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Abstract. The distribution of the phytoplankton size class (PSC) and the variations in the size classes are key to understanding 10 

ocean biogeochemical processes and ecosystem. Remote sensing of the PSC in the East China Sea (ECS) remains a challenge, 

although many PSC algorithms have been developed. Here based on a local dataset from the ECS, a regional model was tuned 

to infer the PSC from the spectral features of normalized phytoplankton absorption (aph) using a principal component analysis 

approach. Before applying the refined model to the real MODIS (Moderate Resolution Imaging Spectroradiometer) data, 

reconstructing satellite Rrs at 412 and 443 nm becomes critical through modeling them from Rrs between 469 and 555 nm using 15 

multiple regression analyses. Satellite-derived PSC values compare well with those derived from pigment composition, which 

demonstrates the potential of satellite ocean color data to estimate PSC distributions in the ECS from space. The refined model 

was applied to aph derived from Rrs observations collected by MODIS over the ECS from 2003 to 2016. Seasonal images show 

that the PSC distribution was heterogeneous in both temporal and spatial scales. Seasonal variations of the PSC in the ECS 

were probably affected by a combination of the water column stability, upwelling, sea surface temperature, and the Kuroshio 20 

Current. Additionally, human activity and riverine discharge may also influence the PSC distributions in the ECS, especially 

in coastal regions.  
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1. Introduction  

Phytoplankton size class (PSC) is fundamentally important for ocean biogeochemical processes and ecosystems, especially 

for photosynthesis efficiency (Bouman et al., 2005; Uitz et al., 2008), primary production, and the transport of carbon (Kiørboe, 

1993; Guidi et al., 2009; Hirawake et al., 2011). Thus, knowledge of the PSC dynamics can contribute to the improvement of 

our understanding of marine ecological and biogeochemical cycles. The classical size fractions of phytoplankton proposed by 5 

Sieburth et al. (Sieburth et al., 1978) include: micro- (>20 m), nano- (2-20 m), and pico-phytoplankton (<2 m). Among 

the methods to measure PSC from water samples, which include microscopy (Montagnes et al., 1994), Coulter counter method 

(Sheldon and Parsons, 1967), and flow cytometry (Sun et al., 2000), pigment concentrations by high-performance liquid 

chromatography (HPLC) is the most systematic and qualify-controlled method (Van Heukelem and Hooker, 2011). However, 

these methods are time-consuming and methodologically complex. Furthermore, the large spatial and temporal variabilities 10 

make it difficult to continuously monitor the PSC using the field sampling methods.  

Realistically, satellite ocean color data can provide synoptic observations, which are ideal for investigating the PSC at large 

spatial and temporal scales. In recent years, various algorithms have been designed to estimate the PSC using in situ data and 

ocean color data on both global and regional scales (IOCCG, 2014). Mostly algorithms can be partitioned into two categories, 

namely, “abundance-based” and “spectral-based” methods. The “abundance-based” methods are based on the statistical 15 

relationship between the PSC and phytoplankton abundance using measurements such as chlorophyll-a concentrations (Chla) 

(refer to Bracher et al. (2017) Table 2). These approaches rely on the assumption that high and low Chla waters are dominated 

by large and small phytoplankton, respectively. The “spectral-based” methods utilize the relationship between the variations 

in inherent optical properties with changes in the PSC using measurements such as phytoplankton absorption (aph), remote 

sensing reflectance (Rrs), and particulate backscattering (bbp) (refer to Bracher et al. (2017) Table 2). 20 

The East China Sea (ECS) is the base of the marine fishery resources in China and is one of the most productive ocean areas 

in the world (Furuya et al., 1996). Ascertaining the distribution of PSC can provide valuable information on the state of marine 

ecosystem and primary production in the area. Recent efforts have been focused on investigating the phytoplankton community 
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and size classes in the ECS and have suggested that the PSC displays obvious spatiotemporal heterogeneity in this region (Li 

et al., 2007; Luan et al., 2007; Jiang et al., 2014). For instance, Chen (2000) investigated the PSC and primary productivity in 

the marginal regions of the southern ECS using field data. The results showed that the PSC and their contributions to primary 

production displayed significant spatial differences in the shelf waters, upwelling waters, and Kuroshio water. Furuya et al. 

(2003) presented the phytoplankton dynamics in the ECS in the spring of 1994 and the summer of 1996 using HPLC-derived 5 

pigment signatures. They found that a distinct horizontal heterogeneity in the phytoplankton composition was observed in the 

spring, and a “two-layer” distribution of phytoplankton appeared both off and on the shelf in the summer. Liu et al. (2016) 

used 7-years (2006-2012) field measurements to investigate the seasonal and spatial variations of major phytoplankton groups 

in the ECS, and found that monsoon forcing was a key factor to impact phytoplankton dynamics at seasonal scale. 

Note that previous investigations on the PSC in the ECS have been conducted based on field observations, which may not 10 

reflect the real variation patterns of PSC. To our knowledge, no study has attempted to examine PSC distributions in the ECS 

at synoptic scales from satellite observations. Consequently, the dynamics of the PSC at different spatial and temporal scales 

and their mechanisms in the ECS are still poorly understood. In the ECS, Wang et al. (2014) found that the correlation between 

the variation patterns of the PSC and total Chla is not valid, and pointed out that the “abundance-based” methods for estimation 

of PSC are probably not applicable in the ECS. Therefore, Wang et al. (2015) proposed an algorithm to model the PSC in the 15 

ECS using the spectral shape of normalized aph(λ) through principal component analysis (PCA). This model shows good 

performance for estimating the PSC from both in situ aph and remote sensing reflectance (Rrs). However, note that this model 

was developed based on in situ data mainly from offshore waters of the ECS and off the coastal Japan; more importantly, the 

Wang et al. (2015) model has not been implemented in real satellite data in that study.  

