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Abstract. The distribution and variation of phytoplankton size class (PSC) are key to understanding ocean biogeochemical 

processes and ecosystem. Remote sensing of the PSC in the East China Sea (ECS) remains a challenge, although many 10 

algorithms have been developed to estimate PSC. Here based on a local dataset from the ECS, a regional model was tuned to 

estimate the PSC from the spectral features of normalized phytoplankton absorption (aph) using a principal component analysis 

approach. Before applying the refined PSC model to MODIS (Moderate Resolution Imaging Spectroradiometer) data, 

reconstructing satellite remote sensing reflectance (Rrs) at 412 and 443 nm was critical through modeling them from Rrs between 

469 and 555 nm using multiple regression analysis. Satellite-derived PSC results compared well with those derived from 15 

pigment composition, which demonstrated the potential of satellite ocean color data to estimate PSC distributions in the ECS 

from space. Application of the refined PSC model to the reconstructed MODIS data from 2003 to 2016 yielded the seasonal 

distributions of the PSC in the ECS, suggesting that the PSC distributions were heterogeneous in both temporal and spatial 

scales. Micro-phytoplankton were dominant in coastal waters throughout the year, especially in the Changjiang estuary. For 

the middle shelf region, the seasonal shifts from the dominance of micro- and nano-phytoplankton in the winter and spring to 20 

the dominance of nano- and pico-phytoplankton in the summer and autumn were observed. Pico-phytoplankton were especially 

dominant in the Kuroshio region in the spring, summer, and autumn. The seasonal variations of the PSC in the ECS were 

probably affected by a combination of the water column stability, upwelling, sea surface temperature, and the Kuroshio Current. 

Additionally, human activity and riverine discharge might also influence the PSC distribution in the ECS, especially in the 

coastal region.  25 
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1 Introduction 

Phytoplankton size class (PSC) is fundamentally important for ocean biogeochemical processes and ecosystems, especially 

for photosynthesis efficiency (Bouman et al., 2005; Uitz et al., 2008), primary production, and the carbon transport (Kiørboe, 

1993; Guidi et al., 2009; Hirawake et al., 2011). Thus, knowledge of the PSC dynamics can contribute to the improvement of 

our understanding of marine ecological and biogeochemical cycles. The classical size fractions of phytoplankton proposed by 5 

Sieburth et al. (1978) include three classes, namely, micro- (> 20 m), nano- (2-20 m), and pico-phytoplankton (< 2 m). 

Among the methods to measure PSC from water samples, including microscopy (Montagnes et al., 1994), Coulter counter 

method (Sheldon and Parsons, 1967), and flow cytometry (Sun et al., 2000), pigment concentrations by high-performance 

liquid chromatography (HPLC) is the most systematic and qualify-controlled method (Van Heukelem and Hooker, 2011). 

However, these methods are time-consuming and methodologically complex. Furthermore, large spatial and temporal 10 

variabilities make it difficult to continuously monitor PSC using the field sampling methods.  

Realistically, satellite ocean color data can provide synoptic observations, which are ideal for investigating PSC at large spatial 

and temporal scales. In recent years, various algorithms have been designed to estimate PSC using in situ data and ocean color 

data on both global and regional scales (IOCCG, 2014). Most algorithms can be partitioned into two categories, namely, 

“abundance-based” and “spectral-based” methods. The “abundance-based” methods are based on the statistical relationship 15 

between phytoplankton size fraction and phytoplankton abundance using measurements such as chlorophyll-a concentration 

(Chla) (refer to Bracher et al. (2017) Table 2). These approaches rely on the assumption that high and low Chla waters are 

dominated by large and small phytoplankton, respectively. The “spectral-based” methods utilize the relationship between the 

variations in inherent optical properties with changes in the PSC using measurements such as phytoplankton absorption (aph), 

remote sensing reflectance (Rrs), and particulate backscattering (bbp) (refer to Bracher et al. (2017) Table 2). 20 

The East China Sea (ECS) is the base of the marine fishery resources in China and is one of the most productive ocean areas 

in the world (Furuya et al., 1996). Ascertaining the distribution of PSC can provide valuable information on the state of marine 

ecosystem and primary production in the area. Recent efforts have been focused on investigating the phytoplankton community 

and size classes in the ECS and have suggested that the PSC exhibited obvious spatiotemporal heterogeneity in this region (Li 

et al., 2007; Luan et al., 2007; Jiang et al., 2014). For instance, Chen (2000) investigated the PSC and primary productivity in 25 

the marginal regions of the southern ECS using field data. The results showed that the phytoplankton size structure and their 

contributions to primary production displayed significant spatial differences in the shelf waters, upwelling waters, and 

Kuroshio water. Furuya et al. (2003) presented the phytoplankton dynamics in the ECS in the spring of 1994 and the summer 
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of 1996 using HPLC-derived pigment signatures. A distinct horizontal heterogeneity in phytoplankton composition was 

observed in the spring, and a “two-layer” distribution of phytoplankton appeared both off and on the shelf in the summer. Liu 

et al. (2016) used 7-years (2006-2012) field measurements to investigate the seasonal and spatial variations of major 

phytoplankton groups in the ECS, and found that monsoon forcing was a key factor to impact phytoplankton dynamics at 

seasonal scale. 5 

Note that previous investigations on the PSC in the ECS have been conducted based on field observations, which may not 

reflect the real variation patterns of PSC. To our knowledge, no study has attempted to examine the PSC distributions in the 

ECS at synoptic scales from satellite observations. Consequently, the PSC dynamics in the ECS at different spatial and temporal 

scales and their mechanisms are still poorly understood. In the ECS, Wang et al. (2014) found that the correlation between the 

variation patterns of the PSC and total Chla was not valid, and pointed out that the “abundance-based” methods for estimating 10 

PSC were probably not applicable in the ECS. Therefore, Wang et al. (2015) proposed a model to estimate the PSC in the ECS 

using the spectral shape of normalized aph(λ) through principal component analysis (PCA). This model showed good 

performance for estimating the PSC from both in situ measured aph and Rrs. However, this model was developed using field 

dataset mainly from offshore waters of the ECS and off the coastal Japan; more importantly, the Wang et al. (2015) model has 

not been implemented in satellite data yet. 15 

Therefore, the goals of this study were to: (1) refine the Wang et al. (2015) model for regional application in the ECS using an 

extensive dataset covering highly varied water conditions and various seasons, (2) apply the refined PSC model to Moderate 

Resolution Imaging Spectroradiometer (MODIS) satellite data, and (3) then preliminarily investigate previously unknown 

seasonal and spatial variation patterns of the PSC in the ECS.  

