

1 **Upside-down fluxes Down Under: CO₂ net sink in winter and**
2 **net source in summer in a temperate evergreen broadleaf forest**

3 Alexandre A. Renchon¹, Anne Griebel¹, Daniel Metzen¹, Christopher A. Williams², Belinda Medlyn¹,
4 Remko A. Duursma¹, Craig VM Barton¹, Chelsea Maier¹, Matthias M. Boer¹, Peter Isaac³, David
5 Tissue¹, Victor Resco de Dios⁴, Elise Pendall¹

6 ¹*Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.*

7 ²*Clark University, Graduate School of Geography, Worcester, Massachusetts 01610, USA.*

8 ³*CSIRO Oceans & Atmosphere Flagship, Yarralumla, ACT, 2600, Australia.*

9 ⁴*Department of Crop and Forest Sciences and Agrotecnio Center, University of Lleida, E-25198
10 Lleida, Spain.*

11 **Abstract**

12 Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen
13 forests because of their moderate climates and subtle changes in canopy phenology. We assessed the
14 climatic and biotic drivers of the seasonality of net ecosystem-atmosphere CO₂ exchange (NEE) of a
15 eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate
16 is characterized by a mean annual precipitation of 800 mm and a mean annual temperature of 18 °C,
17 hot summers and mild winters, with highly variable precipitation. In the four-year study, the
18 ecosystem was a sink each year (-225 g C m⁻² y⁻¹ on average, with a standard deviation of 108 g C m⁻²
19 y⁻¹); inter-annual variations were not related to meteorological conditions. Daily net C uptake was
20 always detected during the cooler, drier winter months (June through August), while net C loss
21 occurred during the warmer, wetter summer months (December through February). Gross primary
22 productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer,
23 because vapour pressure deficit (D) and air temperature (T_a) restricted surface conductance during
24 summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP
25 during ideal environmental conditions was significantly correlated with remotely sensed enhanced
26 vegetation index (EVI, r² = 0.46) and with canopy leaf area index (LAI, r² = 0.29), which increased
27 rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in
28 wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and
29 therefore drove the seasonal variation of NEE. Because summer carbon uptake may become
30 increasingly limited by atmospheric demand and high temperature, and ecosystem respiration could
31 be enhanced by rising temperature, our results suggest the potential for large-scale seasonal shifts in
32 NEE in sclerophyll vegetation under climate change.

33 *Keywords:* net ecosystem exchange, seasonal variability, atmospheric demand, canopy phenology

34 1. Introduction

35 Forests and semi-arid biomes are responsible for the majority of global carbon storage by terrestrial
36 ecosystems (Dixon et al. 1994; Pan et al. 2011; Poulter et al. 2014; Schimel et al. 2001).
37 Photosynthesis and respiration by these biomes strongly influence the seasonal cycle of atmospheric
38 CO₂ (Baldocchi et al. 2016; Keeling et al. 2001). Continuous measurements of land-atmosphere
39 exchanges of carbon, energy and water provide insights into the seasonality of forest ecosystem
40 processes, which are driven by the interactions of climate, plant physiology and forest composition
41 and structure (Xia et al. 2015). Net ecosystem exchange (NEE) seasonality is relatively well
42 understood in cool-temperate ecosystems; deciduous trees can only photosynthesize when they have
43 leaves and NEE dynamics are thus principally influenced by the phenology of canopy processes. NEE
44 of deciduous forests thus has a more pronounced seasonality than that of evergreen conifer forests at
45 similar latitudes (Novick et al. 2015). For high-latitude evergreen conifer forests, NEE seasonality is
46 strongly limited by cold temperature limitation of photosynthesis (Kolari et al. 2007) and respiration.
47 In contrast, seasonality of NEE in evergreen broadleaf forests, typically occurring in warm-temperate
48 and tropical regions, is much less well understood (Restrepo-Coupe et al. 2017; Wu et al. 2016).

49 The seasonality of gross primary productivity (GPP) in evergreen broadleaf forests may be driven by
50 climate (e.g. dry/wet seasons) and/or by canopy dynamics (Wu et al. 2016). In tropical evergreen
51 forests, air temperature and day length are similar seasonally, but precipitation seasonality can be
52 strong, with higher radiation and temperature (1 or 2 °C higher) in the dry season (Trenberth 1983;
53 Windsor 1990). Counter-intuitively, GPP can be higher during the dry season, as cloud cover may
54 limit productivity in the wet season (Graham et al. 2003; Hutyra et al. 2007; Saleska et al. 2003).
55 Canopy dynamics can be an important determinant of GPP seasonality in evergreen broadleaf forests;
56 although leaves are present in the canopy year-round in evergreen canopies, LAI may show
57 considerable temporal variability seasonally as new leaves are produced and old leaves die, especially
58 during leaf flush and senescence periods (Duursma et al. 2016; Wu et al. 2016). The leaf light use
59 efficiency and water use efficiency may both vary as leaves age: young leaves and old leaves are less
60 efficient than mature leaves, reflecting changes in photosynthetic capacity (Wilson et al. 2001; Wu et
61 al. 2016). The timing of leaf flush and senescence can depend on the environment and on species;
62 environmental stress, such as drought, can induce the process of senescence (Lim et al. 2007; Munné-
63 Bosch and Alegre 2004).