Therefore, the goals of this study were to: (1) refine the Wang et al. (2015) model for regional application in the ECS using an 20 

extensive dataset that includes samples covering highly varied waters and various seasons, (2) apply the refined PSC model to 

real Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, and (3) then preliminarily investigate previously 

unknown seasonal and spatial variation patterns of the PSC in the ECS.  
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2. Materials and methods 

2.1 Study Area and Sampling stations 

The East China Sea is one of the largest marginal seas in the western North Pacific and is bounded by China, Korea, and Japan 

(Fig. 1a). Nearly 70% of the ECS is occupied by a continental shelf shallower than 200 m. Numerous rivers flow into the ECS 

from mainland China, including the Changjiang River which provides nearly 90% of the riverine discharge to the ECS (Zhang 5 

et al., 2007). In addition, the ECS experiences strong currents and multiple water masses, such as Changjiang diluted water 

(CDW), shelf mixed water, and the Kuroshio Current (Su and Yuan, 2005; Wang et al., 2014). Because of highly variable 

environmental conditions, the ECS exhibits complex marine biogeochemical processes and ecosystem.  

The field measurements used in this study were collected from approximately 10 cruises over the last decade. These sampling 

stations were distributed irregularly in the ECS and a few were in the Tsushima Strait (Fig. 1a). The field dataset encompassed 10 

various seasons and environmental conditions of the ocean, including turbid waters in the mouth area of Changjiang river, less 

turbid coastal water, and clear water away from the coast and in the open ocean. This field dataset consisted of in situ aph() 

and Rrs() data and phytoplankton pigment concentrations measured by HPLC. In total, 69 samples with synchronous 

measurements of pigments, aph, and Rrs data, 101 samples with coincident pigments and in situ aph data, and 27 samples with 

only measured Rrs were available, and Fig. 1a shows the spatial distribution of samples.  15 

The Kuroshio water in our study area suffers from a paucity of in situ Rrs data. Hence, in addition to the regional dataset, 201 

in situ Rrs data points collected in the North Pacific and North Atlantic oceans (Fig. 1b) from the NASA SeaBASS archive 

were used as a supplementary dataset. The SeaBASS dataset was only used for algorithm development to reconstruct satellite 

Rrs data, along with our regional field dataset (see Section 2.4). The mean spectral shapes of the 14-years (2003-2016) MODIS 

Rrs data in the North Pacific and North Atlantic oceans were similar to that in the Kuroshio water (Fig. 1c). Thus, in situ Rrs 20 

data collected in the North Pacific and North Atlantic oceans were used in the present study, although distribution regions of 

these data were beyond our study area. 

2.2 In situ Measurements 
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Surface water samples (0-3 m) were collected with Niskin samplers mounted on a CTD Rosette or a clean bucket. These water 

samples were used for measurements of aph() and pigment concentrations. 

2.2.1 Measurement and analysis of HPLC-derived PSC  

For pigment analysis, seawater samples were filtered onto 47 mm Whatman GF/F glass fiber filters under gentle pressure 

(<0.01 MPa), and then stored initially on board in liquid nitrogen (-70 ℃) for later analysis in the laboratory. Briefly, the 5 

concentrations of 19 pigments were determined by reverse-phase HPLC following Van Heukelem and Thomas (2001). In our 

study, the diagnostic pigment analysis (DPA) approach was used to compute the PSC values from HPLC pigment data 

(hereafter referred to as the HPLC-derived PSC). The DPA was improved by Uitz et al. (2006) based on Vidussi et al. (2001) 

method. In brief, the DPA uses seven diagnostic pigment concentrations to obtain the HPLC-derived PSC, including 

fucoxanthin (Cf), peridinin (Cp), 19′-hexanoyloxyfucoxanthin (Ch), 19′-butanoyloxyfucoxanthin (Cb), alloxanthin (Ca), 10 

Chlorophyll-b (CCb), and zeaxanthin (Cz). The HPLC-derived PSC values were then given by: 

 1.41 1.41 /micro f p i i
f C C W P         (1) 

 0.60 0.35 1.01 1.27 /nano a b Cb h i i
f C C C x C W P                 (2) 

 0.86 1.27 /pico z h i i
f C y C W P                   (3) 

where fmicro, fnano, and fpico denote the size fractions of micro-, nano-, and pico-phytoplankton, respectively. x and y are the 15 

proportions of nano- and pico-phytoplankton in Hex, respectively (see Brewin et al. (2010) for more details). WiPi is the 

weighted sum of the seven diagnostic pigments, which is defined as (Uitz et al., 2006): 

1.41 1.41 0.60 0.35 1.27 0.86 1.01i f p a b h z Cbi
W P C C C C C C C           (4) 

2.2.2 Measurement of aph 

To obtain aph data, we used the quantitative filter technique (QFT) via a series of processes (Mitchell, 1990). Water samples 20 

were filtered through 25 mm Whatman GF/F glass fiber filters under gentle pressure, and immediately frozen on board in 
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liquid nitrogen. In our study, the “transmittance” approach was used for the samples that were collected from southern Jeju 

Island and the Tsushima Strait (hereafter referred to as dataset-1). The optical density (OD) values of total particles were 

measured using a dual-beam multi-purpose spectrophotometer between 350 nm and 750 nm at 1 nm resolution. Similarly, we 

measured the OD value of the detritus after extracting the phytoplankton pigments in methanol at least 24 h. Meanwhile, a 

blank filter saturated with pure seawater was used as the reference filter. Then, the absorption coefficients of total particles 5 

ap() and detritus ad() were calculated from the corresponding OD values based on a correction of Cleveland and Weidemann 

(1993). In contrast, the “transmittance-reflectance” approach was performed on the samples that were collected from the 

coastal and offshore regions of Zhejiang and Jiangsu (hereafter referred to as dataset-2). The optical densities of total particles, 

detritus, and the reference filter were obtained in both “transmission mode” and “reflection mode” between 250-850 nm at 1 

nm resolution using a PerkinElmer lamda650s. Then, we converted these OD values into ap() and ad() values using the 10 

method of Tassan and Ferrari (1995; 2002). Finally, the aph data were obtained as the difference of ap() - ad() at all sampling 

stations.  

