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Dear Reviewer, 

We deeply appreciate your comments and effort towards improving our manuscript. We have taken your 

constructive comments carefully in the revision of our manuscript. For the revision, please kindly refer 

to the point-to-point responses as followings and the revised manuscript. The changes we made have 

been noted in the blue color for highlighting. 5 

Response to Reviewer #1 

The East China Sea is a marginal sea that includes a large area of shallow continental shelf. Water 

dynamics in the ECS is very complex due to the influence of wind, intrusion water of the Kuroshio 

Current, the freshwater discharge from the Changjiang (Yangtze) River, and the topography. 

Phytoplankton productivity and community structures show large gradients from the open ocean to the 10 

shelf and to the estuarine waters. In this study, the spectral-based model proposed by Wang et al. (2014) 

was modified to retrieve the phytoplankton size classes (PSCs) from the MODIS derived phytoplankton 

absorption spectra. This is the main novelty of this paper, which is also the important basis for studying 

the spatial and seasonal variability of PSCs from MODIS ocean color data. As shown by Wang et al. 

(2014), based on in situ measured phytoplankton absorption spectra (aph(λ)), or aph(λ) derived from in 15 

situ measured remote sensing reflectance (Rrs) with QAA algorithm, this approach showed good 

performances. In this paper, uncertainty of aph spectra retrieved directly from MODIS ocean color data 

is key for determining the accuracy of this model. Validation of this model based on about 21 data points 

is encouraging, however, as shown in Fig. 7, there are still large deviations between measured and 

estimated value. The general spatial distribution of PSCs maybe reasonable. But for some specific areas 20 

the credibility of these results is still an open question.  

Response: Thank you for your comments. We agree with you that there were still deviations between 

measured and derived result, while it should be admitted that validation using the satellite matchups 

(N=22) showed generally reasonable model performance when we use the reconstructed satellite Rrs 

(Fig. R1b); meanwhile this performance was significantly better than that using original satellite data 25 

(see Fig. R1a).  
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In addition, to further examine the performance of the refined PSC model in our study, our refined PSC 

model was compared with other two published PSC models (i.e., the Brewin et al. (2015) model and the 

Sun et al. (2017) model). The scatter distributions of satellite-derived PSC using our refined PSC model 

were closer to the 1:1 line than those of the other two published models. According to the statistical 

indicators, our refined PSC model had the best performance, with the R values of 0.68, 0.46, and 0.64 5 

and RMSE values of 0.13, 0.13, and 0.19 for micro-, nano-, and pico- phytoplankton, respectively (Fig. 

R1b). For the Brewin et al. (2015) model (Fig. R1c), the R values of 0.57, 0.093, and 0.52 and RMSE 

values of 0.26, 0.15, and 0.21 were observed for micro-, nano-, and pico- phytoplankton, respectively. 

For the Sun et al. (2017) model (Fig. R1d), the R values were 0.22, 0.099, 0.37 for micro-, nano, and 

pico-phytoplankton, when the corresponding RMSE values were 0.17, 0.18, and 0.19, respectively. The 10 

Brewin et al. (2015) model and the Sun et al. (2017) model had relatively poor performance in the ECS, 

especially for micro- and pico-phytoplankton. These results of Fig. R1 indicated that the performance 

of our refined PSC model using the reconstructed satellite data were better than those of the Brewin et 

al. (2015) model and the Sun et al. (2017) model in our study region. In the revised manuscript, we have 

added the explanations regarding this issue in Section 3.4.  15 

Therefore, we have investigated the spatiotemporal variability of the PSC in the ECS based on satellite-

derived products from the reconstructed satellite data, and the general spatial distribution of PSC was 

reasonable. Fig. R2 showed the comparison between the spatial distributions of PSC during summer and 

autumn derived from both MODIS and field measurements. Overall, their general distributions patterns 

agreed with each other. For micro-phytoplankton, high values were generally found in near-shore 20 

regions with lower values in offshore waters during summer and autumn. For nano-phytoplankton, both 