64 In temperate evergreen broadleaved forests, such as eucalypt-dominated sclerophyll vegetation in
65 Australia, precipitation can be seasonal or aseasonal; furthermore, day length and temperature vary
66 significantly between winter and summer. GPP can be limited by frost during winter and by drought
67 during summer. Atmospheric demand indicated by high vapor pressure deficit (D) and soil drought
68 have different impacts on GPP, but they can interact to impact surface conductance (G_s) (Medlyn et
69 al. 2011; Novick et al. 2016). In Australia's temperate eucalypt forests, canopy rejuvenation takes
70 place in summer and is linked to heavy rainfall events (Duursma et al. 2016). However, since leaf
71 flushing and shedding occur simultaneously in eucalypt canopies (Duursma et al. 2016; Pook 1984),
72 the overall canopy volume can remain stable while the distribution of canopy volume changes with
73 height (Griebel et al. 2015). Eucalypt forests in southeast Australia have been found to act as carbon
74 sinks all year long, with greater uptake in summer (Hinko-Najera et al. 2017; van Gorsel et al. 2013).
75 Although canopy characteristics are key to understanding ecosystem fluxes, their dynamics in
76 Australian ecosystems can be particularly challenging to detect using standard vegetation indices
77 (Moore et al. 2016). Nevertheless, the normalized difference vegetation index (NDVI) has
78 successfully explained variability in photosynthetic capacity in Mediterranean, mulga and savanna
79 ecosystems (Restrepo-Coupe et al. 2016).

80 The environmental and biotic controls on the seasonal dynamics of ecosystem fluxes in broadleaved
81 evergreen forests are still poorly understood. Our objective was to determine the seasonality of
82 ecosystem CO₂ and H₂O fluxes in a dry sclerophyll Eucalyptus forest; we evaluated the role of
83 environmental drivers (PPFD, T_a, SWC and D) and canopy dynamics (as measured with EVI, LAI,
84 litter fall and leaf age) in regulating the seasonal patterns of net ecosystem exchange (NEE), gross
85 primary productivity (GPP), ecosystem respiration (ER), evapotranspiration (ET) and surface
86 conductance (G_s) in an evergreen forest near Sydney, Australia. We also compared leaf-level to
87 ecosystem-level water and carbon exchange in response to drivers, in order to gain confidence in our
88 results and gain insights about the emergent properties from leaf to ecosystem scale. We hypothesised
89 that canopy phenology (LAI and leaf age) explains temporal variation in photosynthetic capacity (PC)
90 and G_s. We anticipated that the ecosystem would be a carbon sink all year long.

91 **2. Material and methods**

92 **2.1 Site description**

93 The field site is the Cumberland Plain (AU-Cum in Fluxnet) forest SuperSite (Resco de Dios et al.
94 2015) of the Australian Terrestrial Ecosystem Research Network (<http://www.ozflux.org.au>), located
95 50 km west of Sydney, Australia, at 19 m elevation, on a nearly flat floodplain of the Nepean-
96 Hawkesbury River (latitude -33.61518; longitude 150.72362). Mean mid-afternoon (3 pm)
97 temperature is 18 °C (max. 28.5 °C in January and min. 16.5 °C in July) and average precipitation is
98 801 mm year⁻¹ (mean monthly max. is 96 mm in January, and min. is 42 mm in September). The soil
99 is classified as a Kandosol and consists of a fine sandy loam A horizon (0-8 cm) over clay to clay
100 loam subsoil (8-40 cm), with pH of 5 to 6 and up to 5% organic C in the top 10 cm (Karan et al.
101 2016). The flux tower is in a mature dry sclerophyll forest, with 140 Mg C ha⁻¹ aboveground biomass
102 and stand density of ~500 trees ha⁻¹. The stand hosts a large population of mistletoe (*Amyema*
103 *miquelii*), which decreases in abundance with increasing distance to the flux tower. The canopy
104 structure comprises three strata, and the predominant canopy tree species are *Eucalyptus moluccana*
105 and *E. fibrosa*. While individual trees can exceed 25 m height, an airborne LiDAR survey from
106 November 2015 indicates an average canopy height of ~24 m within a 300 m radius of the flux tower
107 (supplement figure S1). The mid-canopy stratum (5-12 m) is dominated by *Melaleuca decora* and the
108 understory is dominated by *Bursaria spinosa* with various shrubs, forbs, grasses and ferns present in
109 lower abundance.