2.2.3 Measurement of Rrs 

To obtain Rrs data in dataset-1, the PRR-800/811 was used to measure the vertical profiles of the downwelling irradiance Ed(,z) 

and upwelling radiance Lu(,z) at 13 spectral channels (380, 412, 443, 465, 490, 510, 532, 555, 565, 589, 625, 665, and 683 15 

nm). The water-leaving radiance Lw() was then determined from the profile of Lu(,z) (Hirawake et al., 2011). The above-

water surface downwelling irradiance Ed(,0+) was simultaneously measured by a cosine collector. Then, Rrs() data were 

calculated as the ratio of Lw() to Ed(,0+). For the purpose of consistency with satellite observations that characterize the 

oceanic surface layer, our analysis exclusively considered the near-surface Rrs data.  

For dataset-2, Rrs data was collected under suitable solar illumination (generally between 9am and 3pm local time) using an 20 

ASD FieldSpec spectroradiometer in the spectral range of 350-1050 nm with 1.5 nm increments. The radiance spectra of water, 

sky, and a gray reference panel were measured following the above-water measurement approach (Mueller et al., 2003). For 

each of the three targets, ten spectra were collected and then averaged after removing abnormal spectra. According to the 
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Ocean Optics Protocol (Mueller et al., 2003), the Rrs() data were obtained as 

   ( ) / /rs t sky p pR L r L L           (5) 

where Lt, Lsky, and Lp correspond to the radiance values measured from the water, sky, and the reference panel, respectively. p 

is the diffuse reflectance of the reference panel provided by the manufacturer.  is the surface Fresnel reflectance related to the 

wind speed (2.6% - 2.8% for 10 m s-1 wind, 2.5% for <5 m s-1 wind, 2.2% for calm weather) (Tang et al., 2004).  5 

All Rrs and aph data were resampled at the centers of MODIS wavebands (412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 

nm) using the spectral response function of the MODIS sensor. 

2.3 Satellite data 

The global MODIS Level 3 standard monthly Rrs, Chla, and sea surface temperature (SST) products (about 4 km resolution) 

from 2003 to 2016 were provided by the NASA Ocean Color website (http://oceancolor.gsfc.nasa.gov/). The dataset 10 

corresponding to our study area (25-35° N and 118-132° E) was extracted from these global coverage datasets. These regional 

Rrs products were processed using the MathWorks MATLAB software to obtain the satellite-derived PSC. Additionally, daily 

Level 2 Rrs data (1 km resolution) from MODIS sensor were downloaded from the NASA Ocean Color website.  

Samples were matched to daily Rrs data to assess the accuracy of satellite-derived aph and PSC results. To ensure the validity 

of satellite data before the matchup analysis, the following constraints were applied to the matchup dataset: (1) the matchup 15 

dataset only included satellite data with an overpass time window within 5 h before and after the field measurements; (2) to 

reduce the effect of outliers, median Rrs value for a 3×3 window centered on the sampling station coordinates was defined as 

satellite Rrs data; (3) negative MODIS Rrs data were eliminated from the matchup analysis. Based on these criterion, 21 satellite 

matchups with coincident measured Rrs, and 23 satellite matchups with coincident measured PSC and aph were available, as 

shown in Fig. 1a. 20 

2.4 Model accuracy assessment 

To evaluate the consistency between the derived and measured values, the Pearson correlation coefficient (R), root mean square 
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error (RMSE), and mean absolute percentage error (MAPE) were used. Statistical assessments were performed in log10 space 

for the phytoplankton absorption coefficient and in linear space for the phytoplankton size class. These statistical indicators 

can be written as: 

 
2

,derived ,field ,field

1

1
/

n

i i i

i

RMSE x x x
n 

                  (6) 

   ,derived ,field ,field

1

1
% / 100%

n

i i i

i

MAPE x x x
n 

               (7) 5 

where n is the number of samples. xi,derived and xi,field are the derived and measured data for the i-th sampling station, respectively. 

2.5 Modified Wang et al. (2015) model for retrieving PSC 

Wang et al. (2015) developed an spectral-based PSC model to quantify the size fraction of three phytoplankton classes using 

the spectral shape of aph() through PCA approach. Details of the development and parameterization of the model are described 

in Wang et al. (2015). In brief, to reduce the biomass effects, the normalized aph() (hereafter referred to as a
std 

ph ()) was 10 

computed by the ratio of aph() to their wavelength mean values. Then, PCA was applied to the a
std 

ph () data to capture the 

spectral variation in the phytoplankton absorption related to cell size. The input for PCA is a m×N matrix constituted of a
std 

ph 

(), where m and N are the number of input wavelengths and samples, respectively. The output of PCA comprised two terms, 

principal component (PC) scores and PC weights (also called loading factors). The PC scores were assumed to correlate with 

the size classes. Therefore, the relationship between the size fraction of micro- or pico-phytoplankton and PC scores was 15 

established using a logistic-type regression model (Hosmer Jr et al., 2013), as follows: 

0

1 1

1/ 1 exp ,    ( )
k m

std

t i i i ij ph j

i j

f S S w a
 

  
      

  
                (8) 

where ft denotes the size fraction of phytoplankton class (t = micro or pico). 0 and i are the regression coefficients between 

ft and PC scores. k is the number of PC scores (k = 4 in this study). wij refers to the loading factor for the i-th PC. m is the 

number of wavelengths. Similar to previous studies (Brewin et al., 2010; Hirata et al., 2011), fnano was calculated as 1-fmicro-20 

fpico, by considering that the sum of the three phytoplankton size fractions was 1.  
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The aph() at the MODIS bands were derived from Rrs() data using the quasi-analytical algorithm (QAA) proposed by Lee et 

al. (2002). QAA was used in this study because it does not suppose a fixed shape for aph() (Lee et al., 2002, 2009). Because 

QAA could give satisfactory retrievals of aph() at the first 6 MODIS bands (i.e., 412, 443, 469, 488, 531, and 547 nm), as 

shown later for details, only aph() data at these bands were used for the PSC model development in this study (i.e., m=6 in 

Eq.(8)). 5 

Before QAA approach and the refined PSC model were applied to real MODIS data, the reconstruction approach was used to 

reconstruct satellite Rrs() at 412 and 443 nm. Satellite Rrs(412) and Rrs(443) were quantified as multivariable linear regression 

model using Rrs data from 469 to 555 nm and regression coefficients (K0 and Ki) as follows: 

    0

1

n
rc

rs i rs i

i

R K R K


                    (9) 

where R
rc 

rs () is the reconstructed Rrs data at wavelength  ( = 412 or 443 nm); Rrs(i) is the input Rrs value at five MODIS 10 

wavelengths (i = 469, 488, 531, 547, and 555 nm); K0 and Ki are the coefficients determined from multivariant regression. 