2 Materials and methods 20 

2.1 Study area and sampling stations 

The East China Sea is one of the largest marginal seas in the western North Pacific and is bounded by China, Korea, and Japan 

(Fig. 1a). Nearly 70% of the ECS is occupied by a continental shelf shallower than 200 m. Numerous rivers flow into the ECS 

from mainland China, including the Changjiang (Yangtze) River which provides nearly 90% of the riverine discharge to the 

ECS (Zhang et al., 2007). In addition, the ECS experiences strong currents and multiple water masses, such as Changjiang 25 

diluted water (CDW), shelf mixed water, and the Kuroshio Current (Ichikawa and Beardsley, 2002; Su and Yuan, 2005). Here 

we analyzed the mean shape and coefficient of variation (CV) of in situ Rrs(λ) collected in the ECS, to better show the ocean 

color variability in the ECS which covers many water types (Fig. 2). The in situ Rrs(λ) of all samples exhibited large variability 
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in both magnitudes and spectral shapes (Fig. 2a and b). For the samples in the coastal region of Zhejiang (Zhe) and Fujian 

(Min), both 10 wavebands showed larger variability in Rrs(λ) magnitude with CV larger than 55% (Fig. 2c). For the samples 

in southern Jeju Island, CV varied from 20% to 60%, with a minimum around 531 nm and 547 nm (Fig. 2d). Overall, they 

showed large dynamic range with significant variability. Because of highly variable environmental conditions, the ECS exhibits 

complex marine biogeochemical processes and ecosystem.  5 

The field measurements used in this study were collected from approximately 10 cruises over the last decade. These sampling 

stations were distributed irregularly in the ECS and a few were in the Tsushima Strait (Fig. 1a). The field dataset encompassed 

various seasons and environmental conditions of the ocean, including turbid waters in the mouth area of Changjiang river, less 

turbid coastal water, and clear water away from the coast. This field dataset consisted of in situ measured aph(), measured 

Rrs() data, and phytoplankton pigments measured by HPLC. In total, 69 samples with synchronous measurements of pigments, 10 

aph, and Rrs data, 101 samples with coincident pigments and measured aph data, and 27 samples with only measured Rrs were 

available, and Fig. 1a shows the spatial distribution of samples. The Kuroshio water in our study area suffered from a paucity 

of in situ Rrs data. Hence, in addition to the regional dataset, 227 in situ Rrs samples collected in the North Pacific and North 

Atlantic oceans (Fig. 1b) from the NASA SeaBASS archive were used as a supplementary dataset. The SeaBASS dataset was 

only used for algorithm development to reconstruct satellite Rrs data, along with our regional field dataset (see Section 2.4). 15 

The average spectral shapes of the 14-years (2003-2016) MODIS Rrs data in the North Pacific and North Atlantic oceans were 

similar to that in the Kuroshio water (Fig. 1c). Thus, in situ measured Rrs data collected in the North Pacific and North Atlantic 

oceans were used in the present study, although the distribution regions of these data were beyond our study area. 

Meanwhile, three specific subareas were selected for further investigation in this study, including the mouth area of Changjiang 

river (MCJR, 122.3-123.5 °E and 31-32 °N), middle shelf region (MSR, 123.5-125 °E and 28-29 °N), and Kuroshio region 20 

(KR, 126-127.1 °E and 25.2-26.2 °N), as marked by black boxes in Fig. 1a. These subareas were selected based on geographical 

locations and driving forces. Within each subarea, the averages of all valid values were calculated for further analysis.  

2.2 In situ measurements 

Surface water samples (0-3 m) were collected with Niskin samplers mounted on a CTD Rosette or a clean bucket. These water 

samples were used for measurements of aph() and pigment concentrations. 25 

2.2.1 Measurement and analysis of HPLC-derived PSC  

For pigment analysis, seawater samples were filtered onto 47 mm Whatman GF/F glass fiber filters under gentle pressure 
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(<0.01 MPa), and then stored initially on board in liquid nitrogen (-70 °C) for later analysis in the laboratory. Briefly, the 

concentrations of 19 pigments were determined by reverse-phase HPLC following Van Heukelem and Thomas (2001). To 

remove measurements with lower precision, the quality control (QA) process was applied to the pigment dataset by HPLC 

according to the rules of Aiken et al. (2009). In our study, the diagnostic pigment analysis (DPA) was applied to compute the 

PSC values from HPLC pigment data (hereafter called the HPLC-derived PSC). In brief, the DPA approach uses seven 5 

diagnostic pigment concentrations to obtain the HPLC-derived PSC, including fucoxanthin (Cf), peridinin (Cp), 19′-

hexanoyloxyfucoxanthin (Ch), 19′-butanoyloxyfucoxanthin (Cb), alloxanthin (Ca), Chlorophyll-b (CCb), and zeaxanthin (Cz). 

The DPA approach was originally proposed by Vidussi et al. (2001), and subsequently improved by Uitz et al. (2006). In 

addition, Hirata et al. (2008) used the improved DPA approach to account for the occurrence of CCb in nano-phytoplankton 

class, because CCb was most abundant at high Chla (> 0.25 mg m-3) and was a minor pigment at lower Chla. Subsequently, 10 

Brewin et al. (2010) and Hirata et al. (2011) further refined the DPA approach to account for ambiguity of Cf signal in diatoms 

and the occurrence of Ch signal in picophytoplankton. In this study, the HPLC-derived PSC were then given by: 

( )1.41 1.41 /micro f p i i
f C C W P= +        (1) 

( )0.60 0.35 1.01 1.27 /nano a b Cb h i i
f C C C x C W P= + + +              (2) 

( )0.86 1.27 /pico z h i i
f C y C W P= +                  (3) 15 

where fmicro, fnano, and fpico denote the size fractions of micro-, nano-, and pico-phytoplankton, respectively. x and y are the 

proportions of nano- and pico-phytoplankton in Hex, respectively. When Chla >0.08 mg m-3, x=1 and y=0; when Chla are 

between 0.001 and 0.08 mg m-3, x=12.5Chla and y=1-12.5Chla. WiPi is the weighted sum of the seven diagnostic pigments 

(Uitz et al., 2006), according to the formula: 

1.41 1.41 0.60 0.35 1.27 0.86 1.01i f p a b h z Cbi
W P C C C C C C C= + + + + + +         (4) 20 

2.2.2 Measurement of aph 

To obtain aph data, we used the quantitative filter technique (QFT) via a series of processes (Mitchell, 1990). Water samples 

were filtered through 25 mm Whatman GF/F glass fiber filters under gentle pressure, and immediately frozen on board in 

liquid nitrogen. In this study, the “transmittance” approach was used for the samples collected from southern Jeju Island and 

the Tsushima Strait (hereafter referred to as dataset-1). The optical density (OD) values of total particles were measured using 25 

a dual-beam multi-purpose spectrophotometer between 350 nm and 750 nm at 1 nm resolution. Similarly, we measured the 

OD values of the detritus after extracting phytoplankton pigments in methanol at least 24 h. Meanwhile, a blank filter saturated 



 

6 

with pure seawater was used as the reference filter. Then, the absorption coefficients of total particles ap() and detritus ad() 

were calculated from the corresponding OD values based on a correction of Cleveland and Weidemann (1993). The 

“transmittance-reflectance” approach was performed on the samples collected from the coastal and offshore regions of 

Zhejiang, Fujian, and Jiangsu (hereafter referred to as dataset-2). The optical densities of the total particles, detritus, and 

reference filter were obtained in both “transmission mode” and “reflection mode” between 250-850 nm at 1 nm resolution 5 

using a PerkinElmer lamda650s. Then, we converted these OD values into ap() and ad() values using the method of Tassan 

and Ferrari (1995; 2002). Finally, the aph data were obtained as the difference of ap() - ad() at all sampling stations. 

2.2.3 Measurement of Rrs 

To obtain Rrs data in dataset-1, the PRR-800/811 was used to measure the vertical profiles of the downwelling irradiance Ed(,z) 

and upwelling radiance Lu(,z) at 13 spectral channels (380, 412, 443, 465, 490, 510, 532, 555, 565, 589, 625, 665, and 683 10 

nm). The water-leaving radiance Lw() was then determined from the profile of Lu(,z) (Hirawake et al., 2011). The above-

water surface downwelling irradiance Ed(,0+) was simultaneously measured by a cosine collector. Then, Rrs() data were 

calculated as the ratio of Lw() to Ed(,0+). For the purpose of consistency with satellite observations that characterize the 

oceanic surface layer, our analysis exclusively considered the near-surface Rrs data.  

