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Supplement S1 - Model optimization 

The 6 parameters controlling ,  and S (Table 1), influencing the GPP values for black spruce, were optimized 

within a Bayesian framework using observed data at EOBS as reference and Markov Chain Monte Carlo (MCMC) sampling 

with Metropolis-Hastings steps. The MCMC sampling, through its iterations, only retained the combinations of parameters 

satisfying the following condition: 5 

<  ; = ∏ ( ;  = , )         (S1) 

In Eq. (S1), Py is a random number between 0 and 1 picked-up at iteration y and Ly is the model posterior probability 

computed with the product between the model likelihood (∏ ( ;  = , )) and the parameter priors ( ). 

Here we assumed that the model likelihood can be calculated using normal probability densities where  is an observed 

GPP daily value,  is its simulated equivalent and  is the standard deviation of deviations between observation and 10 

simulation at iteration y. Moreover,  is the hyperparameter vector at iteration y composed of the 6 parameters to be 

optimized plus . The prior for the 6 parameters was supposed to be uniform over an acceptable range (Table 1), while a 

Jeffreys prior was used for  (∝ 1/  ). In this way, the MCMC sampling maximizes the model posterior probability 

according to model possibility (i.e. the ability of the model to approximate plausible GPP daily values).  

The 12 parameters strongly influencing the MAIDEN Dstem for black spruce (Table 1) were optimized similarly to those 6 15 

influencing GPP. In the computation of the model likelihood (Eq. (S1)),  was an observed RWhighF value and  

was a simulated detrended yearly Dstem (similarly to RWhighF the detrending was achieved by subtraction by a 10-year 

cubic smoothing spline). To allow the comparison, both Obs and Sim were transformed to z-scores. We preferred to optimize 

MAIDEN on RWhighF values because tree-ring high frequencies are much more robust regionally across sites and trees than 

low frequencies. Observed and simulated low frequencies were only compared after the optimization of the model 20 

parameters.  

In the calibration process, to verify the convergence of the sampling, we ran 50 Markov chains starting each time from 

random initial conditions (i.e. initial values of the parameters in their acceptable ranges). Finally, for each chain, we only 

selected the iteration with higher model posterior probability. In this way, we got 50 blocks of potential parameters. The 

convergence of the sampling is shown by the sharp parameters’ posterior densities (Figs. S4 and S8) and by the stabilization 25 

of the model posterior probability in the 50 chains (Fig. S1). The acceptable ranges (i.e. biologically sound) in which the 

parameters were sampled are shown in Table 1. 

The MAIDENiso GPP is determined by the 6 calibrated parameters (Table 1), but is also influenced by variations in the 

canopy biomass, which, in part, depend on the values of the parameters controlling the carbon allocation. To avoid that the 

parameter selection during the MCMC sampling used to calibrate the MAIDENiso GPP was sensitive to the values of the 30 

parameters controlling the carbon allocation, we calibrated the 6 GPP parameters fixing the carbon contained in the canopy 
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reservoir at a constant value. Subsequently, during the calibration of the parameters controlling the carbon allocation, the 

carbon in the canopy was allowed to vary. In this way, the GPP calibration is independent from the calibration of the carbon 

allocation, but the parameter selection for the allocation depends on the GPP parameters. 

For both the GPP and the carbon allocation, we selected a block of parameters that we called “Plausible Block” (“Plausible 

Block GPP” and “Plausible Block Stem”) and often used to illustrate the results. The selection was based on these criteria: 5 

>  & ∑
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Basically, the model posterior probability with this block of parameters ( ) must be higher than the mode of the 50 retained 

iterations (Fig. S1) and the sum of the products between the parameters’ posterior probabilities ( ; Figs. S4 and S8) and 

the spans of their acceptable ranges ( ) must be maximized.  is the hyperparameter vector at iteration y (here not 

including ) composed of n parameters. The reader should note that the two Plausible Blocks are only a possibility over the 10 

retained iterations, which were used to simplify visualizations and interpretations. 

The robustness of the parameters’ posterior distributions was tested with a cross-validation exercise. Firstly, we compared 

the parameters’ posterior densities, when the optimization was executed on the full period with observed data, to those 

obtained with half data (Figs. S5 and S9). However, we have to recall that in total we have 2920 observed daily data between 

2003 and 2010 to optimize the 6 parameters influencing the GPP, and only 61 observed ring width annual data between 1950 15 

and 2010 to optimize the 12 parameters influencing Dstem. Subsequently, the distributions of the parameters influencing 

Dstem were also compared to those obtained independently with data from specific sites (the used black spruce ring width 

data comes from five different riparian forests; Fig. S10). 

