to observations. We are unfortunately restricted by eddy flux 
site data availability – the uncertainty associated with this early version of VPRM-China 
(and, by extension, this study’s efforts to model partitioning) would be considerably 
reduced were additional validation data available. That being said, we are certainly open 
to a more appropriate title, if the editor or referee has suggestions. 
 

2. P9 Table 1 Please explain clearly what is meant by ’CN’ or ’KR’). 
 
This has now been clarified in the Table 1 caption: 
“Site Name abbreviations are according to FLUXNET convention; CN=China; 
KR=South Korea.” 
 

3. P11 L11 Please describe how to scale scale annual gridcell emissions (as Gg CO2) to 
µmolCO2 m-2s-1 
 
We have now clarified this in the text (P11 L11 to L13): 
“We therefore directly scale annual gridcell emissions (as Gg CO2) to µmolCO2 m-2s-1 by 
scaling (1) by area per gridcell computed as a function of latitude and (2) temporally 
from an annual time base to a seconds time base.” 
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Abstract. Accurately quantifying the spatiotemporal distribution of the biological component of CO2 surface-atmosphere 

exchange is necessary to improve top-down constraints on China's anthropogenic CO2 emissions. We provide hourly fluxes 15 

of CO2 as Net Ecosystem Exchange (NEE; µmolCO2m-2s-1) on a 0.25°x0.25° grid by adapting the Vegetation, 

Photosynthesis, and Respiration Model (VPRM) to the eastern half of China for the time period from 2005-2009; the 

minimal empirical parameterization of the VPRM-CHINA makes it well-suited for inverse modeling approaches. This study 

diverges from previous VPRM applications in that it is applied at large scale to China’s ecosystems for the first time, 

incorporating a novel processing framework not previously applied to existing VPRM versions. In addition, the VPRM-20 

CHINA model prescribes methods for addressing dual-cropping regions that have two separate growing season modes 

applied to the same model gridcell. We evaluate the VPRM-CHINA performance during the growing season and compare to 

other biospheric models. We calibrate the VPRM-CHINA with ChinaFlux and FluxNet data and scale up regionally using 

Weather Research and Forecasting (WRF) Model v3.6.1 meteorology and MODIS surface reflectances. When combined 

with an anthropogenic emissions model in a Lagrangian particle transport framework, we compare the ability of VPRM-25 

CHINA relative to an ensemble mean of global hourly flux models (NASA CMS) to reproduce observations made at a site in 

Northern China. The measurements are heavily influenced by the Northern China administrative region. Modeled hourly 

timeseries using vegetation fluxes prescribed by VPRM-CHINA exhibit low bias relative to measurements during the May-

September growing season. Compared to NASA CMS subset over the study region, VPRM-CHINA agrees significantly 

better with measurements. NASA CMS consistently underestimates regional uptake in the growing season. We find that 30 

during the peak growing season, when the heavily cropped North China Plain significantly influences measurements, 

VPRM-CHINA models an CO2 uptake signal comparable in magnitude to the modeled anthropogenic signal. In addition to 

demonstrating efficacy as a low-bias prior for top-down CO2 inventory optimization studies using ground-based 

Deleted: VPRM-CHINA: Using the Vegetation, 
Photosynthesis, and Respiration Model to partition 35 
contributions to CO2 measurements in Northern China during 
the 2005-2009 growing seasons.
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measurements, high spatiotemporal resolution models such as the VPRM are critical for interpreting retrievals from global 

CO2 remote sensing platforms such as OCO-2 and OCO-3 (planned). Depending on the satellite time-of-day and season of 

crossover, efforts to interpret the relative contribution of the vegetation and anthropogenic components to the measured 

signal are critical in key emitting regions such as Northern China--where the magnitude of the vegetation CO2 signal is 

shown to be equivalent to the anthropogenic signal. 5 

1 Introduction 

In 2006, China surpassed the USA as the world’s leading anthropogenic carbon dioxide (CO2) emitter. China’s contribution 

to world CO2 emissions has been growing steadily and now constitutes approximately 26% of the world total, compared to 

the USA’s 17%, accounting for 60% of the overall growth in global CO2 emissions over the past 15 years (EIA, 2017). China 

and the USA made an historic joint announcement on national carbon commitments in November 2014, an unprecedented 10 

form of political coordination by the two countries to advance United Nations climate negotiations. In addition, China 

pledged at the 2015 UN climate summit in Paris to peak carbon emissions by 2030; in March 2016, China released its 13th 

Five-Year Plan to strengthen its strategies to achieve its emission targets (Tollefson, 2016). An accurate assessment of CO2 

fluxes within China is not only a critical advance in testing the bottom-up emission inventories that provide the baselines for 

setting such policy commitments and measuring progress, it also broadens understanding of the country’s contributions to 15 

climate change beyond the sources conventionally targeted for control. Eventually such observation-based assessments 

might be formally integrated into regulatory processes to strengthen baselines, to widen the scope of control, and to assess 

policy progress and compliance.  

 

Good prior estimates of the spatiotemporal structure of CO2 surface exchanges are needed to reduce the uncertainty in top-20 

down optimizations where atmospheric observations are used as a constraint to improve bottom-up flux inventories. As a 

first step towards evaluating China’s anthropogenic emission inventories on an intra-annual basis, it is necessary to also 

model vegetation contributions to the CO2 signal during the growing season. Previous studies (Wang et al., 2010) relied on 

CO2 to CO ratios to estimate annual anthropogenic CO2 emission enhancements from winter-time observational data alone. 

The large diurnal CO2 uptake and emission vegetation signal in the growing season complicated modeling the anthropogenic 25 

CO2 signal during these times of the year. Seasonal variations in anthropogenic emissions patterns from both shifts in 

atmospheric transport and emission sources themselves are therefore insufficiently captured when dormant season 

observations alone are used to estimate annual emissions.  

 

This study adapts the Vegetation, Photosynthesis, and Respiration Model (VPRM; Mahadevan et al., 2008) to model CO2 30 

vegetation fluxes on an hourly basis on a 0.25°x0.25° grid from 2005-2009. VPRM-CHINA is empirically driven with very 

low dimensional parameterizations, making it particularly suitable as a biogenic CO2 flux prior model for top-down inverse 
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model analysis of China’s emissions. We demonstrate its validity as a prior for use in atmospheric inversions that constrain 

anthropogenic CO2 emissions on inter- and intra-annual scales by comparison to hourly observations at a site in Miyun, 

China, 100km northeast of the Beijing urban center. 