110 **2.2 Environmental measurements**

111 Air temperature (T_a) and relative humidity (RH) were measured using HMP45C and HMP155A
112 (Vaisala, Vantaa, Finland) sensors at 7 m and 29 m heights, respectively. Vapour pressure deficit (D)
113 was estimated from T_a and RH. Photosynthetic photon flux density above the canopy (PPFD, $\mu\text{mol m}^{-2} \text{s}^{-1}$) was measured using an LI190SB (Licor Inc., Lincoln NE, USA), and incoming and outgoing
114 short and longwave radiation were measured using a CNR4 radiometer (Kipp & Zonen, Delft,
115 Netherlands). Ancillary data were logged on CR1000 or CR3000 dataloggers (Campbell Scientific,
116 Logan UT, USA) at 30 min intervals. Mixing ratios of CO₂ in air were also measured at 0.5 m, 1 m, 2
117 m, 3.5 m, 7 m, 12 m, 20 m, and 29 m above the soil surface using a LI840A Gas Analyzer (Licor Inc.,
118 Lincoln NE, USA); data from each height were logged on a CR1000 datalogger once every 30
119 minutes (1 minute air sampling per height).

120 Ground heat flux and soil moisture were averaged between two locations to represent the variable
121 shading in the tower footprint. One location had a HFP01 heat flux plate and the other had a self-
122 calibrating heat flux plate (HFP01SC) (Hukseflux, XJ Delft, Netherlands) installed at 8 cm below the
123 soil surface. The heat flux plates were paired with a CS616 water content reflectometer (Campbell
124 Scientific, Logan UT) installed horizontally at 5 cm below the soil surface and a TCAV averaging
125 thermocouple (Campbell Scientific, Logan UT) installed with thermocouples at 2 cm and 6 cm below
126 the soil surface for each pair. Another CS616 was installed vertically measured average soil water
127 content from 7 to 37 cm (CS616). Rainfall was measured at an open area with a tipping bucket 2 km
128 away from the study site.

129 **2.3 Net ecosystem exchange**

130 Continuous land-atmosphere exchange of CO₂ mass (net ecosystem exchange, NEE) was quantified
131 from direct measurements of the different components of the theoretical mass balance of CO₂ in a
132 control volume:

$$133 \quad \text{NEE} = F_{ct} + F_{cs} \quad (1)$$

134 Where F_{CT} is the vertical turbulent exchange flux, and F_{CS} is the change in storage flux. Advection
 135 fluxes are assumed negligible when atmospheric turbulence is sufficient (Aubinet et al. 2012;
 136 Baldocchi et al. 1988), and when quality flags of stationarity and turbulence development test were
 137 good (Foken et al. 2004). We used change-point detection of the friction velocity (u^*) threshold (Barr
 138 et al. 2013) to determine the turbulence threshold above which NEE (the sum of F_{CT} and F_{CS}) is
 139 independent of u^* . However, we found no clear dependence of NEE on u^* hence no clear threshold
 140 (Figure S2), so we used a threshold of 0.2 m s^{-1} to be conservative.

141 The calculation of each term, and the assumptions required for them to be representative of each half-
 142 hour flux are detailed below.

143 *2.4 Vertical turbulent flux (F_{CT})*

144 The vertical turbulent fluxes of CO_2 (F_{CT} , $\mu\text{mol m}^{-2} \text{s}^{-1}$) and water (F_{WT} , $\text{mmol m}^{-2} \text{s}^{-1}$) were measured
 145 using the eddy-covariance method (Baldocchi et al. 1988). Density (c) of CO_2 or water vapor (open-
 146 path IRGA (LI-7500A, Licor Inc., Lincoln NE, USA)) and vertical wind speed (w) (CSAT 3D sonic
 147 anemometer (Campbell Scientific, Logan UT, USA)) were measured at 10 Hz frequency at 29 m
 148 above the ground, and logged on a CR-3000 datalogger (Campbell Scientific, Logan UT, USA).
 149 Vertical turbulent fluxes were calculated from the 10 Hz data, using Eddy-Pro \circ software. Statistical
 150 tests for raw data screening included spike count/removal, amplitude resolution, drop-outs, absolute
 151 limits and skewness and kurtosis tests (Vickers and Mahrt 1997). Low and high frequency spectral
 152 correction followed (Moncrieff et al. 2004), and (Moncrieff et al. 1997). The calculation allowed for
 153 up to 10% of missing 10 Hz data. Fluxes were rotated into the natural wind coordinate system using
 154 the double rotation method (Wilczak et al. 2001). Time lags between the sonic and IRGA were
 155 compensated using covariance maximization, within a window of plausible time lags (Fan et al.
 156 1990). We applied the block averaging method to calculate each half-hour average and fluctuation
 157 relative to the average, to calculate the covariance (Gash and Culf 1996). Density fluctuations in the
 158 air volume were corrected using the WPL terms (Webb et al. 1980). Each half-hourly flux was
 159 associated with a quality flag (0: good quality, 1: keep for integrations, discard for empirical
 160 relationships, 2: remove from the data); these flags accounted for stationarity tests and turbulence
 161 development tests which are required for good turbulent flux measurements (Foken et al. 2004). In
 162 our 4-year record, 51% of F_{CT} fluxes had a flag of 0, 32% had a flag of 1 and 17% had a flag of 2.
 163 Although the tower height (29m) is rather close to the average canopy height (24m), cospectra
 164 analysis showed good quality turbulent fluxes (the high frequency followed the -4/3 slope, thus we
 165 did not find any indications of systematic dampening in the cospectra, see figure S3).