For dataset-2, Rrs data was collected under suitable solar illumination (generally between 9am and 3pm local time) using an 15 

ASD FieldSpec spectroradiometer in the spectral range of 350-1050 nm with 1.5 nm increments. The radiance spectra of water, 

sky, and a gray reference panel were measured following the above-water measurement approach (Mueller et al., 2003). For 

each of the three targets, ten spectra were collected and then averaged after removing abnormal spectra. According to the 

Ocean Optics Protocol (Mueller et al., 2003), the Rrs() data were obtained as 

( ) ( )( ) / /rs t sky p pR L L L= −           (5) 20 

where Lt, Lsky, and Lp correspond to the radiance values measured from the water, sky, and reference panel, respectively. p is 

the diffuse reflectance of the reference panel provided by the manufacturer. γ is the surface Fresnel reflectance related to wind 

speed (2.6% - 2.8% for 10 m s-1 wind, 2.5% for <5 m s-1 wind, 2.2% for calm weather) (Tang et al., 2004).  

All Rrs and aph data were resampled at the centers of MODIS wavebands (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 

678 nm) using the spectral response function of the MODIS sensor. 25 

2.3 Satellite data 

The global standard monthly MODIS remote sensing reflectance, chlorophyll-a concentration, and sea surface temperature 
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(SST) products (Level 3, about 4 km resolution) from 2003 to 2016 were provided by the NASA Ocean Color website 

(http://oceancolor.gsfc.nasa.gov/). The dataset corresponding to our study area (25-35° N and 118-132° E) were extracted from 

these global coverage datasets. These regional Rrs products were processed using the MathWorks MATLAB software to obtain 

the satellite-derived PSC. Additionally, daily Level 2 Rrs data from MODIS sensor (1 km resolution) were downloaded from 

the NASA Ocean Color website.  5 

Samples were matched to daily Rrs data to assess the accuracy of satellite-derived aph and PSC results. To ensure the validity 

of satellite data before the matchup analysis, the following constraints were applied to the matchup dataset: (1) the matchup 

dataset only included satellite data with an overpass time window within 5 h before and after the field measurements; (2) to 

reduce the effect of outliers, median Rrs value for a window of size 3 centered on the sampling station coordinates was defined 

as satellite Rrs data; (3) negative MODIS Rrs data were eliminated from the matchup analysis. Based on these criteria, 21 10 

satellite matchups with coincident measured Rrs, and 22 satellite matchups with coincident measured PSC and aph were 

available, as shown in Fig. 1a. 

2.4 Model accuracy assessment 

To evaluate the consistency between the derived and measured values, the Pearson correlation coefficient (R), root mean square 

error (RMSE), and mean absolute percentage error (MAPE) were used. Statistical assessments were performed in log10 space 15 

for the phytoplankton absorption coefficient and in linear space for the phytoplankton size class. These statistical indicators 

can be written as: 

( )
2

,derived ,field ,field
1

1
/

n

i i i
i

RMSE x x x
n =

 = −                (6) 

( ) ( ),derived ,field ,field
1

1
% / 100%

n

i i i
i

MAPE x x x
n =

= −              (7) 

where n is the number of samples. xi,derived and xi,field are the derived and measured data for the i-th sampling station, respectively. 20 

2.5 Modified the Wang et al. (2015) model for retrieving PSC 

Wang et al. (2015) developed an spectral-based PSC model to quantify the size fractions of three phytoplankton classes using 

the spectral shape of aph() through PCA approach. Details of the development and parameterization of the model were 

described in Wang et al. (2015). In brief, to reduce the biomass effects, the normalized aph() (hereafter called a
std 

ph ()) was 

computed by the ratio of aph() to their wavelength mean values in the spectral range between 412 and 547 nm. Then, the PCA 25 

approach was applied to the a
std 

ph () to capture the spectral variation in phytoplankton absorption related to cell size. The input 

http://oceancolor.gsfc.nasa.gov/
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of PCA is a m×N matrix constituted of a
std 

ph (), where m and N are the number of input wavelengths and samples, respectively. 

The output of PCA comprises two terms, i.e., principal component (PC) scores and PC weights (also called loading factors). 

The PC scores were assumed to correlate with the size class. Therefore, the relationships between the size fractions of micro- 

and pico-phytoplankton and PC scores were established using a logistic-type regression model (Hosmer Jr et al., 2013), as 

follows: 5 

0
1 1

1/ 1 exp ,    ( )
k m

std

t i i i ij ph j
i j

f S S w a
= =

  
= + − − =  

  
                (8) 

where ft denotes the phytoplankton size fraction (t = micro or pico). 0 and i are the regression coefficients between ft and PC 

scores. k is the number of PC scores (k = 4 in this study). wij refers to the loading factor for the i-th PC. m is the number of 

wavelengths. Similar to previous studies (Brewin et al., 2010; Hirata et al., 2011), fnano was calculated as 1-fmicro-fpico, by 

considering that the sum of three phytoplankton size fractions was 1.  10 

The aph() at MODIS wavelengths were derived from Rrs() data using the quasi-analytical algorithm (QAA) proposed by Lee 

et al. (2002). QAA was used in this study because it does not suppose a fixed shape for aph() (Lee et al., 2002; 2009). Because 

QAA could give satisfactory retrievals of aph() at the first 6 MODIS wavebands (i.e., 412, 443, 469, 488, 531, and 547 nm), 

as shown later for details, only aph() data at these wavebands were used for the PSC model development in this study (i.e., m 

= 6 in Eq. (8)). 15 

To improve the accuracy of MODIS Rrs() at short wavelengths (see details in Section 3.3), the reconstruction approach (Lee 

et al., 2014; Sun et al., 2015) was used to reconstruct satellite Rrs() at 412 and 443 nm before applying of the refined PSC 

model to satellite data. In our study, satellite Rrs(412) and Rrs(443) were quantified as multivariable linear relationship using 

Rrs data from 469 to 555 nm, as follows: 

( ) ( ) 0

1

n
rc

rs i rs i

i

R K R K
=

= +                   (9) 20 

where R
rc 

rs () is the reconstructed Rrs data at wavelength  (412 or 443 nm); Rrs(i) are the input Rrs data at five MODIS 

wavebands (i = 469, 488, 531, 547, and 555 nm); K0 and Ki are the coefficients determined from multivariant regression. 

3 Results 

3.1 Regional tuning of the PSC model for the ECS 

Following Wang et al. (2015), Eq. (8) was fitted to 170 pairs of the HPLC-derived PSC and in situ measured aph data using a 25 

non-linear least square fitting procedure for developing the PSC model. The established parameters and associated R and 
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RMSE values for each of the fits are shown in Table 1. Fig. 3 shows the strong linear relationships between the in situ a
std 

ph -

derived PSC and HPLC-derived results, with R values of 0.89, 0.70, and 0.84 and RMSE values of 0.11, 0.11, and 0.11 for 

micro-, nano-, and pico-phytoplankton, respectively. The samples were close to the 1:1 line, with most of the samples within 

the ± 20% fraction range. 

Using 69 measurements of Rrs and associated HPLC-derived PSC and in situ measured aph, we also examined the feasibility 5 

of the PSC model for satellite observations by coupling QAA. First, we used QAA version 5 (QAA_v5) to retrieve aph from 

measured Rrs. To assess the performance of QAA_v5, negative retrieved aph values were eliminated, and the remainder were 

compared with the measured values at all MODIS wavebands (Fig. 4). The retrieved aph values by QAA_v5 show reasonably 

good agreement with the in situ measured aph at short wavelengths from 412 to 547 nm, with high R values and low RMSE 

and MAPE values. In contrast, the performance of QAA_v5 was poor and produced large overestimation of aph at long 10 

wavelengths, especially at 645, 667, and 678 nm, consistent with previous findings (Lee et al., 2014; Tiwari and Shanmugam, 

2014). These results clearly demonstrated that QAA_v5 can produce accurate estimates of aph at 412, 443, 469, 488, 531, and 

547 nm. Therefore, only aph values at these bands were used to calibrate the PSC model, as previously stated. Then, the PSC 

values were inferred from the retrieved aph using Eq. (8) with the established parameterizations. As shown in Fig. 5, the QAA 

a
std 

ph ()-derived PSC values were consistent with the HPLC-derived results, and almost all of the points fell within the ± 20% 15 

fraction range. The R and RMSE values were 0.79 and 0.13 for micro-phytoplankton, 0.43 and 0.12 for nano-phytoplankton, 

and 0.80 and 0.13 for pico-phytoplankton, respectively. These results suggested that the refined PSC model for the ECS 

coupling QAA_v5 is able to accurately estimate the PSC from remote sensing reflectance Rrs. 