 

2 Methods 5 

As described in detail by Mahadevan et al. (2008), modeled CO2 vegetation fluxes (Net Ecosystem Exchange; NEE) from 

VPRM-CHINA are calibrated against observed CO2 fluxes for each dominant vegetation class represented in the study 

domain.  CO2 exchange is dependent on ecosystem temperature and sunlight, driven here by high-resolution meteorology 

from the Weather Research and Forecasting (WRFv3.6.1) model (http://wrf-model.org). The photosynthetic capacity of 

ecosystems is controlled by vegetation greenness and water availability, and these factors are obtained from MODIS remote-10 

sensing (https://lpdaac.usgs.gov) land cover and surface reflectance data sets. We define uptake and release of carbon 

relative to the atmosphere such that the photosynthesis (Gross Primary Productivity; GPP) term is negative (representing 

CO2 uptake from the atmosphere) and the ecosystem respiration (Reco) term is positive (representing CO2 release to the 

atmosphere). Modeled CO2 in the growing season is ultimately evaluated against hourly averaged observations collected 

from 2005 to 2009. 15 

This study diverges from previous VPRM applications in three main ways: (1) the VPRM-CHINA is applied at large scale to 

China’s ecosystems for the first time; (2) the scaling involves a novel processing framework not previously applied to 

existing versions of the VPRM; and (3) the VPRM-CHINA model prescribes methods for addressing winter wheat and corn 

dual-cropping regions that have two growing season modes for the same pixels. 

Data processing software used in this study are the MODIS Reprojection Tool (MRT) Release 4.1 20 

(https://lpdaac.usgs.gov/tools/modis_reprojection_tool); the R program for statistical computing (Rv3.2.0, https://www.r-

project.org/); and NCAR Command Language (NCLv6.2.1; http://dx.doi.org/10.5065/D6WD3XH5). 

We begin this section with an overview of the observational record used in this study (Sect. 2.1). Sect. 2.2 presents details of 

VPRM-CHINA, including processing of model drivers and model calibration. Sect. 2.3 introduces the anthropogenic 

emissions inventory used in this study. Sect. 2.4 concludes the methods section, summarizing the derivation of the modeled 25 

CO2 time-series. 

2.1 CO2 Observations 

We evaluate performance of the VPRM-CHINA during the growing season using five years (2005-2009) of hourly averages 

of continuously measured CO2 (LI-COR Biosciences Li-7000). The site (Miyun; 40°29'N, 116°46.45'E) is in a rural area in 
Deleted: We evaluate performance of the VPRM-CHINA during 30 
the growing season using five years (2005-2009) of continuous 
hourly CO2 observations (LI-COR Biosciences Li-7000).
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Northern China, 100km northeast of the Beijing urban center. Miyun is located south of the foothills of the Yan mountains, 

and is influenced by clean continental air from the northwest and polluted urban air from the southwest. The vicinity is 

primarily grasslands, croplands, and mixed temperate forest. Further descriptions of the site and details of the 

instrumentation of the CO2 observations are in Wang et al. (2010). 

2.2 VPRM-CHINA 5 

2.2.1 Model Overview 

We follow the general model framework established by Mahadevan et al. (2008) to construct hourly CO2 NEE estimates on a 

0.25°x0.25° grid over the time period from 2005 to 2009. The hourly NEE is modeled as a function of temperature sensitivity 

(Tscale), phenology (Pscale), water stress (Wscale), photosynthetically active radiation (PAR) and the Enhanced Vegetation Index 

(EVI). As shown in (1) below, modeled NEE is partitioned into GPP (the first parenthesized term) and Reco (the second 10 

parenthesized term): 

𝑁𝐸𝐸 = − 𝜆×𝑇*+,-.×𝑃*+,-.×𝑊*+,-.×
1

12 345
3456

×𝐸𝑉𝐼×𝑃𝐴𝑅 + 𝛼×𝑇 + 𝛽       (1) 

  

The parameters l, a, b and PAR0 are empirically adjusted based on calibrations against observed NEE from eddy flux data 

for each MODIS vegetation class based on the International Geosphere-Biosphere Programme (IGBP; MCD12Q1) in the 15 

domain. PAR0 represents the half-saturation value of photosynthetically active radiation. In addition, we set a minimum 

temperature threshold for each vegetation class, T=Tlow (1≤Tlow≤5°C) prescribing a baseline of soil respiration at very low air 

temperatures (Hilton et al., 2013; Mahadevan et al. 2008). Tlow is derived from fits to site-level data; see Sect. 2.2.4 for 

details. 

 20 

The temperature sensitivity is defined as below, where Tmin, Tmax, and Topt represent minimum, maximum, and optimal 

temperatures for photosynthesis respectively and are set at literature values for each vegetation class. Temperature T is the 

hourly averaged 10-min surface temperature output from the WRFv3.6.1 meteorological model (Sect. 2.2.3). With the 

exception of winter wheat, we use the same Tmin, Tmax, and Topt for each ecosystem type in our domain as in the Mahadevan et 

al. (2008) North America study. The similarity of latitudes for each ecosystem type between the Mahadevan et al. (2008) 25 

study and this study makes this an appropriate approximation. The only ecosystem category in our domain not represented 

by Mahadevan et al. (2008) is winter wheat; as such we set our winter wheat Tmin = 0C and Topt = 20C , the lower values 

relative to other crop types reflecting the lower temperatures of the winter wheat growing season (Acevedo et al. 2002).  

𝑇*+,-. =
>?>@AB × >?>@CD

>?>@AB × >?>@CD ? >?>EFG
H 																		         (2) 

 30 
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Pscale and Wscale are functions of the Land Surface Water Index (LSWI). Both LSWI and the Enhanced Vegetation Index (EVI) 

are derived from the MODIS surface reflectance data set (MOD09A1) as in (3a) and (3b), where the surface reflectance 

bands used are the red band (rred, band 1); near infrared band (rnir, band 2); blue band (rblue, band 3); and the shortwave 

infrared band (rswir, band 6).   

𝐿𝑆𝑊𝐼 = LBAM?LNOAM
LBAM2LNOAM

																           (3a) 5 

 

𝐸𝑉𝐼 = 2.5× LBAM?LMST
LBAM2 U×LMST?V.W×LXYZS 21

																         (3b) 

 

 

The water stress parameter Wscale and phenology parameter Pscale are defined consistent with Mahadevan et al. (2008) and are 10 

shown in (4) and (5) below. Ecosystem timing events are determined either manually (cropland classes for each degree 

latitude from 32N to 38N) or from the MODIS timing product (MOD12Q2; all other vegetation classes and croplands in 

other latitude zones). Wscale is derived from both LSWI and the maximum LSWI (LSWImax) for a particular growing season: 

𝑊*+,-. =
12[\]^

12[\]^@CD
		             (4a) 

 15 

Pscale  is set to 0 for water, snow and ice, and unclassified pixels at all times. For evergreen classes at all times and other 

vegetation classes at maximum greenness we set Pscale to 1. We represent phenology as a fraction of LSWI for non-evergreen 

vegetation classes from (1) onset greenness increase to greenness maximum, and (2) onset greenness decrease to greenness 

minimum: 

𝑃*+,-. =
12[\]^

_
		             (4b) 20 

 

Ecosystem timing dates for selection of the appropriate Pscale parameterization for each pixel were obtained from the 

MOD12Q2 phenology product, detailed in Sect. 2.2.2. 