3 Result 

3.1 Regional tuning of the PSC model for the ECS 

Following Wang et al. (2015), Eq. (8) was fitted to the 170 in situ aph and HPLC-derived PSC data using a non-linear least 

square fitting procedure for developing the PSC model. The established parameters and associated R and RMSE values for 15 

each of the fits are shown in Table 1. Fig. 2 shows the strong linear relationships between the in situ a
std 

ph -derived PSC and 

HPLC-derived results, with R values of 0.89, 0.70, and 0.84 and RMSE values of 0.11, 0.11, and 0.11 for micro-, nano-, and 

pico-phytoplankton, respectively. The samples were close to the 1:1 line, with most of the samples within the ± 20% fraction 

range. 

We also examined the feasibility of the PSC model for satellite observations by coupling QAA, using Rrs data coincident with 20 

HPLC-derived PSC and in situ aph. First, we used QAA version 5 (QAA_v5) to yield aph from measured Rrs. To assess the 

performance of QAA_v5, negative retrieved aph values were eliminated, and the remainder were compared with the measured 
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values at all MODIS bands (Fig. 3). The derived aph values by QAA_v5 show reasonably good agreement with the in situ aph 

values at short wavelengths from 412 to 547 nm, with high R values and low RMSE and MAPE values. In contrast, the 

performance of QAA_v5 was poor and produced large overestimation of aph at long wavelengths, especially at 645, 667, and 

678 nm. These results were similar to previous findings by Lee et al. (2014) and Tiwari et al. (2014). These results clearly 

demonstrate that QAA_v5 can produce accurate aph values at 412, 443, 469, 488, 531, and 547 nm. Therefore, as previously 5 

stated, only aph values at these bands were used to calibrate the PSC model. Then, the PSC values were inferred from the 

retrieved aph using Eq. (8) with the established parameterizations. As shown in Fig. 4, the QAA a
std 

ph ()-derived PSC values 

were consistent with HPLC-derived results, and almost all of the points fell within the ± 20% fraction range. The R and RMSE 

values were 0.79 and 0.13 for micro-phytoplankton, 0.43 and 0.12 for nano-phytoplankton, and 0.80 and 0.13 for pico-

phytoplankton. These results suggest that the refined PSC model for the ECS coupling QAA_v5 is able to accurately estimate 10 

the PSC from remote sensing reflectance Rrs. 

3.2 Comparison of satellite Rrs with in situ measurements 

Before applying the PSC model to real MODIS data, we assess the accuracy of MODIS Rrs based on the synchronous in situ 

measurements. Table 2 shows the statistical results of the comparison between satellite Rrs and in situ values for MODIS bands. 

For MODIS Rrs data, we found a reasonably good consistency at green and red bands (from 469 to 555 nm), with R values 15 

within 0.85-0.97 and MAPE values within 14.90% - 27.25%. Although the R values were > 0.85, the MAPE values were > 

54% at 645, 667, and 678 nm. This is probably caused by the lower Rrs values at these bands due to strong absorption of water 

itself. In addition, a low accuracy was observed at 412 and 443 nm. The R values were 0.46 and 0.73, and the MAPE values 

were 47.33% and 36.90% at 412 and 443 nm, respectively. The high noise and low accuracy at these two bands are suggested 

to be caused by the uncertainty of the atmospheric correction procedures and significant band degradation (Meister, 2011; Hu 20 

et al., 2013). Considering the importance of Rrs(412) and Rrs(443) to QAA algorithm, the poor accuracy of satellite Rrs at these 

bands may introduce uncertainty in the retrieved aph data, which further increases the uncertainty of satellite-derived PSC. 

Thus, an accurate assessment of satellite-derived PSC requires the improved quality of satellite Rrs(412) and Rrs(443). In this 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-508
Manuscript under review for journal Biogeosciences
Discussion started: 5 February 2018
c© Author(s) 2018. CC BY 4.0 License.

Cross-Out

Inserted Text
consistent with 

Highlight
fig 4 shows much less points comapred to Fig 2. explanations? better indicate number of valid points in figures

Inserted Text
, respectively



 

11 

study, the reconstruction approach (Eq. (9)) was used to fulfill this objective.  

3.3 Reconstruction of MODIS Rrs data 

The reconstruction function (Eq. (9)) was applied to the regional field dataset and SeaBass dataset to obtain the regression 

coefficients. The resulting relationships between the in situ and modeled Rrs show strong agreement, with high R2 and low 

MAPE values (Fig. 5). For 412 and 443 nm, the R2 values were close to 1.0 with a significance level of p-value <0.01. Their 5 

MAPE values were both lower than 9.0%. The multivariant functions with established coefficients were applied to the original 

MODIS Rrs data to obtain the reconstructed satellite R
rc 

rs (412) and R
rc 

rs (443) data. Table 3 shows the comparison of the original 

satellite Rrs and the satellite R
rc 

rs  data with measured Rrs at 412 and 443 nm. From Table 3, it is observed that the satellite R
rc 

rs  

data were in better agreement with the in situ Rrs data than the original satellite Rrs, especially at 412 nm. At 412 nm, the values 

of R, RMSE, and MAPE reached 0.70, 0.0019, and 35.15% after reconstruction, respectively, while these values were 0.46, 10 

0.0026, and 47.33% for the original satellite data, respectively. These results indicated that the accuracy of the satellite Rrs data 

at 412 and 443 nm could be improved through reconstruction using the selected MODIS bands. 

