Point-by-point responses to Review #1 and 2.

Journal: BG Title: CO₂ flux over young and snow-covered Arctic sea ice in winter and spring Author (s): Daiki Nomura et al. MS No.: bg-2017-521 MS Type: Research article

We thank the reviewers for their valuable comments, which have helped us to improve the manuscript.

For clarity, the authors' responses are inserted as green text.

Anonymous Referee #1

Received and published: 11 February 2018

General comments

Nomura et al present an interesting analysis of rare data capturing CO2 fluxes between sea ice and the atmosphere in Arctic winter, spring and summer as part of the N-ICE project. The methods are robust, the data are of high quality and significant value, and the arguments laid out in the paper will be of wide interest amongst the sea ice and CO2 communities. However, the manuscript comes across as a little rushed in its current form, and I believe it would be improved significantly by adding more detail and explaining more clearly the key points. I recommend acceptance for publication after moderate revisions. Results are presented in summary tables. In general, I find that not enough information is presented for the reader to easily follow the arguments made in the paper, and I think some may even be misleading. For instance, based on Table 3, you argue that Fice is greater than Fsnow and thus make the argument that snow cover reduces flux magnitude. From the table, it appears that this is only demonstrably true for two out of the seven first-year ice stations. Two of the stations appear to have negative fluxes, but this is not addressed in the text at all, but seems to me to be quite important. These factors should be discussed in much greater detail in the text. Given the variability in your results, I think it is necessary to present the actual data, rather than just summary data. This would probably be best as figures, to accompany the summary tables. On a similar note, you have the number of measurements listed for F-snow and F-ff in table 3, but why not F-ice. Please include this information and error estimates. It is also quite difficult in general to follow the flow through and between the different tables, for example discussion of the relationship between flux magnitude and snow thickness or water equivalent. The text needs more detail to guide the reader's understanding and some more figures would certainly help.

We are grateful for your favorable assessment. We have made changes in response to all of your recommendations and edited the text improve the readability of the text.

Now we have indicated the stations for each result (e.g., for stations FI5 and FI6) in the text. In addition, we have added following information about the negative fluxes and reason for single F_{ice} measurement in the text:

<u>"For F_{ice}</u>, there were negative CO₂ fluxes at stations FI3 and FI4 (-0.6 mmol C m⁻² day⁻¹ for FI3 and -0.8 mmol C m⁻² day⁻¹ for FI4) (Table 3). These fluxes corresponded to low or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6). Negative CO₂ fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the uncertainty for the calculation of carbonate chemistry may be one reason for the discrepancy in pCO₂ calculation in these conditions (Brown et al., 2014)."

"During first CO₂ flux measurements (about 30 minutes), ice surface temperature was stable at -5.8° C, suggesting that the effect of removing snow on the variation of sea ice surface temperature was negligible within 30 minutes. The ice surface temperature decreased from -5.8° C to -8.0° C at 200 minutes after removal of snow. Therefore, in this paper, the data of the initial 30 minutes of CO₂ flux measurement after removal of snow or frost flowers was used."

In order to present actual data, we have added relationships between pCO_2 and CO_2 flux in figure showing the relationships between temperature and CO_2 flux (Figure 6). In addition, we have made new figure showing the temporal variation of CO_2 concentration within chamber (Figure 3).

Specific comments

Introduction: it would be useful to include a little more information about what we know about ice-atmosphere CO2 fluxes in the context of ocean-atmosphere fluxes overall in the Arctic, and how they may change in the future. That would set the scene nicely for your statements at the end about ice-atmosphere fluxes being important in the context of a changing Arctic and the broader implications of your work. The final paragraph (line 107) could also be much stronger and punchier.

Thank you for your suggestions.

We have now added some more discussion on the results from other work in the Arctic, and to emphasize the lack of observations in the pack ice:

"In the ice covered Arctic Ocean, storm periods, with high wind speeds and open leads are important for air-to-sea CO₂ fluxes (Fransson et al., 2017), due to the under-saturation of the surface waters in CO_2 with respect to the atmosphere. On the other hand, the subsequent ice growth and frost flowers formation in these leads promote ice-to-air CO_2 fluxes in winter (e.g. Barber et al., 2014). Given the fact that Arctic sea ice is shrinking and shifting from multi-year ice to first-year ice, the area of open ocean and thinner seasonal ice is increasing. Therefore, the contribution of open ocean/thinner sea ice surface to the overall CO_2 fluxes of the Arctic Ocean is potentially increasing. However, due to the difficulty in acquiring observations over the winter pack ice, most of the winter CO_2 flux measurements were examined over the Arctic landfast ice. Therefore, there is a definite lack of information on conditions during wintertime, especially from Arctic pack ice." in introduction.

"Rare CO_2 flux measurements from Arctic pack ice show that two types of ice are significant contributors to the release of CO_2 from ice to the atmosphere during winter and spring: young thin ice with thin layer of snow, and old (several weeks) snow covered thick ice." in abstract.

We have changed from "Arctic sea ice" to "Arctic pack ice" in title.

To emphasize the novelty of our work, we have rewritten the final paragraph;

"The Norwegian young sea ICE (N-ICE2015) campaign in winter and spring 2015 provided opportunities to examine CO_2 fluxes between sea ice and atmosphere in a variety of snow and ice conditions in pack ice north of Svalbard. Formation of leads and their rapid refreezing allowed us to examine air–sea ice CO_2 fluxes over thin young sea ice, occasionally covered with frost flowers in addition to the snow-covered older ice that covers most of the pack ice area. The objectives of this study were to understand the effects of i) thin sea ice and frost flowers formations on the air–sea ice CO_2 flux in leads, ii) effect of snow-cover on the air–sea ice CO_2 flux over thin, young ice in the Arctic Ocean during winter and spring seasons, and iii) of the effect of the temperature difference between sea ice and atmosphere (including snow cover) on the air–sea ice CO_2 flux. ".

Line 125-127: state specifically which stations you are referring to. I assume "young ice", but this should be explicit. That might also help the descriptions of relationships between variables in the discussion, as mentioned in "general comments".

Thank you for this suggestion. We have added the specific information for station "station YI1". For the descriptions of relationships between variables in the discussion, please see your general comments.

Line 155-157: does this not contradict your argument that snow provides insulation? Perhaps it would help to mention timescales of T change/stability.

We agree with your comments. We have added:

"The ice surface temperature decreased from -5.8° C to -8.0° C at 200 minutes after removal of snow. Therefore, in this paper, the data of the initial 30 minutes of CO₂ flux measurement after removal of snow or frost flowers was used." in the text.

Line 162: I think you have air and ice surface the wrong way round.

Correct, well spotted. We have corrected.

Line 172: I think you should distinguish between stations where snow was cleared and where the sea ice surface was naturally snow-free. Given your arguments about the effects of snow cover, I assume this is significant.

We have no station where the sea ice surface was naturally snow-free (unless frost flowers are not considered as snow) (Table 1).

Line 185-187: clarify when temperature was measured.

We have added "during CO_2 flux measurements (approximately 60 minutes after the onset of the CO_2 flux measurement)" in the text.

Line 192-193: why was carbonate chemistry only measured at these four stations? This should be explained. It also means that table 2 looks like there is a lot of data missing; perhaps there is a better way to present these data?

At some occasions there was simply no time to collect the samples right after the flux measurements were taken, due to diverse and challenging conditions in the field. Due to the technical reason, we could not obtain the brine, except for four stations. Therefore, we have no samples for brine carbonate chemistry, except for four stations. We have added "Due to technical reason, data of snow, sea ice, and brine data were not obtained" in Table 2 caption.

Line 220: I think this should be Guildline PORTASAL salinometer Model8410A

Correct. Changed accordingly.

Line 239-240 and 239-250: this strongly suggests that the constants are not valid for your conditions. The following clearly attempts to justify its use, but it is not clear why the 40% uncertainty does not apply to your data, which would mean that none of your calculated values would have statistically significant differences. Please clarify.

For F_{ice} , there was negative CO_2 flux for stations FI3 although $\Delta pCO_{2 b-a}$ was positive. Negative CO_2 fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the uncertainty for the calculation of carbonate chemistry may be one reason for the discrepancy in pCO_2 calculation in these conditions (Brown et al., 2014).".

We have added "For F_{ice} , there were negative CO_2 fluxes at stations FI3 and FI4 (-0.6 mmol C m⁻² day⁻¹ for FI3 and -0.8 mmol C m⁻² day⁻¹ for FI4) (Table 3). These fluxes corresponded to low or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6). Negative CO_2 fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the uncertainty for the calculation of carbonate chemistry may be one reason for the discrepancy in pCO₂ calculation in these conditions (Brown et al., 2014).".

Line 253-254: please give enough information for the reader to understand this calculation, without having to dig out an old reference.

We have added newer reference "Petrich and Eicken, 2010". This is a rather standard method for sea-ice, thus we would not like to use space to explain the derivation of porosity in more detail than referring to the source.

Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice, in Thomas, D. N. and Dieckmann, G. S. eds., Sea Ice, 2nd ed., Oxford, Wiley-Blackwell, 23–77, 2010.

Methods: please include information about how atmospheric pCO2 was measured. It comes later as a footnote to a table, but should be included here.

We agree with your comment. We have added "The pCO₂ of atmosphere was calculated from CO₂ concentration (ppmv) at Ny-Ålesund, Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account saturated water vapor and atmospheric pressure during sampling day." in the text.

Line 275-276: state which stations you are referring to. This would help in general in various places in the text.

Agree. We have added "at station YI1" in the text, and also in other locations in the text to make the reasoning easier to follow.

Line 279-280: I think it would help to demonstrate this point if you plotted air temperature on figure 4, so that the relation is clear.

We have added air temperature on Figure 5a.

Line 285-286: can you highlight on figure 4b which measurements are from frost flowers?

We have changed the range of salinity in Figure 5b and added arrow to indicate frost flower data.

Line 292 and table 2: you present data from the top 20 cm, which presumably means your top two 10cm slices. Why do you only present the top 20cm when most cores are longer? Would it be better to present profiles to show downcore variability? If not, please justify presenting only the top 20 cm and provide error/uncertainty estimates from averaging of values from two core slices.

We have used average temperature for top 20 cm sea ice because the environmental information at the top of sea ice were important parameters regulating the CO_2 flux at sea ice surface. Unlikely the conditions deeper down in the ice will be important for such a short period of measurement given fluxes in the ice would be diffusion driven. We have added the range of temperature at top 20 cm sea ice in Table 2.

Line 322: "except for station OI1". Should this also say YI1 as it does in section 3.2?

Correct. We have added YI1 in the text.

Line 324: "...and in cases the thick insulating snow cover". Does not make sense. In certain cases? In cases where. . .?

We agree with your comments. We have changed to ", except for station OI1 (Tables 1 and 2)".

Line 355-358: this statement is only true for FI5, FI6 and YI1. Same comment for line 372-373.

Correct. We have added ", especially for stations FI5 and FI6".

Line 357: Where you state that one value or group of values is lower than another, please provide relevant statistical details (e.g. t-test, z-test etc.)

We agree with your comments. We have deleted "mean" and added ", especially for stations FI5, FI6, and YI1." in the text.

Line 372-382: This paragraph is an example of where a lot more detail is required to demonstrate your points. Flux direction, magnitude and relationships between variables all need to be discussed for the different stations.

We have added information of flux direction, magnitude and relationships between variables (F_{snow}/F_{ice} ratio and water equivalent) all need to be discussed for the different stations. New paragraph is:

"The magnitude of positive F_{snow} is less than F_{icc} for stations FI5 and FI6 (Table 3) indicating that the potential CO₂ flux from sea ice decreased due to the presence of snow. Previous studies have shown that snow accumulation over sea ice effectively impede CO₂ exchange (Nomura et al., 2013; Brown et al., 2015). Nomura et al. (2013) reported that 50– 90% of the potential CO₂ flux was reduced due to the presence of snow/superimposed-ice at the water equivalent of 57–400 kg m⁻², indicating that the snow properties are an important factor that controls the CO₂ exchange through a snowpack. Comparisons between stations FI5 and FI6 for F_{snow}/F_{ice} ratio (0.2 for FI5 and 0.0 for FI6) and water equivalent (11 kg m⁻² for FI5 and 127 kg m⁻² for FI6) indicate that the potential CO₂ flux is reduced (80% for FI5 and 98% for FI6 of the potential CO₂ flux through the sea ice surface decreased by the presence of snow for stations FI5 and FI6 (Table 3), the snow surface still presents a CO₂ source to the atmosphere for low snow density and shallow depth conditions (e.g., +0.6 mmol C m⁻² day⁻¹ for FI5)."

Line 380: reference to table 3. You need to be specific about what you are referring to that shows that flux is reduced by the presence of snow. If you compare FI5 and FI6, FI6 shows a much greater potential flux but actually has a greater snow thickness and water equivalent than FI5. This should be incorporated into your comparisons.

We agree with your comments. We have added "for stations FI5 and FI6".

Line 396-399: How will footprint size make such a big difference? If it arises from small-scale heterogeneity in time and/or space, this should be stated. Are there any other reasons worthy of mention?

To clarify we have added the following "The eddy covariance method reflects a flux integrated over a large area, that can contain several different surface types. Therefore, eddy-covariance appears to be more useful for understanding fluxes at large special and temporal scales. On the other hand, the chamber method reflects the area where chamber was covered, and it is useful for understanding the relationship between fluxes and ice surface conditions on smaller scales. The different spatial scales of the two methods may be therefore one reason for the discrepancy in CO_2 flux measurements."

Line 401-406: your fluxes are at the lower end of positive values – this should be stated, and elaborated on to discuss negative fluxes as well as positive ones (as per my earlier comment).

We have added "of positive values".

We have added "For F_{ice} , there were negative CO_2 fluxes at stations FI3 and FI4 (-0.6 mmol C m⁻² day⁻¹ for FI3 and -0.8 mmol C m⁻² day⁻¹ for FI4) (Table 3). These fluxes corresponded to low or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6). Negative CO_2 fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the uncertainty for the calculation of carbonate chemistry may be one reason for the discrepancy in pCO₂ calculation in these conditions (Brown et al., 2014)." in the text.

Line 406: should be "up to +11.8" or somehow make it clear that this is the maximum value.

We agree with your comments. We have added "up to".

Line 432-461: this section emphasises the importance of the temperature gradient in modifying fluxes and gives the impression that this is the most important variable. In fact, the correlation between temperature difference and flux is less strong than the correlation with pCO2 difference between the ice and atmosphere (given in line 310). This would be much clearer and more reflective of what the data show, if both variables were discussed here in terms of their relative importance overall and such a strong emphasis on temperature dampened. I also think it would help to add to figure 5 a panel which plots pCO2 difference vs. flux, to show the two relationships directly.

<u>We agree with your comments.</u> We indicated that both variables ($\Delta pCO_{2 b-a}$ and temperature difference) affect CO_2 flux. For example, we compared our data (e.g. for

station FI6) with a previous study (Nomura et al., 2006) for each variable. The $\Delta pCO_{2 b-a}$ was similar (297 µatm for Nomura et al., 2006 and 293 µatm for FI6) while temperature difference was not same (4.5°C for Nomura et al., 2006 and 20.2°C for FI6). In addition, the CO₂ flux was +0.7 mmol C m⁻² day⁻¹ for Nomura et al., 2006 and +11.8 mmol C m⁻² day⁻¹ for FI6. These results suggested that temperature difference enhanced the CO₂ flux between sea ice and atmosphere at the same $\Delta pCO_{2 b-a}$. On the other hand, the variation of $\Delta pCO_{2 b-a}$ would be modified CO₂ flux as shown in equation (F_{CO2} = r_b k $\alpha \Delta pCO_{2 b-a}$). For the relationships between CO₂ flux and $\Delta pCO_{2 b-a}$ as indicated in section 3.4, CO₂ flux values included the effect of the temperature difference. Therefore, it is difficult to divide the relative importance for $\Delta pCO_{2 b-a}$ and temperature difference.

We have added relationships between pCO_2 and CO_2 flux in figure showing the relationships between temperature and CO_2 flux (Figure 6).

Line 458-459: "for young sea ice likely the frost flower conditions". Does not make sense.

We agree with your comments. We have changed to "for young sea ice with frost flowers (e.g. station YI1)".

Line 468-473: from the data presented in table 3, not all stations can be described as showing CO2 sources. Some clearly show sink behaviour (negative fluxes), and for a number of others, the uncertainty on flux estimates cannot confidently be described as a source, e.g. when flux = 0.1 ± 0.1 . This is particularly the case given that you state the detection limit as 0.1. This also needs to be considered in your discussion.

We agree with your comments. We have added:

<u>"For F_{ice}, there were negative CO₂ fluxes at stations FI3 and FI4 (-0.6 mmol C m⁻² day⁻¹ for FI3 and -0.8 mmol C m⁻² day⁻¹ for FI4) (Table 3). These fluxes corresponded to low or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6). Negative CO₂ fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the uncertainty for the calculation of carbonate chemistry may be one reason for the discrepancy in pCO₂ calculation in these conditions (Brown et al., 2014)."</u>

Line 476-477: This should not be presented as a conclusion.

We agree with your comments. We have deleted from the text.

Line 485-488: I think you undersell the importance of your work here, and you could make more compelling statements about the role of sea ice in CO2 fluxes in a changing Arctic.

We agree with your comments. We have deleted.

Figure 3. should this cite Hudson et al., 2015?

We agree with your comments. We have added "Hudson et al., 2015" in the Figure 3 caption.

Table 2. Consider adding an extra column for $\Delta pCO2$ (air-sea difference) to aid understanding.

Added as suggested.

Table 3. The key thing that jumps out for me is that natural flux is much higher for frost flowers than snow. I would have thought that's worth highlighting in your discussion.

We have added "and F_{ff} was higher than F_{snow} , except for station FI1". We also indicated "Frost flowers are known to promote gas flux, such as CO_2 , from the sea ice to the atmosphere (Geilfus et al., 2013; Barber et al., 2014; Fransson et al., 2015)."

Technical corrections

In general, the manuscript is well-written, the technical language is appropriate, and the standard of English is good. However, there are a couple of points to check throughout the text: use of the definite/indefinite article; singular/plural nouns and their following verbs e.g. frost flowers, was/were.

Thank you. During revisions we have tried to have our native-English co authors read through the text to improve the flow.

Line 84: should be transport by molecular diffusion

Changed accordingly.

Line 218: remove hyphens

Changed accordingly.

Line 377: I think 0.0 is a mistake.

 $\underline{F}_{snow}/F_{ice}$ ratio for FI6 was 0.02. Therefore, we indicated it as "0.0".

Table 3: brackets in the top line are confusing.

We have changed.

Anonymous Referee #2

Received and published: 16 February 2018

The manuscript makes interesting observations of CO2 flux through sea ice, but re- quires extensive improvement. It was never articulated how this study is novel. I feel that it perhaps may be novel, but it is unclear how in its current form. Major revisions are needed before this manuscript can be considered publishable. The abstract is borderline uninformative. What are characteristic fluxes? Are these important? Of course CO2 can flux through sea ice, but it's hard for the reader to gage exactly how trivial this is without values in the abstract to justify reading the rest of the paper. The sentence beginning line 61 is a reference dump. What did these studies find and how does it build to the importance (or lack thereof) of the present manuscript?

We are grateful for your assessment of our work. We have now added some more discussion on the results from other work in the Arctic, and to emphasize the lack of observations in the pack ice:

We have added "In the ice covered Arctic Ocean, storm periods, with high wind speeds and open leads are important for air-to-sea CO_2 fluxes (Fransson et al., 2017), due to the under-saturation of the surface waters in CO_2 with respect to the atmosphere. On the other hand, the subsequent ice growth and frost flowers formation in these leads promote ice-to-air CO_2 fluxes in winter (e.g. Barber et al., 2014). Given the fact that Arctic sea ice is shrinking and shifting from multi-year ice to first-year ice, the area of open ocean and thinner seasonal ice is increasing. Therefore, the contribution of open ocean/thinner sea ice surface to the overall CO_2 fluxes of the Arctic Ocean is potentially increasing. However, due to the difficulty in acquiring observations over the winter pack ice, most of the winter CO_2 flux measurements were examined over the Arctic landfast ice. Therefore, there is a definite lack of information on conditions during wintertime, especially from Arctic pack ice." in introduction.