MODIS and field measurements showed high values in the middle shelf region of the ECS. For pico-

phytoplankton, both MODIS and field measurements showed low values in the coastal region during 

summer and autumn and high values in the coastal waters of western Japan during summer. However, it 

is a pity that there was no satellite matchup in the Kuroshio waters of the ECS to assess the credibility 25 

of satellite-derived PSC results in this region as you concerned. In future research, we will add additional 

field data to the PSC model developing and to validation of the credibility of satellite-derived PSC 

results, especially for the Kuroshio region of the ECS. 
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Fig. R1 Comparison of the HPLC-derived and satellite-derived PSC result from the original satellite Rrs using the refined 

PSC model in this study(a); from the reconstructed satellite Rrs using the refined PSC model in this study (b); using the 

Brewin et al. (2015) method (c); using the Sun et al. (2017) model (d). Solid lines denote the 1:1 lines. 

 5 

Fig. R2. Comparison of spatial distributions of PSC in the ECS between satellite retrievals and field measurements during 

summer and autumn.  

(b) satellite-derived PSC(a) In situ measured PSC
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Discussion (4.2) about the spatial distribution and the seasonal variability of phytoplankton size classes 

are mostly descriptive and relatively superficial. It’s a good point to pick up three specific areas to 

discuss the seasonal variability and its relationship with SST. More explanation and further discussion 

about the physical and chemical environment for these areas could be useful for readers to know the 

feasibility of this remote sensing model.  5 

Response: Thank you for your valuable suggestions. In the revised manuscript, based on the different 

seasonal distributions of the PSC and Chla in the ECS sub-regions (as shown in Fig. 8 and Fig. 9 in the 

revised manuscript), we have discussed the regional scale characterization of the full seasonal cycle in 

stellate-derived PSC. Meanwhile, more explanation and discussion regarding the related physical and 

biochemical effects were added for helping to understand the spatiotemporal variability of the PSC in 10 

the ECS. Full details are in Discussion, Section 4.2 (Section 4.2.1 - The coastal region; Section 4.2.2 - 

The middle shelf and shelf break of the ECS; Section 4.2.3 - The Kuroshio region and open ocean) in 

the revised manuscript. Thank you. 

I noticed that a paper entitled “Remote-Sensing Estimation of Phytoplankton Size Classes From GOCI 

Satellite Measurements in Bohai Sea and Yellow Sea” was published recently in JGR by the same group. 15 

They also showed some results about this area. However, these results seem to be a little different from 

each other. I recommended authors to do more work about the validation and comparison of this model.  

Response: Thank you for your valuable suggestions. Based on 22 satellite matchup samples, we have 

estimated the satellite-derived PSC results using the refined model in our study and using the Sun et al. 

(2017) model with its original parameters, respectively. These satellite-derived PSC results were 20 

validated using HPLC-derived values, in order to assess and compare the performance of the two PSC 

models in the ECS (Fig. R3). For the Sun et al. (2017) model, the R values were 0.22, 0.099, 0.37 for 

micro-, nano, and pico-phytoplankton, with the corresponding RMSE values of 0.17, 0.18, and 0.19, 

respectively. For our refined PSC model, the R values of 0.68, 0.46, and 0.64 and RMSE values of 0.13, 

0.13, and 0.19 were observed for micro-, nano-, and pico- phytoplankton, respectively. These results 25 

indicated that the performance of our refined PSC model in the ECS was better than the Sun et al. (2017) 

model, especially for micro- and pico-phytoplankton. The relatively poor performance of the Sun et al. 

(2017) model in the ECS may be due to the limited applicability of this model, since this model was 
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actually developed based on the field data collected from the Bohai and Yellow seas where the waters 

are relatively more turbid than those in the ECS. 

 

Fig. R3 Comparison of the HPLC-derived and satellite-derived PSC results from the reconstructed satellite data using the 

refined PSC model in this study (a); using the Sun et al. (2017) model (b). 5 

Some specific questions or recommendations as follows: 

(1) In ECS, the “abundance based” approach may not perform as well as that in open ocean. How about 

the general variability of PSCs (fractions) with the total Chl-a according to in situ data? Since 

distribution of phytoplankton biomass may help us to explain the spatial variability of PSCs, I also 

recommend to add the seasonal distribution of total Chl-a in Fig. 8.  10 

Response: Thank you for your comments and suggestions. The scatterplots between HPLC-derived PSC 

and measured Chla were drawn to show the variability of PSCs with the total Chla for in situ data (Fig. 