3.2 Comparison of satellite Rrs with in situ measurements 

Before applying the PSC model to MODIS data, we assessed the accuracy of MODIS Rrs using the synchronous in situ 20 

measurements. Table 2 shows the statistical results of the comparison between satellite Rrs and in situ values for MODIS 

wavebands. For MODIS Rrs data, a reasonably good consistency was found at green and red bands (from 469 to 555 nm), with 

R values within 0.85 - 0.97 and MAPE values within 14.9% - 27.25%. Although the R values were above 0.85, the MAPE 

values were high (> 54%) at 645, 667, and 678 nm. This is probably caused by the lower Rrs values at these bands due to strong 

absorption of water itself. In addition, a low accuracy was observed at 412 and 443 nm. The R values were 0.46 and 0.73, and 25 

the MAPE values were 47.33% and 36.90% at 412 and 443 nm, respectively. The high noise and low accuracy at these two 

wavebands were suggested to be caused by the uncertainty of the atmospheric correction procedures and significant band 

degradation (Meister, 2011; Hu et al., 2013). Considering the importance of Rrs(412) and Rrs(443) to QAA algorithm, the poor 
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accuracy of satellite Rrs at these bands may introduce uncertainty in the retrieved aph data, and further increase the uncertainty 

of satellite-derived PSC. Thus, an accurate assessment of satellite-derived PSC requires the improved quality of satellite Rrs 

data. In this study, the reconstruction approach was used to fulfill this objective.  

3.3 Reconstruction of MODIS Rrs data 

The reconstruction function (Eq. (9)) was applied to the regional field dataset and SeaBass dataset to obtain the regression 5 

coefficients. The resulting relationships between the in situ measured and modeled Rrs show strong agreement, with high R2 

and low RMSE and MAPE values (Table 3). For 412 and 443 nm, the R2 values were close to 1.0 with a significance level of 

p <0.001. The MAPE values were both lower than 9.0%. The reconstruction functions with the established coefficients were 

applied to the original MODIS Rrs data to obtain the reconstructed satellite R
rc 

rs (412) and R
rc 

rs (443) data. Table 4 shows the 

comparison of the original satellite Rrs and satellite R
rc 

rs  data with in situ measured Rrs at 412 and 443 nm. The satellite R
rc 

rs  data 10 

were in better agreement with the in situ measured Rrs data than the original satellite Rrs, especially at 412 nm. At 412 nm, the 

values of R, RMSE, and MAPE reached 0.70, 0.0019, and 35.15% for the satellite R
rc 

rs  data, respectively, while these values 

were 0.46, 0.0026, and 47.33% for the original satellite data, respectively. These results indicated that the accuracy of the 

satellite Rrs data at 412 and 443 nm could be improved through reconstruction using the selected MODIS wavebands. 

3.4 Validation of satellite-derived aph and PSC with in situ measured data 15 

Based on the above analysis, we used the satellite R
rc 

rs (412) and R
rc 

rs (443) data rather than original satellite Rrs data to compute 

aph using QAA_v5. Fig. 6 shows the comparison of the derived aph data from satellite R
rc 

rs  (hereafter called a
rc 

ph) and the derived 

aph from original satellite Rrs with in situ measurements at the first six MODIS wavebands. Table 5 summarized their 

corresponding statistical comparisons, i.e., R, RMSE, MAPE, and percentage of valid points (PVP). Here PVP is defined as 

the ratio of the number of positive satellite-derived values (n) to the total number of matchups (N) (as PVP = n/N×100%). For 20 

the satellite-derived a
rc 

ph, the R values were above 0.80, except at 547 nm (R = 0.69), and were significantly higher than those 

for the satellite-derived aph (with most of the values below 0.7). The statistics (RMSE, MAPE, and PVP) for the satellite-

derived a
rc 

ph were also generally better than those for the satellite-derived aph. Compared with the satellite-derived aph, the PVP 

for the satellite-derived a
rc 

ph significantly increased with an average of 23.48%. Meanwhile, Fig. 6 also shows that the satellite-

derived a
rc 

ph had more valid samples and were more clustered around the 1:1 line than the satellite-derived aph. Overall, both 25 

Table 5 and Fig. 6 indicated that the satellite-derived aph had poor accuracy and low PVP values, whereas the accuracy of 

satellite-derived a
rc 

ph can be significantly improved with more valid samples through the reconstruction of satellite Rrs data. 
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The refined PSC model was applied to the satellite-derived aph data from original satellite Rrs to estimate PSC (Fig. 7a). It can 

be seen that the satellite-derived PSC from original satellite Rrs were inconsistent with the HPLC-derived results, showing 

obvious under and overestimations of the retrieved PSC for most of the samples. Their R values were all below 0.27 (Fig. 7a). 

For comparison, we also estimated the PSC from the satellite-derived a
rc 

ph from reconstructed R
rc 

rs  data and were compared with 

the HPLC-derived values (Fig. 7b). The satellite-derived PSC from reconstructed R
rc 

rs  data agreed well with the HPLC-derived 5 

results. Their R values of 0.68, 0.46, and 0.64 and RMSE values of 0.13, 0.13, and 0.19 were observed for micro-, nano-, and 

pico-phytoplankton, respectively. Almost all of the samples fell within the ±20% fraction range, although a slight 

underestimation of pico-phytoplankton size fraction occurred in a few samples.  

Additionally, to further examine the performance of the refined PSC model in our study, our refined PSC model was compared 

with other two published PSC models (the Brewin et al. (2015) model and the Sun et al. (2017) model) (Fig. 7c and d). Here, 10 

we regionally tuned these published models using a standard nonlinear least-squares method based on our field dataset 

collected in the ECS. It should be noted here that the two retuned models were used to better assess the performance of our 

refined PSC model only, although these “abundance-based” models may not perform well in the ECS (data not shown) as 

suggested by Wang et al. (2014). In this study, the retuned Brewin et al. (2015) model for the ECS was expressed as: 

( )

( )

0 19 1 3 6

1 0 1 1 0

1

pico

p,n

nano p,n pico micro p,n

f . exp . Chla / Chla

f . exp . Chla / Chla

f f f   and   f f

= − −  

= − −  

= − = −

              (10) 15 

where fp,n is the sum of nano- and pico-phytoplankton size fraction. And, the retuned Sun et al. (2017) model for the ECS was 

expressed as: 

( )( )

( )( )

0 16
1 2

0 32
1 2

0 66 1 680

4 17 1 680

1

.

pico rs

.

nano rs

micro nano pico

f . Chla exp Chla R

f . Chla exp Chla R

f f f

−

−

 = − − 
 

 = − − 
 

= − −

            (11) 

where Rrs (680) is the remote sensing reflectance at 680 nm. The scatter distributions of the satellite-derived PSC using our 

refined PSC model were closer to the 1:1 line than those of the other two models. According to the statistical indicators, our 20 

refined PSC model had the best performance, with higher R values and lower RMSE values (Fig. 7b). For the retuned Brewin 

et al. (2015) model, the R values of 0.58, 0.066, and 0.53 and RMSE values of 0.2, 0.14, and 0.18 were observed for micro-, 

nano-, and pico-phytoplankton, respectively (Fig. 7c). For the retuned Sun et al. (2017) model, the R values were 0.36, -0.042, 

0.5 for micro-, nano-, and pico-phytoplankton, when the corresponding RMSE values were 0.25, 0.17, and 0.18, respectively 
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(Fig. 7d). The retuned Brewin et al. (2015) model and the retuned Sun et al. (2017) model had relatively poor performance in 

the ECS. These comparison results indicated that the performance of our refined PSC model using the reconstructed satellite 

data was better than those of the retuned Brewin et al. (2015) model and the retuned Sun et al. (2017) model in our study 

region.  