We have changed the final paragraph of the introduction "The Norwegian young sea ICE (N-ICE2015) campaign in winter and spring 2015 provided opportunities to examine CO_2 fluxes between sea ice and atmosphere in a variety of snow and ice conditions in pack ice

north of Svalbard. Formation of leads and their rapid refreezing allowed us to examine air– sea ice CO_2 fluxes over thin young sea ice, occasionally covered with frost flowers in addition to the snow-covered older ice that covers most of the pack ice area. The objectives of this study were to understand the effects of i) thin sea ice and frost flowers formations on the air–sea ice CO_2 flux in leads, ii) effect of snow-cover on the air–sea ice CO_2 flux over thin, young ice in the Arctic Ocean during winter and spring seasons, and iii) of the effect of the temperature difference between sea ice and atmosphere (including snow cover) on the air–sea ice CO_2 flux." in introduction.

In the abstract, we have added CO_2 flux values "We found that young sea ice formed in leads, without snow cover, is the most effective in terms of CO_2 flux (+1.0 ± 0.6 mmol C m⁻² day⁻¹) since the fluxes are an order of magnitude higher than for snow-covered older ice (+0.2 ± 0.2 mmol C m⁻² day⁻¹)." We have added "Rare CO_2 flux measurements from Arctic pack ice show that two types of ice are significant contributors to the release of CO_2 from ice to the atmosphere during winter and spring: young thin ice with thin layer of snow, and old (several weeks) snow covered thick ice.".

68: Sea-ice CO_2 fluxes

Changed accordingly.

On line 81, please see Massman et al. (1995) as the fundamental reference on this topic (https://www.fs.fed.us/rm/pubs_exp_for/glees/exp_for_glees_1995_massman.pdf).

We agree with your comments. We have checked and added.

Somewhat harsh transition before the last paragraph of the introduction. Please state more clearly how the background materials presented tie directly to the proposed study and therefore what makes the present study novel. Material in section 4.3 could help. (note that there are also many reference dumps here. Please explain what the studies found; it is your job to make the reader's job easy (https://www.sesync.org/blog/the- writers-job).

We agree with your comment. Please see our response to your first comment "The manuscript makes interesting observations of CO_2 fluxand how does it build to the importance (or lack thereof) of the present manuscript?".

on line 132, how was it ensured that placement of chambers did not perturb the pressure gradients in the snow? Creating pressure gradients can push CO2 out (or pull it in).

We agree with your comment. First, the chamber collar was inserted 5 cm into the snow and 1 cm into ice at frost flowers site to avoid air leaks between inside and outside of chamber. Then, chambers were installed over the collar. Therefore, placement of chamber on collar would avoid creation of pressure gradient. In addition, LI-COR 8100-104 chambers used in this study have carefully designed pressure vents to prevent pressure gradients and wind incursion from outside the chamber (Xu L., et al. 2006). Xu L., et al. 2006. On maintaining pressure equilibrium between a soil CO₂ flux chamber and the ambient air. Journal of Geophysical Research. 111, D08S10, doi:10.1029/2005JD006435.

on 144, please see Bain et al. (2005) as a relevant reference for wind-induced effects (https://www.sciencedirect.com/science/article/pii/S0168192305001164)

Thank you. We have checked and added.

Frost flowers are first introduced in the paragraph beginning on line 146. One assumes that these are somehow important for CO2 flux? The notion was not previously introduced. (see line 360. This belongs in the intro). I agree with Reviewer 1 that the manuscript was prepared somewhat hastily.

We have added "In addition, Fransson et al. (2015) indicated that frost flowers promote $\underline{CO_2}$ flux from the ice to the atmosphere." in the introduction. We also mentioned " $\underline{F_{ff}}$ " in the method section.

153: what is station FI6? Abbreviations are introduced before they are explained. It would help to explain the geography of the site before the measurements, also to ensure that measurements were made with a random design in mind.

We have changed "Air–sea ice CO₂ flux measurements were done over young ice (YI stations), first-year ice (FI stations), and old ice (multi-year ice) (OI station).". We also referred to the table where all the stations are listed.

Extensive English improvement is needed in section 2.3

We agree with your comment. The native English-speaking co-author has now edited section 2.3 and gone through the text.

On line 266, what does 'near-constant 0 C' mean?

We agree with your comment. We have changed to "near 0".

60.0 cm sounds rather specific for a measurement of snow which I assume has frequent small undulations, either at the snow surface or snow-ice interface in section 3.4, per day is not a SI unit, and diurnal patterns in the flux may make it difficult to scale from the native measurements (in the SI units of seconds) to the full day.

Snow is variable, but given that these are spot measurement we report to snow depth at site of measurement, as it is the local conditions that will affect the conditions at the measurement site ice surface. We would like to keep unit used in this study because sea ice CO₂ flux community used in the previous studies and it would be convenient for comparisons.

416: the abbreviation F was introduced far earlier.

Correct, (F) deleted from the sentence.

432: this is actually interesting. By focusing on the challenge of estimating gas transfer velocity, the manuscript has some novel features. These might be initial hypotheses for future work if causality can't be determined, but the mechanisms of sea ice/atmosphere gas exchange make for a more interesting analysis even if remaining questions are left.

We agree with your comments. We estimated gas transfer velocity for station FI6 and tank experiment. The gas transfer velocity for F_{ice} at station FI6 is higher than that of tank experiment examined in Nomura et al. (2006) even with very similar $\Delta pCO_{2 b-a}$ and brine volume fraction. Therefore, our results clearly indicated that temperature difference between sea ice surface and atmosphere would produce an unstable air density gradient and upward transport of air, thereby increasing gas transfer velocity. The comparison of the gas transfer velocity would be useful to evaluate the temperature effect on the air-sea ice CO_2 flux.

Figure 4: avoid simultaneous use of red and green in a figure.

We agree with your comments. We have changed.

1	CO ₂ flux over young and snow-covered Arctic pack ice in
2	winter and spring
3	
4	Daiki Nomura ^{1, 2, 3*} , Mats A. Granskog ⁴ , Agneta Fransson ⁴ , Melissa Chierici ^{5, 6} , Anna
5	Silyakova ⁷ , Kay I. Ohshima ^{1, 3} , Lana Cohen ⁴ , Bruno Delille ⁸ , Stephen R. Hudson ⁴ , and
6	Gerhard S. Dieckmann ⁹
7	
8	1 Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-
9	ku, Sapporo, Hokkaido 060–0819, Japan.
10	
11	2 Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate,
12	Hokkaido 041–8611, Japan.
13	
14	3 Arctic Research Center, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo,
15	Hokkaido 001–0021, Japan.
16	
17	4 Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
18	
19	5 Institute of Marine Research, NO–9294, Tromsø, Norway.
20	
21	6 FRAM-High North Research Centre for Climate and the Environment, Tromsø,
22	Norway.
23	
24 25	/ CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Tromsø, Norway.
23 26	9 Unité d'Océanographic Chimigue Freshwater and OCeanic galance Unit of research
20 27	8 Unite d'Oceanographie Chimique, <u>Freshwater and Oceanic science Unit of research</u> ,
∠7 28	Oniversite de Liege, Liege, Deigiuni.
28 29	9 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
	2 milea wegener montae for Folar and Marine Research, Diememaven, Oemany.
31	

Nomura Daiki 2018/3/24 0:22 削除: sea

- 33 * Corresponding author: Daiki Nomura, e-mail: daiki.nomura@fish.hokudai.ac.jp,
- 34 Faculty of Fisheries Sciences, Hokkaido University, 3–1–1, Minato-cho, Hakodate,
- 35 Hokkaido 041–8611, Japan.

37

39	Abstract
40	
41	Rare CO ₂ flux measurements from Arctic pack ice show that two types of ice are
42	significant contributors to the release of CO ₂ from ice to the atmosphere during winter
43	and spring: young thin ice with thin layer of snow, and old (several weeks) snow
44	covered thick ice. Young thin sea ice is characterized by high salinity and then porosity
45	and thin layer of snow. Snow covered thick ice can remain relatively warm (>-7.5°C),
46	due to a thick insulating snow cover <u>despite</u> air temperatures were as low as -40°C,
47	Brine volume fractions of these two ice type are therefore high enough to provide
48	favorable conditions for gas exchange between sea ice and <u>the atmosphere</u> even in mid-
49	winter. Although the potential CO ₂ flux from sea ice decreased due to the presence of
50	the snow, the snow surface is still a CO_2 source to the atmosphere for low snow density
51	and thin snow conditions. We found that young sea ice formed in leads, without snow
52	cover, is the most effective in terms of CO_2 flux (+1.0 ± 0.6 mmol C m ⁻² day ⁻¹) since
53	the fluxes are an order of magnitude higher than for snow-covered older ice $(+0.2 \pm 0.2)$
54	$\underline{\text{mmol } C \ m^{-2} \ day^{-1})}.$
55	
56	
57	
58	1 Introduction
59	

60 Arctic sea ice is changing dramatically, with rapid declines in summer sea ice extent 61 and a shift towards younger and thinner first-year ice rather than thick multi-year ice (e.g., Stroeve et al., 2012; Meier et al., 2014; Lindsay and Schweiger, 2015). Although 62 63 the effects of sea ice formation and melting on biogeochemical cycles in the ocean have previously been discussed (e.g., Vancoppenolle et al., 2013), the effects of sea ice 64 freezing and melting on the carbon dioxide (CO₂) exchange with the atmosphere are 65 still large unknowns (Parmentier et al., 2013). 66 67 68 Recent CO₂ flux measurements on sea ice indicate that sea ice is an active component in 69 gas exchange between ocean and atmosphere (Nomura et al., 2013; Geilfus et al., 2013;

70 2014; Delille et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). The sea-ice CO₂

Nomura Daiki 2018/3/22 16:11

削除: However, due to the difficulty in acquiring observations during winter, there is a definite lack of information on conditions during wintertime. ______6]

121	fluxes depend on (a) the difference in the partial pressure of CO_2 (pCO ₂) between the
122	sea ice surface and air, (b) brine volume fraction at the ice-snow interface, (c) ice
123	surface condition including the snow deposited on ice, and (d) wind-driven pressure
124	pumping through the snow. For (a), it is known that the air-sea ice CO_2 flux is driven
125	by the differences in pCO ₂ between the sea ice surface and atmosphere (e.g. Delille et
126	al., 2014; Geilfus et al., 2014). The brine pCO ₂ changes due to processes within the sea
127	ice, such as thermodynamic process (e.g., Delille et al., 2014), biological activity (e.g.,
128	Delille et al., 2007; Fransson et al., 2013; Rysgaard et al., 2013), and calcium carbonate
129	(CaCO ₃ ; ikaite) formation and dissolution (e.g., Papadimitriou et al., 2012). When the
130	pCO ₂ in the brine is higher than that of the air pCO ₂ , brine has the potential to release
131	CO ₂ to the atmosphere. Brine volume fraction (b) controls permeability of sea ice
132	(Golden et al. 1998) and then CO ₂ fluxes (Delille et al. 2014; Geilfus et al 2014). The
133	air-sea ice CO_2 flux is strongly dependent on the sea ice surface conditions (c) (Nomura
134	et al., 2010a, 2013; Geilfus et al., 2013; 2014; Barber et al., 2014; Brown et al., 2015;
135	Fransson et al., 2015). Nomura et al. (2013) proposed that snow conditions (e.g., water
136	equivalent) are important factors affecting gas exchange processes on sea ice. In
137	addition, frost flowers promote CO_2 flux from the ice to the atmosphere (Geilfus et al.,
138	2013; Barber et al., 2014; Fransson et al., 2015). For (d), it is thought that for snow
139	cover, the CO ₂ flux is affected by wind pumping (Massman et al., 1995; Takagi et al.,
140	2005) in which the magnitude of CO_2 flux through snow or overlying soil (e.g., Takagi
141	et al., 2005) increases due to wind pumping and can increase the transport <u>relative to</u>
142	molecular diffusion by up to 40% (Bowling and Massman, 2011). These results were
143	mainly found over land-based snow (soil and forest), and thus these processes are not
144	well understood over sea ice (Papakyriakou and Miller, 2011).
145	
146	In addition to the processes described above, the CO ₂ flux over sea ice may also be
147	influenced by the temperature difference between the ice surface and the atmosphere.
148	This has been shown in previous studies in dry snowpacks over land surfaces. These
149	studies show that there is an unstable air density gradient due to heating at the bottom
150	producing a strong temperature difference between bottom and top of snow (e.g.,
151	Powers et al., 1985; Severinghaus et al., 2010). This produces air flow within the
152	snowpack, which is a potentially significant contributor to mixing and transport of gas

Bruno Delille 2018/3/27 1:57 削除: b Bruno Delille 2018/3/27 1:57 削除: c

Bruno Delille 2018/3/27 2:04

削除: For (b), t

 Nomura Daiki 2018/3/20 9:51

 削除:
 For (c), it is thought

 Nomura Daiki 2018/3/20 9:51

 削除:
 for snow cover, the

 Bruno Delille 2018/3/27 1:57

 削除:
 c

 Nomura Daiki 2018/3/14 14:20

 削除:
 with

 Mats Granskog 2018/3/20 13:16

 削除:
 by

161	and heat within the snowpack. We expect that this process would also occur in snow	
162	over sea ice, especially during the wintertime when air temperatures are coldest and the	
163	temperature difference between sea ice surface (snow bottom) and atmosphere is largest	
164	(e.g., Massom et al., 2001). Generally, the sea ice surface under thick snow cover is	
165	warm due to the heat conduction from the bottom of sea ice and the insulation effect of	
166	the snow cover, and a strong temperature difference between sea ice surface and	
167	atmosphere is observed (e.g., Massom et al., 2001). Such a temperature difference	
168	would produce an unstable air density gradient and upward transport of air containing	
169	CO ₂ degassed at the sea-ice surface, thereby enhancing CO ₂ exchange between sea ice	
170	and atmosphere.	
171		
172	In the ice covered Arctic Ocean, storm periods, with high wind speeds and open leads	
173	are important for air-to-sea CO ₂ fluxes (Fransson et al., 2017), due to the under-	
174	saturation of the surface waters in CO ₂ with respect to the atmosphere. On the other	
175	hand, the subsequent ice growth and frost flowers formation in these leads promote ice-	
176	to-air CO ₂ fluxes in winter (e.g. Barber et al., 2014). Given the fact that Arctic sea ice is	
177	shrinking and shifting from multi-year ice to first-year ice, the area of open ocean and	
178	thinner seasonal ice is increasing. Therefore, the contribution of open ocean/thinner sea_	
179	ice surface to the overall CO ₂ fluxes of the Arctic Ocean is potentially increasing.	
180	However, due to the difficulty in acquiring observations over the winter pack ice, most	
181	of the winter CO ₂ flux measurements were examined over the Arctic landfast ice.	
182	Therefore, there is a definite lack of information on conditions during wintertime,	
183	especially from Arctic pack ice.	
184		
185	The Norwegian young sea ICE (N-ICE2015) campaign in winter and spring 2015	
186	provided opportunities to examine CO ₂ fluxes between sea ice and atmosphere in a	
187	variety of snow and ice conditions in pack ice north of Svalbard. Formation of leads and	
188	their rapid refreezing allowed us to examine air-sea ice CO ₂ fluxes over thin young sea	
189	ice, occasionally covered with frost flowers in addition to the snow-covered older ice	
190	that covers most of the pack ice area. The objectives of this study were to understand	
191	the effects of i) thin sea ice and frost flowers formations on the air–sea ice CO ₂ flux in	
192	leads, ii) effect of snow-cover on the air-sea ice CO ₂ flux over thin, young ice in the	

Nomura Daiki 2018/3/27 11:19 削除: ice covered waters Mats Granskog 2018/3/23 6:56 削除: and storm periods 削除: were Bruno Delille 2018/3/27 1:22 削除: in pack ice Bruno Delille 2018/3/27 1:24 削除: for Mats Granskog 2018/3/23 7:00 削除: becomes 削除: can become 削除: important for the 削除: decreasing Mats Granskog 2018/3/23 7:01 削除: ing **削除:** ed 削除: has increased 削除: CO₂ exchange between open ocean/thinner sea ice surface and atmosphere will be an important fraction of the Bruno Delille 2018/3 削除: total **削除:** budget **削除** in **削除:** During t **削除:**,we 削除: had Bruno Delille 2018/3/27 2:10 **削除:** y Nomura Daiki 2018/3/24 17:30 **削除:** drift 削除: provided

217	Arctic Ocean during winter and spring seasons, and iii) of the effect of the temperature	
218	difference between sea ice and atmosphere (including snow cover) on the air-sea ice	
219	<u>CO₂ flux.</u>	
220	-7	
221		Nomura Daiki 2018/3/22 22:15 削除: Norwegian young sea ICE ()
222	2 Materials and Methods	
223		
224	2.1 Study <u>area</u>	
225		Mats Granskog 2018/3/20 11:48 削除: site
226	This study was performed during N-ICE2015 campaign with R/V Lance in the pack ice	
227	north of Svalbard from January to June 2015 (Granskog et al., 2016). Air-sea ice CO_2	
228	flux measurements were carried out from January to May 2015 during the drift of floes	Pruno Dolillo 2019/2/07 2:14
229	1, 2, and 3 of the N-ICE2015 campaign (Figures 1 and 2, Table 1). The ice pack was a	的 Dellie 2016/3/27 2.14 削除: F
230	mixture of <u>young ice</u> , first-year ice and second-year ice (Granskog et al., 2017) _a the two	Nomura Daiki 2018/3/19 13:58
231	latter with a thick snow cover (Merkouriadi et al., 2017; Rösel et al., 2018). Air-sea ice	
232	CO ₂ flux measurements were done over young ice (YI stations), first-year ice (FI	Mats Granskog 2016/3/2011.55 削除: both
233	stations), and old ice (multi-year ice) (OI station). In the N-ICE2015 study region modal	Mats Granskog 2018/3/20 11:49
234	ice thickness was about 1.3-1.5 m and modal snow thickness was about 0.5 m (Rösel et	Moto Cropples 2018/2/20 11:47
235	al., 2018). Formation of leads and their rapid refreezing provided us the opportunity to	前家: almost
236	examine air-sea ice CO ₂ fluxes over thin sea ice, occasionally covered with frost	
237	flowers at station YI1 (Figure 2 and Table 1). Air temperature and wind speed were	
238	measured at a 10 m weather mast on the ice floe installed about 400 m away from R/V	
239	Lance (Cohen et al., 2017).	
240		
241		
242	2.2 CO ₂ flux measurements	
243		
244	The air-sea ice CO ₂ flux was measured with LI-COR 8100-104 chambers connected to	
245	a LI-8100A soil CO ₂ flux system (LI-COR Inc., USA) (Figure 2). This enclosed	Bruno Delille 2018/3/27 2:15
246	chamber method has been widely applied over snow and sea ice (e.g., Schindlbacher et	削除: the
247	al., 2007, Geilfus et al., 2015). Two chambers were connected in a closed loop to the	
248	infrared gas analyzer (LI-8100A, LI-COR Inc., USA) to measure CO ₂ concentration	

258 through the multiplexer (LI-8150, LI-COR Inc., USA) with an air pump rate at 3 L min⁻ ¹. Power was supplied by a car battery (8012-254, Optima Batteries Inc., USA). Four 259 260 CO₂ standards (324–406 ppmv) traceable to the WMO scale (Inoue and Ishii, 2005) 261 were prepared to calibrate the CO₂ gas analyzer prior to the observations. CO₂ flux was 262 measured in the morning or in the afternoon during low-wind conditions (Table 2), to 263 minimize the effect of wind on the flux (Bain et al., 2005). 264 265 One chamber was installed over undisturbed snow or frost flowers over the ice surface. 266 The chamber collar was inserted 5 cm into the snow and 1 cm into ice at frost flowers

267 site to avoid air leaks between inside and outside of chamber. The second chamber was 268 installed on bulk sea ice after removing the snow or frost flowers. Flux measurements 269 was begun immediately in order to minimize the changes of the ice surface condition. In 270 order to evaluate the effect of removing snow on sea ice surface temperature, ice surface 271 temperature was monitored during CO₂ flux measurements at station FI6. To measure 272 the sea ice surface temperature, temperature sensor (RTR 52, T & D Corp., Japan) was 273 installed in the top of the ice (1 cm) surface after snow removal. During first CO₂ flux 274 measurements (about 30 minutes), ice surface temperature was stable at -5.8 °C, 275 suggesting that the effect of removing snow on the variation of sea ice surface 276 temperature was negligible within 30 minutes. The ice surface temperature decreased 277 from -5.8°C to -8.0°C at 200 minutes after removal of snow. Therefore, in this paper, 278 the data of the initial 30 minutes of CO₂ flux measurement after removal of snow or 279 frost flowers was used. The chamber was closed for 20 minutes in a sequence. The 20-280 minute time period was used because CO₂ fluxes over sea ice are much smaller than over land. The CO₂ concentrations within the chamber were monitored to ensure that 281 282 they changed linearly throughout the measurement period (example given in Figure 3). The CO₂ flux (mmol C m^{-2} day⁻¹) (positive value indicates CO₂ being released from ice 283 surface to air) was calculated based on the changes of the CO₂ concentration within the 284 285 headspace of the chamber with LI-COR software (Model: LI8100PC Client v.3.0.1.).

