## 1 Supplementary Information

| 2  | Mineral physical protection and carbon stabilization in-situ                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 3  | evidence revealed by nano scale 3-D tomography                                                                               |
| 4  | Yi-Tse Weng <sup>1,#</sup> , Chun-Chieh Wang <sup>2,#</sup> , Cheng-Cheng Chiang <sup>2</sup> ,Heng Tsai <sup>3</sup> , Yen- |
| 5  | Fang Song <sup>2</sup> , Shiuh-Tsuen Huang <sup>4</sup> , Biqing Liang <sup>1,*</sup>                                        |
| 6  | <sup>1</sup> National Cheng Kung University, Department of Earth Sciences, Tainan,                                           |
| 7  | Taiwan ROC                                                                                                                   |
| 8  | <sup>2</sup> National Synchrotron Resource Research Center, Hsinchu, Taiwan ROC                                              |
| 9  | <sup>3</sup> National Changhua University of Education, Department of Geography,                                             |
| 10 | Changhua, Taiwan ROC                                                                                                         |
| 11 | <sup>4</sup> National Taichung University of Education, Department of Science Education                                      |
| 12 | and Application, Taichung, Taiwan ROC                                                                                        |
| 13 | #Equal Contribution                                                                                                          |
| 14 | *Corresponding author: Biqing Liang                                                                                          |
| 15 | (liangglobalcarbon@gmail.com;liangbq@mail.ncku.edu.tw)                                                                       |
| 16 |                                                                                                                              |
| 17 | 3-D tomography computation and illustration                                                                                  |
| 18 | The final 3-D tomographic structures for visualization and illustration are                                                  |
| 19 | generated using Amira 3-D software for post-image processing (Fig. 1). The                                                   |

1 reconstructed datasets first go through Median and Gauss filter processes to enhance the S/N ratio before 3-D computation. In order to eliminate the noise 2 3 surrounding the reconstructed datasets, the LabelField function is used to define a 3-D mask for specimens of interest. The Arithmetic function is used to 4 segment the specimens from surrounding noise according to the 3-D mask. 5 After the above post-image processing, the dataset is illustrated using Voltex 6 and Isosurface. In general, OC is demonstrated by Voltex in proper contrast 7 value, and minerals and gold particles with high intensity are shown by 8 9 *Isosurface* with a reasonable threshold. Organic C and minerals are bound in the specific spatial region using SelectRoi. The CameraRotate module is used 10 11 to show the rotating motion of tomography along a specific axis. The internal 12 structure of specimen is shown under the *clippingPlane* module. The 13 DemoMaker module is applied to make an animated sequence of operations for advanced movie recording, and *MovieMaker* is used to export the animated 14 15 operation to video file.

16

2



1

2 Figure S1. The flowchart for 3-D tomography reconstruction and subsequent 3-D computation for illustration using TXM. Reconstructed 3-D tomography 3 4 datasets are generated based on measured distribution. And 3-D tomography illustration is generated by image post-process and computation. 5

- 6
- 7



Figure SMOV1. Video illustration extracted from 3-D absorption contrast 9 tomography of lab-made BC and mineral nano particle consortium. Yellow 10 particle is a gold nano particle for position reference. All minerals are shown in 11 silver color. The dark grey part contours the structure and boundary of OC. 12 https://drive.google.com/open?id=1FD-ui0-lsr4U2eClo6X2AbwqtcuChtll 13

Figure SMOV2. Video illustration extracted from 3-D phase contrast
tomography of lab-made BC and mineral nano particle consortium. Yellow
particle is a gold nano particle for position reference. All minerals are shown in
silver color. The dark grey part contours the structure and boundary of OC.