Overall, these results suggested that the use of satellite R
rc 

rs  could significantly improve the performance of the refined PSC 5 

model on satellite observations and yielded reasonable satellite-derived PSC results, which were better than those derived from 

original satellite observations. Therefore, we further investigated the spatiotemporal variability of the PSC in the ECS based 

on satellite-derived products from the reconstructed satellite remote sensing reflectance.  

3.5 Seasonal distribution patterns of the PSC in the ECS 

To describe the seasonal variability of the PSC in the ECS, the refined PSC model was applied to 14 years (2003-2016) of 10 

MODIS monthly Rrs data to obtain monthly PSC products. Then, seasonal composite PSC images were generated by averaging 

the monthly PSC products over a three month period for each season (Fig. 8 a-l). In this study, spring, summer, autumn, and 

winter were defined as March to May, June to August, September to November, and December to February of the next year, 

respectively. Meanwhile, to better understand the spatiotemporal variations of PSC, we analyzed the seasonal distributions of 

Chla in the ECS for four season, as shown in Fig. 8 A-D. 15 

Seasonal distributions of Chla (Fig. 8 A-D) illustrated that Chla were higher (0.4-3.0 mg m-3) on the ECS shelf than in the 

Kuroshio water (<0.4 mg m-3), and the Chla values in the Changjiang river mouth were particularly high (3.0-25 mg m-3). 

During spring, the high Chla (>1.0 mg m-3) were found on the ECS shelf, and the tongue-shape structure was unclear because 

of the increase of Chla in the surrounding areas. During summer, the Chla-values above 1.0 mg m-3 were observed in the 

coastal region. The higher Chla (>3.0 mg m-3) were limited to the regions at the depth shallower than 30 m isobath, including 20 

the Changjiang mouth. In the autumn, the Chla remained high in the coastal region (>2.0 mg m-3). The tongue-shaped structure 

extended outward the southeast along the 50 m isobath during autumn and along the 70 m isobath during winter.  

Seasonal variation patterns of the PSC (Fig. 8 a-l) indicated that the phytoplankton size classes in the ECS were heterogeneous 

in both temporal and spatial scales. Their general distribution patterns were consistent with results reported from field 

measurements by other researchers (Chen, 2000; Furuya et al., 2003; Wang et al., 2015). In the spring (Fig. 8 a-c), the higher 25 

fmicro values (0.45 - 0.85) were found on the ECS shelf sea with lower values in offshore waters. Relatively high fnano (0.4 - 0.6) 

were clearly observed on offshore shelf and in southern Japan. However, pico-phytoplankton were the dominant size class 

over the southeastern ECS (fpico = 0.50 - 0.75). During summer (Fig. 8d-f), the micro-phytoplankton size fractions were still 
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high in coastal waters. The high fmicro tongue-shape structure near the Changjiang Bank extended toward southeast along the 

30 m isobath. High nano-phytoplankton proportions occurred in the ECS shelf sea with water depths of 30 - 200 m. The pico-

phytoplankton contributions to Chla were relatively high around the ECS shelf break. Pico-phytoplankton represented the most 

abundant size class in the areas deeper than 200 m (fpico > 0.6), which was similar to the results from the field measurements 

by Chen (2000). In the autumn (Fig. 8g-i), the fmicro remained high in coastal waters and extended over the area shallower than 5 

50 m isobath. The proportion patterns of nano- and pico-phytoplankton in the autumn were broadly similar to those in the 

summer. However, high nano-phytoplankton proportions were also in the northern Japan. In the winter (Fig. 8j-l), high fmicro 

were mainly distributed on the ECS shelf. The regions with higher fmicro (> 0.5) extended outward, and connected to the area 

around the Korean coast. The distributions of the size fractions of nano- and pico-phytoplankton were broadly similar to those 

in the spring.  10 

3.6 Regional difference in the monthly climatological PSC in the ECS 

Since the East China Sea is extensive, with a number of different environmental conditions and ecosystems, three subareas 

were selected for further investigation as shown in Fig. 1a. Within each of the subareas, this study investigated averages of the 

monthly climatological PSC, as well as chlorophyll-a concentration (Fig. 9).  

In the MCJR, higher Chla were observed throughout the year (>3.0 mg m-3), and two Chl-a peaks occurred in the spring (May) 15 

and summer (June) respectively (Fig. 9a). Throughout the year, micro-phytoplankton comprised 60% - 80% of the Chla, with 

the maximum value in April and relatively low fractions from summer to early autumn (June - September). Nano-

phytoplankton comprised 18% - 30% of the Chla, while the contributions of pico-phytoplankton to Chla were below 10% 

throughout the year (Fig. 9a). In the MSR, mean Chla in this region domain were lower than those in the MCJR, with a peak 

in the spring (April) (Fig. 9b). The micro-phytoplankton proportions were slightly larger than pico-phytoplankton in the winter 20 

and spring, while the opposite was found in the summer and autumn. The pico-phytoplankton in the MSR was highest in 

August and September, with a peak in the summer and early autumn (June-September). Nano-phytoplankton were dominant 

(40% - 50%) for most of the year in this region (Fig. 9b). In contrast to the MCJR and MSR, the mean Chla were much lower 

in the Kuroshio region throughout the year (< 0.3 mg m-3) (Fig. 9c). The KR domain showed a predominance of pico-

phytoplankton (40% - 90%) throughout the year, with higher proportions observed in the summer. The nano-phytoplankton 25 

proportions (about 40%) were slightly lower than pico-phytoplankton in the winter and early spring, while their proportions 

became low (< 20%) in the rest of the year. The micro-phytoplankton size fractions in the KR remained low (< 23%) throughout 

the year (Fig. 9c). 
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4 Discussion 

4.1 Satellite application of the refined PSC model 

The most important advantage of satellite ocean color data is the ability to provide information on the spatiotemporal variability 

of the PSC. However, remote sensing of the PSC in the ECS is still a challenging task, although many “abundance-based” and 

“spectral-based” algorithms have been designed using field measurements and satellite data in the global scale. Taking into 5 

account the optical property in the ECS, Wang et al. (2014) reported that the “abundance-based” approaches are not necessarily 

applicable in the ECS, and the absorption spectra of phytoplankton could instead be used to obtain the PSC in the ECS. More 

than 80% of the variability in the spectral shape of phytoplankton absorption was highly related to the changes in the size 

classes (Ciotti et al., 2002; Bricaud et al., 2004). Therefore, in this study we refined the Wang et al. (2015) model for deriving 