R4). Meanwhile, we have also plotted the HPLC-derived PSC as a function of the in situ total Chla with 

the original coefficients of Brewin et al. (2015) for the global ocean. It can be clearly seen that the data 

were quite scattered, and the fractional variation of each population in the ECS as a function of Chla 15 

don’t strictly agree with the results of Brewin et al. (2015) (black curves in Fig. R4), thus the “abundance 

based” approach may not perform well in the East China Sea as suggested by Wang et al. (2014). 

However, in general, micro-, nano-, pico-phytoplankton dominate at high, intermediate, and low Chla, 

respectively. Therefore, as you suggested, we have added the seasonal distribution of total Chl-a in Fig. 
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8 (Fig. R5 in this response) in the revised manuscript, for helping us to explain the spatial variability of 

PSCs in our study region. These seasonal Chla were generated by averaging the standard monthly Chla 

products from the MODIS-Aqua sensor provided by the NASA Ocean Color website. In the revised 

manuscript, we have added the explanations regarding this issue in Section 3.5. 

 5 

Fig. R4. Scatterplots showing the variability of the size fractions of (a) micro, (b) nano, and (c) pico-phytoplankton with the 

in situ measured Chla. The black curves denote the PSC as a function of the total Chla with its original coefficients of Brewin 

et al. (2015) for the global ocean. 

 

Fig. R5. Seasonal distributions of the PSC (a - l) and Chla (A-D, right panel) in the ECS during 2003-2016. 10 

(2) For processing MODIS data, which algorithm was used for estimating the total Chl-a? How about 

the validation results with in situ match-up data points? 

Response: Thank you for your question. In this study, we used the standard monthly Chla products of 
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MODIS-Aqua sensor provided by the NASA Ocean Color website. These standard Chl-a products were 

obtained using the combined algorithm of the O'Reilly band ratio OCx algorithm and the Hu color index 

(CI) algorithm (see details in Hu et al. (2012)).  

To assess the accuracy of the MODIS Chl-a data, we validated the satellite Chla data using in situ 

measured Chl-a based on 22 matchups (Fig. R6). The satellite Chla data in the matchup dataset were 5 

obtained from the daily Level 2 Chla products from MODIS Aqua sensor. This matchup dataset only 

consisted of satellite Chla with an overpass time window within 5h before and after field data. To avoid 

the effects of outliers, the median Chla values for a 3 × 3 pixels window centered on the locations of the 

sampling stations were defined as satellite Chla. As shown in Fig. R5, satellite Chl-a generally agreed 

well with in situ measured Chl-a, with R2, RMSE and MAPE values of 0.85, 0.16 mgm-3 and 31.38%, 10 

respectively. These results suggested that the satellite Chl-a had good accuracy in our study region, 

which was considered generally acceptable in remote sensing research (Gregg and Casey, 2004; 

Siswanto et al., 2011). Therefore, we have used the standard MODIS Chla products to help us better 

understand the spatiotemporal variability of PSC in the ECS. 

 15 

Fig.  R6. Comparison of the satellite Chl-a with in situ measured values. 

(3) About the reconstruction of Rrs at 412 and 443nm wavebands, more data from SeaBass dataset were 

used for developing the relationship. Does this relationship exhibit the same distribution over coastal 

waters and open ocean? These coefficients (K) could be shown in a Table. 



 

8 

Response: Thank you for your comments. Our study region includes coastal region and open ocean. In 

our study, the same sets of coefficients for reconstruction Rrs at 412 and 443 nm were used in both coastal 

region and open ocean, although there were slight differences between the coefficients for different 

datasets (i.e., the coastal region dataset, the open ocean dataset, and the combined dataset) (as shown in 

Table R1). Although the same sets of coefficients were used in our study region, the obtained results of 5 

reconstruction Rrs showed satisfactory performance, and yielded reasonable distributions of satellite-

derived PSC in our study region (see Fig. 6, Fig. 7 and Fig. 8 in the revised manuscript). Indeed, if the 

different coefficients of algorithms for reconstruction Rrs are retrieved for the coastal region and open 

ocean respectively, the performance of reconstruction satellite data may be improved. However, along 

the way, the water in our study region are discriminated to the two types (i.e., coastal water and open 10 

ocean waters) before the class-based reconstruction algorithms are applied, and thus development of 

optical criteria to discriminate water types is needed. These processes increase the complexity of the 

method. Therefore, weighing the operation convenience and accuracy of the method, in our study, we 

have used the same sets of coefficients (K) in the entire study area (see Table 3 in the revised manuscript). 