- 286 The mean coefficient of variation for CO_2 flux measurements was less than 3.0% for
- 287 CO₂ flux values larger than ± 0.1 mmol C m⁻² day⁻¹. For CO₂ flux values smaller than 288 ± 0.1 mmol C m⁻² day⁻¹, the mean coefficient of variation for CO₂ flux measurements

Bruno Delille 2018/3/27 2:15 削除: Electricity

Bruno Delille 2018/3/27 2:16 削除: from

Nomura Daiki 2018/3/12 16:10 削除: , and the data of first CO₂ flux measurement was used.

293	was higher than 3.0%, suggesting that the detection limit of this system is about 0.1	
294	mmol C m ^{-2} day ^{-1} .	
295		
296	In this paper, we express the CO_2 flux measured over the snow and frost flowers as	
297	F_{snow} and $F_{\text{ff}},$ respectively, and the flux measured directly over the sea ice surface either	
298	on snow-free ice or after removal of snow and frost flowers as $F_{\rm ice}.\ F_{\rm snow}$ and $F_{\rm ff}$ are the	
299	natural flux (snow and frost flowers are part of the natural system), and F_{ice} is the	
300	potential flux in cases when snow or frost flowers are removed. While removal of snow	
301	and frost flowers is an artificial situation, comparisons between F_{ice} and F_{snow} or $F_{\rm ff}$	
302	provide information about the effect of snow on the CO ₂ flux. Therefore, in this study,	
303	we examine both situations for CO_2 flux.	
304		
305		
306	2.3 Sampling of snow, frost flowers, brine, and sea ice	
307		
308	For salinity measurements, separate samples were taken for snow only, snow and frost	Lana Cobon 2018/2/10 0:47
309	flowers, and sea ice surface scrapes. The samples were taken using a plastic shovel,	削除: was sampled, while whilenow 阁
310	placed into plastic bags and stored in an insulated box for transport to the ship-lab for	
311	further processing. Samples were melted slowly (2–3 days) in the dark at +4°C. The	///
312	temperature of the snow and frost <u>flowers samples</u> were measured <u>during CO₂ flux</u>	
313	measurements (approximately 60 minutes after the onset of the CO ₂ flux measurement)	Nomura Daiki 2018/3/20 14:41
314	using a needle-type temperature sensor (Testo 110 NTC, Brandt Instruments, Inc.,	削除: s
315	USA). The accuracy of this sensor is ±0.2°C. Snow density was obtained using a fixed	Lana Cohen 2018/3/19 9:50
316	volume sampler (Climate Engineering, Japan) and weight measurement. The depth of	Hukk. generallypproximatery,oo h 9
317	the snow pack and frost flowers was also recorded using a ruler.	
318		
319	Brine was <u>also</u> collected <u>at stations FI3-6</u> for salinity, dissolved inorganic carbon (DIC)	Lana Cohen 2018/3/10 0.52
320	and total alkalinity (TA) measurements. Brine was collected from sackholes as	削除:tations FI3-6 for determinat[10]
321	described in Gleitz et al (1995), The sackholes were drilled using a 9 cm diameter, ice	Mats Granskog 2018/3/20 11:57
322	corer (Mark II coring system, Kovacs Enterprises, Inc., USA) to a depth of 30 cm, The	削除: ,
323	sackholes were then covered with a lid of 5 cm-thick urethane to reduce heat and gas	Lana Cohen 2018/3/19 9:53
324	transfer between brine and atmosphere. When brine accumulated at the bottom of the	

366	sackholes (approximately 15 minutes), it was collected with a plastic syringe (AS ONE		
367	Corporation, Japan) and kept in 500 mL unbreakable plastic bottles (I-Boy, AS ONE		Lana Cohen 2018/3/19 9:54
368	Corporation, Japan) in order to facilitate safe transport to the sampling sites in cold and		
369	harsh conditions. The brine <u>bottles were filled</u> without head-space and immediately	/	
370	stored in an insulated box to prevent freezing. Immediately after return to the ship, the	/	
371	brine samples were transferred to 250 mL borosilicate bottles (DURAN Group GmbH,		
372	Germany) for DIC and TA measurements using tubing to prevent contact with air. The		
373	samples were preserved with saturated mercuric chloride (HgCl ₂ , 60 µL for a 250 mL		
374	sample) and stored in the dark at +10°C until analyses was performed at the Institute of		
375	Marine Research, Norway.		
376			
377	Sea ice was collected by same ice corer as described for brine collection and at the same		
378	location as snow and frost flowers were collected. Sea ice temperature was measured by		
379	same sensor as described for snow, For the ice cores, the temperature sensor was	\square	Lana Cohen 2018/3/20 9:51 削除: Iceea iIe temperature was ([13])
380	inserted in small holes drilled into the core. The core was then cut with a stainless steel	/ -	
381	saw into 10 cm sections and stored in plastic bags for subsequent salinity measurements.	//	
382	The ice core sections were kept at +4°C and melted in the dark prior to measurement,	/	
383			Mats Granskog 2018/3/20 11:58 削除:
384			
385	2.4 Sample analysis		
386			
387	Salinities for melted snow, frost flowers, sea ice, and brine were measured with a		
388	conductivity sensor (Cond 315i, WTW GmbH, Germany). For calibration of salinity		Nomura Daiki 2018/3/14 14:21 削除:now,rost flowers,ea (
389	measurement, a Guildline PORTASAL salinometer Model 8410A, standardized by		
390	International Association for the Physical Sciences of the Oceans (IAPSO) standard		
391	seawater (Ocean Scientific International Ltd, UK) was used. Accuracy of this sensor		
392	was ±0.003.		
393			
394	Analytical methods for DIC and TA determination are fully described in Dickson et al.		
395	(2007). DIC in brine was determined using gas extraction of acidified sample followed		
396	by coulometric titration and photometric detection using a Versatile Instrument for the		
397	Determination of Titration carbonate (VINDTA 3C, Germany). TA of brine was		

430	determined by potentiometric titration of 40 mL sample in open cell with 0.05 N
431	hydrochloric acid using a Titrino system (Metrohm, Switzerland). The average standard
432	deviation for DIC and TA, determined from replicate sample analyses from one sample,
433	was within $\pm 2 \ \mu mol \ kg^{-1}$ for both DIC and TA. Accuracy of the DIC and TA
434	measurements were $\pm 2 \ \mu mol \ kg^{-1}$ for both DIC and TA estimated using Certified
435	Reference Materials (CRM, provided by A. G. Dickson, Scripps Institution of
436	Oceanography, USA). The pCO_2 of brine $(pCO_2 b)$ was derived from in situ temperature,
437	salinity, DIC and TA of brine using the carbonate speciation program CO2SYS (Pierrot
438	et al., 2006). We used the carbonate dissociation constants (K_1 and K_2) of Mehrbach et
439	al. (1973) as refit by Dickson and Millero (1987), and the KSO_4 determined by Dickson
440	(1990). The conditional stability constants used to derived pCO_2 are strictly only valid
441	for temperatures above 0 °C and salinities between 5 and 50. Studies in spring ice
442	indicated that seawater thermodynamic relationships may be acceptable in warm and
443	low-salinity sea ice (Delille et al., 2007). In sea ice brines at even moderate brine
444	salinities of 80, Brown et al. (2014) found that measured and calculated values of the
445	CO_2 system parameters can differ by as much as 40%. On the other hand, because the
446	CO2 system parameters are much more variable in sea ice than in seawater, sea ice
447	measurements demand less precision than those in seawater. Fransson et al. (2015)
448	performed one of few detailed analyses of the internal consistency using four sets of
449	dissociation constants and found that the deviation between measured and calculated
450	DIC varied between ± 6 and $\pm 11 \ \mu mol \ kg^{-1}$, respectively. This error in calculated DIC
451	was considered insignificant in relation to the natural variability in sea ice.
452	
453	The pCO ₂ of atmosphere was calculated from CO ₂ concentration (ppmv) at Ny-Ålesund,
454	Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account saturated water
455	vapor and atmospheric pressure during sampling day.
456	
457	The water equivalent was computed for snow by multiplying snow thickness by snow
458	density (Jonas et al., 2009). Brine volume of sea ice was calculated from the
459	temperature and salinity of sea ice according to Cox and Weeks (1983) and Petrich and
460	<u>Eicken (2010)</u> .

462		
463	3 Results	
464		
465	3.1 Air temperature	
466		
467	Air temperature is shown in Figure 4, During the study period, air temperature varied	
468	significantly from a low of -41.3°C (30 January) to a high of +1.7°C (15 June) (Hudson	Nomura Daiki 2018/3/22 16:54 削除: 3
469	et al., 2015). Even in wintertime (from January to March), rapid increases of air	
470	temperature from below -30° C up to -0.2° C (e.g., 18 February), were observed. In	
471	springtime (from April to June), the air temperature increased continuously, and from 1	
472	June, air temperatures were near 0°C, although rapid increases (and subsequent	
473	decreases) of air temperature to near 0°C were observed on two occasions in mid-May	Nomura Daiki 2018/3/19 14:02 削除: -constant
474	(Cohen et al., 2017).	
475		
476		
477	3.2 Characteristics of snow, sea ice, and frost flowers	
478		
479	The snow and ice thickness at the observation sites ranged between 0.0 and 60.0 cm and	
480	between 15.0 and >200 cm, respectively (Table 1). The thin snow and ice represent	
481	newly formed ice in leads at station Y11. The thickness of the frost flowers ranged from	
482	1.0 to 2.5 cm.	
483		
484	Figure 5 shows vertical profiles of snow and ice temperature and salinity in the top 20	
485 I	cm of ice. Temperatures within the snowpack depended on the air temperature at the	Nomura Daiki 2018/3/22 22:31 削除: 4
486	time of observation. However, the bottom of the snow and the surface of the sea ice	
487	were relatively warm (T>-7.5°C), except for the frost flowers station YI1 and the multi-	
488	year ice station OI1 (Figure <u>5a</u> and Table 2). High salinities (S>18.6) characterized the	
489	bottom of the snow and the surface of the sea ice x except for the multi-year ice station	Nomura Daiki 2018/3/22 17:17 削除: 4a
490	OI1 (Figure <u>5b</u>). At the multi-year ice station OI1, salinity was zero through the snow	Nomura Daiki 2018/3/22 22:32
491	and top of sea ice. Salinity of frost flowers was up to 92.8 for the thin ice station YI1	別际: , Nomura Daiki 2018/3/22 17:17
492	(Figure $5b$). Snow density and water equivalent ranged from 268 to 400 kg m ⁻³ and 11	削除: 4b
493	to 180 kg m ^{-2} , respectively.	Nomura Daiki 2018/3/22 17:17 削除: 4b

501	
502	
503	3.3 Physical and chemical properties of brine
504	
505	The brine volume fraction, temperature, salinity, DIC, TA, and calculated pCO ₂ are
506	summarized in Table 2. Brine volume fraction in top 20 cm of ice was from 9 to 17%,
507	except for the value of 0% at the multi-year ice station OI1 (Table 2). Brine
508	temperatures and salinity ranged from -5.3 to -3.3 °C and 51.8 to 86.6 , respectively.
509	DIC and TA of brine ranged from 3261 to 4841 μ mol kg ⁻¹ and 3518 to 5539 μ mol kg ⁻¹ ,
510	respectively. The pCO ₂ of brine (pCO _{2 b}) (334–693 µatm) was generally higher than
511	that of atmosphere (pCO _{2 a}) (401 \pm 7 µatm), except for station FI4.
512	
513	
514	3.4 CO ₂ flux
515	
516	Table 3 summarizes the CO ₂ flux measurements for each surface condition. For
517	undisturbed natural surface conditions, i.e. measurements directly on the snow surface
518	(F_{snow}) or the frost flowers (F_{ff}) on young ice, the mean CO_2 flux was $+0.2 \pm 0.2$ mmol
519	C m ⁻² day ⁻¹ for F_{snow} and +1.0 ± 0.6 mmol C m ⁻² day ⁻¹ for F_{ff} . The potential flux in
520	cases when snow or frost flowers had been removed (F $_{ice})$ was +2.5 \pm 4.3 mmol C m^{-2}
521	day ^{-1} . The air–sea ice CO ₂ fluxes measured over the ice surface (F _{ice}) increased with
522	increasing difference in pCO_2 between brine and atmosphere ($\Delta pCO_{2 b-a}$) with
523	significant correlation ($R^2 = 0.9$, p < 0.02), but this was not the case for F_{snow} ($R^2 = 0.0$,
524	p < 0.96) <u>(Figure 6)</u> .
525	
526	
527	
528	4 Discussion
529	
530	4.1 Effect of snow cover on the physical properties of sea ice surface
531	

532	In this study, we examined CO ₂ fluxes between sea ice and atmosphere in a variety of
533	air temperature conditions from -32 to -3° C and diverse snow and ice conditions (Table
534	2). The bottom of the snow pack and the surface of the sea ice remained relatively warm
535	(>-7.5°C) (Figure <u>5a</u> , Table 2), except for stations OI1 and YI1, even though air
536	temperature was sometimes below –40°C (Figure 4). Relatively warm ice temperatures
537	were likely due to the upward heat transport from the bottom of the ice and in some
538	cases the thick insulating snow cover, except for stations OI1 and YII, (Table 2).
539	Therefore, snow acted as thermal insulator over sea ice, and in general the snow depths
540	observed during N-ICE2015 point towards this being representative for first-year and
541	second-year or older ice in the study region in winter 2015 (Rösel et al., 2018). The
542	young and first-year ice surfaces were characterized by high salinities (Figure <u>5b</u>).
543	During sea ice formation, upward brine transport to the snow pack occurs (e.g., Toyota
544	et al., 2011). In addition, brine within the sea ice was not completely drained as
545	compared to that of multi-year ice. Furthermore, formation of frost flowers and
546	subsequent wicking up of surface brine into the frost flowers also provides high salinity
547	at the surface of sea ice (Kaleschke et al., 2004; Geilfus et al., 2013; Barber et al., 2014;
548	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the
548 549	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top
548 549 550	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice.
548 549 550 551	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice.
548 549 550 551 552	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the
548 549 550 551 552 553	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to
548 549 550 551 552 553 554	Fransson et al., 2015) as observed in this study (S>92) (Figure <u>5b</u>). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice.As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of
548 549 550 551 552 553 554 555	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature
548 549 550 551 552 553 554 555 556	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998;
548 549 550 551 552 553 554 555 556 557	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and
548 549 550 551 552 553 554 555 556 557 558	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and thereby reduced permeability in winter season, generally, air–sea ice CO ₂ flux is at its
548 549 550 551 552 553 554 555 556 557 558 559	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and thereby reduced permeability in winter season, generally, air–sea ice CO ₂ flux is at its minimum in the winter (e.g., Delille et al., 2014). However, in our study, the brine
548 549 550 551 552 553 554 555 556 557 558 559 560	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and thereby reduced permeability in winter season, generally, air–sea ice CO ₂ flux is at its minimum in the winter (e.g., Delille et al., 2014). However, in our study, the brine volume fractions were generally >9%, except for station OI1 with fresh ice at the
548 549 550 551 552 553 553 554 555 556 557 558 559 560 561 561	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and thereby reduced permeability in winter season, generally, air–sea ice CO ₂ flux is at its minimum in the winter (e.g., Delille et al., 2014). However, in our study, the brine volume fractions were generally >9%, except for station OI1 with fresh ice at the surface, providing conditions for active gas exchange within sea ice and between sea ice
548 549 550 551 552 553 553 554 555 556 557 558 559 560 561 562	Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the frost flowers would have preserved the high salinity at the bottom of snow pack and top of sea ice for young and first-year ice. As a result of the combination of the relatively high temperature and high salinity at the top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 17% (Table 2). It has been shown that ice permeability increases by an order of magnitude when brine volume fraction > 5%, which would correspond to a temperature of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and thereby reduced permeability in winter season, generally, air–sea ice CO ₂ flux is at its minimum in the winter (e.g., Delille et al., 2014). However, in our study, the brine volume fractions for active gas exchange within sea ice and between sea ice and atmosphere. This situation was likely made possible due to the thick snow cover

Nomura Daiki 2018/3/22 17:18
削除: 4a
Nomura Daiki 2018/3/22 17:18
削除: 3
Lana Cohen 2018/3/20 9:51
削除: (Table
Nomura Daiki 2018/3/20 9:51
削除: (Table
Lana Cohen 2018/3/19 10:11
削除: ed
Nomura Daiki 2018/3/22 22:18
削除: 6a
Nomura Daiki 2018/3/22 17:18
削除: 4b

Nomura Daiki 2018/3/22 17:18 削除: 4b

Lana Cohen 2018/3/19 10:12 削除: was_____

4.2 CO₂ fluxes over different sea-ice surface types

576	
577	The CO ₂ flux measurements over different surface conditions indicate that the snow
578	cover over sea ice affects the magnitude of air-sea ice CO ₂ flux, especially for stations
579	F15 and F16 (Table 3). For undisturbed natural surface conditions, the CO ₂ flux
580	measured directly over snow-covered first-year ice and young ice with frost flowers
581	(F _{snow} and F _{ff}) was lower in magnitude than that for potential flux obtained directly over
582	the ice surface after removing snow (Fice), especially for stations FI5, FI6, and YI1,
583	
584	$F_{\rm ff}$ indicates that the frost flowers surface on young thin ice is a CO ₂ source to the
585	atmosphere and F_{ff} was higher than F_{snow} , except for station FI1. Frost flowers are
586	known to promote gas flux, such as CO ₂ , from the sea ice to the atmosphere (Geilfus et
587	al., 2013; Barber et al., 2014; Fransson et al., 2015). At multi-year ice station OI1,
588	neither snow or ice surface acted as a CO ₂ source/sink. The surface of multi-year ice did
589	not contain any brine (Figure <u>5b</u> and Table 2), and the top of the ice was clear, colorless
590	and very hard, suggesting superimposed formation at the top of sea ice. This situation
591	would be similar as for freshwater-ice and superimposed-ice as these non-porous media
592	block gas exchange effectively at the sea ice surface (Delille et al., 2014). Snow-ice and
593	superimposed-ice were frequently found in second-year ice cores during N-ICE2015
594	(Granskog et al., 2017), so the 'blocking' of gas exchange in second-year and multi-
595	year ice may be a widespread process in the Arctic.
596	
597	The magnitude of positive F _{snow} is less than F _{ice} for stations FI5 and FI6 (Table 3)
598	indicating that the potential CO_2 flux from sea ice decreased due to the presence of
599	snow. Previous studies have shown that snow accumulation over sea ice effectively
600	impede CO ₂ exchange (Nomura et al., 2013; Brown et al., 2015). Nomura et al. (2013)
601	reported that 50–90% of the potential CO ₂ flux was reduced due to the presence of
602	snow/superimposed-ice at the water equivalent of 57–400 kg m ⁻² , indicating that the
603	snow properties are an important factor that controls the CO ₂ exchange through a
604	snowpack. Comparisons between stations FI5 and FI6 for F _{snow} /F _{ice} ratio (0.2 for FI5

Lana Cohen 2018/3/20 9:51
削除: on
Lana Cohen 2018/3/19 10:13
削除: on
Lana Cohen 2018/3/20 9:51
削除: affect
Nomura Daiki 2018/3/19 10:06
削除:
Nomura Daiki 2018/3/19 10:13
削除: mean
Nomura Daiki 2018/3/19 10:13
削除: ethe
Nomura Daiki 2018/3/19 10:14
削除:

Nomura Daiki 2018/3/22 17<u>:</u>19 削除:4

Nomura Daiki 2018/3/14 10:51
削除:
Nomura Daiki 2018/3/22 22:56
削除: (Table 3)
Bruno Delille 2018/3/27 3:35
削除: through
Nomura Daiki 2018/3/14 11:03
削除: that water equivalent of the
Mats Granskog 2018/3/23 7:12
削除: is