PSC in the ECS from the spectral variation of aph. However, the application of this refined PSC model to original MODIS data 10 

has hampered, as showed in Fig. 7a. This may be related to the low accuracy of the MODIS Rrs at 412 and 443 nm (Table 2), 

which can introduce additional uncertainties into the satellite-derived aph from original Rrs (Fig. 6; Table 5), and thereby affect 

the estimation accuracy of the satellite-derived PSC (Fig. 7a). To solve this problem, the multivariable linear relationship was 

employed to reconstruct MODIS Rrs(412) and Rrs(443) values using satellite Rrs from 469 to 555 nm. Previous studies have 

reported that the use of multiple spectral bands could successfully reconstruct hyperspectral Rrs data (Lee et al., 2014; Sun et 15 

al., 2015). In our study, the use of satellite Rrc 

rs  improved the accuracy and PVP of the satellite-derived a
rc 

ph data using QAA_v5 

(Fig. 6; Table 5), and dramatically improved the accuracy of the satellite-derived PSC (Fig. 7b). The R and RMSE values for 

all size fractions derived from the reconstructed satellite Rrs data were 0.7 and 0.15 respectively, compared to the values of 

0.064 and 0.38 respectively for those derived from original satellite Rrs data. Overall, this study successfully estimated the PSC 

in the ECS from the reconstructed MODIS remote sensing reflectance. The findings presented here complement recent studies 20 

that have demonstrated that satellite ocean color data can be used to retrieve the PSC in the ECS (Wang et al., 2015; Sun et al., 

2017). However, it should be noted that there was no assessment of the credibility of satellite-derived PSC results in the 

Kuroshio waters due to lack of field dataset in this region, and further investigations focusing on the applicability of the 

reconstruction algorithm and the refined PSC model in Kuroshio waters and other regions are still required. 

4.2 Spatial and temporal variations of the PSC in the ECS 25 

As described in the results section 3.5 and 3.6, the seasonal distributions of the PSC and Chla in the East China Sea (Fig. 8 

and Fig. 9) had great variability spatially and temporally. In general, micro-phytoplankton are favoured under environmental 
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condition with stronger mixing and high nutrient, while pico-phytoplankton are dominated in low-nutrient waters (IOCCG, 

2014; Lamont et al., 2018). Here, we discussed the regional scale characterization of the full seasonal cycle in stellate-derived 

PSC and Chla and the related physical and biochemical effects for helping to understand the spatiotemporal variability of the 

PSC in the ECS. 

4.2.1 The coastal region 5 

In the coastal region, such as the coast of Zhejiang and Jiangsu (including the mouth area of Changjiang River), the combined 

effects of variable wind forcing, riverine discharge, and vertical mixing of the water column, promote phytoplankton growth, 

resulting in high biomass levels and the presence of larger-sized phytoplankton (Zhou et al., 2008; Wang et al., 2014). Seasonal 

distributions and variability of Chla (Fig. 8A-D and Fig. 9a) in the coastal region presented in this study generally agreed well 

with the patterns reported by previous studies of satellite Chla (Yamaguchi et al., 2012; He et al., 2013).  10 

In the spring, increased solar radiation and air temperature gradually warm up SST, which can reduce the vertical mixing of 

the water column. At the same time, weak wind stress can retain mixing of the water column, which transports nutrients to the 

upper layer from the nutrient-rich deep layer (Behrenfeld et al., 2006; Boyce et al., 2010). Meanwhile, coastal nutrient 

transporting to the inner shelf of the ECS can be enhanced under the north-westerly wind action (Liu and Wang, 2013). These 

physical processes can allow phytoplankton to live longer in the upper euphotic layer in the sufficient nutrient and light 15 

conditions (Zhang et al., 2017), resulting in the spring bloom in the coastal region and inner shelf of the ECS (Fig. 8A), 

consistent with a previous study by Liu et al. (2016) based on the field measurement of Chla. This phenomenon was also 

clearly seen in Fig. 9a showing the monthly climatological Chla in the MCJR with a local maximum in April and May. These 

enhanced nutrient conditions favour the presence of micro-phytoplankton in the Changjing Bank and coastal waters (Fig. 8a 

and Fig. 9a) and nano-phytoplankton in the offshore region (Fig. 8b). This was consistent with previous studies which showed 20 

that the large cell sizes, such as diatoms and Prorocentrum donghaiense, were dominant on the ECS shelf sea in the spring 

(Furuya et al., 2003; Lou and Hu, 2014; Liu et al., 2016).  

In the summer, the coastal region with shallower than 40 m isobath displayed higher Chla (Fig. 8B) and higher micro-

phytoplankton proportion (Fig. 8d). In the mouth area of Changjiang River, a long-lasting summer Chla maximum form May 

to August was found. This may be related to the enhanced nutrient concentrations from river and estuarine discharges, e.g., the 25 

Changjiang River, Qiantangjiang River, and Minjiang River (Guo et al., 2014). Due to anthropogenic activities such as various 

agricultural and industry activities, nutrient-rich waters discharge into the East China Sea, especially in the summer monsoon 

rainy season (Siswanto et al., 2008). This is especially evident in higher Chla concentrations and higher micro-phytoplankton 
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proportions observed in the MCJR (Fig. 9a). Meanwhile, the littoral currents, e.g., the Zhe-Min Coastal Current (ZMCC) and 

Yellow Sea Coastal Current (YSCC), may play a key role in the transport of nutrient from riverine discharge. Previous studies 

reported that much of sediments is transported southward along the Zhejiang-Fujian coast by the ZMCC (Liu et al., 2007). In 

addition, the coastal region is relatively shallow, and the water body therefore has a weak stratification of water column in the 

summer. The hydrodynamic in coastal waters is dominated by the variation of wind-tide-thermohaline circulations (Guan, 5 

1994). These physical conditions may lead to the increase in nutrient and thereby influence the phytoplankton size structure in 

the coastal region. Nano-phytoplankton were found to dominate the inner part of the ECS shelf (Fig. 8e), likely due to the 

increased nutrient concentrations in offshore waters resulting from the coastal region by strong convection currents. The study 

of Yamaguchi et al. (2012) revealed that the CDW takes approximately 2 months to move from Changjiang River mouth to 

the Tsushima Strait. Therefore, the nutrient supply from riverine discharge may be a major controlling factor in the large cell 10 

sizes (micro- and nano-phytoplankton) in the coastal region in the summer. These findings were consistent with the study of 

Jiang et al. (2015) based on field investigations who reported that the micro-sized diatoms and dinoflagellates dominated the 

Changjiang estuary and adjacent areas in the summer in response to available nutrients.  

During autumn and winter, as wind stress strengthens and temperature decreases, convectional mixing of the water column 

increases and the stratification weakens, which bring nutrients upward from the underlying layer. The mixing processes through 15 

internal waves, tides and winds, as well as the terrestrial nitrate from runoff provide high nutrient condition, which promotes 

the phytoplankton growth and the presence of larger-sized phytoplankton, as suggested by Taylor and Joint (1990). Guo et al. 

(2014) also observed that the nitrate concentrations were high in coastal waters of the ECS during autumn and winter. Thus, 

the larger-sized phytoplankton (micro and nano) dominance was clearly observed in the coastal region (Fig. 8g-h and j-k), and 

high Chla were found in this region (Fig. 8C and D), consistent with previous studies by Guo et al. (2014) and Wang et al. 20 

(2014), who suggested that the most dominant phytoplankton group was chain-forming diatoms and dinoflagellates in coastal 

waters throughout the year. 