Meanwhile, Fig. 5 in the manuscript has been removed. Thank you. 15 

Table R1 Comparison of equation coefficients of reconstruction Rrs for three different datasets.  

wavelengths Dataset K0 K1 K2 K3 K4 K5 

 Combined dataset 4.43*10-4 3.91 -3.19 0.20 0.72 -0.69 

412 nm Coastal region 2.09*10-4 2.07 -1.49 0.27 0.46 -0.47 

 Open ocean 4.43*10-4 5.01 -5.05 1.19 1.17 -0.62 

 Combined dataset 7.39*10-5 2.50 -1.59 -0.361 1.22 -0.77 

443 nm Coastal region 4.48*10-5 1.93 -0.93 -0.24 0.26 -0.07 

 Open ocean 7.26*10-5 2.24 -1.11 -0.69 2.42 -2.29 

(4) As shown in Section 4.2, the spring bloom was found to occur frequently in the mouth area of 

Changjiang river and middle shelf region. How about the performance of this “spectral-based” model 

for PSCs retrieval for bloom waters? Does it give better results than the others (“abundance-based” 

model)? Clear comparison and discussion about this point could be very helpful for supporting the 20 

credibility of this model. 
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Response: Thank you for your valuable suggestions. As you suggested, we have chosen the the Brewin 

et al. (2015) model as a “abundance-based” model to compare with our PSC model. First, based on 22 

satellite matchups, the performance of our refined PSC model was compared with that of the Brewin et 

al. (2015) model with its original model parameters for the global ocean (Fig. R7). It can be seen that 

the satellite-derived PSC from Chla using the Brewin et al. (2015) model were not consistent with the 5 

HPLC-derived values, showing clear overestimation for micro- phytoplankton and underestimation for 

pico-phytoplankton (as shown in dashed circles in Fig. R7b). The R values of 0.57, 0.093, and 0.52 and 

RMSE values of 0.26, 0.15, and 0.21 were observed for micro-, nano-, and pico-phytoplankton, 

respectively. In contrast, the satellite-derived PSC using our refined PSC model agreed well with the 

HPLC-derived values, with the R values of 0.68, 0.46, and 0.64 and RMSE values of 0.13, 0.13, and 10 

0.19 for micro-, nano-, and pico- phytoplankton, respectively (Fig. R5a). These results indicated the 

performance of our refined PSC model using the reconstructed satellite data was better than that of the 

Brewin et al. (2015) model in our study region. 

 

Fig. R7. Comparison of HPLC-derived and satellite-derived PSC data from the reconstructed satellite Rrs using the refined 15 

PSC model in this study (a); from Chla using the Brewin et al. (2015) model (b). 

Further, we have assessed and compared the performances of our refined PSC model and the Brewin et 

al. (2015) model for spring bloom water by showing the monthly climatologies of micro-phytoplankton 

size fraction (fmicro) during 2003-2016 in the month area of Changjiang river (MCJR) and middle shelf 

region (MSR), as shown in Fig. R8.  20 



 

10 

Regional averages of the monthly mean Chla in the MCJR (Fig. R8a) indicated two peaks. One peak of 

the mean Chla was found in summer (July), and it is likely to be related to the increase of nutrient from 

riverine discharge (He et al., 2013) (see detailed discussion in Section 4.2.1 in the revised manuscript). 