166 *2.5 Storage flux (F_{CS})*

167 The change in storage flux (F_{CS} , $\mu\text{mol m}^{-2} \text{s}^{-1}$) was measured using a CO_2 profiler system, such that
 168 change of storage flux timestamp was the same as the turbulent flux timestamp. The change in storage
 169 flux was calculated as (Aubinet et al. 2001):

$$F_{CS} = \frac{P_a}{R T_a} \int_0^h \frac{dC(z)}{dt} dz \quad (2)$$

170 Where P_a is the atmospheric pressure (P_a), T_a is the temperature (K), R is the molar gas constant, and
 171 $C(z)$ is CO_2 ($\mu\text{mol m}^{-3}$) at the height z . CO_2 is measured in ppm and converted to $\mu\text{mol m}^{-3}$ using ideal
 172 gas law equation, where the air temperature and air pressure at each inlet is estimated from a linear
 173 interpolation between sensors at the top of the tower (29m) and sensors at the bottom of the tower
 174 (7m). As we only measure a limited number of heights, this equation becomes, in practice:

$$F_{CS} = \left(\frac{\Delta C}{\Delta t} \right)_{k=1} \times z_{k=1} + \sum_{k=2}^n \left\{ \left[\left(\frac{\Delta C}{\Delta t} \right)_k + \left(\frac{\Delta C}{\Delta t} \right)_{k-1} \right] \times \frac{z_k - z_{k-1}}{2} \right\} \quad (3)$$

175 Where C is CO₂ (μmol m⁻³) and t is time (s) (ΔC/Δt is the variation of C over 30 minutes), z is the
 176 height (m), k [1 to n = 8] represents each inlet. We flagged and replaced the storage flux with a one-
 177 point approximation during profiler outages (25% of the 4-year record), using the change in CO₂ at 29
 178 m height over 30 minutes as derived in EddyPro (Aubinet et al. 2001). These data were not used for
 179 empirical relationships, but kept for annual sum calculations. Storage flux of water vapour was
 180 assumed to be negligible. For visualisation of the diurnal course of storage flux and turbulent flux, see
 181 Figure S4.

182 2.6 Gap-filling of environmental variables and NEE separation into gross fluxes

183 We used the PyFluxPro software for gap-filling climatic variables and fluxes, and for partitioning the
 184 NEE into gross primary productivity (GPP) and ecosystem respiration (ER) (Isaac et al. 2017). We
 185 only used observational data that passed the steady state and developed turbulence tests for gap-filling
 186 and for partitioning (QC flags of 0 and 1; (Foken et al. 2004)). In brief, gaps in climate variables were
 187 filled following the hierarchy of using variables provided from 1) automatic weather stations from the
 188 closest weather station, 2) numerical weather prediction model outputs (ACCESS regional, 12.5 km
 189 grid size provided by the Bureau of Meteorology) and lastly 3) monthly mean values from the site-
 190 specific climatology. In a next step the continuous climate variables were used to fill all fluxes by
 191 utilizing the embedded SOLO neural network with 25 nodes and 500 iterations on monthly windows.
 192 We used ‘Random Forest’ (Breiman 2001) to determine and rank potential explanatory variables for
 193 explaining latent heat flux (λE), sensible heat flux (H) and NEE. We then selected the five variables
 194 with the highest feature importance for each flux and compared the gap-filling performance of the
 195 neural network for each flux with the performance based on an educated guess of potential relevant
 196 drivers. We selected the variable array with the highest Pearson correlation coefficient (r) and lowest
 197 root mean square error (RMSE) for gap-filling in PyFluxPro, which identified net radiation (R_n), soil
 198 water content (SWC), soil temperature (T_s), wind speed (w_s) and vapor pressure deficit (D) for λE (r =
 199 0.93, RMSE = 32.0); down-welling shortwave radiation (F_{sd}), air temperature (T_a), T_s, w_s, SWC and
 200 D for H (r = 0.97, RMSE = 23.1) and F_{sd}, D, T_a, T_s and SWC for NEE (r = 0.87, RMSE = 4.04). To
 201 gap-fill ER, all nocturnal observational data (at night, we assume GPP = 0 so NEE = ER) that passed
 202 all quality control checks and the u*-filter were modelled using T_s, T_a and SWC as drivers in SOLO
 203 on the full dataset with 10 nodes and 500 iterations. Lastly, this gap-filled ER was used to infer GPP
 204 as the result of NEE - ER.