Supplement S2 – Data provenance and treatment 

Eddy covariance stations provide measurements of net ecosystem production (NEP), as well as estimates of gross ecosystem 20 

production (GEP) and respiration (R) for specific sites. There is one eddy covariance station from the Fluxnet network 

located in a mature black spruce forest in the northern Quebec taiga. It is the “Quebec Eastern Old Black Spruce” station 

(EOBS; 49.69N and 74.34W; Bergeron et al., 2007; http://fluxnet.ornl.gov/site/269) with data from 2003 to 2010. Although 

NEP and R from eddy covariance stations are not directly comparable with MAIDEN outputs because they integrate all 

ecosystem components (e.g. soil heterotrophic respiration), GEP was assumed to be comparable to the simulated GPP, 25 

because GEP only derives from the autotrophic components of the ecosystem (Gea-Izquierdo et al., 2014). Consequently, we 

integrated the GEP half-hourly time series from the EOBS site in a daily time series (Fig. S2), to make it comparable with 

the MAIDEN GPP for the same location. We then used these data to optimize the six parameters influencing the stand GPP 

simulated by the model for black spruce forests. In the paper, we employ the term GPP also to denote GEP estimates from 

the EOBS site. 30 
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We assumed that the yearly Dstem is proportional to tree-ring growth in order to use ring width data to optimize MAIDEN 

(12 influential parameters). We used data from 46 black spruce trees sampled in the riparian forests of five lakes in the 

eastern Canadian taiga (Gennaretti et al., 2014; the coordinates of the central point are 54.26N and 71.34W). The time series 

(Fig. S3; Dataset S1) were standardized using a site-specific Regional Curve Standardization (Gennaretti et al., 2014) and 

averaged to obtain a regional chronology (hereafter RW) to compare with MAIDEN annual stem carbon increments (g C·m-2 5 

of stand·year-1). However, because we wanted to analyze both the multi-decadal and the inter-annual variability of carbon 

allocation, we subsequently detrended all standardized ring width time series by subtracting their respective 10-year cubic 

smoothing splines (50% frequency cutoff for 10-year periods). The resulting detrended regional chronology (hereafter 

RWhighF) was compared with MAIDEN annual stem carbon increments, detrended in the same way. RWhighF was also 

used as a reference for the optimization of the MAIDEN parameters (Supplement S1). We preferred to optimize MAIDEN 10 

on RWhighF values because tree-ring high frequencies are much more robust regionally across sites and trees than low 

frequencies. Observed and simulated low frequencies were only compared after the optimization of the model parameters. 

MAIDEN outputs were simulated for the central point of the source area of ring width data over the 1950-2010 period. Such 

a spatial aggregation of tree-ring data is known to reduce non-climatic noise at the site level, thus increasing the coherence 

between modeled and observed time series (Breitenmoser et al., 2014). 15 

MAIDEN needs daily climate data as inputs. These data were obtained from the gridded interpolated Canadian database of 

daily minimum–maximum temperature and precipitation for 1950-2015 (Hutchinson et al., 2009; 

http://cfs.nrcan.gc.ca/projects/3/4). We extracted the time series from the grid cells nearest to the studied locations (the eddy 

covariance station and the central point of the region with collected ring width data). CO2 atmospheric concentration values 

for the same sites were obtained from the nearest grid cell of the CarbonTracker measurement and modeling system (2000-20 

2015 period; Peters et al., 2007; http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). In order to obtain longer CO2 time 

series (1950–2015), the seasonal cycle from the selected cells of the CarbonTracker grid was superimposed to the long-term 

CO2 trend from the Mauna Loa observatory (1958-2015; Keeling et al., 1976; http://www.esrl.noaa.gov/gmd/ccgg/trends/) 

with removed seasonal cycle, extrapolated before 1958, and modified by adding the mean offset between the selected cells 

and the Mauna Loa cell in the CarbonTracker grid. 25 
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Figure S1: Evolution of the model posterior probability in the 50 Markov chains used in the MAIDENiso calibration. (a) 
Calibration of GPP (i.e. 6 parameters). (b) Calibration of carbon allocation to the stem (i.e. 12 parameters). Plots (c) and (d) show 
the model posterior density of the retained 50 blocks of parameters (one block per each chain of (a) and (b)). Vertical dashed line 
is the mode and blue line is the value with the respective Plausible Block. 5 

 