The other peak of the mean Chla occurred in spring (April-May). In the MCJR, the fmicro derived using 

our PSC model were similar to those obtained from the Brewin et al. (2015) model in the winter and 5 

spring; however, the fmicro of our model were lower than those of the Brewin et al. (2015) model in the 

summer and autumn. This may be related to the overestimation of micro-phytoplankton caused by the 

Brewin et al. (2015) model itself (see Fig. R7b). Furthermore, micro-phytoplankton of our refined PSC 

model comprised 60-80% of the Chla throughout the year with the maximum value in the spring (April), 

while fmicro of the Brewin et al. (2015) model varied from 70% to 90% with the maximum value in the 10 

spring (May). In contrast to the MCJR, the MSR showed the lowest mean Chla in the summer, and the 

highest value in the spring (April) (Fig. R8b). The fmicro temporal validations of our refined PSC model 

and the Brewin et al. (2015) model were similar to those of Chla, with the high fmicro during spring and 

the low during summer and autumn. 

Overall, both the two PSC models can capture the variation feature of PSC for spring bloom waters (Fig. 15 

R8). However, the retrieval accuracy of satellite-derived PSC using our refined PSC model was better 

than using the Brewin et al. (2015) model (Fig. R7). Therefore, in general, the results of Fig. R7 and Fig. 

R8 indicated that the performance of our refined PSC model for the PSC retrieval for spring bloom 

waters was better than that of the Brewin et al. (2015) model. 

 20 

Fig. R8. Monthly climatology (2003-2016) of the mean MODIS-Aqua Chla (mg m-3) and micro-phytoplankton size fraction 

in the MCJR (a) and MSR (b). 

(5) Results shown in Fig.9 is very interesting, which have already attracted much attentions from marine 
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ecologists. I recommend authors to do further discussion about these variabilities referring those 

published results. At the same time, those published results about the spatial and seasonal variations of 

PSCs in ECS could be used for validating the MODIS derived values. 

Response: Thank you for your comments. As you suggested, in the revised manuscript, we have added 

detailed discussion of the monthly climatological PSC in three subareas (shown in Fig. 9 in the revised 5 

manuscript). More details were provided in Section 4.2 in the revised manuscript (Section 4.2.1 - The 

coastal region; Section 4.2.2 - The middle shelf and shelf break of the ECS; Section 4.2.3 - The Kuroshio 

region and open ocean). Meanwhile, we have compared and discussed the spatiotemporal variations of 

phytoplankton size classes and community in the ECS reported from field measurements by other 

researchers (see Section 4.2 in the revised manuscript). The distribution patterns of satellite-derived PSC 10 

in the ECS in our study are generally consistent with those field PSC results, which suggested that the 

satellite-derived PSC in our study are generally reasonable. Furthermore, in the revised manuscript, we 

have added the explanation about the monthly climatological Chla and PSC in three subareas selected 

in this study (see the second paragraph of Section 3.6), and also added discussion about the related 

physical and biochemical effects for helping to understand the spatiotemporal variability of the PSC in 15 

the ECS (see Section 4.2). Thank you. 

(6) Temperature itself is an important factor governing the distribution of phytoplankton, which also 

provides a quantitative index of the physio-chemical state of the marine environment. How about the 

correlation between total Chl-a (phytoplankton biomass) with SST? As shown in Table 5, these 

correlation between SST and size fractions may have different underlying mechanism for the 3 different 20 

subareas. Some more explanations about the hydrological backgrounds of these subareas are expected 

to deepen the understanding. 

Response: Thank you for your comments. Based on the 14-years (2003-2016) time series of the monthly 

SST and Chla data, we have discussed the correlation between Chla with SST for the three subareas 

(Fig. R9). In the Kuroshio region, there was significant negative correlation (R = -0.84 and p < 0.001). 25 

The correlation was negative in the MSR (R = -0.36 and p < 0.001) , however it became positive in the 

MCJR (R = 0.43 and p < 0.001). These findings were in agreement with the study of Liu et al. (2013), 

which reported that there was a significantly positive correlation between Chla and SST at the sea region 
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with water depth < 20 m but a negative correlation at the sea region with water depth of 20 – 40 m and > 

40 m.  

 

Fig. R9 The scatterplots showing the relationship between the Chla and SST in the MCJR, MSR, and KR. 