3.4 Validation of satellite-derived absorption coefficient and PSC with in situ data 

Based on the above analysis, we used the satellite R
rc 

rs (412) and R
rc 

rs (443) data rather than the original satellite Rrs data to compute 

aph using QAA_v5. Fig. 6 shows the comparison of the aph data derived from satellite R
rc 

rs  (denoted by a
rc 

ph) and aph derived from 15 

original satellite Rrs with in situ measurements at the six MODIS bands. Table 4 summarized their corresponding statistical 

comparisons, i.e., R, RMSE, MAPE and percentage of valid points (PVP). Here PVP is defined as the ratio of the number of 

positive satellite-derived values (n) to the total number of matchups (N) (as PVP = n/N×100%). For the satellite-derived a
rc 

ph, 

the R values were above 0.80 (R = 0.69 at 547 nm), and were significantly higher than those for the satellite-derived aph (with 

most of the values below 0.6). The statistics (RMSE and MAPE) the satellite-derived a
rc 

ph are also generally better than those 20 

for the satellite-derived aph. In addition, compared with satellite-derived aph, the PVP for the satellite-derived a
rc 

ph significantly 

increased with an average of 23.48%. Meanwhile, Fig. 6 also shows that the satellite-derived a
rc 

ph had more valid samples and 
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were more clustered around the 1:1 line than the satellite-derived aph. Overall, both Table 4 and Fig. 6 indicated that the 

satellite-derived aph had poor accuracy and low PVP values, whereas the accuracy of satellite-derived a
rc 

ph can be significantly 

improved with more valid samples through the reconstruction of satellite Rrs data. 

We applied the refined PSC model to the aph data derived from the original satellite Rrs to estimate the satellite Rrs-derived PSC 

(Fig. 7a-c). It can be seen that the satellite Rrs-derived PSC were inconsistent with the HPLC-derived results, showing obvious 5 

under and overestimations of the retrieved PSC for most of the samples. Their R values were all below 0.27. For comparison, 

we also estimated the PSC from the satellite a
rc 

ph derived from the reconstructed R
rc 

rs  data, denoted as the satellite R
rc 

rs -derived 

PSC. Fig. 7d-f show the comparison of the satellite R
rc 

rs -derived PSC with the HPLC-derived values. The satellite R
rc 

rs -derived 

PSC values agreed well with the HPLC-derived results. The R values of 0.68, 0.46, and 0.64 and RMSE values of 0.13, 0.13, 

and 0.19 were observed for micro-, nano-, and pico- phytoplankton, respectively. For micro-, nano-, and pico-phytoplankton, 10 

almost all of the samples fell within the ±20% fraction ranges, although a slight underestimation of fpico occurred in a few 

samples. These results indicated that the use of satellite R
rc 

rs  could significantly improve the performance of the refined PSC 

model on satellite observations, which result in satisfactory satellite-derived PSC results with acceptable errors. Therefore, we 

further investigated the spatiotemporal variability of the PSC in the ECS based on satellite-derived products. 

3.5 Seasonal patterns of the PSC distribution in the East China Sea  15 

To describe the large-scale seasonal variability of the PSC in the ECS, the PSC method was applied to 14 years (2003-2016) 

of MODIS monthly Rrs data to obtain monthly PSC products. Then, seasonal composite PSC images were generated by 

averaging the monthly PSC products over a three month period for each season. In this study, spring, summer, autumn, and 

winter were defined as March to May, June to August, September to November, and December to February of the next year, 

respectively.  20 

Fig. 8 depicted the seasonal variation patterns of the PSC in the ECS in the four seasons, which indicated that the size fractions 

of three phytoplankton classes were heterogeneous in both temporal and spatial scales. In the spring (Fig. 8a-c), the fmicro values 

were higher (0.45-0.90) on the ECS shelf sea than those in the Kuroshio water (<0.3). The highest fmicro were found in coastal 
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waters. Relatively high fnano (0.4-0.6) were clearly observed on offshore shelf and in southern Japan. However, pico-

phytoplankton were the dominant size class (fpico = 0.5-0.75) over the southeastern ECS. During the summer (Fig. 8d-f), the 

size fractions of micro-phytoplankton were high (0.45-0.85) in coastal waters. The high fmicro tongue-shape structure near the 

Changjiang Bank extended toward southeast along the 30 m isobaths. High nano-phytoplankton proportions occurred in the 

ECS shelf sea with water depths of 30–200 m. The pico-phytoplankton contributions to Chla were relatively high around the 5 

ECS shelf break. Pico-phytoplankton (fpico >0.6) represented the most abundant size class in the areas deeper than 200 m, which 

was similar to the results from the field measurements by Chen (2000). In the autumn (Fig. 8g-i), high fmicro were found in 

coastal waters and extended over the area shallower than 50 m isobaths. The proportion patterns of nano- and pico-

phytoplankton in the autumn were broadly similar to those in the summer. However, high nano- phytoplankton proportions 

were also in the northern Japan. In the winter (Fig. 8j-l), high fmicro were mainly distributed on the ECS shelf. The regions with 10 

higher fmicro (>0.7) extended outward, and connected to the area around the Korean coast. The distributions of the size fractions 

of nano- and pico-phytoplankton were broadly similar to those in the spring. For nano-phytoplankton, relatively high fnano were 

also observed in some areas of the Kuroshio water in the winter.  

3.6 Area difference in the monthly climatological PSC in the ECS 

Since the East China Sea is so extensive, with a number of different environmental conditions and ecosystems, specific regions 15 

were selected for further investigation. Fig. 9a shows the locations of the selected subareas, which were the mouth area of 

Changjiang river (MCJR), middle shelf region (MSR), and Kuroshio region (KR). These subareas were selected based on 

geographical region and physical driving force. With each of the subareas, this study investigated averages of the monthly 

climatological PSC, as well as Chla concentration (Fig. 9 b-d). 