5 <u>https://drive.google.com/open?id=1RglvAplyXrnZTIZQyr7aGTo8vYGbkCJu</u>

6 7



8

- 9 Figure SMOV3. Video illustration obtained from 3-D absorption contrast
- 10 tomography of high mountain mineral bearing OC. Yellow particle is a gold
- 11 nano particle for position reference. All minerals are shown in rust color. The
- 12 dark grey part contours the structure and boundary of OC.
- 13 <u>https://drive.google.com/open?id=1-\_\_9KHc3SpncXfufIMy9IQ8V0AIVmB8d</u>
- 14

- **Table S1.** XRD peak positions of mineral-bearing OC sample from Mt.
- 2 Nanhua.

|               | d (Å)  | d-reference (Å) | hkl |
|---------------|--------|-----------------|-----|
|               | 2.5644 | 2.5634          | 100 |
|               | 2.2502 | 2.2504          | 012 |
| Forribydrito  | 2.0046 | 1.9840          | 013 |
| rennyunte     | 1.7344 | 1.7322          | 014 |
|               | 1.5090 | 1.5160          | 015 |
|               | 1.4779 | 1.4800          | 110 |
|               | 4.9831 | 5.0000          | 020 |
|               | 4.2063 | 4.2089          | 110 |
|               | 2.6992 | 2.7071          | 130 |
|               | 2.5914 | 2.5913          | 021 |
| Caathita      | 2.4595 | 2.4591          | 111 |
| Goeimie       | 2.2625 | 2.2624          | 121 |
|               | 1.7210 | 1.7284          | 221 |
|               | 1.6990 | 1.7005          | 240 |
|               | 1.5650 | 1.5706          | 151 |
|               | 1.5135 | 1.5150          | 002 |
|               | 6.2651 | 6.2700          | 200 |
|               | 3.2921 | 3.2940          | 210 |
|               | 2.4747 | 2.4730          | 301 |
|               | 2.4333 | 2.4340          | 410 |
|               | 2.3616 | 2.3620          | 111 |
| Lepidocrocite | 1.9402 | 1.9400          | 501 |
|               | 1.9370 | 1.9350          | 020 |
|               | 1.7367 | 1.7350          | 511 |
|               | 1.5333 | 1.5340          | 002 |
|               | 1.5258 | 1.5240          | 321 |
|               | 1.3684 | 1.3710          | 521 |
|               | 4.2532 | 4.254           | 100 |
|               | 3.3422 | 3.342           | 101 |
|               | 2.4571 | 2.456           | 110 |
| 0             | 2.2806 | 2.280           | 102 |
| Quartz        | 2.2361 | 2.236           | 111 |
|               | 1.9788 | 1.979           | 201 |
|               | 1.8173 | 1.817           | 112 |
|               | 1.6715 | 1.671           | 202 |

|    | 1.5412 | 1.541 | 211 |
|----|--------|-------|-----|
|    | 1.3818 | 1.374 | 203 |
| 1  |        |       |     |
| 2  |        |       |     |
| 3  |        |       |     |
| 4  |        |       |     |
| 5  |        |       |     |
| 6  |        |       |     |
| 7  |        |       |     |
| 8  |        |       |     |
| 9  |        |       |     |
| 10 |        |       |     |
| 11 |        |       |     |
| 12 |        |       |     |
| 13 |        |       |     |
| 14 |        |       |     |
| 15 |        |       |     |
| 16 |        |       |     |
| 17 |        |       |     |
| 18 |        |       |     |
| 19 |        |       |     |
| 20 |        |       |     |
| 21 |        |       |     |
| 22 |        |       |     |
| 23 |        |       |     |
| 24 |        |       |     |
| 25 |        |       |     |
| 26 |        |       |     |
| 27 |        |       |     |
| 28 |        |       |     |
| 29 |        |       |     |
| 30 |        |       |     |
| 31 |        |       |     |
| 32 |        |       |     |
| 33 |        |       |     |
| 34 |        |       |     |
| 35 |        |       |     |
| 36 |        |       |     |

- 1 **Table S2.** FTIR peak assignment of mineral-bearing OC sample from Mt.
- 2 Nanhua.