2.2.2 Satellite Data Processing 

We use tiles from three MODIS products on a 500m sinusoidal grid to model GPP: 8-day average MOD09A1 surface 25 

reflectance bands 2, 6, 1 and 3 representing the near IR, short wave IR, red, and blue regions respectively; annual MCD12Q1 

land use categories based on IGBP land classifications; and annual MOD12Q2 ecosystem timing dates. We do not include 

MODIS surface reflectance data from the Aqua satellite due to failure of a majority of band 6 detectors after launch, which 

affected availability of high-quality data during the time period investigated in this study. All datasets were downloaded 

using the Reverb tool in NASA’s Earth Observing System Data and Information System  (http://reverb.echo.nasa.gov/). We 30 

Deleted: :
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then used MRT to (1) mosaic tiles associated with our spatial domain and (2) reproject to a WGS84 datum Geographic 

Coordinate system on a 500m grid.  

 

The dominant IGBP ecosystem types represented in the domain are effectively constant over the 5-year study period. 

Together, water and the major photosynthesizing land classes constitute 98% of the domain (Figure 1). We follow the 5 

Mahadevan et al. (2008) convention where (1) we set the NEE of water, urban/built, and snow/ice to zero; and (2) group 

together (i) savannas and woody savannas; (ii) grasslands, croplands & natural mosaic, and barren & sparse; (iii) deciduous 

needle-leaf and deciduous broadleaf. The remaining non-dominant vegetation classes not represented in the above (evergreen 

needle-leaf, closed & open shrublands, permanent wetlands) collectively constitute <1.5% of the total land area and therefore 

do not appreciably affect the carbon fluxes in the domain. Furthermore, closed and open shrubland ecosystems were found 10 

by Mahadevan et al (2008) to be outside of the scope of the VPRM-CHINA due to the inability to adequately capture the 

influence of inorganic soil carbon pools on observed carbon dioxide fluxes. Pixels corresponding to these ecosystem types 

have NEE values set to missing. We justify this assumption in Sect. 3. 

 

The reflectance data was quality filtered in Rv3.0.2 to accept only the highest quality data under clear sky conditions. 15 

Inconsistencies in the internal snow-cover flags made it necessary to manually filter erroneous reflectance values due to 

snow rather than ecosystem photosynthetic activity. 

 

Figure 1. Dominant IGBP categories from MOD12Q1 data over study spatial and temporal domain. 
Circled points represent approximate location and IGBP class of eddy flux sites used in VPRM-CHINA 
calibration. 
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NCLv6.2.1 (NCL) was used for higher-level data processing. All missing values resulting from higher-level quality filtering 

steps were interpolated using NCL’s Poisson grid filling algorithm and then used to calculate EVI and LSWI. EVI was further 

filtered to keep only values within a valid range (0 to 1).  LSWI, driven by Mode 1 MCD12Q2 ecosystem timing dates (or 

manually selected timing dates for the 32N to 38N latitude belt), was used to calculate phenology cycles parameterized by 

Pscale and water stress parameterized by Wscale. The quality filtering of the ecosystem timing dates was done manually in NCL 5 

as there are known issues with the MCD12Q2 internal quality flags 

(https://www.bu.edu/lcsc/files/2012/08/MCD12Q2_UserGuide.pdf). Therefore, quality filtering of MODIS ecosystem timing 

dates was limited in scope to (1) removing anachronistic dates represented by instances where, for a given pixel, ecosystem 

times were not in chronological order, and (2) where a given pixel’s date was outside of 1-s of the mean for the ecosystem 

class represented by that pixel for its latitude band.  10 

 

The second step of MCD12Q2 quality filtering was not conducted for cropland classes in the 32N-38N latitude band. 

Croplands between 32N and 38N located within the North China Plain have a high prevalence of winter wheat/corn dual-

cropping zones, where winter wheat dominates a cropland site in the spring months and corn dominates in the summer 

I 

II 

Figure 2. Average EVI in IGBP cropland class from 32N to 38N. 
Bimodal peak represents (I) winter wheat spring emergence and 
(II) corn summer emergence. Shaded blue region represents 1-s of 
spatial and temporal average. 
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months. Considerably different ecosystem timing dates can occur for these dual croplands at the same latitude band and pixel 

due to the bimodality of the phenology. We subdivide cropland classes spatially and temporally based on analysis of average 

annual EVI for each degree latitude from 30N to 40N and USDA crop maps of major cropping regions of China (USDA, 

2016). We designate all cropland classes south of 32N as rice; all cropland classes between 32N and 38N as winter 

wheat/corn dual croplands, and all croplands north of 38N as corn. We further justify the designation of the 32N-38N 5 

cropland classes as winter wheat/corn by noting a distinct bimodal pattern of average EVI for that region (Fig. 2), similar to 

Yan et al. (2009). For the dual croplands only, we manually set for each of the two crop modes a multi-year (2005-2009) 

mean of phase timings for each degree latitude from 32N to 38N, obtained from EVI averaged across all cropland pixels at 

the respective degree latitude.   

 10 

2.2.3 WRF Temperature and Radiation Fields 

Hourly averaged surface temperature (T2) and downward shortwave radiation (SWDOWN) fields were derived from 10-

minute WRF output. The WRF model was initialized with NCEP FNL 1°x1° resolution reanalysis data (NCEP, 2000) and 

run for independent 24h periods with three domains spanning the study temporal domain, excluding a 6h spinup time 

according to practice established by Nehrkorn et al. (2010) and Hegarty et al. (2013).  We employ continuous nudging in the 15 

outer domain only and we do not nudge any fields within the planetary boundary layer (PBL). The Yonsei University (YSU) 

PBL scheme is employed. The WRF model is well known to have excess shortwave radiation compared to observations, 

primarily caused by misrepresentation of clouds and their radiative effects (e.g., Ruiz-Arias et al., 2016). The RRTMG 

scheme employed in this study includes a method for random cloud overlap in a gridcell (WRF-ARW, 2014). Additional 

improvements to the treatment of short-wave radiation have been made in more recent versions of WRF than used in this 20 

study (Jimenez et al., 2016). Here we will apply an empirical correction to reduce the bias in total incoming shortwave 

radiation. 

 

The T2 and SWDOWN fields for the outer domain (27km gridcell resolution) are averaged to hourly intervals and then 

regridded to the same coordinate system as the processed MODIS products using NCL’s ESMF bilinear interpolation tool. 25 

PAR is very closely correlated with shortwave radiation, where SWDOWN ≈ 0.505PAR (Mahadevan et al., 2008).  