Figure S2: “Quebec Eastern Old Black Spruce” (EOBS) GPP gap filled daily time series (left) and annual cycle (right). 2003-2010 
period. Units are umol C m-2 day-1. 
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Figure S3: Time series of used ring width data. (a) Site-specific RCS standardized. (b) Site-specific RCS standardized and 
detrended. Individual series are in grey and the mean (corresponding to RW and RWhighF) is in black. 
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Figure S4: Parameters’ posterior densities (pdfs based on 50 values). (a) Vmax, (b) Vb, (c) Vip, (d) soilb, (e) soilip, and (f) . 
Vertical dashed line is the mode and blue line is the value with Plausible Block GPP. 
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Figure S5: Cross-validation of parameters. Posterior densities (pdfs based on 50 values) of (a) Vmax, (b) Vb, (c) Vip, (d) soilb, (e) 
soilip, and (f)  when parameters are optimized on the full period (black; using 2920 GPP observed daily data between 2003 and 
2010), on the first half (red; using 1460 GPP observed daily data between 2003 and 2006) or on the second half (green; using 1460 
GPP observed daily data between 2007 and 2010). 5 

 

Figure S6: Correlation between the mean of the detrended series of black spruce ring growth (RWhighF) and simulated yearly 
detrended C allocation to the stem (black) or GPP annual values (red: sum from January to December; green: sum from Phase 5 
of the previous year to Phase 4; blue: sum from Phase 4 of the previous year to Phase 3; MAIDEN phases are illustrated in Fig. 1). 
The pdfs are based on the 50 simulations retained by the Bayesian optimization. 10 
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Figure S7: Comparison between the observed detrended mean series of black spruce ring growth (RWhighF) and MAIDEN 
simulated detrended carbon allocation to stem (plot a; g C m-2 year-1; r=0.62, df=59, p<0.001), or simulated detrended GPP (plot b; 
g C m-2 year-1; r=0.31, df=59, p<0.05). In all plots, observations are compared with the values from all iterations retained by the 
MCMC sampling. 5 



10 
 

 

Figure S8: Parameters’ posterior densities (pdfs based on 50 values). (a) CanopyT, (b) CanopyP, (c) GDD1, (d) vegphase23, (e) 
day23_flex, (f) Cbud, (g) h3, (h) st4temp, (i) photoper, (j) PercentFall, (k) OutMax, (l) OutLength. Vertical dashed line is the mode 
and blue line is the value with Plausible Block Stem. 



11 
 

 

 Figure S9: Cross-validation of parameters. Posterior densities (pdfs based on 50 values) of (a) CanopyT, (b) CanopyP, (c) GDD1, 
(d) vegphase23, (e) day23_flex, (f) Cbud, (g) h3, (h) st4temp, (i) photoper, (j) PercentFall, (k) OutMax, (l) OutLength when 
parameters are optimized on the full period (black; using 61 observed yearly RWhighF data between 1950 and 2010), on the first 
half (red; using 31 observed yearly RWhighF data between 1950 and 1980) or on the second half (green; using 30 observed yearly 5 
RWhighF data between 1981 and 2010). 
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Figure S10: Cross-validation of parameters. Posterior densities (pdfs based on 50 values) of (a) CanopyT, (b) CanopyP, (c) GDD1, 
(d) vegphase23, (e) day23_flex, (f) Cbud, (g) h3, (h) st4temp, (i) photoper, (j) PercentFall, (k) OutMax, (l) OutLength when 
parameters are optimized on data from all sites (black; using 61 observed yearly RWhighF data between 1950 and 2010), or on 
data from specific sites (5 colored lines). 5 
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Figure S11: CO2 impact on simulated Dstem. MAIDEN is run twice with the parameters of Plausible Block Stem at the center of 
the region with ring width data in the northern Quebec taiga. The first time (blue) we use plausible CO2 values for the region (plot 
a; see Supplement S2) obtaining a Dstem time series (plot b; g C m-2 year-1). The second time (green) we use constant CO2 values. 
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Figure S12: Temperature dependence of maximum carboxylation rate (Vcmax) when MAIDENiso is run with the parameters of 
Plausible Block GPP at the Quebec Eastern Old Black Spruce site (EOBS). (a) Relationship between daytime temperature ( ) 
and its transformation used in the Vcmax equation (S). (b) S probability density at EOBS. (c) Relationship between S and Vcmax. 
The vertical dashed lines show the range of S values at EOBS. 5 
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Figure S13: Water stress level ( ) function when MAIDENiso is run with the parameters of Plausible Block GPP at the Quebec 
Eastern Old Black Spruce site (EOBS). (a) Soil water content (SWC) probability density at EOBS. (b) Relationship between SWC 
and  (higher values correspond to lower stress). The vertical dashed lines show the range of SWC values at EOBS. 
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Figure S14: Sensitivity of the daily GPP simulated annual cycle (umol C m-2 day-1) to the Vmax parameter influencing . 
Only Vmax varies while the other parameters were fixed to the values of Plausible Block GPP. In the top (bottom) plot, Vmax was 
fixed to the lowest (highest) value of its prior acceptable range. In the middle plot, it was fixed to the selected value for Plausible 
Block GPP. The R2 between observations and simulations and the parameter value are reported for each plot. 5 
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Figure S15: Sensitivity of the daily GPP simulated annual cycle (umol C m-2 day-1) to the Vb parameter influencing . Only 
Vb varies while the other parameters were fixed to the values of Plausible Block GPP. In the top (bottom) plot, Vb was fixed to the 
lowest (highest) value of its prior acceptable range. In the middle plot, it was fixed to the selected value for Plausible Block GPP. 
The R2 between observations and simulations and the parameter value are reported for each plot. 5 
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Figure S16: Sensitivity of the daily GPP simulated annual cycle (umol C m-2 day-1) to the Vip parameter influencing . Only 
Vip varies while the other parameters were fixed to the values of Plausible Block GPP. In the top (bottom) plot, Vip was fixed to 
the lowest (highest) value of its prior acceptable range. In the middle plot, it was fixed to the selected value for Plausible Block 
GPP. The R2 between observations and simulations and the parameter value are reported for each plot. 5 
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Figure S17: Sensitivity of the daily GPP simulated annual cycle (umol C m-2 day-1) to the soilb parameter influencing .Only soilb 
varies while the other parameters were fixed to the values of Plausible Block GPP. In the top (bottom) plot, soilb was fixed to the 
lowest (highest) value of its prior acceptable range. In the middle plot, it was fixed to the selected value for Plausible Block GPP. 
The R2 between observations and simulations and the parameter value are reported for each plot. 5 
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Figure S18: Sensitivity of the daily GPP simulated annual cycle (umol C m-2 day-1) to the soilip parameter influencing . Only 
soilip varies while the other parameters were fixed to the values of Plausible Block GPP. In the top (bottom) plot, soilip was fixed 
to the lowest (highest) value of its prior acceptable range. In the middle plot, it was fixed to the selected value for Plausible Block 
GPP. The R2 between observations and simulations and the parameter value are reported for each plot. 5 
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Figure S19: Growing season start (quartiles and extreme values) during the 1950-2010 (a), 1950-1970 (b) and 1990-2010 (c) 
periods. The parameters of Plausible Block Stem are used with (“New config.”; day23_flex is set to 2) or without (“Old config.”; 
day23_flex is set to 1 and has no effect) the mechanism to have more smoothed yearly variations. 