618	and 0.0 for FI6) and water equivalent (11 kg m^{-2} for FI5 and 127 kg m^{-2} for FI6)	
619	indicate that the potential CO ₂ flux is reduced (80% for FI5 and 98% for FI6 of the	Nomura Daiki 2049/2/44 44:45
620	potential CO ₂ flux) with increasing water equivalent, Although the magnitude of the	Nomura Daiki 2018/3/14 11:15 削除: affected
621	potential CO_2 flux through the sea ice surface decreased by the presence of snow <u>for</u>	Mats Granskog 2018/3/23 7:12
622	stations F15 and F16 (Table 3), the snow surface still presents a CO ₂ source to the	Nomura Daiki 2018/3/14 11:26
623	atmosphere for low snow density and shallow depth conditions (e.g., +0.6 mmol C m^{-2}	削除: by snow properties (density and depth
624	day^{-1} for FI5).	
625		
626	For F_{ice} , there were negative CO ₂ fluxes at stations FI3 and FI4 (-0.6 mmol C m ⁻² day ⁻¹	Mata Cranakag 2018/2/22 7:12
627	for FI3 and $-0.8 \text{ mmol C} \text{ m}^{-2} \text{ day}^{-1}$ for FI4) (Table 3). These fluxes corresponded to low	Mats Granskog 2016/3/23 7.12 削除: for
628	or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6).	
629	Negative CO_2 fluxes should correspond to negative ΔpCO_{2b-3} . Therefore, the	Pruno Dolillo 2019/2/27 2:29
630	uncertainty for the calculation of carbonate chemistry may be one reason for the	前除: <u>Generally, when</u>
631	discrepancy in pCO ₂ calculation in these conditions (Brown et al., 2014).	Bruno Delille 2018/3/27 3:38
632		Bruno Delille 2018/3/27 3:38
633		削除: <u>should be negative</u>
634	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux	
634 635	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux	
634 635 636	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff})	
634 635 636 637	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the	
634 635 636 637 638	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance	
634 635 636 637 638 639	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹)	
634 635 636 637 638 639 640	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011;	
 634 635 636 637 638 639 640 641 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014;	
 634 635 636 637 638 639 640 641 642 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016).	
 634 635 636 637 638 639 640 641 642 643 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements	
 634 635 636 637 638 639 640 641 642 643 644 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements with both chamber and eddy covariance techniques were used during different condition	
 634 635 636 637 638 639 640 641 642 643 644 645 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements with both chamber and eddy covariance techniques were used during different condition for season and ice surface characteristics. In addition, discrepancies between chamber	
 634 635 636 637 638 639 640 641 642 643 644 645 646 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements with both chamber and eddy covariance techniques were used during different condition for season and ice surface characteristics. In addition, discrepancies between chamber and eddy covariance measurements of air-ice CO ₂ fluxes have been repeatedly observed.	
 634 635 636 637 638 639 640 641 642 643 644 645 646 647 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements with both chamber and eddy covariance techniques were used during different condition for season and ice surface characteristics. In addition, discrepancies between chamber and eddy covariance measurements of air-ice CO ₂ fluxes have been repeatedly observed. The footprint size of CO ₂ exchange measured with the two approaches (Zemmelink et	
 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 	4.3 Comparison to earlier studies on sea-ice to air CO ₂ flux The CO ₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m ⁻² day ⁻¹ (Table 3), which are at the lower end of the reported range based on the chamber method and eddy covariance method for natural and artificial sea ice (-259.2 to +74.3 mmol C m ⁻² day ⁻¹) (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). Direct comparison to previous studies is complicated because CO ₂ flux measurements with both chamber and eddy covariance techniques were used during different condition for season and ice surface characteristics. In addition, discrepancies between chamber and eddy covariance measured with the two approaches (Zemmelink et al., 2006, 2008; Burba et al., 2008; Amiro, 2010; Miller et al., 2011; Papakyriakou and	

657	difference. The eddy covariance method reflects a flux integrated over a large area that	
658	can contain several different surface types. Therefore, eddy-covariance appears to be	Bruno Delille 2018/3/27 3:45
650	more useful for understanding fluxes at large aposial and temporal scales. On the other	Bruno Delille 2018/3/27 3:43
600	more userui for understanding juxes at rarge special and temporal scales. On the other	削除:
660	hand, the chamber method reflects the area where chamber was covered, and it is useful	Mats Granskog 2018/3/23 7:13
661	for understanding the relationship between fluxes and ice surface conditions on smaller	削除: a Rrupo Dolillo 2018/3/27 3:49
662	scales. The different spatial scales of the two methods may be therefore one reason for	削除: And it is, t
663	the discrepancy in CO ₂ flux measurements.	Bruno Delille 2018/3/27 3:50
664		削除: st Rrupo Dolillo 2018/3/27 3:46
665	Comparison of the natural CO ₂ flux range (+0.1 to +1.6 mmol C m ⁻² day ⁻¹ for F_{snow} and	削除: large scale
666	$F_{\rm ff}$ (Table 3) with previous estimates derived from the chamber method $(-5.2 \text{ to } +6.7)$	Bruno Delille 2018/3/27 3:50
667	$mmol C m^{-2} dav^{-1}$ (Nomura et al. 2006, 2010a, 2010b, 2013; Geilfus et al. 2012	Mats Granskog 2018/3/20 12:09
(())	2012: 2014: Desker et al. 2014: Delille et al. 2014: D	削除: difference
668	2015; 2014; Barber et al., 2014; Dennie et al., 2014; Brown et al., 2015; Kotovitch et al.,	Bruno Delille 2018/3/27 3:51
669	2016) (these studies include both natural and potential fluxes) shows that CO_2 fluxes	削际: When we compare Bruno Delille 2018/3/27 3:51
670	during NICE2015 experiment are at the lower end of positive values. However, our	削除: our
671	potential CO ₂ flux (F_{ice}) was a larger CO ₂ source (<u>up to</u> +11.8 mmol C m ⁻² day ⁻¹) than	Bruno Delille 2018/3/27 3:51
672	reported in previous studies (+6.7 mmol C $m^{-2} day^{-1}$). In our study, the maximum	削除: to Bruno Delille 2018/3/27 3:51
673	potential flux (e.g., +11.8 mmol C m ⁻² day ⁻¹) was obtained for F_{ice} at station FI6 (Table	削除: made
674	3) In this situation ApCO _{2 b.e} (293 µatm) was the highest (Table 2 and Figure 6) and it	Bruno Delille 2018/3/27 3:51
675	is reasonable to consider this as the highest magnitude of positive CO. flux within our	別际: by Bruno Delille 2018/3/27 3:52
(7)	is reasonable to consider this as the highest magnitude of positive CO ₂ flux within our	削除: in previous studies
6/6	study. However, a previous study by closed chamber method showed that even for a	Bruno Delille 2018/3/27 3:52
677	similar $\Delta pCO_{2 b-a}$ (297 µatm) and magnitude for the brine volume fraction (10–15%),	削除:,our
678	the CO ₂ flux was +0.7 mmol C m^{-2} day ⁻¹ for artificial sea ice with no snow in the tank	
679	experiment (Nomura et al., 2006).	
680		Bruno Delille 2018/3/27 3:53 削除: In the following, we will discuss this
681	The CO ₂ flux between the sea ice and overlying air can be expressed by the following	difference.
682	equation	Nomura Daiki 2018/3/14 14:36
682	equation,	[則际: (F)
003		
684	$F_{\underline{CO2}_{\psi}} = r_b k \alpha \Delta p C O_{2 b-a},$	Mats Granskog 2018/3/23 8:15
685		削除: lux
686	where r_{b} is the ratio of surface of the brine channel to sea ice surface, and we assume	
687	that the value of r_b is equal to brine volume fraction, k is the gas transfer velocity, α is	
688	the solubility of CO ₂ (Weiss, 1974), and $\Delta pCO_{2 b-a}$ is the difference in pCO ₂ between	

- 708 brine and atmosphere. The equation is based on the fact that CO₂ transfer between
- seawater and air is controlled by processes in the near-surface water (Liss, 1973). The
- gas transfer velocity (k) calculated from F, r_b , α and $\Delta pCO_{2 b-a}$ was 5.12 m day⁻¹ for F_{ice}
- 711 at station FI6 and 0.29 m day⁻¹ for the tank experiment examined in Nomura et al.
- 712 (2006). This result clearly indicates that the gas transfer velocity for F_{ice} at station FI6 is
- 713 higher than that of tank experiment examined in Nomura et al. (2006) even with very
- similar $\Delta pCO_{2 b-a}$ and brine volume fraction.
- 715

716 Here, we surmise that the gas transfer velocity and thereby CO₂ flux is greatly enhanced 717 by the temperature difference between sea ice surface and atmosphere. Previous studies 718 indicate that there is an unstable air density gradient in a dry snowpack due to basal 719 heating and the strong temperature difference develops between bottom and top of snow 720 (e.g., Powers et al., 1985; Severinghaus et al., 2010), which enhances the flow of air 721 through the snowpack. We propose that the mixing and transport of gas within the 722 snowpack could also occur over sea ice. Because temperatures at the bottom of snow 723 and the top of sea ice were relatively warm due to a thick insulating snow over sea ice, 724 there was a strong temperature difference between sea ice surface and atmosphere when 725 air temperature was low (Figure 5a and Table 2). For station FI6, temperature difference 726 between sea ice surface and atmosphere was 20.2°C after snow removal. On the other 727 hand, in the tank experiment by Nomura et al. (2006), the temperature difference 728 between sea ice surface (top 1.5 cm) and air in the headspace was only 4.5°C. 729 730 Figure 6 shows the relationship between mean air–sea ice CO_2 fluxes and temperature 731 difference between ice and atmosphere. The strong dependence of CO₂ flux with temperature difference (T_{ice}-T_a) was observed, especially for F_{ff} and F_{ice} ($R^2 > 0.7$, p < 732

733 0.01) (Figure <u>6</u>). Due to the high brine volume fractions (Table 2), sea ice surface had
734 enough permeability for gas exchange. In addition, ice temperatures were similar for

- 735 young and first-year ice (Figure $\underline{6}$, Table 2), indicating that pCO₂ at the top of sea ice
- and CO_2 flux would be of similar order of magnitude if thermodynamic processes
- 737 dominated. Therefore, our <u>results</u> suggest that the CO₂ fluxes even over the frost
- flowers as <u>a</u> natural condition, would be enhanced by the upward transport of air

739 containing high CO₂ from the surface of sea ice to the atmosphere due to the strong

Nomura Daiki 2018/3/22 23:06 削除: 4a

	Nomura Daiki 2018/3/20 9:51
	削除: 5
	Nomura Daiki 2018/2/20 0:51
	削除:5
	Nomura Daiki 2018/3/20 13:22
	削除: 5
-	Lana Cohen 2018/3/20 9:51
	削除: result

745	temperature difference between sea ice surface and atmosphere. Although the presence		
746	of snow on sea ice has potential to produce a larger temperature difference between sea		
747	ice surface and atmosphere and promote the upward transport, the magnitude of the CO ₂		
748	flux decreased due to the presence of snow. However, for young sea ice with frost		
749	flowers (e.g., station YII), ice surface temperature was warm (Table 2), suggesting that		Nomura Daiki 2018/3/14 13:40 削除: likely
750	CO_2 flux would be enhanced by the large temperature difference between sea ice	\setminus)	Lana Cohen 2018/3/19 10:15
751	surface and atmosphere.		削除: the
752			削除: conditions
753			
754			
755	5 Conclusions		
756			
757	We measured CO ₂ fluxes along with sea ice and snow physical and chemical properties		
758	over first-year and young sea ice north of Svalbard in the Arctic pack ice, Our results		
759	suggest that young thin snow-free ice, with or without frost flowers, is a source of		Nomura Daiki 2018/3/24 17:30 削除: drift
760	atmospheric CO ₂ due to the high pCO ₂ and salinity and relatively high sea ice		Mats Granskog 2018/3/23 7:19
761	temperature. Although the potential CO ₂ flux from sea-ice surface decreased due to the		
762	presence of snow, snow surface still presents a modest CO ₂ source to the atmosphere		Bruno Deille 2018/3/27 3:54 削除: through
763	for low snow density and shallow depth situations. The highest ice to air fluxes were		Bruno Delille 2018/3/27 3:54
764	observed over thin young sea ice formed in leads. During N-ICE2015 the ice pack was		則际: the
765	dynamic, and formation of open water was associated with storms, where new ice was		
766	formed. The subsequent ice growth in these leads becomes important for the ice-to-air		
767	CO ₂ fluxes in winter due to the fact that the flux from young ice is an order of		Nomura Daiki 2018/3/14 13:44 削除: Open leads and storm periods were
768	magnitude larger than from snow-covered first-year and older ice.		important for air-to-sea CO_2 fluxes (Fransson et al., 2017), due to undersaturation of the
769	Y		surface waters, while t
770			Nomura Daiki 2018/3/16 12:44 削除:
771			
772	6 Data availability		
773			
774	Data used in this paper will be available at Norwegian Polar Data Centre		
775	(data.npolar.no).		
776			

790		
791		
792	7 Acknowledgments	
793		
794	We would like to express heartfelt thanks to the crew of R/V Lance and all members of	
795	the N-ICE2015 expedition for their support in conducting the field work. This work was	
796	supported by the Japan Society for the Promotion of Science (#15K16135, #24-4175),	
797	Research Council of Norway (KLIMAFORSK programme, grant 240639), the Centre	
798	of Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute through the N-	
799	ICE project, the Ministry of Climate and Environment and the Ministry of Foreign	
800	Affairs of Norway and the Grant for Joint Research Program of the Institute of Low	
801	Temperature Science, Hokkaido University. AF, MC and MAG were supported by the	
802	flagship research program "Ocean acidification and ecosystem effects in Northern	
803	waters" within the FRAM-High North Research Centre for Climate and the	
804	Environment. BD is a research associate of the F.R.S-FNRS,	Pruno Dolillo 2019/2/27 2:12
805		的。 削除:
806		
807		
808	Reference list	
809		
810	Amiro, B.: Estimating annual carbon dioxide eddy fluxes using open-path analysers for	
811	cold forest sites. Agr. Forest Meteorol., 150, 15, 1366-1372. 2010.	
812		
813	Bain, W. G., Hutyra, L., Patterson, D. C., Bright, A. V., Daube, B. C. Munger, J. W.,	
814	Wofsy, S. C.: Wind-induced error in the measurement of soil respiration using closed	
815	dynamic chambers. Agricul. Forest Meteo., 131, 3-4, 225-232, 2005.	
816		
817	Barber, D. G., Ehn, J. K., Pućko, M., Rysgaard, S., Deming, J. W. and co-authors: Frost	
818	flowers on young Arctic sea ice: The climatic, chemical and microbial significance of	
819	an emerging ice type. J Geophys. ResAtmos. doi: 10.1002/2014JD021736. 2014.	
820		

822	Brown, K. A, Miller, L. A., Davelaar, M., Francois, R., and Tortell P. D.: Over-
823	determination of the carbonate system in natural sea ice brine and assessment of
824	carbonic acid dissociation constants under low temperature, high salinity conditions.
825	Mar. Chem 165: 36-45. doi: 10.1016/j.marchem.2014.07.005. 2014.
826	
827	Brown, K. A., Miller, L.A., Mundy, C. J., Papakyriakou, T., Francois, R., and co-
828	authors: Inorganic carbon system dynamics in landfast Arctic sea ice during the early-
829	melt period. J. Geophys. Res. Oceans, 120, 3542-3566.
830	http://dx.doi.org/10.1002/2014JC010620. 2015.
831	
832	Burba, G., McDermitt, D., Grelle, A., Anderson, D., and Xu, L.: Addressing the
833	influence of instrument surface heat exchange on the measurements of CO ₂ flux from
834	open-path gas analyzers, Global Change Biol., 14, 8, 1854–1876, 2008.
835	
836	Cohen, L., Hudson, S. R., Walden, V. P., Graham, R. M., and Granskog, M. A.:
837	Meteorological conditions in a thinner Arctic sea ice regime from winter through
838	summer during the Norwegian young sea ICE expedition (N-ICE2015), J. Geophys. Res.
839	Atmos., 122, 7235–7259, doi:10.1002/2016JD026034, 2017.
840	
841	Cox, G. F. N., and Weeks W. F.: Equations for determining the gas and brine volumes
842	in sea-ice samples, J. Glaciol., 29, 306–316, 1983.
843	
844	Delille, B., Jourdain, B., Borges, A. V., Tison, JL., and Delille, D.: Biogas (CO ₂ , O ₂ ,
845	dimethylsulfide) dynamics in spring Antarctic fast ice, Limnol. Oceanogr., 52, 1367-
846	1379, 2007.
847	
848	Delille, B., Vancoppenolle, M., Geilfus, NX Tilbrook, B. Lannuzel.D., and co-
849	authors: Southern Ocean CO ₂ sink: the contribution of the sea ice, J. Geophys. Res.
850	Oceans. 119 (9), 6340–6355, 2014.
851	
852	Dickson, A. G., and Millero F. J.: A comparison of the equilibrium constants for the
853	dissociation of carbonic acid in seawater media Deen-Sea Res 34 1733–1743 1987

854	
855	Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater
856	from 273.15 to 318.15 K, Deep-Sea Res. 37, 755–766, 1990.
857	
858	Dickson, A. G., Sabine, C. L., and Christian, J. R. Eds.: Guide to Best Practices for
859	Ocean CO ₂ Measurements, PICES Special Publication, 3, 191 pp, 2007.
860	
861	Fransson, A., Chierici, M., Miller, L. A., Carnat, G., Thomas, H., and co-authors:
862	Impact of sea ice processes on the carbonate system and ocean acidification state at the
863	ice-water interface of the Amundsen Gulf, Arctic Ocean, J. Geophys. Res., 118, 1-23,
864	doi:10.1002/2013JC009164, 2013.
865	
866	Fransson, A., Chierici, M., Abrahamsson, K., Andersson, M., Granfors, A., and co-
867	authors: CO ₂ -system development in young sea ice and CO ₂ gas exchange at the ice/air
868	interface mediated by brine and frost flowers in Kongsfjorden, Spitsbergen, Ann.
869	Glaciol., 56, 69, doi: 10.3189/2015A0G69A563, 2015.
870	
871	Fransson, A., Chierici, M., Skjelvan, I., Olsen, A., Assmy, P., Peterson, A. K., Ward,
872	B.: Effects of sea-ice and biogeochemical processes and storms on under-ice water f
873	CO ₂ during the winter-spring transition in the high Arctic Ocean: Implications for sea-
874	air CO ₂ fluxes, J. Geophys. Res. Oceans, 122(7), 5566-5587.
875	https://doi.org/10.1002/2016JC012478. 2017.
876	
877	Geilfus, NX., Carnat, G., Papakyriakou, T., Tison, JL., Else, B. and co-authors:
878	Dynamics of pCO ₂ and related air-ice CO ₂ fluxes in the Arctic coastal zone (Amundsen
879	Gulf, Beaufort Sea), J. Geophys. Res., 117, C00G10, doi:10.1029/2011JC007118, 2012.
880	
881	Geilfus, NX., Carnat, G., Dieckmann, G. S., Halden, N., Nehrke, G., and co-authors:.
882	First estimates of the contribution of CaCO ₃ precipitation to the release of CO ₂ to the
883	atmosphere during young sea ice growth, J. Geophys. Res., 118:244-255.
884	http://dx.doi.org/10.1029/2012JC007980, 2013.
885	