 

We quantify the high bias for WRF SWDOWN, and therefore PAR, for our specific study region by comparison of modeled 

PAR to measured PAR at eddy flux sites in the domain and scale our modeled PAR accordingly, by season, using the 

aggregated PAR across five eddy flux sites. 30 
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2.2.4 VPRM-CHINA Calibration 

Hilton et al. (2013) highlight the importance of tailoring NEE parameter estimates in VPRM to the specific region being 

studied. As such, we obtain VPRM-CHINA parameters by calibrating the major ecosystem types to representative ecosystem 

eddy flux data in the domain (Table 1). We use unfilled eddy flux data from the Fluxnet 2015 database 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset), ChinaFlux (www.chinaflux.org), and the Fluxnet LaThuile synthesis 5 

dataset (http://fluxnet.fluxdata.org/data/la-thuile-dataset/) to calibrate our modeled NEE output for each of our dominant 

ecosystem types. We used the average of up to nine model pixels of the same IGBP class: NEE from the 500m gridcell 

nearest to the eddy flux observation site and the surrounding 8 pixels. All observational data were hourly averaged from the 

original half-hour resolution data sets, and were filtered for sufficiently high frictional velocity, u*, to ensure well-developed 

turbulence at canopy level prior to calibrating the VPRM-CHINA at each dominant ecosystem type (Goulden et al. 1996). 10 

Table 1. Calibration & Validation site information. *Site (year) used as validation. Site Name abbreviations 

are according to FLUXNET convention; CN=China; KR=South Korea. 

Site Name 
(abbrev) 

Location/             
Site Elev 

Ecosystem Type               
(IGBP Class; 

%domain) 

Data 
Year 

Data Source 

Changbaishan 
(CN-Cha) 

42.40N, 128.1E/ 
751.0 masl 

Mixed Forests                        
(5; 11%) 

2005 Fluxnet—
FLUXNET2015 

Dinghushan  
(CN-Din) 

23.17N, 112.5E/ 
218.0 masl 

Evergreen 
Broadleaf                
(2; 4.4%) 

2005 Fluxnet—
FLUXNET2015 

Duolun Grassland 
(CN-Du2) 

42.05N,116.3E/    
1333 masl 

Grasslands                              
(10; 21%) 

2007, 
2008* 

Fluxnet—
FLUXNET2015 

Haenam               
(KR-Hae) 

34.55N,126.6E/ 
13.74 masl 

Rice Croplands                       
(12; Croplands 

total: 14%) 

2006* Fluxnet—
Lathuile 

Qianyanzhao 
(CN-Qia) 

26.73N, 115.1E/ 
79 masl 

Woody Savannas                       
(8; 5.6%) 

2005 Fluxnet—
FLUXNET2015 

Yucheng        
(CN-Yuc) 

36.95N, 116.6E/     
12 masl 

Winter Wheat/Corn 
Croplands (12; 
Croplands total: 

14%) 

2005 ChinaFlux, 
Yu et al., 2006 
Yu et al., 2013 

 

We fit NEE represented in (1) to observations of NEE at each eddy flux site using a non-linear least squares fit (NLS; Gauss–

Newton algorithm) in Rv3.2.0. We fit against the subset of non-missing observations and use site-level measurements of air 15 

Deleted: Calibration & Validation site information. *Site 
(year) used as validation.
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temperature and PAR. Prior to fitting, we set air temperatures to the respective site Tlow for instances where the measured air 

temperature falls below that threshold. Initial inputs of l, a, and PAR0 to the NLS algorithm are based on results from the 

respective IGBP ecosystem classes in Mahadevan et al. (2008) and Hilton et al. (2013). b is always initially set to 0. 

With the exception of dual-cropped croplands, all VPRM-CHINA NEE parameters are obtained from fitting to observations 

for the whole year. For dual-cropped croplands, we fit the winter wheat and corn modes separately; for rice croplands, used 5 

as a validation site only, we use WRF-derived and corrected PAR. With the exception of grasslands, there was insufficient 

observational data to provide both calibration data and validation data by either a different year in the same site or a different 

site of the same ecosystem type. In addition, the grassland site used in this study has a history of disturbance. The special 

cases of grasslands and croplands are discussed further, below.  

 10 

Within the cropland IGBP ecosystem class we are restricted by availability of observational eddy flux data. Based on USDA 

agricultural maps we consider corn, winter wheat, and rice as a first order approximation of major croplands influencing CO2 

exchange in the study domain (USDA, 2016). We use 2005 ecosystem data from ChinaFlux site CN-Yuc to calibrate winter 

wheat/corn dual croplands. Winter wheat and corn parameters were fit to the observational subsets corresponding to times of 

the year where these crops are prevalent. The winter wheat seasonal subset was defined using dates earlier than July 1, 2005 15 

and the corn seasonal subset was defined using dates on or after July 1, 2005. For corn, the CN-Yuc dataset was manually 

corrected for a data entry error that began in July of 2005 and lasted through the end of the year. Erroneous instances were 

flagged where the measured maximum of diurnal NEE uptake lagged measured and modeled PAR by two hours. The NLS fit 

of NEE was then performed as previously described on this offset-corrected data. Cropland pixels south of 32N were 

designated as rice and use 2006 ecosystem data from KR-Hae, a rice paddy site in South Korea, to validate rice cropland 20 

parameters. KR-Hae dataset contained significant data gaps (43% of data) and could not reliably be used for calibration with 

the NLS method. Instead we use grassland parameters from Hilton et al. (2013) to represent rice cropland parameters and use 

KR-Hae NEE observations to validate. In addition, KR-Hae did not include PAR observations; therefore we used WRF-

derived PAR, scaled by seasonal scaling factors in calculations of modeled NEE. Due to the large distances of rice croplands 

from the Miyun receptor, errors in rice parameterization as a result of this approach are not expected to appreciably affect the 25 

final CO2 concentration estimates at the receptor. 

 

Grasslands were calibrated using CN-Du2 site data from 2007 and validated using CN-Du2 site data from 2008. The 

grassland is located in Inner Mongolia and faces low wintertime air temperatures. We find the eddy flux data was collected 

via an open path system. Insufficient WPL correction used to correct for air density changes (from heating of sensors for 30 

example, during the winter time) resulted in possible CO2 uptake artifacts during the dormant season. Following the 

convention of Mahadevan et al. (2008) we do not set a Tlow for grasslands. In addition, the CN-Du2 site represents a 
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transition site (grassland steppe to heavily grazed agricultural) that could impact its ability to represent undisturbed 

grasslands in the study domain (Zhang et al. 2007; Zhang et al. 2008). 

2.3 Anthropogenic CO2 Emissions Inventory 

We use the annual anthropogenic CO2 emissions inventories produced by the Harvard-China Project (ZHAO; Zhao et al. 