| Wavenumber<br>(cm <sup>-1</sup> ) | Model                                             | Reference                  | Ref.<br>value |
|-----------------------------------|---------------------------------------------------|----------------------------|---------------|
| 1758                              | Carbonyl C=O<br>stretching                        | Parikh et al., 2014        | 1765          |
|                                   | Aromatic                                          | Özçimen and                |               |
| 1706                              | carbonyl/carboxyl C=O                             | Ersoy-Meriçboyu,           | 1709          |
|                                   | stretching                                        | 2010                       |               |
| 1596                              | vC=C in aromatic                                  | Sharma et al.,<br>2004     | 1597          |
| 1454                              | CH deformation and                                | Sharma et al.,             | 1460          |
|                                   |                                                   | 2004                       |               |
| 1386                              | symmetric stretching                              | Parikh et al., 2014        | 1384          |
| 1274                              | Carboxyl C–O stretching                           | Parikh et al., 2014        | 1280          |
| 1247                              | v(C-O) phenolic                                   | Parikh et al., 2014        | 1240          |
| 1113                              | Si–O stretching                                   | Vaculikova et al.,<br>2011 | 1113          |
| 1062                              | Si–O stretching                                   | Harsh et al., 2002         | 1060          |
| 1025                              | Aliphatic ether C–O and<br>alcohol C–O stretching | Parikh et al., 2014        | 1029          |
| 910                               | OH deformation                                    | Vaculikova et al.,<br>2011 | 913           |
| 875                               | 1 adjacent H<br>deformations                      | Parikh et al., 2014        | 870           |
| 798                               | 2 adjacent H<br>deformations                      | Parikh et al., 2014        | 804           |
| 754                               | 4 adjacent H<br>deformations                      | Parikh et al., 2014        | 750           |
| 694                               | Fe-OH stretching                                  | Blanch et al. 2008         | 690           |
| 674                               | In-plane O-H bend                                 | Blanch et al. 2008         | 670           |
| 626                               | Fe–O stretching                                   | Blanch et al. 2008         | 633           |
| 534                               | Fe-OH stretching                                  | Blanch et al. 2008         | 533           |
| 497                               | Fe–O asymmetric<br>stretching                     | Blanch et al. 2008         | 497           |
| 476                               | Fe-O vibrations                                   | Parikh et al., 2014        | 480           |

3 (Blanch et al., 2008; Harsh et al., 2002; Özçimen and Ersoy-Meriçboyu, 2010;

| 1<br>2 | Parikh et al., 2014; Sharma et al., 2004; Vaculíková et al., 2011)              |
|--------|---------------------------------------------------------------------------------|
| 3      | References                                                                      |
| 4      | Blanch, A., Quinton, J., Lenehan, C., and Pring, A.: The crystal chemistry of   |
| 5      | Al-bearing goethites: An infrared spectroscopic study, Mineral. Mag, 72,        |
| 6      | 1043-1056, 2008.                                                                |
| 7      | Harsh, J., Chorover, J., and Nizeyimana, E.: Allophane and Imogolite, In Soil   |
| 8      | Mineralogy with Environmental Applications, SSSA Book Series No. 7,             |
| 9      | Edited by:Dixon,J.B. and Schulze,D.G., Madison, WI:SSSA, pp 291–322,            |
| 10     | 2002.                                                                           |
| 11     | Özçimen, D. and Ersoy-Meriçboyu, A.: Characterization of biochar and bio-oil    |
| 12     | samples obtained from carbonization of various biomass materials,               |
| 13     | Renew. Energy, 35, 1319-1324, 2010.                                             |
| 14     | Parikh, S., W. Goyne, K., Margenot, A., Mukome, F., and J. Calderon, F.: Soil   |
| 15     | Chemical Insights Provided through Vibrational Spectroscopy, Elsevier,          |
| 16     | Oxford, pp 1–148, 2014.                                                         |
| 17     | Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Geoffrey Chan, W., and    |
| 18     | Hajaligol, M. R.: Characterization of chars from pyrolysis of lignin, Fuel,     |
| 19     | 83, 1469-1482, 2004.                                                            |
| 20     | Vaculíková, L., Plevová, E., Vallová, S., and Koutnik, I.: Characterization and |
| 21     | differentiation of kaolinites from selected Czech deposits using infrared       |
| 22     | spectroscopy and differential thermal analysis, Acta Geodyn. Geomater.,         |
| 23     | 8, 59–67. 2011.                                                                 |
|        |                                                                                 |