886	Geilfus, NX., Tison, JL., Ackley, S. F., Galley, R. J., Rysgaard, S., and co-authors:	
887	Sea ice pCO ₂ dynamics and air-ice CO ₂ fluxes during the Sea Ice Mass Balance in the	
888	Antarc-tic (SIMBA) experiment - Bellingshausen Sea, Antarctica, The Cryosphere, 8,	
889	2395-2407, doi:10.5194/tc-8-2395-2014, 2014.	
890		
891	Geilfus, NX., Galley, R. J., Crabeck, O., Papakyriakou, T., Landy, J., Tison, JL. and	
892	Rysgaard, S .: Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the	
893	Canadian Arctic, Biogeosci., 12, 2047–2061, doi:10.5194/bg-12-2047-2015, 2015.	Mats Granskog 2018/3/23 7:04 削除:
894		Mats Granskog 2018/3/23 7:04
895	Gleitz, M., Vonderlo, M. R., Tomas, D. N., Dieckmann, G. S. and Millero F. J.:	即际: www.biogeosciences.net/12/204//201
896	Comparison of summer and winter inorganic carbon, oxygen and nutrient	
897	concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81-89, 1995.	
898		
899	Golden, K. M., Ackley, S. F. and Lytle, V. I.: The percolation phase transition in sea ice,	
900	Science, 282, 2238–2241, 1998.	
901		
902	Granskog, M. A., Assmy, P., Gerland, S., Spreen, G., Steen, H., and co-authors: Arctic	
903	research on thin ice: Consequences of Arctic sea ice loss, Eos Transactions AGU, 97,	
904	22-26, doi:10.1029/2016EO044097, 2016.	
905		
906	Granskog, M. A., Rösel, A., Dodd, P. A., Divine, D., Gerland, S., and co-authors: Snow	
907	contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard,	
908	J. Geophys. Res. Oceans, 122, 2539-2549, doi: 10.1002/2016JC012398, 2017.	
909		
910	Hudson, S. R., Cohen, L., and Walden, V.: N-ICE2015 surface meteorology (Data set),	
911	Norwegian Polar Institute, doi: 10.21334/npolar.2015.056a61d1, 2015.	
912		
913	Inoue, H. Y. and Ishii M.: Variations and trends of CO2 in the surface seawater in the	
914	Southern Ocean south of Australia between 1969 and 2002, Tellus, Ser. B, 57, 58-69,	
915	2005.	
916		
Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from		
--	--	--
snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161-167, 2009.		
Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., and co-authors: Frost		
flowers on sea ice as a source of sea salt and their influence on tropospheric halogen		
chemistry, Geophys. Res. Lett., 31, L16114, doi:10.1029/2004GL020655, 2004.		
Kotovitch, M., Moreau, S., Zhou, J., Vancoppenolle, M., Dieckmann, G. S., and co-		
authors: Air-ice carbon pathways inferred from a sea ice tank experiment, Elementa:		
Science of the Anthropocene, 4, 1, doi10.12952/journal.elementa.000112, 2016.		
Lindsay, R., and Schweiger, A.: Arctic sea ice thickness loss determined using		
subsurface, aircraft, and satellite observations, The Cryosphere, 9(1), 269-283,		
doi:10.5194/tc-9-269-2015, 2015.		
Liss, P. S.: Processes of gas exchange across an air-water interface, Deep-Sea Res. 20,		
221–238, 1973.		
Massman, W., Sommerfeld, R., Zeller, K., Hehn, T., Hudnell, L., and Rochelle, S.: CO2_		
flux through a Wyoming seasonal snowpack: diffusional and pressure pumping effects,		
Biogeochemistry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder		
Symposium, July 1995). IAHS Publ., 228, 71–79, 1995.		
Massom, R.A., Eicken, H., Haas, C., Jeffries, M. O., Drinkwater, M. R., and other co-		
authors: Snow on Antarctic sea ice, Reviews of Geophysics, 39, 413-445, 2001.		
Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz P. M.: Measurement of		
the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure,		
Limnol. Oceanogr., 18, 897–907, 1973.		
Meier, W. N., Hovelsrud, G. K., van Oort, B. E. H., Key, J. R., Kovacs, K. M., and co-		

951	impacts on biology and human activity, Rev. Geophys., 52, 185–217,		
952	doi:10.1002/2013RG000431, 2014.		
953			
954	Miller, L. A., Papakyriakou, T. N., Collins, R. E., Deming, J. W., Ehn, J. K., and co-		
955	authors: Carbon dynamics in sea ice: A winter flux time series, J. Geophys. Res., 116,		
956	C02028, doi:10.1029/2009JC006058, 2011.		
957			
958	Miller, L. A., Fripiat, F., Else, B. G. T., Bowman, J. S., Brown, K. A., and co-authors:.		
959	Methods for Biogeochemical Studies of Sea Ice: The State of the Art, Caveats, and		
960	Recommendation, Elementa, 3, 000038, doi:10.12952/journal.elementa.000038, 2015.		
961			
962	Nomura, D., Inoue, H. Y., and Toyota, T.: The effect of sea-ice growth on air-sea CO_2		
963	flux in a tank experiment, Tellus, Ser. B, 58, 418-426, 2006.		
964			
965	Nomura, D., Inoue, H. Y., Toyota, T., and Shirasawa, K.: Effects of snow, snowmelting		
966	and refreezing processes on air-sea-ice CO ₂ flux, J. Glaciol., 56, 196, 262–270, 2010a.		
967			
968	Nomura, D., Eicken, H., Gradinger, R., and Shirasawa, K.: Rapid physically driven		
969	inversion of the air-sea ice CO_2 flux in the seasonal landfast ice off Barrow, Alaska		
970	after onset of surface melt, Cont. Shelf Res., 30, 1998-2004, 2010b.		
971			
972	Nomura, D., Granskog, M. A., Assmy, P., Simizu, D., and Hashida, G.: Arctic and		
973	Antarctic sea ice acts as a sink for atmospheric CO2 during periods of snow melt and		
974	surface flooding, J. Geophys. Res. Oceans, 118, 6511-6524, 2013.		
975			
976	Merkouriadi, I., Gallet, JC., Graham, R. M., Liston, G. E., Polashenski, C., Rösel, A.,		
977	and Gerland, S.: Winter snow conditions on Arctic sea ice north of Svalbard during the		
978	Norwegian young sea ICE (N-ICE2015) expedition, J. Geophys. Res. Atmos., 122,		
979	doi:10.1002/2017JD026753, 2017.		
980			
981	Papadimitriou, S., Kennedy, H., Norman, L., Kennedy, D. P., Dieckmann, G. S., and		
982	co-authors: The effect of biological activity, CaCO3 mineral dynamics, and CO2		

983	degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the
984	Weddell Sea, Antarctica, J. Geophys. Res. 117, C08011, doi:10.1029/2012JC008058,
985	2012.
986	
987	Papakyriakou, T., and Miller, L. A.: Springtime CO2 exchange over seasonal sea ice in
988	the Canadian Arctic Archipelago, Ann. Glaciol., 52, 57, 215-224, 2011.
989	
990	Parmentier, F. J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S., McGuire, A. D.,
991	and co-authors: The impact of lower sea-ice extent on Arctic greenhouse-gas exchange,
992	Nature Climate Change, 3, 195-202, doi:10.1038/nclimate1784, 2013.
993	
994	Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice, in Thomas, D. N.
995	and Dieckmann, G. S. eds., Sea Ice, 2nd ed., Oxford, Wiley-Blackwell, 23-77, 2010.
996	
997	Pierrot, D., Lewis, E. and Wallace, D. W. R.: MS Excel Program Developed for CO2
998	System Calculations, ORNL/CDIAC-105a. Carbon Dioxide Information Analysis
999	Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
1000	Tennessee, doi: 10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
1001	
1002	Powers, D., Oneill, K., and Colbeck, S. C.: Theory of natural convection in snow, J.
1003	Geophys. ResAtmos., 90, 10641-10649, doi:10.1029/Jd090id06p10641, 1985.
1004	
1005	Pringle, D. J., Miner, J. E., Eicken, H., and Golden, K. M.: Pore space percolation in sea
1006	ice single crystals, J. Geophys. Res., 114, C12017, doi:10.1029/2008JC005145, 2009.
1007	
1008	Rysgaard, S., Søgaard, D. H., Cooper, M., Pucko, M., Lennert, K., and co-authors:
1009	Ikaite crystal distribution in winter sea ice and implications for CO ₂ system dynamics,
1010	The Cryosphere, 7, 707–718, doi:10.5194/tc-7-707-2013, 2013.
1011	
1012	Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A., Krumpen, T. and
1013	Gerland, S.: Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed

1014	During N-ICE2015 North of Svalbard, J. Geophys. Res. Oceans, 123(2), 1156-1176,		
1015	doi:10.1002/2017JC012865, 2018.		
1016	Ψ		
1017	Schindlbacher, A., Zechmeister-Boltenstern, S., Glatzel, G., and Jandl R.: Winter soil		
1018	respiration from an Austrian mountain forest, Agric, For. Meteorol., 146, 205-215,		
1019	doi:10.1016/j.agrformet.2007.06.001, 2007.		
1020			
1021	Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A., Kawamura, K.,		
1022	and co-authors: Deep air convection in the firn at a zero-accumulation site, central		
1023	Antarctica, Earth Planet. Sci. Lett., 293, 359-367, doi:10.1016/J.Epsl.2010.03.003,		
1024	2010.		
1025			
1026	Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Maslanik, J., and Barrett, A.		
1027	P.: The Arctic's rapidly shrinking sea ice cover: a research synthesis, Climatic Change,		
1028	110, 1005, doi:10.1007/s10584-011-0101-1, 2012.		
1029			
1030	Sørensen, L. L, Jensen, B., Glud, R. N., McGinnis, D. F., and Sejr, M. K.:		
1031	Parameterization of atmosphere-surface exchange of CO ₂ over sea ice, The Cryosphere,		
1032	8: 853-866. doi:10.5194/tc-8-853-2014, 2014.		
1033			
1034	Takagi, K., Nomura, M., Ashiya, D., Takahashi, H., Sasa, K., and co-authors: Dynamic		
1035	carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-		
1036	broadleaf mixed forest in northernmost Japan, Global Biogeochem. Cycles, 19, GB2012,		
1037	doi:10.1029/2004GB002272, 2005.		
1038			
1039	Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties of snow		
1040	overlying the sea ice off East Antarctica in late winter 2007, Deep Sea Res. II, 58,		
1041	1137–1148, 2011.		
1042			
1043	Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., and co-authors:		
1044	Role of sea ice in global biogeochemical cycles: emerging views and challenges, Quat.		
1045	Sci. Rev., 79, 207–230, 2013.		

Mats Granskog 2018/3/20 11:52

....[16]

1053			
1054	Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas,		
1055	Mar. Chem., 2, 203–215, 1974.		
1056			
1057	Zemmelink, H. J., Delille, B., Tison, JL., Hintsa, E. J., Houghton, L., and co-authors:.		
1058	CO2 deposition over the multi-year ice of the western Weddell Sea, Geophys. Res. Lett.,		
1059	33, L13606, doi:10.1029/2006GL026320, 2006.		
1060			
1061	Zemmelink, H. J., Dacey, J. W. H., Houghton, L., Hintsa. E. J., and Liss, P. S.:		
1062	Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea, Geophys.		
1063	Res. Lett., 35, L06603, doi:10.1029/2007GL031847, 2008.		
1064			
1065	Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., and co-authors:		
1066	Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights		
1067	on brine and gas dynamics across seasons, J. Geophys. Res. 118, 6, 3172-3189, 2013.		
1068			
1069			
1070			
1071	Figure captions		
1072			
1073	Figure 1. Location map of the sampling area north of Svalbard during N-ICE2015.		
1074	Image of the sea ice concentrations (a) and station map (b) were derived from Special		
1075	Sensor Microwave Imager (SSM/I) satellite data for mean of February 2015 and from		
1076	Sentinel-1 (Synthetic Aperture Radar Sensor) satellite data, respectively.		
1077			
1078	Figure 2. Photographs of the CO ₂ flux chamber system at station YI1 north of Svalbard		
1079	on Friday 13 March 2015. CO ₂ flux chamber was installed over the frost flowers on the		
1080	new thin ice in the refreezing lead.		
1081			
1082	Figure 3. Example of the temporal variation in CO_2 concentration (ΔCO_2) in the		
1083	chambers installed at station YI1 that is use to calculate the CO_2 flux. ΔCO_2 indicates		
1084	the change in CO_2 concentration inside the chamber since the chamber was closed.		
1004	the change in CO_2 concentration inside the channel since the channel was closed.		

1085		
1086	Figure 4. Time series of air temperature measured at the weather mast over the ice floe	
1087	(10 m height) (Hudson et al., 2015). Blank period indicates no data. Colored symbols	
1088	indicate the date for the chamber flux measurements. The horizontal dashed line	
1089	indicates air temperature = 0° C.	
1090		
1091	Figure 5. Vertical profiles of temperature (a) and salinity (b) in snow and sea ice (top 20	Nomura Daiki 2019/2/22 17:25
1092	cm). The horizontal line indicates snow-ice interface. Shaded area indicates sea ice. The	前除: 4
1093	triangle in (a) indicates the air temperature for each station. For stations FI7 and YI2	
1094	and 3, we have no salinity data.	
1095		
1096	Figure 6. Relationships between mean air-sea ice CO2 fluxes and temperature	
1097	difference between ice (T_{ice}) and atmosphere (T_a) (circle) and ice temperature (Tice)	
1098	(top 20 cm) (cross) for F_{snow} (blue), F_{ff} (black) and F_{ice} (red) for young and first-year sea	
1099	ice. Relationships between mean air-sea ice CO_2 fluxes and the difference of pCO_2 .	
1100	$(\Delta pCO_{2 b-a})$ between brine $(pCO_{2 b})$ and atmosphere $(pCO_{2 a})$ (triangle) for F_{snow} (solid	
1101	gray) and F _{ice} (open gray).	Nomura Daiki 2018/2/22 17:23
1102		前除:
1103		
1104	Table captions	
1105		
1106	Table 1. Station, date for CO ₂ flux measurement, position, floe number, surface	
1107	condition, ice type and thickness of snow, frost flowers, and sea ice.	
1108		
1109	a. Sea ice coring and snow sampling was conducted on 5 March 2015.	
1110		
1111	b. Sea ice coring and snow sampling was conducted on 10 March 2015.	
1112		
1113		
1115		
1113	Table 2. Station, snow density and water equivalent, brine volume fraction, and	Nomura Daiki 2018/3/19 10:37
1113 1114 1115	Table 2. Station, snow density and water equivalent, brine volume fraction, and temperature for sea ice (top 20 cm), brine temperature, salinity, DIC, TA, pCO_2 (pCO_2	Nomura Daiki 2018/3/19 10:37 削除: and
1113 1114 1115 1116	Table 2. Station, snow density and water equivalent, brine volume fraction, and temperature for sea ice (top 20 cm), brine temperature, salinity, DIC, TA, pCO ₂ (pCO ₂ b), and atmospheric temperature, wind speed, pCO_2 (pCO_2 a) ^a and ΔpCO_2 b-a.	Nomura Daiki 2018/3/19 10:37 削除: and Nomura Daiki 2018/3/19 10:37 削除: .

1122			
1123	a. pCO_{2a} (µatm) was calculated from CO_2 concentration (ppmv) at Ny-Ålesund,		
1124	Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account saturated water		
1125	vapor and atmospheric pressure during sampling day.		
1126			
1127	b. Mean values for snow column.		
1128			
1129	c. "-" indicates no data. Due to technical reasons, data of snow, sea ice, and brine were		
1130	not obtained.		Mats Granskog 2018/3/2012:12 削除: the
1131			
1132			
1133	Table 3. CO ₂ flux measured over the snow (F_{snow}), frost flowers (F_{ff}), and ice surface		
1134	(F_{ice}) . Values measured directly over undisturbed surfaces (either with frost flowers or		
1135	on snow surface) at a given station are indicated in bold.		
1136			
1137	a. Data of first CO_2 flux measurement after removal of snow or frost flowers.		
1138			
1139	b. "-" <u>indicates</u> no data.		Mata Cranakag 2019/2/20 12:12
1140			削除: means
1141	c. Number of measurements in bracket.		
1142			
1143	d Data from station OI1 was not included.		Nomura Daiki 2019/2/10 10:57
I		\backslash	削除: c
			Nomura Daiki 2018/3/20 9:51
			Mats Granskog 2018/3/20 12:13

削除: of

1	CO ₂ flux over young and snow-covered Arctic pack ice in
2	winter and spring
3	
4	Daiki Nomura ^{1, 2, 3*} , Mats A. Granskog ⁴ , Agneta Fransson ⁴ , Melissa Chierici ^{5, 6} , Anna
5	Silyakova ⁷ , Kay I. Ohshima ^{1, 3} , Lana Cohen ⁴ , Bruno Delille ⁸ , Stephen R. Hudson ⁴ , and
6	Gerhard S. Dieckmann ⁹
7	
8	1 Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-
9	ku, Sapporo, Hokkaido 060–0819, Japan.
10	
11	2 Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate,
12	Hokkaido 041–8611, Japan.
13	
14	3 Arctic Research Center, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo,
15	Hokkaido 001–0021, Japan.
16	
17	4 Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
18	
19	5 Institute of Marine Research, NO-9294, Tromsø, Norway.
20	
21	6 FRAM-High North Research Centre for Climate and the Environment, Tromsø,
22	Norway.
23	
24	7 CAGE, Centre for Arctic Gas Hydrate, Environment and Climate, Tromsø, Norway.
25	
26	8 Unité d'Océanographie Chimique, Freshwater and OCeanic science Unit of research,
27	Université de Liège, Liège, Belgium.
28	
29	9 Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
30	
31	

- 32 * Corresponding author: Daiki Nomura, e-mail: daiki.nomura@fish.hokudai.ac.jp,
- 33 Faculty of Fisheries Sciences, Hokkaido University, 3–1–1, Minato–cho, Hakodate,
- 34 Hokkaido 041–8611, Japan.
- 35
- 36
- 37

38 Abstract

39

Rare CO₂ flux measurements from Arctic pack ice show that two types of ice are 40 41 significant contributors to the release of CO₂ from ice to the atmosphere during winter and spring: young thin ice with thin layer of snow, and old (several weeks) snow 42 43 covered thick ice. Young thin sea ice is characterized by high salinity and then porosity 44 and thin layer of snow. Snow covered thick ice can remain relatively warm $(>-7.5^{\circ}C)$ 45 due to a thick insulating snow cover despite air temperatures were as low as -40°C. 46 Brine volume fractions of these two ice type are therefore high enough to provide 47 favorable conditions for gas exchange between sea ice and the atmosphere even in mid-48 winter. Although the potential CO₂ flux from sea ice decreased due to the presence of the snow, the snow surface is still a CO₂ source to the atmosphere for low snow density 49 and thin snow conditions. We found that young sea ice formed in leads, without snow 50 cover, is the most effective in terms of CO₂ flux (+1.0 \pm 0.6 mmol C m⁻² day⁻¹) since 51 the fluxes are an order of magnitude higher than for snow-covered older ice $(+0.2 \pm 0.2)$ 52 mmol C m⁻² day⁻¹). 53 54 55 56 57 Introduction 1 58 59 Arctic sea ice is changing dramatically, with rapid declines in summer sea ice extent 60 and a shift towards younger and thinner first-year ice rather than thick multi-year ice 61 (e.g., Stroeve et al., 2012; Meier et al., 2014; Lindsay and Schweiger, 2015). Although 62 the effects of sea ice formation and melting on biogeochemical cycles in the ocean have 63 previously been discussed (e.g., Vancoppenolle et al., 2013), the effects of sea ice 64 freezing and melting on the carbon dioxide (CO_2) exchange with the atmosphere are 65 still large unknowns (Parmentier et al., 2013). 66 Recent CO₂ flux measurements on sea ice indicate that sea ice is an active component in 67 68 gas exchange between ocean and atmosphere (Nomura et al., 2013; Geilfus et al., 2013; 69 2014; Delille et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). The sea-ice CO₂

70 fluxes depend on (a) the difference in the partial pressure of CO_2 (p CO_2) between the 71 sea ice surface and air, (b) brine volume fraction at the ice-snow interface, (c) ice 72 surface condition including the snow deposited on ice, and (d) wind-driven pressure 73 pumping through the snow. For (a), it is known that the air-sea ice CO_2 flux is driven by the differences in pCO_2 between the sea ice surface and atmosphere (e.g. Delille et 74 75 al., 2014; Geilfus et al., 2014). The brine pCO_2 changes due to processes within the sea ice, such as thermodynamic process (e.g., Delille et al., 2014), biological activity (e.g., 76 77 Delille et al., 2007; Fransson et al., 2013; Rysgaard et al., 2013), and calcium carbonate 78 (CaCO₃; ikaite) formation and dissolution (e.g., Papadimitriou et al., 2012). When the 79 pCO_2 in the brine is higher than that of the air pCO_2 , brine has the potential to release 80 CO_2 to the atmosphere. Brine volume fraction (b) controls permeability of sea ice 81 (Golden et al. 1998) and then CO₂ fluxes (Delille et al. 2014; Geilfus et al 2014). The 82 air-sea ice CO₂ flux is strongly dependent on the sea ice surface conditions (c) (Nomura et al., 2010a, 2013; Geilfus et al., 2013; 2014; Barber et al., 2014; Brown et al., 2015; 83 84 Fransson et al., 2015). Nomura et al. (2013) proposed that snow conditions (e.g., water 85 equivalent) are important factors affecting gas exchange processes on sea ice. In 86 addition, frost flowers promote CO_2 flux from the ice to the atmosphere (Geilfus et al., 87 2013; Barber et al., 2014; Fransson et al., 2015). For (d), it is thought that for snow 88 cover, the CO₂ flux is affected by wind pumping (Massman et al., 1995; Takagi et al., 89 2005) in which the magnitude of CO_2 flux through snow or overlying soil (e.g., Takagi 90 et al., 2005) increases due to wind pumping and can increase the transport relative to 91 molecular diffusion by up to 40% (Bowling and Massman, 2011). These results were 92 mainly found over land-based snow (soil and forest), and thus these processes are not 93 well understood over sea ice (Papakyriakou and Miller, 2011).