205 2.7 Flux footprint

206 We analysed the footprint climatology of AU-Cum site according to (Kormann and Meixner 2001),
 207 using the R-Package ‘FREddyPro’ (Figure S5). We assumed that the ecosystem within the footprint
 208 was homogeneous for the purpose of this study.

209 2.8 Energy balance

210 We evaluated the energy balance closure with the ratio of available energy (R_n – soil heat flux (G)) to
 211 the sum of turbulent heat fluxes (λE + H). On a daily basis, the energy balance closure was 70%
 212 (Figure S6), consistent with the well-known and common issue of a lack of closure (Foken 2008;
 213 Foken et al. 2006; Wilson et al. 2002). We did not use the criteria that closure had to be met for the
 214 reported fluxes.

215 *2.9 Surface conductance*216 Surface conductance (G_s) was derived by inverting the Penman-Monteith equation (Monteith 1965):

$$G_s = \frac{\gamma \lambda E g_a}{\Delta R_n + \rho C_p D g_a - \lambda E (\Delta + \gamma)} \quad (4)$$

217 Where γ is the temperature dependent psychrometric constant (kPa K^{-1}), λE is the latent heat flux (W m^{-2}), Δ is the temperature dependent slope of the saturation-vapor pressure curve (kPa K^{-1}), R_n is net radiation (W m^{-2}), ρ is the dry air density (kg m^{-3}), D is vapor pressure deficit (kPa), C_p is the specific heat of air ($\text{J kg}^{-1} \text{K}^{-1}$), and g_a is the bulk aerodynamic conductance, formulated as an empirical relation of mean horizontal wind speed (U , m s^{-1}) and friction velocity (u^* , m s^{-1}) (Thom 1972):

$$g_a = \frac{1}{\frac{U}{u^{*2}} + 6.2 u^{*-0.67}} \quad (5)$$

222 In the analysis for G_s , we were interested in transpiration (T) rather than evaporation (E), so we
223 excluded data if precipitation exceeded 1 mm in the past 2 days, 0.5 mm in the past 24 hours, and 0.2
224 mm in the past 12 hours (Knauer et al. 2015). We assumed that evaporation (E) is negligible using
225 these criteria (Knauer et al. 2017), which excluded 40% of the data.

226 *2.11 Dynamics of canopy phenology (leaf area index, litter and leaf production) and
227 photosynthetic capacity*

228 We evaluated the dynamics of canopy leaf area index (LAI) by measuring canopy light transmittance
229 with three under-canopy PPFD sensors and one above canopy PPFD sensor LI190SB (Licor Inc.,
230 Lincoln NE, USA) following the methods presented in (Duursma et al. 2016). Although we use the
231 term LAI, this estimate does include non-leaf surface area (stems, branches). We collected litterfall
232 (L_f , $\text{g m}^{-2} \text{month}^{-1}$) in the tower footprint approximately once per month, from nine litter traps (0.14 m^2
233 ground area) located near the understory PPFD sensors. We estimated specific leaf area (SLA) of
234 eucalyptus and mistletoe leaves by sampling approximately 50 fresh leaves of each, in June 2017
235 ($\text{SLA} = 56.4 \text{ cm}^2 \text{ g}^{-1}$ for eucalyptus, $40.3 \text{ cm}^2 \text{ g}^{-1}$ for mistletoe). For each month, we partitioned the
236 litter into eucalyptus leaves, mistletoe leaves, and other (mostly woody) components. We used this
237 SLA to estimate leaf litter production (L_p) in $\text{m}^2 \text{ m}^{-2} \text{ month}^{-1}$ of eucalyptus, mistletoe, and total as the
238 sum of both. Then, we estimated leaf growth (L_g , $\text{m}^2 \text{ month}^{-2}$) as the sum of the net change in LAI
239 (ΔL) and L_p . Photosynthetic capacity (PC) is defined as median GPP when PPFD is 800-1200 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ and D is 1.0 to 1.5 kPa.

241 *2.12 Analysis of light-response of NEE*

242 We evaluated the light response of NEE using a saturating exponential function (Eq. 5) to test whether
243 parameters varied between seasons (Aubinet et al. 2001; Lindroth et al. 2008; Mitscherlich 1909).

$$NEE = -(NEE_{sat} + R_d) \left(1 - \exp \left[\frac{-\alpha PPFD}{NEE_{sat} + R_d} \right] \right) + R_d \quad (7)$$

244 where the parameter R_d is the intercept, or NEE in the absence of light, often called dark respiration;
245 NEE_{sat} is NEE at light saturation and α is the initial slope of the curve, expressed in $\mu\text{mol CO}_2 \mu\text{mol}$
246 photon^{-1} and representing light use efficiency when photosynthetic photon flux density (PPFD) is
247 close to 0. We only used daytime quality checked NEE data to fit the model ($qc = 0$; (Foken et al.