4.2.2 The middle shelf and shelf break of the ECS 

Similar to the coastal region, the middle shelf of the ECS exhibited the spring bloom with peak of Chla occurring in April and 

micro-phytoplankton dominance (Fig. 9b), mainly due to mixing process of the water column in the spring. These results agree 25 

with previous study reported by Liu et al. (2016) that during springtime, the contributions of dinoflagellates and diatoms (micro) 

to total Chla were relatively higher in the middle shelf region and particularly in the river plume. During summer and early 

autumn, due to surface warming and low wind stress, the reduced mixing and stronger thermal stratification result in less 
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nutrient supply to the surface layers. As reported by Guo et al. (2014), a nitracline formed in the middle shelf water in summer, 

and no nitracline formed in autumn and winter due to strong water mixing. This region is also affected by ocean currents 

carrying warm waters, e.g., the Kuroshio Branch Current to the north of Taiwan and the Yellow Sea Coastal Current (Ichikawa 

and Beardsley, 2002), which can enhance the water column stability. These oligotrophic conditions can favour the presence of 

pico-phytoplankton. Meanwhile, the coastal nutrients are transported to the middle shelf region by convection currents, but the 5 

nutrient concentrations in the middle shelf are not as high as those in the coastal region. This may be one reason that nano- and 

pico-phytoplankton size classes overlapped during summer and early autumn (Fig. 8e-f and Fig. 9b). In the winter, mixing of 

the water column increases due to strong winds (Guo et al., 2014), allowing nutrients to enter the surface layer. This condition 

favors the increase of micro- and nano-phytoplankton in the middle shelf of the ECS (Fig. 9b). Previous researches have shown 

that micro-phytoplankton dominated the shelf regions in wind-driven upwelling and mixing systems, where nutrient 10 

concentrations are high and seawater temperature are lower (Hirata et al., 2009; Sun et al., 2017; Lamont et al., 2018). These 

larger-sized phytoplankton dominated communities can support higher rates of photosynthesis because of their larger 

photosynthetic rates per unit volume (Hirata et al., 2009). Additionally, upwelling usually occurs at the shelf break of the ECS, 

transposing nutrients-rich waters from the subsurface layer to the upper layer (Chen et al., 2009). This condition can promote 

the nano-phytoplankton growth. Advective processes in the upwelling system are regarded as an important force, as well as 15 

the biochemical forces such as nutrients, in controlling the phytoplankton size structure and species composition (Smith et al., 

1983). Malone (1975) reported that small nano-phytoplankton were selectively removed from upwelling regions by mass 

transport to the distance as a result of their low sinking rates.  

4.2.3 The Kuroshio region and open ocean 

In comparison to the ECS shelf sea, the Kuroshio region and open ocean generally exhibited relatively low chlorophyll-a 20 

concentrations (Fig. 8A-D and Fig. 9c). These phytoplankton biomass levels are controlled by a variety of forcing factors, 

among which the key factors are water column stability and the availability of light and nutrient (Behrenfeld, 2010; Yamaguchi 

et al., 2012). The Kuroshio region is largely influenced by the the Kuroshio Current, in addition to solar irradiance that governs 

light availability and also influence the water column stability. The mainstream of the Kuroshio Current strongly flows 

northeastward along around the 200 m isobath (Ichikawa and Beardsley, 2002), carrying warm and low-nutrient waters (Jiao 25 

et al., 2005). High surface temperature could strengthen the water column stability, thereby preventing the nutrient supply to 

the upper layer from the deeper layer (Lovelock, 2007). Thus, these oligotrophic conditions lead to the low phytoplankton 

biomass and promote the growth of pico-phytoplankton, which are better adapted to take advantage of such light and nutrient-
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depleted conditions (Finkel et al., 2009). Liu et al. (2016) found that the importance of larger phytoplankton (diatoms and 

dinoflagellates) decreased appreciably in the offshore waters, and their contributions were partially replaced by small-sized 

phytoplankton (e.g., Synechococcus, Prochlorococcus, chrysophytes, and prymnesiophytes). On the other hand, this was also 

confirmed by a significant positive correlation between SST and pico-phytoplankton proportions in the KR (Fig. 10c). In 

addition, temperature and salinity are implicated as important ecological determinants for some small-sized photosynthetic 5 

bacteria, e.g., Prochlorococcus and Synechococcus. Prochlorococcus are largely confined to the warm waters and almost 

absent in coastal waters in the winter (Jiao et al., 2005). Some previous studies also showed that for the abundant 

Prochlorococcus in surface waters, its lower boundaries of temperature and salinity were 15.6 and 33.5 °C in the winter 

respectively and 26.4 and 29.1 °C in the summer respectively (Jiao et al., 2005; Liu et al., 2016). This is particularly clear in 

the Kuroshio region where pico-phytoplankton were demonian throughout the year, expect in winter and early spring when 10 

nano-phytoplankton size fractions were slight more elevated (Fig. 8 b and k; Fig. 9c). The slight increase in nano-phytoplankton 

proportions during winter and early spring may be related to the increased nutrient concentrations that result from vertical 

mixing due to stronger wind stress during this period, as reported by Liu et al. (2016) that mean surface concentrations of 

nutrients (NO3
-+ NO2

-) in the offshore Kuroshio region were higher in the winter than in the summer, and the mixed layer 

depth were much deeper in the winter than in the summer due to strong vertical mixing in the winter.  15 

4.3 Response of phytoplankton size class to sea surface temperature 

It has previously been suggested that sea surface temperature is one of the important factors that influence the PSC dynamic 

(Chen, 2000; Barnes et al., 2010; IOCCG, 2014). Based on the 14-years (2003-2016) time series of the monthly SST and 

satellite-derived PSC data, we investigated the correlations between SST and PSC in the three subareas of the ECS (Fig. 10), 

aiming to discuss the PSC response to the SST change under different hydrological conditions. In the Kuroshio region, 20 

significant negative correlation between nano-phytoplankton size fraction and SST was found (R= -0.66 < -0.5 and p< 0.001), 

and weak negative correlation was found for micro-phytoplankton (R= -0.31). Significant positive correlation between pico-

phytoplankton size fraction and SST was identified (R= 0.64 >0.5 and p< 0.001) (Fig. 10c). Similarly, Chen (2000) reported 

that there was a significant positive correlation between in situ measured pico-phytoplankton proportion and water temperature. 

Several studies have found that surface warming can weaken vertical mixing due to the increase in water column stability 25 

(Behrenfeld et al., 2006; Boyce et al., 2010), which causes less nutrient supply to the surface layers from the underlying 

nutrient-rich waters. In addition, the Kuroshio water is characterized by high salinity, high temperature, and low nutrient (Jiao 

et al., 2005). These oligotrophic conditions favour the presence of smaller-sized phytoplankton (pico) and restrict the growth 
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of larger-sized phytoplankton (micro and nano). It offers an explanation to help us for understanding the correlation between 

the increasing trend of SST and decreasing trend of micro- and nano-phytoplankton size fraction and increasing trend of pico-

phytoplankton size fraction. Similar to the KR, a negative correlation between micro-phytoplankton proportion and SST (R= 

-0.76 and p< 0.001) and a positive correlation for pico-phytoplankton (R= 0.65 and p< 0.001) were observed in the MSR (Fig. 

10b). Different environmental conditions in the two subareas showed similar responses of the variability of micro- and pico-5 

phytoplankton size fractions to SST. However, the increasing trend of SST and increasing trend of nano-phytoplankton showed 

a weak positive correlation (R= 0.34 and p< 0.001) (Fig. 10b), which was different to the Kuroshio region. The weak correlation 

suggested that nano-phytoplankton in this region may be affected by other factors (e.g., grazing-nitrogen rate) other than SST 

(Furuya et al., 2003). For instance, Barlow et al. (2016) reported that nano-phytoplankton (e.g, flagellates) were dominant in 

warmer shelf region, because they are better utilising the increase in nutrient concentrations after upwelled water has warmed. 10 

In the mouth area of Changjiang River, the SST were negatively (R= -0.59 and p< 0.001), positively (R= 0.58 and p< 0.001), 

and positively (R= 0.54 and p< 0.001) with micro-, nano-, and pico-phytoplankton size fraction, respectively (Fig. 10a). The 

water body in coastal region mixes well in winter with low SST and has a weak stratification of water column in summer with 

high SST, as the hydrodynamic in coastal water is dominated by the variation of wind-tide-thermohaline circulations (Guan, 

1994). In some degree, increasing of SST could result in the decrease of larger-sized phytoplankton (micro and nano) and the 15 

increase of small-sized phytoplankton (pico). However, the trend of rising SST and the increasing nano-phytoplankton size 

fraction in the MCJR were observed. This may be related to the optimum temperature for the growth of different algal groups. 