94

95 In addition to the processes described above, the CO₂ flux over sea ice may also be 96 influenced by the temperature difference between the ice surface and the atmosphere. 97 This has been shown in previous studies in dry snowpacks over land surfaces. These 98 studies show that there is an unstable air density gradient due to heating at the bottom 99 producing a strong temperature difference between bottom and top of snow (e.g., 100 Powers et al., 1985; Severinghaus et al., 2010). This produces air flow within the 101 snowpack, which is a potentially significant contributor to mixing and transport of gas

102 and heat within the snowpack. We expect that this process would also occur in snow 103 over sea ice, especially during the wintertime when air temperatures are coldest and the 104 temperature difference between sea ice surface (snow bottom) and atmosphere is largest 105 (e.g., Massom et al., 2001). Generally, the sea ice surface under thick snow cover is 106 warm due to the heat conduction from the bottom of sea ice and the insulation effect of 107 the snow cover, and a strong temperature difference between sea ice surface and 108 atmosphere is observed (e.g., Massom et al., 2001). Such a temperature difference 109 would produce an unstable air density gradient and upward transport of air containing 110 CO_2 degassed at the sea-ice surface, thereby enhancing CO_2 exchange between sea ice

- 111 and atmosphere.
- 112

113 In the ice covered Arctic Ocean, storm periods, with high wind speeds and open leads 114 are important for air-to-sea CO₂ fluxes (Fransson et al., 2017), due to the under-115 saturation of the surface waters in CO₂ with respect to the atmosphere. On the other 116 hand, the subsequent ice growth and frost flowers formation in these leads promote ice-117 to-air CO₂ fluxes in winter (e.g. Barber et al., 2014). Given the fact that Arctic sea ice is 118 shrinking and shifting from multi-year ice to first-year ice, the area of open ocean and 119 thinner seasonal ice is increasing. Therefore, the contribution of open ocean/thinner sea 120 ice surface to the overall CO₂ fluxes of the Arctic Ocean is potentially increasing. 121 However, due to the difficulty in acquiring observations over the winter pack ice, most 122 of the winter CO₂ flux measurements were examined over the Arctic landfast ice. 123 Therefore, there is a definite lack of information on conditions during wintertime, 124 especially from Arctic pack ice.

125

126 The Norwegian young sea ICE (N-ICE2015) campaign in winter and spring 2015 127 provided opportunities to examine CO₂ fluxes between sea ice and atmosphere in a 128 variety of snow and ice conditions in pack ice north of Svalbard. Formation of leads and 129 their rapid refreezing allowed us to examine air-sea ice CO₂ fluxes over thin young sea 130 ice, occasionally covered with frost flowers in addition to the snow-covered older ice 131 that covers most of the pack ice area. The objectives of this study were to understand the effects of i) thin sea ice and frost flowers formations on the air-sea ice CO₂ flux in 132 133 leads, ii) effect of snow-cover on the air-sea ice CO₂ flux over thin, young ice in the

134	Arctic Ocean during winter and spring seasons, and iii) of the effect of the temperature
135	difference between sea ice and atmosphere (including snow cover) on the air-sea ice
136	CO ₂ flux.
137	
138	
139	2 Materials and Methods
140	
141	2.1 Study area
142	
143	This study was performed during N-ICE2015 campaign with R/V Lance in the pack ice
144	north of Svalbard from January to June 2015 (Granskog et al., 2016). Air-sea ice CO ₂
145	flux measurements were carried out from January to May 2015 during the drift of floes
146	1, 2, and 3 of the N-ICE2015 campaign (Figures 1 and 2, Table 1). The ice pack was a
147	mixture of young ice, first-year ice and second-year ice (Granskog et al., 2017), the two
148	latter with a thick snow cover (Merkouriadi et al., 2017; Rösel et al., 2018). Air-sea ice
149	CO2 flux measurements were done over young ice (YI stations), first-year ice (FI
150	stations), and old ice (multi-year ice) (OI station). In the N-ICE2015 study region modal
151	ice thickness was about 1.3-1.5 m and modal snow thickness was about 0.5 m (Rösel et
152	al., 2018). Formation of leads and their rapid refreezing provided us the opportunity to
153	examine air-sea ice CO ₂ fluxes over thin sea ice, occasionally covered with frost
154	flowers at station YI1 (Figure 2 and Table 1). Air temperature and wind speed were
155	measured at a 10 m weather mast on the ice floe installed about 400 m away from R/V
156	Lance (Cohen et al., 2017).
157	
158	
159	2.2 CO ₂ flux measurements
160	
161	The air-sea ice CO ₂ flux was measured with LI-COR 8100-104 chambers connected to
162	a LI-8100A soil CO ₂ flux system (LI-COR Inc., USA) (Figure 2). This enclosed
163	chamber method has been widely applied over snow and sea ice (e.g., Schindlbacher et
164	al., 2007, Geilfus et al., 2015). Two chambers were connected in a closed loop to the
165	infrared gas analyzer (LI-8100A, LI-COR Inc., USA) to measure CO ₂ concentration

166 through the multiplexer (LI-8150, LI-COR Inc., USA) with an air pump rate at 3 L min⁻¹. Power was supplied by a car battery (8012-254, Optima Batteries Inc., USA). Four 167 CO₂ standards (324–406 ppmv) traceable to the WMO scale (Inoue and Ishii, 2005) 169 were prepared to calibrate the CO₂ gas analyzer prior to the observations. CO₂ flux was 170 measured in the morning or in the afternoon during low-wind conditions (Table 2), to

171 minimize the effect of wind on the flux (Bain et al., 2005).

172

173 One chamber was installed over undisturbed snow or frost flowers over the ice surface. 174 The chamber collar was inserted 5 cm into the snow and 1 cm into ice at frost flowers 175 site to avoid air leaks between inside and outside of chamber. The second chamber was 176 installed on bulk sea ice after removing the snow or frost flowers. Flux measurements 177 was begun immediately in order to minimize the changes of the ice surface condition. In 178 order to evaluate the effect of removing snow on sea ice surface temperature, ice surface 179 temperature was monitored during CO₂ flux measurements at station FI6. To measure 180 the sea ice surface temperature, temperature sensor (RTR 52, T & D Corp., Japan) was 181 installed in the top of the ice (1 cm) surface after snow removal. During first CO₂ flux 182 measurements (about 30 minutes), ice surface temperature was stable at -5.8° C, 183 suggesting that the effect of removing snow on the variation of sea ice surface 184 temperature was negligible within 30 minutes. The ice surface temperature decreased 185 from -5.8°C to -8.0°C at 200 minutes after removal of snow. Therefore, in this paper, 186 the data of the initial 30 minutes of CO₂ flux measurement after removal of snow or 187 frost flowers was used. The chamber was closed for 20 minutes in a sequence. The 20-188 minute time period was used because CO₂ fluxes over sea ice are much smaller than 189 over land. The CO₂ concentrations within the chamber were monitored to ensure that they changed linearly throughout the measurement period (example given in Figure 3). 190 The CO₂ flux (mmol C m^{-2} day⁻¹) (positive value indicates CO₂ being released from ice 191 192 surface to air) was calculated based on the changes of the CO₂ concentration within the 193 headspace of the chamber with LI-COR software (Model: LI8100PC Client v.3.0.1.). 194 The mean coefficient of variation for CO₂ flux measurements was less than 3.0% for 195 CO_2 flux values larger than ± 0.1 mmol C m⁻² day⁻¹. For CO₂ flux values smaller than 196 ± 0.1 mmol C m⁻² day⁻¹, the mean coefficient of variation for CO₂ flux measurements

197 was higher than 3.0%, suggesting that the detection limit of this system is about 0.1 198 mmol C m⁻² day⁻¹.

199

In this paper, we express the CO_2 flux measured over the snow and frost flowers as F_{snow} and F_{ff} , respectively, and the flux measured directly over the sea ice surface either on snow-free ice or after removal of snow and frost flowers as F_{ice} . F_{snow} and F_{ff} are the natural flux (snow and frost flowers are part of the natural system), and F_{ice} is the potential flux in cases when snow or frost flowers are removed. While removal of snow and frost flowers is an artificial situation, comparisons between F_{ice} and F_{snow} or F_{ff} provide information about the effect of snow on the CO_2 flux. Therefore, in this study,

- 207 we examine both situations for CO_2 flux.
- 208
- 209

210 2.3 Sampling of snow, frost flowers, brine, and sea ice

211

212 For salinity measurements, separate samples were taken for snow only, snow and frost 213 flowers, and sea ice surface scrapes. The samples were taken using a plastic shovel, 214 placed into plastic bags and stored in an insulated box for transport to the ship-lab for 215 further processing. Samples were melted slowly (2–3 days) in the dark at +4°C. The 216 temperature of the snow and frost flowers samples were measured during CO₂ flux 217 measurements (approximately 60 minutes after the onset of the CO₂ flux measurement) 218 using a needle-type temperature sensor (Testo 110 NTC, Brandt Instruments, Inc., 219 USA). The accuracy of this sensor is $\pm 0.2^{\circ}$ C. Snow density was obtained using a fixed 220 volume sampler (Climate Engineering, Japan) and weight measurement. The depth of 221 the snow pack and frost flowers was also recorded using a ruler. 222

Brine was also collected at stations FI3–6 for salinity, dissolved inorganic carbon (DIC)
and total alkalinity (TA) measurements. Brine was collected from sackholes as
described in Gleitz et al. (1995). The sackholes were drilled using a 9 cm diameter ice
corer (Mark II coring system, Kovacs Enterprises, Inc., USA) to a depth of 30 cm. The
sackholes were then covered with a lid of 5 cm-thick urethane to reduce heat and gas
transfer between brine and atmosphere. When brine accumulated at the bottom of the

229 sackholes (approximately 15 minutes), it was collected with a plastic syringe (AS ONE 230 Corporation, Japan) and kept in 500 mL unbreakable plastic bottles (I-Boy, AS ONE 231 Corporation, Japan) in order to facilitate safe transport to the sampling sites in cold and 232 harsh conditions. The brine bottles were filled without head-space and immediately 233 stored in an insulated box to prevent freezing. Immediately after return to the ship, the 234 brine samples were transferred to 250 mL borosilicate bottles (DURAN Group GmbH, 235 Germany) for DIC and TA measurements using tubing to prevent contact with air. The 236 samples were preserved with saturated mercuric chloride (HgCl₂, 60 µL for a 250 mL 237 sample) and stored in the dark at +10°C until analyses was performed at the Institute of 238 Marine Research, Norway. 239 240 Sea ice was collected by same ice corer as described for brine collection and at the same 241 location as snow and frost flowers were collected. Sea ice temperature was measured by 242 same sensor as described for snow. For the ice cores, the temperature sensor was 243 inserted in small holes drilled into the core. The core was then cut with a stainless steel 244 saw into 10 cm sections and stored in plastic bags for subsequent salinity measurements. 245 The ice core sections were kept at +4°C and melted in the dark prior to measurement. 246 247

248 **2.4 Sample analysis**

249

250 Salinities for melted snow, frost flowers, sea ice, and brine were measured with a 251 conductivity sensor (Cond 315i, WTW GmbH, Germany). For calibration of salinity 252 measurement, a Guildline PORTASAL salinometer Model 8410A, standardized by 253 International Association for the Physical Sciences of the Oceans (IAPSO) standard 254 seawater (Ocean Scientific International Ltd, UK) was used. Accuracy of this sensor 255 was ± 0.003 .

256

257 Analytical methods for DIC and TA determination are fully described in Dickson et al.

258 (2007). DIC in brine was determined using gas extraction of acidified sample followed

259 by coulometric titration and photometric detection using a Versatile Instrument for the

260 Determination of Titration carbonate (VINDTA 3C, Germany). TA of brine was

261 determined by potentiometric titration of 40 mL sample in open cell with 0.05 N 262 hydrochloric acid using a Titrino system (Metrohm, Switzerland). The average standard 263 deviation for DIC and TA, determined from replicate sample analyses from one sample, was within $\pm 2 \mu$ mol kg⁻¹ for both DIC and TA. Accuracy of the DIC and TA 264 measurements were $\pm 2 \mu mol kg^{-1}$ for both DIC and TA estimated using Certified 265 Reference Materials (CRM, provided by A. G. Dickson, Scripps Institution of 266 267 Oceanography, USA). The pCO₂ of brine (pCO_{2 b}) was derived from in situ temperature, 268 salinity, DIC and TA of brine using the carbonate speciation program CO2SYS (Pierrot 269 et al., 2006). We used the carbonate dissociation constants (K₁ and K₂) of Mehrbach et 270 al. (1973) as refit by Dickson and Millero (1987), and the KSO₄ determined by Dickson 271 (1990). The conditional stability constants used to derived pCO_2 are strictly only valid 272 for temperatures above 0 °C and salinities between 5 and 50. Studies in spring ice 273 indicated that seawater thermodynamic relationships may be acceptable in warm and 274 low-salinity sea ice (Delille et al., 2007). In sea ice brines at even moderate brine 275 salinities of 80, Brown et al. (2014) found that measured and calculated values of the 276 CO_2 system parameters can differ by as much as 40%. On the other hand, because the 277 CO_2 system parameters are much more variable in sea ice than in seawater, sea ice 278 measurements demand less precision than those in seawater. Fransson et al. (2015) 279 performed one of few detailed analyses of the internal consistency using four sets of 280 dissociation constants and found that the deviation between measured and calculated DIC varied between ± 6 and $\pm 11 \mu$ mol kg⁻¹, respectively. This error in calculated DIC 281 282 was considered insignificant in relation to the natural variability in sea ice. 283

The pCO₂ of atmosphere was calculated from CO₂ concentration (ppmv) at Ny-Ålesund,
Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account saturated water
vapor and atmospheric pressure during sampling day.

287

288 The water equivalent was computed for snow by multiplying snow thickness by snow

density (Jonas et al., 2009). Brine volume of sea ice was calculated from the

temperature and salinity of sea ice according to Cox and Weeks (1983) and Petrich and

Eicken (2010).

293	
294	3 Results
295	
296	3.1 Air temperature
297	
298	Air temperature is shown in Figure 4. During the study period, air temperature varied
299	significantly from a low of -41.3°C (30 January) to a high of +1.7°C (15 June) (Hudson
300	et al., 2015). Even in wintertime (from January to March), rapid increases of air
301	temperature from below -30° C up to -0.2° C (e.g., 18 February), were observed. In
302	springtime (from April to June), the air temperature increased continuously, and from 1
303	June, air temperatures were near 0°C, although rapid increases (and subsequent
304	decreases) of air temperature to near 0°C were observed on two occasions in mid-May
305	(Cohen et al., 2017).
306	
307	
308	3.2 Characteristics of snow, sea ice, and frost flowers
309	
310	The snow and ice thickness at the observation sites ranged between 0.0 and 60.0 cm and
311	between 15.0 and >200 cm, respectively (Table 1). The thin snow and ice represent
312	newly formed ice in leads at station YI1. The thickness of the frost flowers ranged from
313	1.0 to 2.5 cm.
314	
315	Figure 5 shows vertical profiles of snow and ice temperature and salinity in the top 20
316	cm of ice. Temperatures within the snowpack depended on the air temperature at the
317	time of observation. However, the bottom of the snow and the surface of the sea ice
318	were relatively warm (T>–7.5°C), except for the frost flowers station YI1 and the multi-
319	year ice station OI1 (Figure 5a and Table 2). High salinities (S>18.6) characterized the
320	bottom of the snow and the surface of the sea ice, except for the multi-year ice station
321	OI1 (Figure 5b). At the multi-year ice station OI1, salinity was zero through the snow
322	and top of sea ice. Salinity of frost flowers was up to 92.8 for the thin ice station YI1
323	(Figure 5b). Snow density and water equivalent ranged from 268 to 400 kg m^{-3} and 11
324	to 180 kg m^{-2} , respectively.

325 326 327 Physical and chemical properties of brine 3.3 328 The brine volume fraction, temperature, salinity, DIC, TA, and calculated pCO₂ are 329 summarized in Table 2. Brine volume fraction in top 20 cm of ice was from 9 to 17%, 330 331 except for the value of 0% at the multi-year ice station OI1 (Table 2). Brine temperatures and salinity ranged from -5.3 to -3.3 °C and 51.8 to 86.6, respectively. 332 DIC and TA of brine ranged from 3261 to 4841 μ mol kg⁻¹ and 3518 to 5539 μ mol kg⁻¹, 333 respectively. The pCO₂ of brine (pCO_{2 b}) (334–693 μ atm) was generally higher than 334 335 that of atmosphere (pCO_{2 a}) (401 \pm 7 µatm), except for station FI4. 336 337 338 3.4 CO_2 flux 339 340 Table 3 summarizes the CO₂ flux measurements for each surface condition. For undisturbed natural surface conditions, i.e. measurements directly on the snow surface 341 342 (F_{snow}) or the frost flowers (F_{ff}) on young ice, the mean CO₂ flux was $+0.2 \pm 0.2$ mmol C m⁻² day⁻¹ for F_{snow} and +1.0 ± 0.6 mmol C m⁻² day⁻¹ for F_{ff} . The potential flux in 343 cases when snow or frost flowers had been removed (F_{ice}) was +2.5 ± 4.3 mmol C m⁻² 344 day^{-1} . The air-sea ice CO₂ fluxes measured over the ice surface (F_{ice}) increased with 345 346 increasing difference in pCO₂ between brine and atmosphere (ΔpCO_{2b-a}) with significant correlation ($R^2 = 0.9$, p < 0.02), but this was not the case for F_{snow} ($R^2 = 0.0$, 347 p < 0.96) (Figure 6). 348 349 350 351 352 Discussion 4 353 354 Effect of snow cover on the physical properties of sea ice surface 4.1 355

356 In this study, we examined CO_2 fluxes between sea ice and atmosphere in a variety of 357 air temperature conditions from -32 to -3° C and diverse snow and ice conditions (Table 358 2). The bottom of the snow pack and the surface of the sea ice remained relatively warm 359 (>–7.5°C) (Figure 5a, Table 2), except for stations OI1 and YI1, even though air 360 temperature was sometimes below –40°C (Figure 4). Relatively warm ice temperatures 361 were likely due to the upward heat transport from the bottom of the ice and in some 362 cases the thick insulating snow cover, except for stations OI1 and YI1 (Table 2). 363 Therefore, snow acted as thermal insulator over sea ice, and in general the snow depths 364 observed during N-ICE2015 point towards this being representative for first-year and 365 second-year or older ice in the study region in winter 2015 (Rösel et al., 2018). The 366 young and first-year ice surfaces were characterized by high salinities (Figure 5b). 367 During sea ice formation, upward brine transport to the snow pack occurs (e.g., Toyota 368 et al., 2011). In addition, brine within the sea ice was not completely drained as 369 compared to that of multi-year ice. Furthermore, formation of frost flowers and 370 subsequent wicking up of surface brine into the frost flowers also provides high salinity 371 at the surface of sea ice (Kaleschke et al., 2004; Geilfus et al., 2013; Barber et al., 2014; 372 Fransson et al., 2015) as observed in this study (S>92) (Figure 5b). Snowfall over the 373 frost flowers would have preserved the high salinity at the bottom of snow pack and top 374 of sea ice for young and first-year ice.

375

376 As a result of the combination of the relatively high temperature and high salinity at the 377 top of sea ice, brine volume fractions in the upper parts of the sea ice were high, up to 378 17% (Table 2). It has been shown that ice permeability increases by an order of 379 magnitude when brine volume fraction > 5%, which would correspond to a temperature 380 of -5° C for a bulk ice salinity of 5 – the so called "law of fives" (Golden et al., 1998; 381 Pringle et al., 2009; Zhou et al., 2013). Because sea ice temperatures were low and 382 thereby reduced permeability in winter season, generally, air-sea ice CO₂ flux is at its 383 minimum in the winter (e.g., Delille et al., 2014). However, in our study, the brine 384 volume fractions were generally >9%, except for station OI1 with fresh ice at the 385 surface, providing conditions for active gas exchange within sea ice and between sea ice 386 and atmosphere. This situation was likely made possible due to the thick snow cover 387 and relatively thin and young sea ice.