2012) to represent the anthropogenic contribution to the observed CO2 during the growing season. The ZHAO annual 5 

inventories are the first statistically rigorous bottom-up anthropogenic CO2 inventories for China and integrate data from 

field studies specific to China’s energy processes, technologies, and activity factors with an increased reliance on provincial-

level data relative to national level data. The ZHAO inventories provide emissions in GgCO2 on a 0.25°x0.25° grid for 2005 

and 2009; for 2006-2008 we spatially allocate the total estimated emissions based on the percentage contribution of each 

gridcell averaged between 2005 and 2009. In addition, we do not apply any temporal activity factors such as time of day or 10 

season of year changes in activity intensity. Gridded annual emissions (Gg CO2) are converted to fluxes in µmol m-2 s-1 by 

dividing the annual emission by area in the grid cell and number of seconds in the year. 

2.4 WRF-STILT: Derivation of Modeled Hourly CO2 Timeseries 

Each hourly measurement is modeled as advected background air uninfluenced by the study domain plus the integrated 

effects of CO2 sources (enhancements relative to background) and sinks (depletion relative to background) from surface 15 

processes in the study domain over a specified time period (here, up to seven days back from time of measurement).   

 

We quantify the influence of surface processes using the Stochastic Time-Inverted Lagrangian Transport Model (STILT; Lin 

et al., 2003), an adjoint that computes surface “footprints” (ppm µmol-1m-2s-1) for each measurement hour up to 168 hours 

back from the hour of measurement. An ensemble of 500 hypothetical particles is sent back from the measurement point, 20 

driven by WRF meteorology (Nehrkorn et al., 2010). Each footprint ultimately represents the sensitivity of downwind 

concentration measurements made at a certain hour to upwind surface fluxes. We merge these hourly footprint maps with the 

vegetation and anthropogenic flux maps pertaining to the appropriate hour (constant in the case of the anthropogenic fluxes). 

We can then separately obtain the total anthropogenic enhancement and the vegetation enhancement (or depletion) to the 

background signal at each measurement hour.  25 

 

Background concentrations of CO2 are estimated using NOAA CarbonTracker CT2015 (NOAA, 2016) provided on a 3-

hourly 3ºx2º global grid with 25 vertical levels, using a method similar to Karion et al. (2016). A background CO2 

concentration for each hour is calculated as follows: each STILT particle is assigned a background value at the end of its 

back trajectory. A nearest neighbor approach selects the appropriate CO2 background concentration based on the particle’s 30 

end time, latitude, longitude, and altitude. A concentration is only considered to truly represent “background” if at least one 

Deleted: We therefore directly scale annual gridcell emissions (as 
Gg CO2) to µmolCO2 m-2s-1.
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of the following criteria are met (i) the end point of a particle’s back trajectory is the edge of the study’s spatial domain; or 

(ii) if the particle has not reached the edges of the domain, its altitude must be greater than or equal to 3000 masl. A modeled 

hourly concentration value is then considered valid and included in the analysis if at least 75% of particles satisfy the 

background selection criteria; the valid background values are then averaged to provide one concentration for each 

measurement hour. The selection criteria ensure that surface processes in the study domain did not interfere with 5 

“background” air during the time period of relevance to the analysis. 
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3 Results and Discussion 

The final VPRM-CHINA product is hourly estimates of NEE on a 0.25°x0.25° grid. Figure 3 displays seasonal averages of 

hourly VPRM-CHINA NEE over the entire study time period.  

 

The region of high springtime productivity in the North China Plain represents the manually prescribed winter wheat mode. 5 

Mixed forests at southern latitudes are given the same VPRM-CHINA ecosystem parameters as their only calibration site is a 

high-latitude mixed forest (CN-Cha; Table 1). This likely leads to an underestimate of mixed forest ecosystem productivity 

in the south as evidenced by zones of positive summertime mean NEE in southern mixed forest regions. 

Figure 3. Mean NEE (µmol CO2 m-2s-1) averaged over all hours of day from 2005-2009 (a) 
DJF/Winter (b) MAM/Spring (c) JJA/Summer and (d) SON/Fall. 

(a) (b) 

(c) (d) 
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As noted in Sect. 2.2.2, NEE values for shrubland ecosystems are set to missing. The vegetation effect on CO2 in ppm for 

each measurement hour is the result of a spatiotemporal sum of the product of the STILT footprint and surface fluxes. As 

such, an NEE pixel of “missing” is numerically identical to an NEE pixel set to zero. Our choice to set these values as 

missing is based on the reasoning that a zero value (or a previously published value that has low confidence) implies that we 5 

know more about these shrubland ecosystems than we do in this domain. By comparing the sum of surface influence from 

shrubland, needleleaf, and permanent wetland ecosystems to the total average annual surface influence, we find these 

ecosystems contribute less than 5% to the total influence. As such, setting these classes to missing does not appreciably 

affect the conclusions. 

 10 

We break down the results of our study as follows. In Sect. 3.1 we present results from comparison of PAR derived from 

WRF SWDOWN to PAR measured at the eddy flux stations and use these results to inform scaling of modeled PAR in the 

larger domain. In Sect. 3.2 we present results from calibrating the VPRM-CHINA to eddy flux station observations. In Sect. 

3.3, we compare output from VPRM-CHINA to the NASA Carbon Monitoring System project (CMS; Fisher et al., (2010)). 

In Sect. 3.4, we compare the performance of VPRM-CHINA and CMS in an analysis of multi-year growing season 15 

contributions to CO2 measured at the Miyun station. We conclude with Sect. 3.5 where we compare modeled estimates of 

annual carbon balance within the regions that are estimated as having the greatest influence on the observations. 

3.1 Seasonal Scaling Factors for Modeled PAR 
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The WRF PAR bias exhibits seasonal variation, with the highest bias in winter (Fig. 4). We scale modeled PAR in Eq. (1) for 

each season with the derived seasonal scaling factors shown in Fig. 4b, obtained using ranged major axis fits to measured 

PAR (Legendre and Legendre, 1998). During the dormant season, zones where the Pscale phenology term is set to 0 are 

unaffected by modeled PAR as the light-dependent portion of the NEE equation drops out. We find scaling PAR to be 

essential to capturing hourly processes influencing measured CO2 during the growing season (Sect. 3.4). Failing to scale 5 

WRF-derived PAR with observations would result in a bias factor of 1.5 to 2, leading to an unrealistic overestimate of 

growing season hourly uptake and annual uptake of CO2 in the domain. 

3.2 VPRM-CHINA Calibration Results 

 Table 2 displays the results from calibration to eddy flux sites in the domain, and compares to results for similar ecosystem 

classes in North America (Hilton et al., 2013; Mahadevan et al., 2008). Table 3 summarizes the residual standard error (RSE) 10 

and the 1-s values from the fits of each parameter. Figure 5 displays diurnal performance of the model relative to 

measurements by site during peak growing season and further partitions the model into the photosynthesis and respiration 

components. Monthly mean modeled vs. measured NEE is shown for all sites (calibration and validation) in Fig. 6. 