248 2004), LI-7500 signal strength = max, all inlets of profiler system data available and $u^* > 0.2 \text{ m s}^{-1}$),
249 see Figure S7.

250 *2.13 Leaf gas exchange spot measurements*

251 We used previously published data of spot leaf gas exchange measurements in a nearby site for
252 comparison with ecosystem fluxes (Gimeno et al. 2016).

253 *2.14 Remotely sensed land surface greenness*

254 Normalized difference vegetation index (NDVI) and Enhanced Vegetation Index (EVI) values were
255 derived from the MODIS Terra Vegetation Indices 16-Day L3 Global 250m product (MOD13Q1),
256 which uses atmospherically corrected surface reflectance masked for water, clouds, heavy aerosols,
257 and cloud shadows (Didan 2015). At 250m spatial resolution, the pixel containing Cumberland Plain
258 was assumed to be representative for the footprint and values of that pixel between 1.1.2014 and
259 31.12.2017 were extracted.

260 **3 Results**

261 *3.1 Seasonality of environmental drivers and leaf area index*

262 Climatic conditions were favorable for growth at the site year-round. The monthly average of daily
263 maximum air temperature was 16.3 °C during the coldest month (July 2015), and the lowest monthly
264 average of daily maximum PPFD was 878 $\mu\text{mol m}^{-2} \text{s}^{-1}$ in the winter (June 2015; Figure 1c). Although
265 less rainfall occurred during winter months compared to summer months, precipitation occurred
266 throughout the year (Figure 1b). Soil volumetric water content (SWC) in the shallow (0-8 cm) layer
267 was about 10% except immediately following rain events (Figure 1b). In contrast, SWC in the clay
268 layer (8 -38cm) remained above 30% for the duration of the study (data not shown). Monthly average
269 of daily maximum air temperature ranged from 16.3 °C in July 2015 to 32.7 °C in January 2017;
270 monthly average of daily maximum D ranged from 0.9 kPa in June 2015 to 3.4 kPa in January 2017
271 (Figure 1c). For visualisation of seasonal and diurnal trends of radiation, air temperature, D and SWC,
272 see supplement Figure S8.

273 Canopy leaf area index varied between 0.7 (in December 2014) and 1.15 $\text{m}^2 \text{m}^{-2}$ (in March 2016 and
274 June 2017) (Figure 1d). LAI followed a distinct pattern: it peaked in late summer (around February),
275 and then continuously decreased until the new leaves emerged the following year. A late leaf flush
276 was observed in 2017 (May). Litter production also peaked in summer, before and during the leaf
277 flush, and was lower in winter (Figure 1d). EVI followed the time dynamic of LAI.

278 *3.2 Seasonality of carbon and water fluxes*

279 Contrary to expectations, the ecosystem was always a sink for carbon in winter (-146 g C m^{-2} on
280 average, with a standard deviation of 22 g C m^{-2}), and usually a carbon source or close to neutral in
281 summer (+ 44 g C m^{-2} on average, with a standard deviation of 43 g C m^{-2}) (Table 1). On average,
282 summer GPP was lower – i.e. more uptake ($-400 \pm 97 \text{ g C m}^{-2}$) compared to winter GPP ($-282 \pm 41 \text{ g}$
283 C m^{-2}) (Table 1), that is a difference of $\sim 118 \text{ g C m}^{-2}$. However, average summer ER was much
284 higher ($444 \pm 56 \text{ g C m}^{-2}$) compared to winter ER ($159 \pm 35 \text{ g C m}^{-2}$) (Table 1), a difference of ~ 285
285 g C m^{-2} . The summer vs. winter ER difference was more than double the GPP difference; thus, ER
286 had a relatively larger effect over the seasonality of NEE.

287 *3.3 Diurnal trend of CO_2 flux and drivers in winter and summer*

288 The diurnal pattern of NEE in clear-sky conditions differed between summer and winter (Figure 2).
289 Relatively speaking, diurnal NEE was more symmetric in the winter than in summer. That is, morning
290 and afternoon NEE pattern resembled a mirror image and total integrated morning NEE was similar to
291 integrated afternoon NEE during the winter, but strong hysteresis occurred in the summer (Figure 2).
292 This pattern also translated into hysteresis in the NEE light response curve in summer, but to a lesser
293 degree in winter (Figure 3).