Meanwhile, in the revised manuscript, we have added the discussion of the hydrological backgrounds 5 

in the three subareas (Fig. R10; i.e., Fig. 10 in the revised manuscript), aiming to better understand the 

changes of PSC response to the SST variations. In the Kuroshio region, significant negative correlation 

between nano-phytoplankton size fraction and SST was found (R=-0.66 < -0.5 and p<0.001), and weak 

negative correlation was found for micro-phytoplankton (R=-0.31). Significant positive correlation 

between pico-phytoplankton size fraction and SST was identified (R=0.64 >0.5 and p<0.001) (Fig. 10 

R10c). Several studies have found that surface warming can weaken vertical mixing due to the increase 

in water column stability (Behrenfeld et al., 2006; Boyce et al., 2010), which causes less nutrient supply 

to the surface layers from underlying nutrient-rich waters. In addition, the Kuroshio water is 

characterized by high salinity, high temperature, and low nutrient (Jiao et al., 2005). These oligotrophic 

conditions favour the presence of smaller-sized phytoplankton (pico) and restrict the growth of larger-15 

sized phytoplankton (micro and nano). It offers an explanation to help us for understanding the 

correlation between the increasing trend of SST and decreasing trend of micro- and nano-phytoplankton 

size fraction and increasing trend of pico-phytoplankton size fraction.  

Similar to the KR, there were a negative correlation between micro-phytoplankton proportion and SST 
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(R=-0.76) and a positive correlation between pico-phytoplankton proportion and SST (R=0.65) in the 

MSR (Fig. R10b). Different environmental conditions in the two subareas showed similar responses of 

the variability of micro- and pico-phytoplankton size fractions to SST. However, the increasing trend of 

SST and increasing trend of nano-phytoplankton showed a weak positive correlation (R=0.34) (Fig. 

R10b), which was different from the Kuroshio region. The weak correlation suggested that nano-5 

phytoplankton in this region may be affected by factors (e.g., grazing-nitrogen rate) other than SST. For 

instance, Barlow et al. (2016) reported that nano-phytoplankton (e.g, flagellates) were dominant offshore 

in warmer shelf region, because they are better utilising the increase in nutrient concentrations after 

upwelled water has warmed.  

In the mouth area of Changjiang River, the SST were negatively (R=-0.59), positively (R=0.58), and 10 

positively (R=0.54) correlated with micro-, nano-, and pico-phytoplankton size fractions respectively 

(Fig. R10a). The water body in coastal region mixes well in winter with low SST and has a weak 

stratification of water column in summer with high SST, as the hydrodynamic in coastal water is 

dominated by the variation of wind-tide-thermohaline circulations (Guan, 1994). In some degree, 

increasing of SST could result in the decrease of larger-sized phytoplankton (micro and nano) and the 15 

increase of smaller-sized phytoplankton (pico). However, the trend of rising SST and increasing nano-

phytoplankton size fraction in the MCJR was observed. This may be related to the optimum temperature 

for the growth of different algal groups. Additionally, pervious studies have shown that the nutrient 

structure in the ECS have altered by Changjiang discharge, especially for the Changjiang estuary and 

adjacent area (Zhang et al., 2007; Wang et al., 2014). The change of nutrient structure (increase in N/P 20 

ratios) might be an important factor that affects the phytoplankton community in the MCJR. These 

results suggested the interannual variability of PSC in coastal waters is more complicated than in 

offshore waters. The detailed study focusing on the reasons of the changes of PCS in MCJR is still 

required. 

Overall, the correlations between PSC and SST (Fig. R10) indicated SST is an important factor 25 

influencing the PSC dynamic in the ECS. The interannual variations of phytoplankton size classes in 

the ECS were complicated and could not be fully explained by the individual factor. In the revised 

manuscript, we have added more explanations regarding this issue in Section 4.3. 
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Fig. R10. The scatterplots showing the relationships between the monthly phytoplankton size fractions and SST from 2003 

to 2016 for the MCJR (a), MSR (b), and KR (c). 

Some specific technical suggestions: 

1. Fig.1, Mean Rrs spectra for coastal waters of ECS could be helpful for reader to know exactly the 5 

ocean color variability in ECS (which covers many water types). 