In the MCJR (Fig. 9b), micro-phytoplankton comprised 60-80% of the Chla throughout the year, with the maximum value 20 

found in April and relatively low fraction in the summer-early autumn (June-September). Nano-phytoplankton comprised 18-

30% of the Chla, while the contribution of pico-phytoplankton to Chla was below 10% throughout the year. In the MSR (Fig. 

9c), the micro-phytoplankton proportions were greater than that of pico-phytoplankton during the winter and spring, while the 
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opposite was found in the summer and autumn. The pico-phytoplankton in the MSR was highest in August and September, 

with a peak in the summer and early autumn (June-September). Nano-phytoplankton were dominant (40-50%) for most of the 

year in this region. In contrast, the Kuroshio region domain showed a predominance of pico-phytoplankton (50-90%) 

throughout the year, except in January and February, with higher proportions observed in the summer (Fig. 9d). The nano-

phytoplankton proportions were slightly lower than pico-phytoplankton in the winter, however, their proportions were low 5 

(<30%) in the rest of the year. The size fractions of micro-phytoplankton in the KR remained below 18% throughout the year, 

except in April (23%) (Fig. 9d). 

4 Discussion 

4.1 Satellite application of the refined PSC model 

The most important advantage of satellite ocean color data is the ability to provide information on the spatiotemporal variability 10 

of the PSC. However, remote sensing of the PSC in the ECS is still a challenge task, although many “abundance-based” and 

“spectral-based” algorithms have been designed using field measurements and satellite data in the world’s oceans. Taking the 

optical property in the ECS, Wang et al. (2014) reported that the “abundance-based” approaches are not necessarily applicable 

in the ECS, and the absorption spectra of phytoplankton could instead be used to obtain the PSC in the ECS. More than 80% 

of the variability in the spectral shape of phytoplankton absorption was highly related to the changes in the size classes (Ciotti 15 

et al., 2002; Bricaud et al., 2004). Therefore, in this study we regionally tuned the Wang et al.(2015) model for deriving PSC 

in the ECS from the spectral variation of aph. However, the application of this PSC model to original MODIS data has hampered, 

as showed in this study (Fig. 7a-c). This may be related to the low accuracy of the MODIS Rrs at 412 and 443 nm (Table 2), 

which introduced additional uncertainties into the satellite-derived aph from Rrs (Fig. 6; Table 4). Because the retrieved accuracy 

of the PSC depends heavily on the retrieval accuracy of aph(), the uncertainties of satellite-derived aph may lead to a very 20 

large uncertainty in the satellite-derived PSC (Fig. 7a-c). To solve this problem, the multivariant function was employed to 

reconstructed MODIS Rrs(412) and Rrs(443) values using satellite Rrs from 469 to 555 nm. Previous studies have reported that 
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the use of multiple band spectral bands could successfully reconstruct hyperspectral Rrs data (Lee et al., 2014; Sun et al., 2015). 

In our study, the use of satellite Rrc 

rs  improved the accuracy and PVP of the satellite-derived a
rc 

ph data using QAA_v5 (Fig. 6; 

Table 4), and dramatically improved the accuracy of the satellite-derived PSC (Fig. 7d-f). The R and RMSE for all size fractions 

derived from the reconstructed satellite data were 0.7 and 0.15 respectively, as compared to the values of 0.064 and 0.38 

respectively obtained from original satellite data. Overall, this study successfully estimated the PSC in the ECS from MODIS 5 

remote sensing reflectance. The findings presented here complement and enhance recent studies that have demonstrated that 

satellite ocean color data can be used to retrieve the PSC in the ECS. Although reconstruction of satellite Rrs data and the 

refined PSC model appear promising, the need for improved availability of in situ Rrs data covering various hydrological and 

trophic conditions in the ECS (e.g., the Kuroshio water) to ultimately improve the PSC estimations from satellite data. It is 

also clear that because the refined PSC model are based on data collected from the ECS, its application to other areas may be 10 

limited and require further investigations based on in situ and satellite data beyond the ECS. 

4.2 Seasonal variations of the PSC in the ECS 

The seasonal distributions of the PSC in the ECS and the monthly climatological PSC in the subareas (Fig. 8 and Fig. 9) clearly 

showed that the PSC varied across both spatial and temporal scales in the ECS. In general, micro-phytoplankton are favoured 

under environmental condition with stronger mixing and high-nutrient, while pico-phytoplankton tend to dominate in the low-15 

nutrient waters (Stæhr et al., 2004; IOCCG, 2014; Lamont et al., 2018). Combined with the monthly climatological satellite-

derived Chla data (Fig. 9), we discussed the related physical and biochemical effects to provide a better understanding of the 

temporal-spatial variations of the PSC in the East China Sea.  

In the spring, the spring bloom occurred in the mouth area of Changjiang river and middle shelf region (Fig. 9 b and c). Weak 

wind stress can retain the vertical mixing of the water column. Nutrients are transported to the upper layer from the nutrient-20 

rich deep layers (Behrenfeld et al., 2006; Boyce et al., 2010). This enhanced nutrient condition results in higher supports 

phytoplankton biomass (Fig. 9 b and c) and favours the presence of micro-phytoplankton on the ECS shelf sea (Fig. 8a). This 

was consistent with previous studies showing that the large cell sizes, such as diatoms and Prorocentrum donghaiense, were 
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dominant on the ECS shelf sea in the spring (Furuya et al., 2003; Lou and Hu, 2014). Around the shelf break, upwelling 

frequently occurs at this region on the ECS to the Kuroshio water (Chen et al., 2009), transposing nutrients-rich waters from 

the subsurface layers to the euphotic zone. Thus, upwelling may be one of the factors for explaining the nano-phytoplankton 

dominated communities around the shelf break in the spring (Fig. 8b). In contrast to the pattern on the ECS shelf sea, the 

Kuroshio water exhibits relatively low Chla (<0.5 mg m-3) (Fig. 9d), and the pico-phytoplankton were the dominant size class 5 

in the southeast ECS shelf with water depths > 200 m in the spring (Fig. 8c). This may be related to the Kuroshio Current. The 

mainstream of the Kuroshio Current strongly flows northeastward along around the 200 m isobath (Katoh et al., 2000), carrying 

warm and low nutrients water (Jiao et al., 2005). The high surface temperature could increase the water column stability, 

thereby diminishing the nutrient supply to the surface layer (Lovelock, 2007). Thus, this nutrient-depleted condition leads to 

the low phytoplankton biomass and promotes the growth of pico-phytoplankton in this region. This has also been confirmed 10 

by the positive correlation between SST and the pico-phytoplankton proportion in the KR (Table 5). 