294 *3.4 Analysis of NEE light response curve*

295 The parameters of the NEE light response in summer and winter are shown in Figure 4 (see methods,
296 Eq. 5). The initial slope of NEE with light (α) showed no clear dependence on T_{soil} in winter but
297 exhibited sensitivity during summer, dropping precipitously at soil temperature above 23 °C (Figure
298 4a). α increased with SWC in winter and summer by a factor of 1.5 (Figure 4b). In both winter and
299 summer α decreased with D ($D > 1 \text{ kPa}$) and in a similar fashion, approaching a saturating value of
300 0.01 ($\mu\text{mol } \mu\text{mol}^{-1}$) at a D of about 2 kPa (Figure 4c). The fitted NEE at saturating light (NEE_{sat}) was
301 not related to T_{soil} in winter but decreased with increasing T_{soil} in summer (Figure 4d). NEE_{sat} was
302 higher in winter than in summer for a given SWC. The relationship with D was more complicated,
303 tending to increase with D in winter, but decreasing with increased D in summer, dropping from 9 to

304 3 ($\mu\text{mol m}^{-2} \text{s}^{-1}$) as D increased from 1 to 4 kPa. R_d was significantly higher in summer than winter
305 across all conditions of T_{soil} , SWC and D (Figure 4g, h, i). R_d increased with T_{soil} in winter and less so
306 in summer. In winter, R_d increased up to SWC of 11%; in summer, R_d was more sensitive to SWC,
307 doubling from a rate of ~ 4 to ~ 8 $\mu\text{mol m}^{-2} \text{s}^{-1}$ as SWC increased from about 8 to 20%.

308 3.5 Atmospheric demand and soil drought control on GPP, ET, G_s and WUE

309 We evaluated the effect of SWC and vapour pressure deficit (D) on GPP, ET, water use efficiency
310 (WUE) and surface conductance (G_s) under high radiation (“light-saturated”; PPFD > 1000 $\mu\text{mol m}^{-2}$
311 s^{-1}), after filtering periods following rain events in order to minimise the contribution of evaporation
312 to ET (see Methods) (Figure 5). In summer, light-saturated GPP decreased above D ~ 1.3 kPa, but in
313 winter, GPP did not vary with D. In summer and in winter, GPP increased with SWC (Figure 5a).
314 This is consistent with Figure 4, where R_d and NEE_{sat} both increased with SWC. In summer, light-
315 saturated ET increased with D up to ~ 1.3 kPa, above which it reached a plateau. In winter, ET kept
316 increasing with D, as D rarely exceeded 2 kPa. In both seasons, ET increased with SWC (Figure 5b).
317 Surface conductance decreased with D and SWC especially in summer, indicating strong stomatal
318 regulation (Figure 5d). WUE decreased with increasing D in summer and in winter, because ET
319 increased but -GPP declined (Figure 5c).

320 We compared these ecosystem-scale results to the equivalent at the leaf-scale, which are net
321 photosynthesis at light saturation A_{max} (PPFD ~ 1800 $\mu\text{mol m}^{-2} \text{s}^{-1}$), leaf transpiration T, leaf water use
322 efficiency, and stomatal conductance g_s (Figure 5, black lines). These leaf level measurements are
323 expressed on a leaf-area basis, as compared to ground area for ecosystem scale. We observed that
324 A_{max} , T and g_s were more sensitive to D than corresponding ecosystem-scale responses. A_{max} was
325 much higher than GPP_{max} at D ~ 1 kPa, while g_s was comparable in magnitude to G_s in the same
326 condition. Leaf transpiration peaked around D = 1.2 kPa, while ET plateaued. Leaf water use
327 efficiency was overall higher than ecosystem WUE.

328 3.6 Canopy phenology control of GPP

329 Monthly average photosynthetic capacity (PC) varied by a factor of ~2 across the study period,
330 ranging from 8.4 $\mu\text{mol m}^{-2} \text{s}^{-1}$ before the leaf flush in November 2014 to 15 $\mu\text{mol m}^{-2} \text{s}^{-1}$ after the leaf
331 flush occurred in March 2016. We expected that PC could be predicted by LAI, EVI and G_s . Leaf area
332 index (LAI) and photosynthetic capacity (PC) were significantly correlated; the slope was
333 significantly different from zero ($r^2 = 0.29$, $p < 0.005$, $\text{PC} = 8.3 \text{ LAI} + 3.0$, Figure 6). EVI was even
334 more significantly correlated with PC ($r^2 = 0.46$, $p < 0.005$, $\text{PC} = 52 \text{ EVI} - 5.3$, Figure 6). $G_{s,\text{max}}$ was
335 significantly correlated with PC ($r^2 = 0.2$, $p < 0.005$, $\text{PC} = 9 \text{ }G_{s,\text{max}} + 9$) and LAI ($r^2 = 0.30$, $p < 0.005$,
336 $G_{s,\text{max}} = 0.45 \text{ LAI} - 0.18$) and with EVI ($r^2 = 0.29$, $p < 0.005$, $G_{s,\text{max}} = 2.3 \text{ EVI} - 0.45$). The
337 correlations with NDVI were less significant than with EVI (see figure S9).