Response: Thank you for your suggestions. In order to better show the ocean color variability in the 

ECS, we have analyzed the mean and coefficient of variation (CV) of Rrs(λ) collected in the coastal 

region of Zhejiang (Zhe) and Fujian (Min) and southern Jeju Island (Fig. R11; i.e., Fig .2 in the revised 

manuscript). The in situ Rrs(λ) of all samples in the different georgical locations exhibited large 10 

variability in both magnitudes and spectral shapes (Fig. R11 a and b). For the samples in the coastal 

region of Zhe-Min, both 10 wavebands showed larger variability in Rrs(λ) magnitude with CV larger 

than 55% (Fig. R11 c). For the samples in southern Jeju Island, CV varied from 20% to 60%, with a 

minimum around 531 nm and 547 nm (Fig. R11 d). Overall, they showed large dynamic range with 

significant variability. Additionally, we have added the description of this issue in the revised manuscript 15 
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(see the first paragraph of Section 2.1). 

  

Fig. R11. Rrs(λ) spectra at MODIS wavelengths collected in the coastal region of Zhe-Min (a) and southern Jeju Island (b); 

Mean spectra and coefficient of variation (CV) of Rrs(λ) in the coastal region of Zhe-Min (c) and southern Jeju Island (d). 

The CV is derived as the standard deviation (SD) over the mean.. 5 

2. Coefficients of K in Equation (9) could be shown in a Table. 

Response: In the revised manuscript, the coefficients of K in the Equation (9) and the corresponding 

statistical indicators (R2, RMSE, and MAPE) were shown in Table 3. Meanwhile, Fig. 5 in the 

manuscript has been removed accordingly. Thank you. 

3. Fig.8, add the spatial distribution of total Chla for 4 seasons. 10 

Response: Thank you. In the revised manuscript, we have added the seasonal distributions of Chla in 

four seasons in Fig. 8 (Fig. R12 in this response). Additionally, we have also added the explanations 

regarding this issue in Section 3.5 in the revised manuscript. 
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Fig. R12. Seasonal distributions of the PSC (a - l) and Chla (A-D, right panel) in the ECS during 2003-2016. 

4. Show locations for the three subareas in Fig.8 and introduce the box size in Data and Methods. 

Response: Thank you for your valuable suggestion. In the revised manuscript, we have shown the 

locations for the three subareas in Fig. 1a and Fig. 8 (see Figs. R12 and R13 in this response). 5 

Additionally, as you suggested, we have added the description of these subareas (e.g., box size) in the 

Materials and Methods (see Section 2.1 in the revised manuscript). 

 

Fig. R13. Distribution of in situ and matchup dataset and locations of the selected subareas (black boxes) (a), namely MCJR 

(mouth area of Changjiang river), MSR (middle shelf region), and KR (Kuroshio region); locations of sampling stations 10 

collected in the North Pacific and North Atlantic oceans from the NASA SeaBASS archive (b); the average satellite Rrs() 

North Pacific Ocean

North 

Atlantic

Ocean

(c)

(b)(a)

Kuroshio
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spectral from 2003 to 2016 for the Kuroshio region, North Pacific ocean, and North Atlantic ocean (blue circles in b) (c). 

Error bars represent standard deviations of the means. 

5. Fig.9, enlarge the y-axis of (c) and (d) for total Chl-a for clarity. 

Response: To clearly show the y-axis for total Chl-a, this figure has been redrawn in the revised 

manuscript (see Fig. 9 in the revised manuscript, i.e., Fig. R14 in this response). Thank you. 5 

 

Fig. R14. Monthly climatological PSC and Chla from 2003 to 2016 in the mouth area of Changjiang river (MCJR) (a), 

middle shelf region (MSR) (c), and the Kuroshio region (KR) (c). Error bars indicate standard deviations of the means.  

6. For results shown in Table 5, a figure showing time series of size fractions and SST may be helpful 

for discussing their correlations.  10 

Response: Thank you for your suggestion. In the revised manuscript, we have added the correlations 

between phytoplankton size fractions and SST for different subareas, and also their correlation 

coefficient R values and p values (see Fig. 10 in the revised manuscript, i.e., Fig. R15 in this response). 

In addition, Table 5 in the manuscript has been removed accordingly in the revised manuscript. 
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Fig. R15. The scatterplots showing the relationships between the monthly phytoplankton size fractions and SST from 2003 

to 2016 for the MCJR (a), MSR (b), and KR (c). 
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