Figure 4. Derivation of PAR seasonal scaling factors. (a) Aggregated mean modeled (red) and measured 
(black) PAR for each eddy flux calibration site by season; error bars are 1-s. (b) Scaling factors for each 
season, based on fitting modeled to measured PAR using Ranged Major Axis regression. 
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Figure 5. Peak growing season diurnal mean measured NEE (black) along with modeled NEE (red), modeled 
GPP (purple), and modeled Reco (blue) vs. Local hour of day (UTC+8h). Grey shaded region represents region 
of positive fluxes (release to atmosphere). 
. 
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Table 2. VPRM-CHINA scaling parameters by IGBP class compared to previous studies *Includes validation sites. 
Units are: l: µmolCO2 m-2s-1(µmol PARm-2s-1)-1; a: µmolCO2 m-2s-1 oC-1; b: µmolCO2 m-2s-1; PARo:  µmol m-2s-1 

 
 5 

We set our coordinate system such that uptake by the biosphere is represented as a negative NEE and release to the 

atmosphere is represented as a positive number. The VPRM-CHINA bias is typically less at hourly timescales (Fig. 5, Table 

3), where processes are largely determined by temperature and light parameterizations. However, the unexplained variance is 

non-random and aggregates over longer timescales (e.g., months and years) and is evident in larger monthly mean biases as 

in Fig. 6, and in annual sums (Table 4).   On annual scales, mean annual temperature and precipitation have been found to 10 

dominate carbon exchange in the Asian region (Chen et al., 2013). However, the relationship between cumulative rainfall 

and LSWI varied depending on whether rainfall is in a high regime or a low regime (Chandrasekar et al., 2010). Future 

versions of VPRM-CHINA for China would benefit from using Solar Induced Fluorescence (SIF), a more reliable method 

for quantifying photosynthetic capacity that replaces the EVI, Pscale, and Wscale terms from the VPRM-CHINA NEE equation 

(Luus et al., 2017). The time period of this study does not coincide with SIF data availability. At monthly resolutions 15 

modeled uptake underestimates observed uptake during the growing season, particularly in the CN-Yuc cropland site during 

both the winter wheat and corn modes. For all sites and timescales, except evergreen broadleaf and woody savannas that 

have little influence on the receptor, respiration is underestimated by the model by an additive offset.  

 

 Mixed 
Forest 

Evergreen 
Classes 

Grassland* Crops 
–Rice* 

Woody 
Savanna 

Crops 
– Corn  

Crops – 
Winter 
Wheat 

 
This Study 
(East 
China) 

l 0.129 0.0903 0.0451 0.0583 0.104 0.143 0.157 
a 0.267 0.128 0.0306 0.0523 0.162 0.0938 0.0870 
b -0.291 -0.464 0.0919 -0.0769 -0.710 1.42 0.00604 
PAR0 639 786 464 2030 1405 2070 1205 

Hilton et al. 
(2013):  
North 
America 

l 0.102 0.107 0.0583 -- 0.0571 0.0826 -- 
a 0.249 0.110 0.0523 -- 2.33E-3 0.0510 -- 
b 7.18E-4 0.189 -0.0769 -- 0.592 0.792 -- 
PAR0 565 777 2030 -- 3500 4173 -- 

Mahadevan 
et al. 
(2008): 
North 
America 

l 0.123 0.114 0.213 -- 0.057 0.075 -- 
a 0.244 0.153 0.028 -- 0.012 0.173 -- 
b -0.24 1.56 0.72 -- 0.58 0.82 -- 
PAR0 629 790 542 -- 3241 11250 -- 
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Figure 6. Monthly means of predicted (Modeled) NEE vs Measured NEE at calibration sites, 
colored by season. Solid line is Standard Major Axis (SMA) regression line; dashed line is 1:1. 

 

Table 3. Residual Standard Error and 1-s values for each calibration site in study domain. 5 

 
   Mixed 

Forest 
Evergreen 
Broadleaf 

Grassland Woody 
Savanna 

Wheat/ 
Corn 

RSE 2.779 2.211 .6567 2.641 5.556/ 
7.387 

s(l) 0.003 0.002 0.002 0.002 0.009/ 
0.008 

s(a) 0.005 0.004 0.001 0.004 0.018/ 
0.020 

s(b) 0.047 0.074 0.008 0.064 0.268/ 
0.383 

s(PAR0) 21.61 25.68 34.81 52.15 149.5/ 
340.1 
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3.3 Comparison to NASA CMS 

We compare VPRM-CHINA performance at hourly timesteps to the NASA CMS weighted ensemble optimal mean of 15 

vegetation models (Fisher et al., 2010). The CMS NEE is reported as fluxes of C, provided at 3-hourly resolution on a global 

0.5ºx0.5º grid. For direct comparison, we convert to fluxes of CO2 and regrid the CMS using NCLv6.2.1 and a nearest-

neighbor approach to the same spatial and temporal resolution and extent as the final VPRM-CHINA (hourly; 0.25ºx0.25º). 5 

Figure 7 compares mean and 1-s of annual uptake as kg C m-2 y-1 averaged over the 2005 to 2009 study time period. The 

CMS product exhibits minimal spatial heterogeneity relative to the VPRM-CHINA product.  

 

 

  10 

Figure 7. Annual NEE (kg C m-2) modeled by VPRM-CHINA and CMS 
reported as multi-year (2005-2009) (a) means, and (b) 1-s standard 
deviation 

VPRM 

VPRM 

CMS 

CMS 

(a) 

(b) 
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3.4 Multi-year Growing Season Analysis 

Figure 8 displays modeled (ZHAO_VPRM, ZHAO_CMS) and measured CO2 and residuals for each year during the growing 

season (May through September) incorporating the peak winter wheat period. We apply VPRM parameters obtained from 

the previously described calibration. Plots of daily averaged concentrations (Fig. 8a) suggest underestimated uptake by 

CMS; further examination of modeled-measured residuals at the hourly scale in (Fig. 8b) indicate a systematic underestimate 5 

of NEE that is not present in the hourly CO2 modeled with VPRM-CHINA NEE. Fig. 8c indicates the distributions of 

ZHAO_VPRM-CHINA CO2 and measured CO2 are similar; this is not the case with ZHAO_CMS during times of year 

where uptake is dominant. 

 

We further examine the relative importance of the vegetation and anthropogenic influence by separately excluding each of 10 

the vegetation and anthropogenic components from the overall unoptimized (i.e., inventories uncorrected by observations) 

modeled hourly CO2 (Fig. 9). 

 

2005 2006 2007 2008 2009 2005 2006 2007 2008 2009 

(b) 

(c) 

(a) 

Figure 8. Comparison of Modeled and Measured CO2 during May-September 2005-2009, using two 
different vegetation models. (a) Daily Averages, for visual clarity; (b) Distribution hourly Modeled-
Measured Residuals; (c) Comparison of modeled and measured hourly distributions using a Q-Q plot. 

ppm 
ppm 

ppm 
ppm 

Comment [Office1]: Figure 8 is updated here with a minor 
update to the latest version. A previous version made from R code 
with a minor bug was used in the original manuscript. The 
replacement figure was generated from the code with the bug fixed 
(leading to insignificant changes in the hourly residual means in 
panel 2). These were the only results affected and the effects are 
insignificant and do not change the results and messages of the 
original manuscript. 