In the summer, due to surface warming and low wind stress, the reduced wind mixing and stronger thermal stratification results 

in the less nutrient supply to the surface layers. Meanwhile, all nutrients are gradually consumed. In addition to surface heating, 

the Kuroshio Current influences the stratification of the water column and further leads to oligotrophic conditions in the 

Kuroshio water. Thus, the low Chla concentrations (<0.5 mg m-3) were observed in the KR (Fig. 9d). The oligotrophic 15 

conditions favour the presence of pico-phytoplankton as they have advantage in utilising the regenerated nutrients available in 

the nutrient-depleted regions (Brewin et al., 2010; Barlow et al., 2016). Thus, the pico-phytoplankton were found to dominate 

the low biomass areas deeper than 100 m (Fig. 8f). In striking contrast, micro-phytoplankton dominance was limited to the 

inner part of the ECS shelf with shallower than 50 m isobath (Fig. 8d). This may be related to the enhanced nutrient 

concentrations by river and estuarine discharge. Due to anthropogenic activities such as various agricultural and industry 20 

activities, nutrient-rich water discharges into the East China Sea, especially in the summer (Siswanto et al., 2008; Zhang et al., 

2017). This is especially evident in the higher Chla concertation (> 6 mg m-3) observed in the MCJR (Fig. 9b) in the summer. 

The outer part of the ECS shelf was dominated by nano-phytoplankton (Fig. 8e and Fig. 9c), likely due to the enhanced nutrient 

conditions in offshore waters resulting from the coastal region by the strong convection currents. The study of Yamaguchi et 
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al. (2012) revealed that the CDW takes approximately 2 months to reach the Tsushima Strait. Therefore, the nutrient supply 

from riverine discharge may be a major controlling factor in the large cell sizes (micro- and nano- phytoplankton) in coastal 

and offshore waters in the summer. Similarly, Jiang et al. (2015) reported that micro-sized diatoms and dinoflagellates 

dominated the CJE and adjacent areas in the summer in response to the available nutrients. 

When autumn arrives, as wind stress strengthens and temperature decreases, convectional mixing of the water column increases 5 

and the stratification weakens, which bring nutrients upward from the lower layers. Thus, micro- and nano-phytoplankton 

dominance was clearly observed in coastal waters and the ECS shelf sea (Fig. 8g-h and Fig. 9c). Conversely in the oligotrophic 

Kuroshio water likely caused by the Kuroshio Current, pico-phytoplankton were still the dominant size class (Fig. 8i and Fig. 

9d), and the Chla was still below 0.5 mg m-3 during this period (Fig. 9d).  

In the winter, the stratification of the water column is broken down and vertical mixing develops, due to strong winds and sea 10 

surface cooling. Nutrients are replenished from the underlying nutrient-rich waters, which favour the micro- and nano-

phytoplankton on the ECS shelf and some regions of the Kuroshio water (Fig. 8j-k). Intense mixing has also been reported to 

promote larger phytoplankton cells (Taylor and Joint, 1990). For the oligotrophic Kuroshio water, the Chla concentration was 

still low (Fig. 9d), and the pico-phytoplankton were relatively abundant (Fig. 8l and Fig. 9d) in the winter, which was similar 

to that in other seasons. 15 

4.3 Response of phytoplankton size class to sea surface temperature 

It has previously been suggested that sea surface temperature is one of the important factors that influence the PSC dynamic 

(Chen, 2000; Barnes et al., 2010; IOCCG, 2014). Fortunately, the SST parameter can be detected from remotely-sensed data. 

It enables the study of the PSC response to the SST change under differing environmental conditions. Therefore, based on the 

14-years (2003-2016) time series of the monthly SST and satellite-derived PSC data, we discussed the relationship between 20 

SST and PSC in the three subareas of the ECS, which were proved with correlation analysis (Table 5). SST can influence the 

vertical structure of the water column and would further change the nutrient supply and light conditions, which influence 

phytoplankton size structure and community.  
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For the three subareas, all of the correlations between micro-phytoplankton proportion and SST were negative, especially for 

the middle shelf region (R= -0.76), suggesting that SST will restrict the growth of micro- phytoplankton. For nano-

phytoplankton, the correlations between its size fractions and temperature were positive in the MCJR and MSR, but no 

significant correlation in the MSR, while the correlation was negative in the KR. It was reported that nano-phytoplankton (e.g, 

flagellates) were dominant in offshore in warmer shelf regions, because they are better utilising the increase in nutrient 5 

concentration after upwelled water has warmed (Barlow et al., 2016). In contract, significant positive correlations between 

pico-phytoplankton proportion and SST were identified in the three subareas. Similarly, Chen (2000) reported that there was 

a significant positive correlation between in situ pico-phytoplankton proportions and water temperature in the Kuroshio water. 

This may be because the increase (decrease) in density stratification due to higher (lower) SST may weaken (increase) strong 

mixing vertical, which would provide a favorable low-nutrient (high-nutrient) condition for pico- (micro-) phytoplankton. The 10 

result of Table 5 indicated the SST is a key factor that influence the PSC dynamic in the ECS. Additionally, the inter-annual 

variation of phytoplankton size classes in the ECS were complicated and could not be fully explained by the individual factor. 