389

390 4.2 CO₂ fluxes over different sea-ice surface types

391

The CO₂ flux measurements over different surface conditions indicate that the snow cover over sea ice affects the magnitude of air–sea ice CO₂ flux, especially for stations FI5 and FI6 (Table 3). For undisturbed natural surface conditions, the CO₂ flux measured directly over snow-covered first-year ice and young ice with frost flowers (F_{snow} and F_{ff}) was lower in magnitude than that for potential flux obtained directly over the ice surface after removing snow (F_{ice}), especially for stations FI5, FI6, and YI1.

399 F_{ff} indicates that the frost flowers surface on young thin ice is a CO₂ source to the 400 atmosphere and F_{ff} was higher than F_{snow}, except for station FI1. Frost flowers are 401 known to promote gas flux, such as CO₂, from the sea ice to the atmosphere (Geilfus et 402 al., 2013; Barber et al., 2014; Fransson et al., 2015). At multi-year ice station OI1, 403 neither snow or ice surface acted as a CO₂ source/sink. The surface of multi-year ice did 404 not contain any brine (Figure 5b and Table 2), and the top of the ice was clear, colorless 405 and very hard, suggesting superimposed formation at the top of sea ice. This situation 406 would be similar as for freshwater-ice and superimposed-ice as these non-porous media 407 block gas exchange effectively at the sea ice surface (Delille et al., 2014). Snow-ice and 408 superimposed-ice were frequently found in second-year ice cores during N-ICE2015 409 (Granskog et al., 2017), so the 'blocking' of gas exchange in second-year and multi-410 year ice may be a widespread process in the Arctic.

411

The magnitude of positive F_{snow} is less than F_{ice} for stations FI5 and FI6 (Table 3) 412 413 indicating that the potential CO₂ flux from sea ice decreased due to the presence of 414 snow. Previous studies have shown that snow accumulation over sea ice effectively 415 impede CO₂ exchange (Nomura et al., 2013; Brown et al., 2015). Nomura et al. (2013) 416 reported that 50–90% of the potential CO₂ flux was reduced due to the presence of snow/superimposed-ice at the water equivalent of $57-400 \text{ kg m}^{-2}$, indicating that the 417 418 snow properties are an important factor that controls the CO₂ exchange through a 419 snowpack. Comparisons between stations FI5 and FI6 for F_{snow}/F_{ice} ratio (0.2 for FI5

indicate that the potential CO₂ flux is reduced (80% for FI5 and 98% for FI6 of the 421 422 potential CO₂ flux) with increasing water equivalent. Although the magnitude of the 423 potential CO₂ flux through the sea ice surface decreased by the presence of snow for 424 stations FI5 and FI6 (Table 3), the snow surface still presents a CO₂ source to the atmosphere for low snow density and shallow depth conditions (e.g., +0.6 mmol C m⁻² 425 day^{-1} for FI5). 426 427 For $F_{ice},$ there were negative $\rm CO_2$ fluxes at stations FI3 and FI4 (–0.6 mmol C $m^{-2}~day^{-1}$ 428 for FI3 and $-0.8 \text{ mmol C m}^{-2} \text{ day}^{-1}$ for FI4) (Table 3). These fluxes corresponded to low 429 or negative $\Delta pCO_{2 b-a}$ as compared to that in atmosphere (Table 2 and Figure 6). 430 431 Negative CO₂ fluxes should correspond to negative $\Delta pCO_{2 b-a}$. Therefore, the 432 uncertainty for the calculation of carbonate chemistry may be one reason for the 433 discrepancy in pCO_2 calculation in these conditions (Brown et al., 2014). 434 435 436 4.3 Comparison to earlier studies on sea-ice to air CO₂ flux 437 438 The CO₂ fluxes measured over the undisturbed natural surface conditions (F_{snow} and F_{ff}) in this study ranged from +0.1 to +1.6 mmol C m^{-2} day⁻¹ (Table 3), which are at the 439 440 lower end of the reported range based on the chamber method and eddy covariance 441 method for natural and artificial sea ice $(-259.2 \text{ to } +74.3 \text{ mmol C m}^{-2} \text{ day}^{-1})$ (Zemmelink et al., 2006; Nomura et al., 2006, 2010a, 2010b, 2013; Miller et al., 2011; 442 443 Papakyriakou and Miller, 2011; Geilfus et al., 2012, 2013; 2014; Barber et al., 2014; 444 Delille et al., 2014; Sørensen et al., 2014; Brown et al., 2015; Kotovitch et al., 2016). 445 Direct comparison to previous studies is complicated because CO₂ flux measurements 446 with both chamber and eddy covariance techniques were used during different condition 447 for season and ice surface characteristics. In addition, discrepancies between chamber 448 and eddy covariance measurements of air-ice CO₂ fluxes have been repeatedly observed. 449 The footprint size of CO₂ exchange measured with the two approaches (Zemmelink et 450 al., 2006, 2008; Burba et al., 2008; Amiro, 2010; Miller et al., 2011; Papakyriakou and 451 Miller, 2011; Sørensen et al., 2014; Miller et al., 2015) may be one reason for the large

and 0.0 for FI6) and water equivalent (11 kg m^{-2} for FI5 and 127 kg m^{-2} for FI6)

- difference. The eddy covariance method reflects a flux integrated over a large area, that can contain several different surface types. Therefore, eddy-covariance appears to be more useful for understanding fluxes at large special and temporal scales. On the other hand, the chamber method reflects the area where chamber was covered, and it is useful for understanding the relationship between fluxes and ice surface conditions on smaller scales. The different spatial scales of the two methods may be therefore one reason for the discrepancy in CO₂ flux measurements.
- 459

Comparison of the natural CO₂ flux range (+0.1 to +1.6 mmol C m⁻² day⁻¹ for F_{snow} and 460 $F_{\rm ff}$) (Table 3) with previous estimates derived from the chamber method (-5.2 to +6.7 461 $mmol C m^{-2} dav^{-1}$) (Nomura et al., 2006, 2010a, 2010b, 2013; Geilfus et al., 2012, 462 2013; 2014; Barber et al., 2014; Delille et al., 2014; Brown et al., 2015; Kotovitch et al., 463 464 2016) (these studies include both natural and potential fluxes) shows that CO₂ fluxes 465 during NICE2015 experiment are at the lower end of positive values. However, our potential CO₂ flux (F_{ice}) was a larger CO₂ source (up to +11.8 mmol C m⁻² day⁻¹) than 466 reported in previous studies (+6.7 mmol C $m^{-2} day^{-1}$). In our study, the maximum 467 potential flux (e.g., +11.8 mmol C $m^{-2} day^{-1}$) was obtained for F_{ice} at station FI6 (Table 468 469 3). In this situation, $\Delta pCO_{2 b-a}$ (293 µatm) was the highest (Table 2 and Figure 6), and it 470 is reasonable to consider this as the highest magnitude of positive CO₂ flux within our 471 study. However, a previous study by closed chamber method showed that even for a similar $\Delta pCO_{2 b-a}$ (297 µatm) and magnitude for the brine volume fraction (10–15%), 472 the CO₂ flux was +0.7 mmol C m^{-2} day⁻¹ for artificial sea ice with no snow in the tank 473 experiment (Nomura et al., 2006). 474

475

The CO₂ flux between the sea ice and overlying air can be expressed by the followingequation,

478

479 $F_{CO2} = r_b k \alpha \Delta pCO_{2 b-a}$,

480

481 where r_b is the ratio of surface of the brine channel to sea ice surface, and we assume 482 that the value of r_b is equal to brine volume fraction, k is the gas transfer velocity, α is

483 the solubility of CO₂ (Weiss, 1974), and $\Delta pCO_{2 b-a}$ is the difference in pCO₂ between

484 brine and atmosphere. The equation is based on the fact that CO₂ transfer between

485 seawater and air is controlled by processes in the near-surface water (Liss, 1973). The

486 gas transfer velocity (k) calculated from F, r_b , α and $\Delta pCO_{2 b-a}$ was 5.12 m day⁻¹ for F_{ice}

487 at station FI6 and 0.29 m day⁻¹ for the tank experiment examined in Nomura et al.

488 (2006). This result clearly indicates that the gas transfer velocity for F_{ice} at station FI6 is

higher than that of tank experiment examined in Nomura et al. (2006) even with very

490 similar $\Delta pCO_{2 b-a}$ and brine volume fraction.

491

492 Here, we surmise that the gas transfer velocity and thereby CO₂ flux is greatly enhanced 493 by the temperature difference between sea ice surface and atmosphere. Previous studies 494 indicate that there is an unstable air density gradient in a dry snowpack due to basal 495 heating and the strong temperature difference develops between bottom and top of snow 496 (e.g., Powers et al., 1985; Severinghaus et al., 2010), which enhances the flow of air 497 through the snowpack. We propose that the mixing and transport of gas within the 498 snowpack could also occur over sea ice. Because temperatures at the bottom of snow 499 and the top of sea ice were relatively warm due to a thick insulating snow over sea ice, 500 there was a strong temperature difference between sea ice surface and atmosphere when 501 air temperature was low (Figure 5a and Table 2). For station FI6, temperature difference 502 between sea ice surface and atmosphere was 20.2°C after snow removal. On the other 503 hand, in the tank experiment by Nomura et al. (2006), the temperature difference 504 between sea ice surface (top 1.5 cm) and air in the headspace was only 4.5°C.

505

506 Figure 6 shows the relationship between mean air-sea ice CO₂ fluxes and temperature difference between ice and atmosphere. The strong dependence of CO₂ flux with 507 temperature difference ($T_{ice}-T_a$) was observed, especially for F_{ff} and F_{ice} ($R^2 > 0.7$, p < 508 509 0.01) (Figure 6). Due to the high brine volume fractions (Table 2), sea ice surface had 510 enough permeability for gas exchange. In addition, ice temperatures were similar for 511 young and first-year ice (Figure 6, Table 2), indicating that pCO₂ at the top of sea ice 512 and CO₂ flux would be of similar order of magnitude if thermodynamic processes 513 dominated. Therefore, our results suggest that the CO_2 fluxes even over the frost 514 flowers as a natural condition, would be enhanced by the upward transport of air 515 containing high CO₂ from the surface of sea ice to the atmosphere due to the strong

516	temperature difference between sea ice surface and atmosphere. Although the presence			
517	of snow on sea ice has potential to produce a larger temperature difference between sea			
518	ice surface and atmosphere and promote the upward transport, the magnitude of the CO ₂			
519	flux decreased due to the presence of snow. However, for young sea ice with frost			
520	flowers (e.g., station YI1), ice surface temperature was warm (Table 2), suggesting that			
521	CO ₂ flux would be enhanced by the large temperature difference between sea ice			
522	surface and atmosphere.			
523				
524				
525				
526	5 Conclusions			
527				
528	We measured CO ₂ fluxes along with sea ice and snow physical and chemical properties			
529	over first-year and young sea ice north of Svalbard in the Arctic pack ice. Our results			
530	suggest that young thin snow-free ice, with or without frost flowers, is a source of			
531	atmospheric CO_2 due to the high p CO_2 and salinity and relatively high sea ice			
532	temperature. Although the potential CO ₂ flux from sea-ice surface decreased due to the			
533	presence of snow, snow surface still presents a modest CO ₂ source to the atmosphere			
534	for low snow density and shallow depth situations. The highest ice to air fluxes were			
535	observed over thin young sea ice formed in leads. During N-ICE2015 the ice pack was			
536	dynamic, and formation of open water was associated with storms, where new ice was			
537	formed. The subsequent ice growth in these leads becomes important for the ice-to-air			
538	CO ₂ fluxes in winter due to the fact that the flux from young ice is an order of			
539	magnitude larger than from snow-covered first-year and older ice.			
540				
541				
542				
543	6 Data availability			
544				
545	Data used in this paper will be available at Norwegian Polar Data Centre			
546	(data.npolar.no).			
547				

54	18	

- 550 7 Acknowledgments
- 551

552 We would like to express heartfelt thanks to the crew of R/V Lance and all members of 553 the N-ICE2015 expedition for their support in conducting the field work. This work was 554 supported by the Japan Society for the Promotion of Science (#15K16135, #24-4175), 555 Research Council of Norway (KLIMAFORSK programme, grant 240639), the Centre 556 of Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute through the N-557 ICE project, the Ministry of Climate and Environment and the Ministry of Foreign 558 Affairs of Norway and the Grant for Joint Research Program of the Institute of Low 559 Temperature Science, Hokkaido University. AF, MC and MAG were supported by the 560 flagship research program "Ocean acidification and ecosystem effects in Northern 561 waters" within the FRAM-High North Research Centre for Climate and the 562 Environment. BD is a research associate of the F.R.S-FNRS. 563 564 565 566 **Reference list** 567 568 Amiro, B.: Estimating annual carbon dioxide eddy fluxes using open-path analysers for 569 cold forest sites. Agr. Forest Meteorol., 150, 15, 1366–1372. 2010. 570 571 Bain, W. G., Hutyra, L., Patterson, D. C., Bright, A. V., Daube, B. C. Munger, J. W., 572 Wofsy, S. C.: Wind-induced error in the measurement of soil respiration using closed 573 dynamic chambers. Agricul. Forest Meteo., 131, 3-4, 225-232, 2005. 574 575 Barber, D. G., Ehn, J. K., Pućko, M., Rysgaard, S., Deming, J. W. and co-authors: Frost 576 flowers on young Arctic sea ice: The climatic, chemical and microbial significance of 577 an emerging ice type. J Geophys. Res.-Atmos. doi: 10.1002/2014JD021736. 2014. 578

579	Brown, K. A, Miller, L. A., Davelaar, M., Francois, R., and Tortell P. D.: Over-
580	determination of the carbonate system in natural sea ice brine and assessment of
581	carbonic acid dissociation constants under low temperature, high salinity conditions.
582	Mar. Chem 165: 36–45. doi: 10.1016/j.marchem.2014.07.005. 2014.
583	
584	Brown, K. A., Miller, L.A., Mundy, C. J., Papakyriakou, T., Francois, R., and co-
585	authors: Inorganic carbon system dynamics in landfast Arctic sea ice during the early-
586	melt period. J. Geophys. Res. Oceans, 120, 3542-3566.
587	http://dx.doi.org/10.1002/2014JC010620. 2015.
588	
589	Burba, G., McDermitt, D., Grelle, A., Anderson, D., and Xu, L.: Addressing the
590	influence of instrument surface heat exchange on the measurements of CO ₂ flux from
591	open-path gas analyzers, Global Change Biol., 14, 8, 1854–1876, 2008.
592	
593	Cohen, L., Hudson, S. R., Walden, V. P., Graham, R. M., and Granskog, M. A.:
594	Meteorological conditions in a thinner Arctic sea ice regime from winter through
595	summer during the Norwegian young sea ICE expedition (N-ICE2015), J. Geophys. Res.
596	Atmos., 122, 7235-7259, doi:10.1002/2016JD026034, 2017.
597	
598	Cox, G. F. N., and Weeks W. F.: Equations for determining the gas and brine volumes
599	in sea-ice samples, J. Glaciol., 29, 306–316, 1983.
600	
601	Delille, B., Jourdain, B., Borges, A. V., Tison, JL., and Delille, D.: Biogas (CO ₂ , O ₂ ,
602	dimethylsulfide) dynamics in spring Antarctic fast ice, Limnol. Oceanogr., 52, 1367-
603	1379, 2007.
604	
605	Delille, B., Vancoppenolle, M., Geilfus, NX Tilbrook, B. Lannuzel.D., and co-
606	authors: Southern Ocean CO ₂ sink: the contribution of the sea ice, J. Geophys. Res.
607	Oceans. 119 (9), 6340–6355, 2014.
608	
609	Dickson, A. G., and Millero F. J.: A comparison of the equilibrium constants for the
610	dissociation of carbonic acid in seawater media, Deep-Sea Res. 34, 1733–1743, 1987.

1	1
_	_
	1

612	Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater
613	from 273.15 to 318.15 K, Deep-Sea Res. 37, 755–766, 1990.
614	
615	Dickson, A. G., Sabine, C. L., and Christian, J. R. Eds.: Guide to Best Practices for
616	Ocean CO ₂ Measurements, PICES Special Publication, 3, 191 pp, 2007.
617	
618	Fransson, A., Chierici, M., Miller, L. A., Carnat, G., Thomas, H., and co-authors:
619	Impact of sea ice processes on the carbonate system and ocean acidification state at the
620	ice-water interface of the Amundsen Gulf, Arctic Ocean, J. Geophys. Res., 118, 1-23,
621	doi:10.1002/2013JC009164, 2013.
622	
623	Fransson, A., Chierici, M., Abrahamsson, K., Andersson, M., Granfors, A., and co-
624	authors: CO ₂ -system development in young sea ice and CO ₂ gas exchange at the ice/air
625	interface mediated by brine and frost flowers in Kongsfjorden, Spitsbergen, Ann.
626	Glaciol., 56, 69, doi: 10.3189/2015A0G69A563, 2015.
627	
628	Fransson, A., Chierici, M., Skjelvan, I., Olsen, A., Assmy, P., Peterson, A. K., Ward,
629	B.: Effects of sea-ice and biogeochemical processes and storms on under-ice water f
630	CO ₂ during the winter-spring transition in the high Arctic Ocean: Implications for sea-
631	air CO ₂ fluxes, J. Geophys. Res. Oceans, 122(7), 5566-5587.
632	https://doi.org/10.1002/2016JC012478. 2017.
633	
634	Geilfus, NX., Carnat, G., Papakyriakou, T., Tison, JL., Else, B. and co-authors:
635	Dynamics of pCO ₂ and related air-ice CO ₂ fluxes in the Arctic coastal zone (Amundsen
636	Gulf, Beaufort Sea), J. Geophys. Res., 117, C00G10, doi:10.1029/2011JC007118, 2012.
637	
638	Geilfus, NX., Carnat, G., Dieckmann, G. S., Halden, N., Nehrke, G., and co-authors:.
639	First estimates of the contribution of CaCO ₃ precipitation to the release of CO ₂ to the
640	atmosphere during young sea ice growth, J. Geophys. Res., 118:244-255.
641	http://dx.doi.org/10.1029/2012JC007980, 2013.
642	

- 643 Geilfus, N.-X., Tison, J.-L., Ackley, S. F., Galley, R. J., Rysgaard, S., and co-authors:
- 644 Sea ice pCO₂ dynamics and air–ice CO₂ fluxes during the Sea Ice Mass Balance in the
- 645 Antarc-tic (SIMBA) experiment Bellingshausen Sea, Antarctica, The Cryosphere, 8,
- 646 2395–2407, doi:10.5194/tc-8-2395-2014, 2014.
- 647
- 648 Geilfus, N.-X., Galley, R. J., Crabeck, O., Papakyriakou, T., Landy, J., Tison, J.-L. and
- 649 Rysgaard, S.: Inorganic carbon dynamics of melt-pond-covered first-year sea ice in the
- 650 Canadian Arctic, Biogeosci., 12, 2047–2061, doi:10.5194/bg-12-2047-2015, 2015.
- 651
- 652 Gleitz, M., Vonderlo, M. R., Tomas, D. N., Dieckmann, G. S. and Millero F. J.:
- 653 Comparison of summer and winter inorganic carbon, oxygen and nutrient
- 654 concentrations in Antarctic sea ice brine, Mar. Chem., 51, 81–89, 1995.
- 655
- Golden, K. M., Ackley, S. F. and Lytle, V. I.: The percolation phase transition in sea ice,
 Science, 282, 2238–2241, 1998.
- 658
- 659 Granskog, M. A., Assmy, P., Gerland, S., Spreen, G., Steen, H., and co-authors: Arctic 660 research on thin ice: Consequences of Arctic sea ice loss, Eos Transactions AGU, 97,
- 661 22–26, doi:10.1029/2016EO044097, 2016.
- 662
- 663 Granskog, M. A., Rösel, A., Dodd, P. A., Divine, D., Gerland, S., and co-authors: Snow 664 contribution to first-year and second-year Arctic sea ice mass balance north of Svalbard,
- 665 J. Geophys. Res. Oceans, 122, 2539-2549, doi: 10.1002/2016JC012398, 2017.
- 666
- 667 Hudson, S. R., Cohen, L., and Walden, V.: N-ICE2015 surface meteorology (Data set),
- 668 Norwegian Polar Institute, doi: 10.21334/npolar.2015.056a61d1, 2015.
- 669
- 670 Inoue, H. Y. and Ishii M.: Variations and trends of CO₂ in the surface seawater in the
- 671 Southern Ocean south of Australia between 1969 and 2002, Tellus, Ser. B, 57, 58–69,
- 6722005.
- 673