Additionally, pervious studies have shown that the nutrient structure in the ECS have altered by the Changjiang discharge, 

especially for the Changjiang estuary and adjacent area (Zhang et al., 2007; Wang et al., 2014). The change of nutrient structure 

(increase in N/P ratio) may play an important role in regulating the phytoplankton community structure in the MCJR (Guo et 20 

al., 2014). These results suggested the interannual variability of PSC in coastal waters is more complicated than in offshore 

waters. The detailed study focusing on the mechanism of the PCS change in the ECS is still required. 

Overall, the correlations between PSC and SST (Fig. 10) indicated SST is an important factor influencing the PSC dynamic in 

the ECS. The interannual variations of phytoplankton size classes in the ECS were complicated and could not be fully explained 

by the individual factor. Further investigations therefore are required to understand the interannual variability of the PSC in 25 

the ECS and its response to environmental factors, e.g., wind speed, riverine discharge, and monsoon forcing. 

5 Conclusions 

In this study, the PSC model was regionally tuned for application to the ECS using extensive in situ measured data covering 
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various seasons and environmental conditions in the ECS. When the refined model was applied to MODIS observations, there 

was a critical step to reconstruct satellite remote sensing reflectance at blue wavebands. It led to reliable performance of the 

refined PSC model on MODIS observation, which showed good agreement with the HPLC-derived PSC results, with almost 

all of the samples falling within ±20% fraction range. Along the way, our present study preliminarily estimated spatial 

distributions of the PSC in the ECS from space. The refined PSC model was applied to satellite data from MODIS during 2003 5 

and 2016 to investigate the PSC distribution at seasonal scale. The obtained results showed that the PSC in the ECS varied 

across both spatial and temporal scales. The seasonality of the PSC in the ECS was likely to be related to the vertical structure 

of the water column, upwelling, sea surface temperature, and the Kuroshio Current. It was also affected by riverine discharge 

and human activity, especially for coastal waters. The interannual and longer-term variations in phytoplankton size class in the 

East China Sea and their mechanisms are needed to be investigate in the future.  10 
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Tables 

Table 1. Parameter i values for the PSC model development. 

Class N R RMSE 0 1 2 3 4 

Micro 170 0.89 0.11 1.05 3.48 -4.34 -13.09 16.04 

Nano 170 0.70 0.11 - - - - - 

Pico 170 0.84 0.11 -2.56 -1.52 1.24 -25.87 -1.86 

 

  5 
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Table 2. Results of the matchup comparison of satellite Rrs() with in situ measurements. 

 Wavelength (nm) 

 412 443 469 488 531 547 555 645 667 678 

N 21 21 21 21 21 21 21 21 21 21 

R 0.46 0.73 0.85 0.88 0.95 0.96 0.97 0.90 0.86 0.85 

RMSE 0.0026 0.0019 0.0016 0.0016 0.0011 0.0011 0.0012 0.00081 0.00077 0.00079 

MAPE(%) 47.33 36.90 27.25 19.92 16.39 14.90 18.41 54.86 91.39 111.3 
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Table 3. Statistical parameters and coefficients for the algorithm to reconstruct Rrs data. 

wavelengths N R2 RMSE MAPE Constant coefficients Kj, j=0,1,…n 

412 nm 341 0.99 6.3*10-4 8.50% 4.43*10-4, 3.91, -3.19, 0.20, 0.72, -0.69 

443 nm 341 0.99 2.2*10-4 3.13% 7.39*10-5, 2.50, -1.59, -0.36, 1.22, -0.77 
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Table 4. Comparison of the original satellite Rrs and reconstructed R
rc 

rs  with in situ measured data at 412 and 443 nm. 

wavelength N 
original satellite Rrs  reconstructed satellite R

rc 

rs  

R RMSE MAPE(%)  R RMSE MAPE(%) 

412 nm 21 0.46 0.0026 47.33  0.70 0.0019 35.15 

443 nm 21 0.73 0.0019 36.90  0.80 0.0017 34.53 
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Table 5. Results of the matchup comparison for Fig. 6. 

wavelength N 

satellite-derived a
rc 

ph  satellite-derived aph 

R RMSE MAPE(%) PVP (%)  R RMSE MAPE(%) PVP (%) 

412 nm 22 0.80 0.27 15.35 100  0.58 0.56 58.15 72.73 

443 nm 22 0.83 0.23 14.87 100  0.48 0.67 63.95 72.73 

469 nm 22 0.85 0.21 11.62 100  0.62 0.55 48.35 81.82 

488 nm 22 0.84 0.22 11.52 100  0.78 0.37 31.93 90.91 

531 nm 22 0.80 0.31 20.82 86.36  0.86 0.73 45.57 54.55 

547 nm 22 0.69 0.43 20.38 90.91  0.69 0.52 35.71 63.64 
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Figures 

 

 

Fig. 1. Distribution of in situ and matchup dataset and locations of the selected subareas (black boxes) (a), namely MCJR 5 

(mouth area of Changjiang river), MSR (middle shelf region), and KR (Kuroshio region); locations of sampling stations 

collected in the North Pacific and North Atlantic oceans from the NASA SeaBASS archive (b); the average satellite Rrs() 

spectra from 2003 to 2016 in the Kuroshio region, North Pacific ocean, and North Atlantic ocean (blue circles in b) (c). Error 

bars represent standard deviations of the means. 
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Fig. 2. Rrs(λ) spectra at MODIS wavelengths collected in the coastal region of Zhe-Min (a) and southern Jeju Island (b); 

Mean spectra and coefficient of variation (CV) of Rrs(λ) in the coastal region of Zhe-Min (c) and southern Jeju Island (d). 5 

The CV is derived as the standard deviation (SD) over the mean. 
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Fig. 3. Comparison between in situ a
std 

ph ()-derived and HPLC-derived PSC for micro- (a), nano- (b), and pico-phytoplankton 

(c). Dashed lines represent the ± 20% fraction range relative to the 1:1 line. 5 
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Fig. 4. Comparison of aph derived from Rrs using QAA_v5 with in situ measured aph data. 
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Fig. 5. Comparisons of the PSC modeled using aph derived from Rrs with the HPLC-derived values for micro- (a), nano- (b), 

and pico-phytoplankton (c). 5 
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Fig. 6. Comparison of the satellite-derived aph (crosses) and satellite-derived a
rc 

ph (open circles) with in situ measured data at 

412, 443, 469, 488, 531, and 547 nm. 5 
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Fig. 7. Comparison of the HPLC-derived PSC with the satellite-derived PSC values from the original satellite Rrs (a) and the 

reconstructed satellite R
rc 

rs  (b) using the refined PSC model in this study; using the retuned Brewin et al. (2015) model (c); 

using the retuned Sun et al. (2017) model (d). Solid lines denote the 1:1 lines. 
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Fig. 8. Seasonal distributions of the PSC (a-l) and Chla (A-D, right panel) in the ECS during 2003-2016. 
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Fig. 9. Monthly climatological PSC and Chla from 2003 to 2016 in the mouth area of Changjiang river (MCJR) (a), middle 

shelf region (MSR) (b), and the Kuroshio region (KR) (c). Error bars indicate standard deviations of the means.  

  5 



 

41 

 

 

 

Fig. 10. The scatterplots showing the relationships between the monthly phytoplankton size fractions and SST from 2003 to 

2016 for the MCJR (a), MSR (b), and KR (c). 5 