Deleted: We further examine the relative importance of the 
vegetation and anthropogenic influence by separately excluding each 15 
of the two main components (vegetation and anthropogenic) from 
the overall unoptimized modeled hourly CO2 (Fig. 9). 
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We find that accurate modeling of growing season CO2 in regions of China that are heavily influenced by anthropogenic 

activity requires incorporation of anthropogenic emissions. While unoptimized CO2 concentrations modeled only by VPRM 

were in good agreement with data from aircraft surveys and tower sites in studies in North America (northern New England 

and Quebec, Matross et al., 2006), the relative magnitudes of the biological and anthropogenic fluxes in the eastern portion 

of China are of comparable magnitude. In Fig. 9, we compare the ability of VPRM-CHINA and CMS to reproduce growing 5 

season CO2 measurements using a fixed anthropogenic component prescribed by ZHAO. We find that when both vegetation 

and anthropogenic components are included the VPRM-CHINA vegetation fluxes result in a CO2 prior that is less biased 

than one that uses CMS vegetation fluxes. We report mean bias, calculated as the average difference between modeled and 

measured CO2. Based on results displayed in Fig. 8, we conclude that the apparent lower bias of CMS only in Fig. 9d is an 

artefact of its lower prescription of biosphere uptake in the growing season. 10 

 

Figure 9. Smoothed scatterplots examining relative impact of excluding anthropogenic and 
vegetation influences in modeling growing season CO2. (a) Both hourly anthropogenic and 
VPRM-CHINA NEE included; (b) both hourly anthropogenic and 3-hourly CMS NEE; (c) 
hourly VPRM-CHINA NEE only; (d) 3-hourly CMS NEE only; (e) hourly anthropogenic 
only. All modeled inventories are unoptimized. The blue dashed line represents the 1:1 line; 
the solid black line represents the SMA fit line described by the equations displayed. Higher 
point density is represented by darker colors. 

(a) (b) 

(c) (d) (e) 

Mean y-x Bias: 
-7.6 ppm 

Mean y-x Bias: 
6.6 ppm 

Mean y-x Bias: 
-3.0 ppm 

Mean y-x Bias: 
6.8 ppm 

Mean y-x Bias: 
1.9 ppm 
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Figure 10 displays modeled anthropogenic (ZHAO) and vegetation (VPRM-CHINA) contributions to the measured CO2 

signal relative to background concentrations during the May-September growing season. Peak drawdown occurs in August. 

Extending the results from Fig. 9c and Fig. 9e, we model comparable magnitudes of anthropogenic emissions and biological 

uptake particularly during the peak growing season.  

 5 

3.5 Performance of VPRM-CHINA on Annual Timescales 

We stress that the VPRM-CHINA is primarily intended as an hourly prior, capturing CO2 flux covariance with spatial and 

temporal patterns in vegetation type and status detected by remote sensing. However, analysis at annual timescales is useful 

to illustrate regional biases. As such, we present analysis of VPRM-CHINA on annual timescales over the study time period 

by comparison to CMS and Piao et al. (2009). Piao et al. (2009) divided China into nine main regions roughly corresponding 10 

to China’s administrative regions and examined the vegetation carbon budget on annual timescales using models and 

vegetation products spanning the time period from 1980 through 2005.  

 

We break down our study region similarly to Piao et al. (2009) as shown in Fig. 11; our study region includes seven of 

Piao’s nine regions. In addition, we calculate the multi-year (2005-2009) mean annual STILT footprints in the study domain 15 

which provides an estimate of the regions that have the greatest influence on the ultimate signal at the Miyun receptor. These 

Figure 10. Modeled mean monthly contribution (ppm) to Miyun CO2 from vegetation (VPRM-CHINA) and 
anthropogenic (ZHAO) sources, relative to advected CT2015 background concentrations during the regional 
growing season (MJJAS). Error bars represent 1-s of monthly averages (Green: VPRM-CHINA Vegetation; 
Black: ZHAO Anthropogenic). Negative values represent depletion from CT2015 background; positive 
values represent enhancement. 
 

AUG MAY JUN JUL SEP 
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regions are displayed with contour lines of 50th, 75th, and 90th percentiles of surface footprints. North China, Inner Mongolia, 

and Northeast China are the administrative regions significantly encompassed by the mean annual 90th percentile region; it 

follows that parameterizations of vegetation and anthropogenic CO2 fluxes in these regions have the greatest impact on the 

modeled CO2 signal.  

 5 

We examine VPRM-CHINA performance in each of these three administrative regions relative to other vegetation models 

(Table 4). Consistent with Piao et al. (2009), we do not include croplands in our annual totals in Table 4 due to the rapid 

turnover of cropland carbon stocks. We find that across the administrative regions encompassed by the STILT influence 

contours, there is agreement within uncertainty across models. However, it is important to note that Piao et al. (2008) include 

estimates from a significantly earlier time period (1980 to 2005). Regionally, there is agreement across all models within 10 

uncertainty bounds. On a sub-region basis, there is agreement across models in the direction of carbon flux with the 

exception of Inner Mongolia. 

  

Figure 11. STILT influences and major administrative regions of China in study domain. Administrative regions 
are categorized according to convention in Piao et al. (2009). Stippling represents location of 0.25°x0.25° VPRM-
CHINA and ZHAO gridcell centers within the regions. Black contour lines display 50th, 75th, and 90th percentiles of 
mean annual STILT footprints (2005-2009) to highlight regions with the greatest influence on Miyun receptor 
(solid green circle). Note that two of the regions (Inner Mongolia and Northeast China) are mostly, but not 
completely, encompassed by our study domain. 
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Table 4. Comparison of unoptimized VPRM-CHINA annual carbon exchange by region of China with other 
vegetation models. VPRM-CHINA and CMS values are reported as multi-year means±2s. Reported Piao values are 
the average of three approaches (process-based models, inverse approach, inventory approach). aVPRM-CHINA 
and regridded CMS do not cover extent of region; bDoes not include land use less than 5%; cCropland extent 
included for reference; but are not included in regional budget due to rapid turnover of carbon stocks, consistent 5 
with Piao et al., 2008. Negative quantities: uptake by the biosphere. 
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The VPRM-CHINA is poorly constrained by data in Inner Mongolia where we are restricted by the availability of data and 

use a single degraded grassland site (CN-Du2) to represent over 60% of its landscape. This is particularly problematic as 

grasslands are shown to have significant ecosystem variation (Zhang et al., 2014). In general, the lack of spatial and, at 25 

second order, temporal heterogeneity in both calibration and validation data for the VPRM-CHINA lead to significant error 

propagation at annual timescales. Jiang et al. (2016) further illustrate this point by evaluating the effect of assimilating more 

measurements on carbon sink estimates. Jiang et al. (2016) present top-down estimates of land carbon sinks using Carbon 

Tracker China (CTC) and a Bayesian Inversion (BI) for all of China, noting that the observation network density is highest 

in the north and east and therefore biased toward constraining exchange in these regions. Increasing the observational 30 

constraints from one station to three stations and aircraft data increase carbon sink estimates for the BI and CTC systems by 

76% and 95%, respectively (Jiang et al., 2016) and reduce uncertainty in all cases.  