 5 

Figure S20: Impact of stored non-structural carbohydrates used in phase 3 (parameter Cbud) on the correlations between the 
mean of the detrended series of black spruce ring growth (RWhighF) and simulated yearly detrended C allocation to the stem. The 
pdfs are based on the 50 simulations retained by the Bayesian optimization. In black we see the results when the simulations use 
the optimized Cbud (see Fig. S8), in red when Cbud is set to 0 g C•m-2 of stand•day-1 (i.e. the stored carbon of the current and of the 
previous years is never remobilized). 10 
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Figure S21: Simulated annual cycle of carbon losses from the canopy (i.e. leaf shedding) when MAIDEN runs with the parameters 
of Plausible Block Stem and the potential maximum amount of carbon that the canopy can contain during the year is 307 g C m-2 
of stand (this value is the average of the simulated AlloCcanopyj values). Vertical dashed lines show the period over which the 80% 
of the yearly losses are observed.  5 
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Table S1: Cross-correlation analysis of the six parameters influencing the GPP. Correlations based on 50 retained blocks of 
parameters. Correlations with p < 0.01 are in bold. 

 Vmax Vb Vip soilb soilip 
Vb 0.94     
Vip 0.99 0.97    
soilb -0.04 -0.10 -0.10   
soilip 0.36 0.15 0.25 0.10  
τ 0.08 0.21 0.11 -0.05 -0.23 

 

Table S2: Cross-correlation analysis of the 12 parameters controlling the carbon allocation to the stem. Correlations based on 50 
retained blocks of parameters. Correlations with p < 0.01 are in bold. 5 

 CanopyT CanopyP GDD1 vegphase23 day23_flex Cbud h3 st4temp photoper PercentFall OutMax 
CanopyP -0.18           
GDD1 0.01 0.18          
vegphase23 -0.07 0.13 0.59         
day23_flex 0.02 0.07 0.50 0.39        
Cbud -0.05 -0.14 -0.23 -0.13 -0.27       
h3 0.17 -0.18 -0.21 -0.22 -0.23 -0.17      
st4temp -0.09 0.08 -0.14 0.01 -0.14 0.09 0.12     
photoper 0.08 -0.02 -0.08 -0.05 0.22 -0.33 -0.17 -0.40    
PercentFall -0.04 0.08 0.08 0.10 -0.04 -0.49 0.06 0.24 -0.10   
OutMax -0.06 -0.21 -0.08 0.16 0.02 0.03 0.00 0.15 0.12 -0.09  
OutLength -0.19 -0.05 -0.08 -0.12 -0.02 0.47 -0.20 -0.06 -0.16 0.00 0.32 

 