Further research is still needed to understand the seasonal and inter-annual variabilities of the PSC and their responses to 

environmental factors (e.g., riverine discharge, monsoon forcing, and climate change) when more data become available. 

5 Conclusions 15 

In this study, the PSC model was regionally tuned for application to the ECS using extensive in situ data covering various 

seasons and environmental conditions in the ECS. When the refined model was applied to MODIS observations, there is a 

critical step to reconstruct satellite remote sensing reflectance at blue bands. It leads to reliable performance of the PSC model 

on real MODIS Rrs data, which showed a good agreement with the HPLC-derived PSC values, with almost all of the samples 

falling within ±20% - fraction range. Along the way, our present study preliminarily estimates spatial distributions of PSC in 20 

the ECS from space. The regional PSC model was applied to satellite data from MODIS during 2003 and 2016 to infer the 

PSC distribution at seasonal scales. The obtained results show that the PSC varied across both spatial and temporal scales in 

the ECS, which are consistent with prior knowledge of phytoplankton seasonal dynamics in the area. The seasonality of the 
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PSC in the ECS may be mainly related to the vertical structure of the water column, upwelling, sea surface temperature, and 

the Kuroshio Current. It is affected by riverine discharge and human activity, especially in coastal waters. However, the 

spatiotemporal distribution at different scales (monthly, seasonal and annual scales) and its mechanisms are needed to be 

investigate in details in the future.  
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Tables 

Table 1. Parameter i values for the PSC model development. 

 N R RMSE 0 1 2 3 4 

Micro 170 0.89 0.11 1.05 3.48 -4.34 -13.09 16.04 

Nano 170 0.70 0.11 - - - - - 

Pico 170 0.84 0.11 -2.56 -1.52 1.24 -25.87 -1.86 
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Table 2. Results of the matchup comparison of satellite Rrs() with in situ measurements. 

 Wavelength (nm) 

 412 443 469 488 531 547 555 645 667 678 

N 21 21 21 21 21 21 21 21 21 21 

R 0.46 0.73 0.85 0.88 0.95 0.96 0.97 0.90 0.86 0.85 

RMSE 0.0026 0.0019 0.0016 0.0016 0.0011 0.0011 0.0012 0.00081 0.00077 0.00079 

MAPE(%) 47.33 36.90 27.25 19.92 16.39 14.90 18.41 54.86 91.39 111.3 
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Table 3. Comparison of original satellite Rrs and reconstructed R
rc 

rs  data with in situ values at 412 and 443 nm. 

wavelength N 
original satellite Rrs  reconstructed satellite R

rc 

rs  

R RMSE MAPE(%)  R RMSE MAPE(%) 

412 nm 21 0.46 0.0026 47.33  0.70 0.0019 35.15 

443 nm 21 0.73 0.0019 36.90  0.80 0.0017 34.53 
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Table 4. Results of the matchup comparison for Fig. 6. 

wavelength N 

satellite-derived a
rc 

ph  satellite-derived aph 

R RMSE MAPE(%) PVP (%)  R RMSE MAPE(%) PVP (%) 

412 nm 22 0.80 0.27 15.35 100  0.58 0.56 58.15 72.73 

443 nm 22 0.83 0.23 14.87 100  0.48 0.67 63.95 72.73 

469 nm 22 0.85 0.21 11.62 100  0.62 0.55 48.35 81.82 

488 nm 22 0.84 0.22 11.52 100  0.78 0.37 31.93 90.91 

531 nm 22 0.80 0.31 20.82 86.36  0.86 0.73 45.57 54.55 

547 nm 22 0.69 0.43 20.38 90.91  0.69 0.52 35.71 63.64 
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Table 5. Correlation coefficients between the monthly mean three phytoplankton size fractions and SST from 2003 to 3016 

for the subareas. These relationships are statistically significant at the 95% confidence interval. 

Region N Micro Nano Pico 

MCJR 168 -0.59 0.58 0.54 

MSR 168 -0.76 0.44 0.65 

KR 168 -0.31 -0.66 0.64 
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Figures 

 

 

Fig. 1. Distribution of in situ and matchup dataset (a); locations of sampling stations collected in the North Pacific and 5 

North Atlantic oceans from the NASA SeaBASS archive (b); Mean Rrs() spectral of the 14-years (2003-2016) MODIS 

data in Kuroshio water (red star in a) and in the North Pacific and North Atlantic oceans (blue circles in b) (c). Error 

bars represent standard deviations of the means. 
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Fig. 2. Comparison between in situ a
std 

ph ()-derived and HPLC-derived PSC for micro- (a), nano- (b), and pico-

phytoplankton (c). Dashed lines represent the ± 20% fraction range relative to the 1:1 line. 
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Fig. 3. Comparison of aph derived from Rrs using QAA_v5 with measured aph values. 5 
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Fig. 4. Comparisons of PSC modeled using aph derived from Rrs with HPLC-derived values for micro- (a), nano- (b), 5 

and pico-phytoplankton (c). 
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Fig. 5. Reconstructed R
rc 

rs  versus measured Rrs data at 412 nm (a) and 443 nm (b). 5 
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Fig. 6. Comparison of the satellite-derived aph (crosses) and satellite-derived a
rc 

ph (open circles) with measured values at 5 

412, 443, 469, 488, 531, and 547 nm. 
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Fig. 7. Comparison of the satellite-derived PSC using original satellite Rrs data (a-c) and those using satellite R
rc 

rs  data (d-f) 

with the HPLC-derived values. 5 
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Fig. 8. Seasonal patterns of the PSC in the ECS during 2003-2016. 
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Fig. 9. The sampling location of subareas, which are marked by cyan color (a). Monthly climatological PSC(2003-2016) 

in the mouth area of Changjiang river (MCJR) (b), middle shelf region (MSR) (c), and the Kuroshio region (KR) (d). 

Monthly climatological Chla concentration in the subareas are shown by magenta color. Error bars indicate standard 5 

deviations of the means.  
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