 

In contrast, the VPRM-CHINA is best constrained by data in North and Northeast China. The land categories in these 

regions are appropriately represented by their respective eddy flux calibration sites. For instance, North China has a high 35 

prevalence of heavily disturbed grasslands appropriately represented by CN-Du2. In addition, mixed forests in North China 

Region MODIS IGBP 
Dominant Categories  
(% prevalence)b 

VPRM-CHINA 
(2005-2009) 

TgCyr-1 

CMS 
(2005-2009) 

TgCyr-1 

Piao 
(1980-2005) 

TgCyr-1 
 
Inner 
Mongoliaa 

Grasslands (61%) 
Croplands (5%)c 
Grasslands/Barren (29%) 

64±7 -2.6±16 -8.3±11 

Northeast 
Chinaa 

Decid. Broadleaf (10%) 
Mix Forest (20%) 
Grasslands (10%) 
Croplands (47%) c 
Grasslands/Mosaic (9%) 

-64±16 -7.7±16 -3.3±13 

North China 

Mix Forest (13%) 
Grasslands (23%) 
Croplands (51%) c 

-13±24 -7.1±22 -25.7±23 

Regional 
TOTAL 

 -13±15 -17±16 -37±29 
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are well represented by CN-Cha, which is in close proximity. North and Northeast China fall completely within the 75th 

percentile of STILT footprints (Fig. 11), thereby increasing confidence in modeled CO2 during the growing season. Similar 

to Zhang et al. (2014) we find a strong carbon sink in the northeast (Table 1-4), a feature not found by Piao et al. (2009).   

4 Summary and Conclusions 

This study shows how the VPRM can be adapted for use in large-scale CO2 studies in China by (1) streamlining processing 5 

of driver datasets at reasonable computational timescales; (2) successfully addressing the significant extent of dual-cropped 

regions in the North China Plain; (3) calibrating VPRM-CHINA with China-specific observations at the ecosystem level; 

and (4) demonstrating the low bias of VPRM-CHINA with respect to hourly growing-season CO2 measured over multiple 

years at Miyun. We provide hourly estimates of NEE, GPP, and R for the eastern half of China from 2005-2009 on a 

0.25°x0.25° grid. We assess its performance in regions that significantly influence CO2 measured at the Miyun station, and 10 

compare it to modeled NEE from other vegetation CO2 studies across China (NASA CMS, Piao et al., 2009). We use the 

ZHAO inventory as a control for anthropogenic CO2 emissions within a WRFv3.6.1-STILT modeling framework. 

 

The VPRM-CHINA is calibrated with eddy flux data from each major IGBP ecosystem class in the domain (Fig. 1, Table 1). 

We separately prescribe a winter wheat mode and corn mode for dual cropland classes within the North China Plain belt 15 

(Fig. 2). We find the PAR estimated from WRFv3.6.1 downward shortwave radiation to be overestimated relative to 

observations by a factor of 1.5 to 2, depending on season (Fig. 4). We find it necessary to scale PAR in Eq. 1 by the seasonal 

scaling factors for the regional VPRM-CHINA to realistically represent hourly and annual ecosystem carbon fluxes. Overall, 

the VPRM-CHINA calibration parameters obtained for this study agree with previous studies for similar ecosystem types at 

similar latitude (Table 2). We find uptake to be well constrained at hourly scales (Fig. 5, Fig. 8, Fig. 9) but underestimated 20 

relative to observations at monthly scales (Fig. 6). 

 

We find greater spatial and temporal heterogeneity in VPRM-CHINA relative to CMS over the study time period (Fig. 7). 

Accounting for spatial patterns in carbon exchange is necessary for the Lagrangian transport model to capture effects on 

observed CO2 at fine grid scales. Indeed, at the hourly scale, the VPRM-CHINA shows significantly greater ability to 25 

capture vegetation processes influencing observations at Miyun relative to CMS (Fig. 8, Fig. 9). Due to Miyun’s proximity 

to the North China Plain cropping region, cropland signatures strongly influence partitioning of contributions to modeled 

CO2 enhancements relative to CT2015 background concentrations, as evidenced by the strongest drawdown occurring during 

the peak period of the corn-growing season (Fig. 10).  
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The VPRM-CHINA is well constrained at all timescales by observational ecosystem data in Northeast, North, and South 

China but has sparse representation of its major ecosystem classes in Inner Mongolia, Central, Southeast and Southwest 
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China. Given that the major regions influencing observations at Miyun are in the North, Northeast and Inner Mongolia (Fig. 

11) use of the VPRM-CHINA is appropriate for northern China sites. However, improvements in modeling growing season 

CO2 for Miyun rely heavily on improved parameterizations of heterogeneous grasslands. At the annual scale, the VPRM-

CHINA agrees with CMS and Piao et al. (2009) within uncertainty bounds in the 90th percentile contour of the influence 

region (Table 4).  5 

 

Overall, the VPRM-CHINA performs well on multiple timescales (hourly to annually) in regions where it is constrained by 

representative ecosystem observations, stressing the importance of a dense observation network for larger scale studies 

influenced by other regions of China. In addition to more eddy flux ecosystem-level data, future versions of the VPRM-

CHINA for China will benefit considerably from improvements in PAR fields; we are currently extrapolating PAR data using 10 

scaling factors derived from observations at five sites to the entire domain. The VPRM-CHINA is particularly appropriate 

for hourly and daily resolution timescales, which are the most relevant scales needed for use as a prior in signal attribution 

studies. Processes at these timescales are primarily driven by variations in temperature and PAR. In contrast, CMS performs 

poorly in resolving questions requiring hourly timescale processes. In addition to studies involving ground-based 

measurements, our results show that high resolution vegetation flux models such as VPRM-CHINA are critical for 15 

interpreting retrievals from global CO2 remote sensing efforts such as the Orbiting Carbon Observatory (OCO) missions 

OCO-2 and OCO-3 (planned). Depending on satellite time-of-day and season of crossover, efforts to interpret the relative 

contribution of the vegetation and anthropogenic components to the measured signal are critical in key emitting regions such 

as Northern China--where the magnitude of the vegetation CO2 signal is shown to be equivalent to the anthropogenic signal.  



27 
 

Code and Data Availability 

Code and data are available at http://dx.doi.org/10.7910/DVN/RQLGLH. The supplement includes the VPRM-CHINA 

methods paper, relevant model code, calibration results, WRF temperature and shortwave radiation fields, and hourly 
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