674	Jonas, T., Marty, C., and Magnusson, J.: Estimating the snow water equivalent from
675	snow depth measurements in the Swiss Alps, J. Hydrol., 378, 161-167, 2009.
676	
677	Kaleschke, L., Richter, A., Burrows, J., Afe, O., Heygster, G., and co-authors: Frost
678	flowers on sea ice as a source of sea salt and their influence on tropospheric halogen
679	chemistry, Geophys. Res. Lett., 31, L16114, doi:10.1029/2004GL020655, 2004.
680	
681	Kotovitch, M., Moreau, S., Zhou, J., Vancoppenolle, M., Dieckmann, G. S., and co-
682	authors: Air-ice carbon pathways inferred from a sea ice tank experiment, Elementa:
683	Science of the Anthropocene, 4, 1, doi10.12952/journal.elementa.000112, 2016.
684	
685	Lindsay, R., and Schweiger, A.: Arctic sea ice thickness loss determined using
686	subsurface, aircraft, and satellite observations, The Cryosphere, 9(1), 269–283,
687	doi:10.5194/tc-9-269-2015, 2015.
688	
689	Liss, P. S.: Processes of gas exchange across an air-water interface, Deep-Sea Res. 20,
690	221–238, 1973.
691	
692	Massman, W., Sommerfeld, R., Zeller, K., Hehn, T., Hudnell, L., and Rochelle, S.: CO ₂
693	flux through a Wyoming seasonal snowpack: diffusional and pressure pumping effects,
694	Biogeochemistry of Seasonally Snow-Covered Catchments (Proceedings of a Boulder
695	Symposium, July 1995). IAHS Publ., 228, 71–79, 1995.
696	
697	Massom, R.A., Eicken, H., Haas, C., Jeffries, M. O., Drinkwater, M. R., and other co-
698	authors: Snow on Antarctic sea ice, Reviews of Geophysics, 39, 413-445, 2001.
699	
700	Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz P. M.: Measurement of
701	the apparent dissociation constant of carbonic acid in seawater at atmospheric pressure,
702	Limnol. Oceanogr., 18, 897–907, 1973.
703	
704	Meier, W. N., Hovelsrud, G. K., van Oort, B. E. H., Key, J. R., Kovacs, K. M., and co-
705	authors: Arctic sea ice in transformation: A review of recent observed changes and

706	impacts on biology and human activity, Rev. Geophys., 52, 185-217,
707	doi:10.1002/2013RG000431, 2014.
708	
709	Miller, L. A., Papakyriakou, T. N., Collins, R. E., Deming, J. W., Ehn, J. K., and co-
710	authors: Carbon dynamics in sea ice: A winter flux time series, J. Geophys. Res., 116,
711	C02028, doi:10.1029/2009JC006058, 2011.
712	
713	Miller, L. A., Fripiat, F., Else, B. G. T., Bowman, J. S., Brown, K. A., and co-authors:.
714	Methods for Biogeochemical Studies of Sea Ice: The State of the Art, Caveats, and
715	Recommendation, Elementa, 3, 000038, doi:10.12952/journal.elementa.000038, 2015.
716	
717	Nomura, D., Inoue, H. Y., and Toyota, T.: The effect of sea-ice growth on air-sea CO ₂
718	flux in a tank experiment, Tellus, Ser. B, 58, 418–426, 2006.
719	
720	Nomura, D., Inoue, H. Y., Toyota, T., and Shirasawa, K.: Effects of snow, snowmelting
721	and refreezing processes on air-sea-ice CO ₂ flux, J. Glaciol., 56, 196, 262–270, 2010a.
722	
723	Nomura, D., Eicken, H., Gradinger, R., and Shirasawa, K.: Rapid physically driven
724	inversion of the air-sea ice CO ₂ flux in the seasonal landfast ice off Barrow, Alaska
725	after onset of surface melt, Cont. Shelf Res., 30, 1998–2004, 2010b.
726	
727	Nomura, D., Granskog, M. A., Assmy, P., Simizu, D., and Hashida, G.: Arctic and
728	Antarctic sea ice acts as a sink for atmospheric CO ₂ during periods of snow melt and
729	surface flooding, J. Geophys. Res. Oceans, 118, 6511-6524, 2013.
730	
731	Merkouriadi, I., Gallet, JC., Graham, R. M., Liston, G. E., Polashenski, C., Rösel, A.,
732	and Gerland, S.: Winter snow conditions on Arctic sea ice north of Svalbard during the
733	Norwegian young sea ICE (N-ICE2015) expedition, J. Geophys. Res. Atmos., 122,
734	doi:10.1002/2017JD026753, 2017.
735	
736	Papadimitriou, S., Kennedy, H., Norman, L., Kennedy, D. P., Dieckmann, G. S., and

737 co-authors: The effect of biological activity, $CaCO_3$ mineral dynamics, and CO_2

738	degassing in the inorganic carbon cycle in sea ice in late winter-early spring in the
739	Weddell Sea, Antarctica, J. Geophys. Res. 117, C08011, doi:10.1029/2012JC008058,
740	2012.
741	
742	Papakyriakou, T., and Miller, L. A.: Springtime CO ₂ exchange over seasonal sea ice in
743	the Canadian Arctic Archipelago, Ann. Glaciol., 52, 57, 215-224, 2011.
744	
745	Parmentier, F. J. W., Christensen, T. R., Sørensen, L. L., Rysgaard, S., McGuire, A. D.,
746	and co-authors: The impact of lower sea-ice extent on Arctic greenhouse-gas exchange,
747	Nature Climate Change, 3, 195–202, doi:10.1038/nclimate1784, 2013.
748	
749	Petrich, C. and Eicken, H.: Growth, structure and properties of sea ice, in Thomas, D. N.
750	and Dieckmann, G. S. eds., Sea Ice, 2nd ed., Oxford, Wiley-Blackwell, 23-77, 2010.
751	
752	Pierrot, D., Lewis, E. and Wallace, D. W. R.: MS Excel Program Developed for CO ₂
753	System Calculations, ORNL/CDIAC-105a. Carbon Dioxide Information Analysis
754	Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
755	Tennessee, doi: 10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a, 2006.
756	
757	Powers, D., Oneill, K., and Colbeck, S. C.: Theory of natural convection in snow, J.
758	Geophys. ResAtmos., 90, 10641–10649, doi:10.1029/Jd090id06p10641, 1985.
759	
760	Pringle, D. J., Miner, J. E., Eicken, H., and Golden, K. M.: Pore space percolation in sea
761	ice single crystals, J. Geophys. Res., 114, C12017, doi:10.1029/2008JC005145, 2009.
762	
763	Rysgaard, S., Søgaard, D. H., Cooper, M., Pucko, M., Lennert, K., and co-authors:
764	Ikaite crystal distribution in winter sea ice and implications for CO ₂ system dynamics,
765	The Cryosphere, 7, 707–718, doi:10.5194/tc-7-707-2013, 2013.
766	
767	Rösel, A., Itkin, P., King, J., Divine, D., Wang, C., Granskog, M. A., Krumpen, T. and

768 Gerland, S.: Thin Sea Ice, Thick Snow, and Widespread Negative Freeboard Observed

769	During N-ICE2015 North of Svalbard, J. Geophys. Res. Oceans, 123(2), 1156–1176,
770	doi:10.1002/2017JC012865, 2018.
771	
772	Schindlbacher, A., Zechmeister-Boltenstern, S., Glatzel, G., and Jandl R.: Winter soil
773	respiration from an Austrian mountain forest, Agric, For. Meteorol., 146, 205-215,
774	doi:10.1016/j.agrformet.2007.06.001, 2007.
775	
776	Severinghaus, J. P., Albert, M. R., Courville, Z. R., Fahnestock, M. A., Kawamura, K.,
777	and co-authors: Deep air convection in the firn at a zero-accumulation site, central
778	Antarctica, Earth Planet. Sci. Lett., 293, 359-367, doi:10.1016/J.Epsl.2010.03.003,
779	2010.
780	
781	Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Maslanik, J., and Barrett, A.
782	P.: The Arctic's rapidly shrinking sea ice cover: a research synthesis, Climatic Change,
783	110, 1005, doi:10.1007/s10584-011-0101-1, 2012.
784	
785	Sørensen, L. L, Jensen, B., Glud, R. N., McGinnis, D. F., and Sejr, M. K.:
786	Parameterization of atmosphere-surface exchange of CO ₂ over sea ice, The Cryosphere,
787	8: 853-866. doi:10.5194/tc-8-853-2014, 2014.
788	
789	Takagi, K., Nomura, M., Ashiya, D., Takahashi, H., Sasa, K., and co-authors: Dynamic
790	carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-
791	broadleaf mixed forest in northernmost Japan, Global Biogeochem. Cycles, 19, GB2012,
792	doi:10.1029/2004GB002272, 2005.
793	
794	Toyota, T., Massom, R., Tateyama, K., Tamura, T., and Fraser, A.: Properties of snow
795	overlying the sea ice off East Antarctica in late winter 2007, Deep Sea Res. II, 58,
796	1137–1148, 2011.
797	
798	Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., and co-authors:
799	Role of sea ice in global biogeochemical cycles: emerging views and challenges, Quat.

800 Sci. Rev., 79, 207–230, 2013.

80)]
00	

801	
802	Weiss, R. F.: Carbon dioxide in water and seawater: the solubility of a non-ideal gas,
803	Mar. Chem., 2, 203–215, 1974.
804	
805	Zemmelink, H. J., Delille, B., Tison, JL., Hintsa, E. J., Houghton, L., and co-authors:.
806	CO ₂ deposition over the multi-year ice of the western Weddell Sea, Geophys. Res. Lett.,
807	33, L13606, doi:10.1029/2006GL026320, 2006.
808	
809	Zemmelink, H. J., Dacey, J. W. H., Houghton, L., Hintsa. E. J., and Liss, P. S.:
810	Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea, Geophys.
811	Res. Lett., 35, L06603, doi:10.1029/2007GL031847, 2008.
812	
813	Zhou, J., Delille, B., Eicken, H., Vancoppenolle, M., Brabant, F., and co-authors:
814	Physical and biogeochemical properties in landfast sea ice (Barrow, Alaska): Insights
815	on brine and gas dynamics across seasons, J. Geophys. Res. 118, 6, 3172-3189, 2013.
816	
817	
818	
819	Figure captions
820	
821	Figure 1. Location map of the sampling area north of Svalbard during N-ICE2015.
822	Image of the sea ice concentrations (a) and station map (b) were derived from Special
823	Sensor Microwave Imager (SSM/I) satellite data for mean of February 2015 and from
824	Sentinel-1 (Synthetic Aperture Radar Sensor) satellite data, respectively.
825	
826	Figure 2. Photographs of the CO ₂ flux chamber system at station YI1 north of Svalbard
827	on Friday 13 March 2015. CO_2 flux chamber was installed over the frost flowers on the
828	new thin ice in the refreezing lead.
829	
830	Figure 3. Example of the temporal variation in CO_2 concentration (ΔCO_2) in the
831	chambers installed at station YI1 that is use to calculate the CO_2 flux. ΔCO_2 indicates
832	the change in CO ₂ concentration inside the chamber since the chamber was closed.

0	2	2
0	3	J

834	Figure 4. Time series of air temperature measured at the weather mast over the ice floe
835	(10 m height) (Hudson et al., 2015). Blank period indicates no data. Colored symbols
836	indicate the date for the chamber flux measurements. The horizontal dashed line
837	indicates air temperature = 0° C.
838	
839	Figure 5. Vertical profiles of temperature (a) and salinity (b) in snow and sea ice (top 20
840	cm). The horizontal line indicates snow-ice interface. Shaded area indicates sea ice. The
841	triangle in (a) indicates the air temperature for each station. For stations FI7 and YI2
842	and 3, we have no salinity data.
843	
844	Figure 6. Relationships between mean air-sea ice CO ₂ fluxes and temperature
845	difference between ice (T_{ice}) and atmosphere (T_a) (circle) and ice temperature (Tice)
846	(top 20 cm) (cross) for F_{snow} (blue), $F_{\rm ff}$ (black) and F_{ice} (red) for young and first-year sea
847	ice. Relationships between mean air–sea ice CO_2 fluxes and the difference of pCO_2
848	$(\Delta pCO_{2 b-a})$ between brine $(pCO_{2 b})$ and atmosphere $(pCO_{2 a})$ (triangle) for F_{snow} (solid
849	gray) and F _{ice} (open gray).
850	
851	
852	Table captions
853	
854	Table 1. Station, date for CO ₂ flux measurement, position, floe number, surface
855	condition, ice type and thickness of snow, frost flowers, and sea ice.
856	
857	a. Sea ice coring and snow sampling was conducted on 5 March 2015.
858	
859	b. Sea ice coring and snow sampling was conducted on 10 March 2015.
860	
861	
862	Table 2. Station, snow density and water equivalent, brine volume fraction, and
863	temperature for sea ice (top 20 cm), brine temperature, salinity, DIC, TA, pCO ₂ (pCO ₂
864	b), and atmospheric temperature, wind speed, $pCO_2 (pCO_{2a})^a$ and ΔpCO_{2b-a} .

866	a. pCO _{2 a} (μ atm) was calculated from CO ₂ concentration (ppmv) at Ny-Ålesund,
867	Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account saturated water
868	vapor and atmospheric pressure during sampling day.
869	
870	b. Mean values for snow column.
871	
872	c. "-" indicates no data. Due to technical reasons, data of snow, sea ice, and brine were
873	not obtained.
874	
875	
876	Table 3. CO_2 flux measured over the snow (F_{snow}), frost flowers (F_{ff}), and ice surface
877	(F_{ice}). Values measured directly over undisturbed surfaces (either with frost flowers or
878	on snow surface) at a given station are indicated in bold.
879	
880	a. Data of first CO ₂ flux measurement after removal of snow or frost flowers.
881	
882	b. "–" indicates no data.
883	
884	c. Number of measurements in bracket.
885	
886	d. Data from station OI1 was not included.

80

-**O** FI3 -**O** FI4 -**O** FI5 -**O** FI6 -**O** FI7 -**O** YI1 -**O** YI2 -**O** OI1

100

Station					-	Thickness (cm)		
	Position	Date of 2015	Floe number	Surface condition	Ice type	Snow	Frost flower	Sea ice
FI1	83°03.77N, 17°34.94E	28 January	1	Frost flower	First-year ice	0.0	1.0	37.0
FI2	83°03.77N, 17°34.94E	28 January	1	Snow	First-year ice	8.0	No	35.0
FI3	83°08.00N, 24°09.02E	5 and 8 March ^a	2	Snow	First-year ice	29.0	No	98.0
FI4	83°10.56N, 22°09.42E	9 March	2	Snow	First-year ice	36.0	No	92.0
FI5	83°06.02N, 21°38.29E	10 and 11 March ^b	2	Snow	First-year ice	3.0	No	48.0
FI6	82°55.36N, 21°25.92E	12 March	2	Snow	First-year ice	37.0	No	69.0
FI7	81°22.18N, 08°59.93E	13 May	3	Snow	First-year ice	26.5	No	127.0
YI1	82°52.52N, 21°16.54E	13 March	2	Frost flower	Young ice	0.0	1.0	15.0
YI2	81°46.53N, 13°16.00E	5 May	3	Snow and frost flower mixed	Young ice	2.5	2.5	17.5
YI3	81°32.45N, 11°17.20E	9 May	3	Snow and frost flower mixed	Young ice	2.0	2.0	22.0
OI1	83°07.18N, 24°25.59E	6 March	2	Snow	Old ice (multi-year ice)	60.0	No	>200

Table 1. Station, position, date for CO₂ flux measurement, floe number, surface condition, ice type and thickness of snow, frost flower, and sea ice.

a. Sea ice coring, brine and snow sampling was conducted on 5 March 2015.

b. Sea ice coring, brine and snow sampling was conducted on 10 March 2015.

c. Ice type was categorized based on WMO (1970).

Station	Snow		Sea ice (top 20 cm)		Brine					Atmosphere			
	Density ^b (kg m ⁻³)	Water equivalent (kg m ⁻²)	Brine volume fraction (%)	Temperature (°C) (range)	Temperature (°C)	Salinity	DIC (µmol kg ⁻¹)	TA (μmol kg ⁻¹)	pCO _{2 b} (µatm)	Temperature (°C)	Wind speed $(m \text{ second}^{-1})$	pCO _{2 a} (µatm)	$\Delta pCO_{2 b-a}$ (µatm)
FI1	_ ^c	c	_ ^c	_ ^c	_ ^c	_c	_ ^c	_ ^c	_ ^c	-31.6	4.0	405	_c
FI2	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	-31.6	4.0	405	_ ^c
FI3	399	104	9	-6.8 (-7.4 to -6.3)	-5.2	84.8	4628	5539	427	-3.3	9.0	400	27
FI4	400	180	9	-4.7 (-5.5 to -3.7)	-5.3	86.6	4433	5490	334	-3.5	6.2	386	-52
F15	268	11	17	-3.5 (-3.8 to -3.1)	-3.3	51.8	3261	3518	472	-18.1	6.8	389	83
FI6	343	127	13	-4.8 (-5.7 to -3.8)	-4.8	84.0	4841	5493	693	-25.0	3.6	400	293
FI7	_ ^c	_ ^c	_ ^c	-6.1 (-6.1 to -5.8)	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	-13.0	5.8	405	_ ^c
YI1	_ ^c	_ ^c	17	-6.6 (-12.3 to -2.6)	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	-26.0	2.6	402	_ ^c
YI2	_c	_c	_c	-3.6 (-5.1 to -1.8)	c	c	_c	_c	c	-16.2	4.5	407	c
YI3	_ ^c	_ ^c	_ ^c	-3.9 (-6.4 to -2.0)	_ ^c	_ ^c	_ ^c	_ ^c	_ ^c	-14.2	6.7	410	_ ^c
OII	_ ^c	_ ^c	0	-10.8 (-11.0 to -10.9)	_c	c	_ ^c	_ ^c	c	-13.5	4.7	397	c

Table 2. Station, snow density and water equivalent, brine volume fraction and temperature for sea ice (top 20 cm), brine temperature, salinity, DIC, TA, pCO₂ (pCO₂) and atmospheric temperature, wind speed, pCO₂ (pCO₂)^a and Δ pCO₂b-a.

a. pCO_{2 a} (µatm) was calculated from CO₂ concentration (ppmv) at Ny-Ålesund, Svalbard (http://www.esrl.noaa.gov/gmd/dv/iadv/) taking into account the saturated water vapor and atmospheric pressures at sampling day. b. Mean values for column.

c. "-" indicates no data. Due to the technical reason, data of snow, sea ice, and brine were not obtained.

	CO_2 flux (mmol C m ⁻² day ⁻¹)								
Station	Natural flux (mean \pm 15	Potential flux							
	F _{snow}	F _{ff}	F _{ice} ^a						
FI1	b	+0.1 ± 0.1 (n=7)c	b						
FI2	+0.4 ± 0.3 (n=13) ^c	_b	_b						
FI3	+0.1 ± 0.1 (n=7) ^c	_b	-0.6						
FI4	+0.1 ± 0.1 (n=6) ^c	_b	-0.8						
FI5	+0.6 ± 0.3 (n=5) ^c	_ ^b	+2.6						
FI6	+0.2 ± 0.1 (n=5) ^c	b	+11.8						
FI7	+0.1 ± 0.1 (n=10) ^c	_b	± 0.0						
YI1	_ ^b	+1.6 ± 0.2 (n=6) ^c	+7.3						
YI2	b	+1.3 ± 0.2 (n=9) ^c	+1.0						
YI3	b	+1.0 ± 0.4 (n=8) ^c	+1.1						
OI1	+0.1 ± 0.0 (n=6) ^c	b	+0.2						
Mean ^d	+0.2 ± 0.2 (n=46) ^c	+1.0 ± 0.6 (n=30) ^c	$+2.5 \pm 4.3 (n=9)^{\circ}$						

Table 3. CO_2 flux measured over the snow (F_{snow}), frost flowers (F_{ff}) and ice surface (F_{ice}).

a. Data of first measurement after removal of snow or frost flower.

b. "-" indicates no data.

c. Number of measurements in bracket.

d. Data of station OI1 was not included.