338 **4 Discussion**

339 We measured four consecutive years of carbon, water and energy fluxes in a native evergreen
340 broadleaf eucalyptus forest, including canopy dynamics and environmental drivers
341 (photosynthetically active radiation, air and soil temperature, precipitation, soil water content, and
342 atmospheric demand). We hypothesised that the Cumberland Plain forest would be a carbon sink all
343 year-round, similar to other eucalypt forests (Beringer et al. 2016; Hinko-Najera et al. 2017; Keith et
344 al. 2012). We also hypothesised higher net carbon uptake during summer, due to warmer
345 temperatures, higher light and longer day length contributing to higher photosynthesis, compared to
346 winter. However, the site was a net source of carbon during summer, and a net sink of carbon during
347 winter.

348 The seasonal pattern of NEE was driven mostly by ER, as the seasonal amplitude of ER was larger
349 than the seasonal amplitude of GPP. The seasonality of ER may be explained by the positive effects
350 of higher temperatures on the rates of autotrophic respiration (Tjoelker et al. 2001), and on the activity
351 of microbes to increase soil organic matter decomposition (Lloyd and Taylor 1994); low soil moisture
352 in the shallow layers sometimes limited decomposition (January and February 2014, January and
353 December 2015, February and December 2017, see Figure 1), but often regular rainfall maintained
354 adequate soil moisture. The relatively low seasonality of GPP may be partly explained by lower
355 photosynthetic capacity in early summer (before January) when LAI was at its lowest, and the leaves
356 have reached maximum age because new leaves have not yet emerged. The ER-driven seasonality of
357 NEE is in sharp contrast with cold temperate forests where GPP drives the seasonality of NEE. ER-
358 driven NEE seasonality was also observed in an Asian tropical rain forest, as ER was higher than GPP
359 in the rainy season leading to net ecosystem carbon loss, while in the dry season, ecosystem carbon
360 uptake was positive (Zhang et al. 2010). This pattern was also observed in an Amazon tropical forest
361 (Saleska et al. 2003).

362 A strong morning-afternoon hysteresis of NEE response to PPFD occurred in summer, and less so in
363 winter (Figure 3). In winter, low D and moderately warm daytime air temperatures and high PPFD
364 were sufficient to maintain high photosynthesis rates throughout most of the day (Figure 1). In
365 summer, two possible explanations of the diurnal hysteresis of NEE are (1) ER is greater in the
366 afternoon compared to morning or (2) GPP is lower in the afternoon compared to morning.
367 Explanation (1) is plausible, as temperature drives autotrophic and heterotrophic respiration; however,
368 it is unlikely to explain the hysteresis magnitude which is higher in summer compared to winter.
369 Explanation (2) could arise from lower afternoon stomatal conductance or lower photosynthetic
370 capacity (e.g. the maximum rate of carboxylation (V_{cmax}) decreases at high T_a), or a combination of
371 both or even circadian regulation (Jones et al. 1998; Resco de Dios et al. 2015). An analysis of surface
372 conductance showed strong stomatal regulation (Figure 2, Figure 3, Figure 5), induced by high
373 atmospheric demand and high air temperature (Duursma et al. 2014), limiting photosynthesis during
374 the afternoon of warm months (see Figure S10). These diurnal patterns of NEE, GPP and ER play a
375 strong role in regulating the seasonal carbon cycling dynamics in this ecosystem. A wavelet coherence
376 analysis between D and GPP showed strong coherence at seasonal time scale (periods of three
377 months), see figure S11.

378 We observed comparable responses of leaf-level and ecosystem-level gas exchange to environmental
379 drivers (Figure 5). The larger magnitude of A_{max} than GPP at high D may be explained by the
380 proportion of shaded leaves in the ecosystem. The similar magnitude for G_s and g_s was also expected,
381 as LAI is close to 1 and R_n is not a driver for stomatal conductance. The peaked pattern of T versus D,
382 as opposite to saturating pattern of ET, may be explained by (1) the contribution of soil evaporation to

383 ET or (2) the presence of mistletoe, known for not regulating their stomata (Griebel et al. 2017). The
384 higher magnitude of leaf water use efficiency results from the combination of higher A_{max} and similar
385 or lower leaf transpiration compared to ET. Furthermore, we compared leaf level g_1 and ecosystem
386 level G_1 , using the optimal stomatal conductance model (Medlyn et al. 2011): G_1 was lower than g_1
387 (1.6 ± 0.06 for G_1 , 4.4 ± 0.2 for g_1 , see figure S12).

388 Our study demonstrated that canopy dynamics (specifically, LAI in our study) play an important role
389 in regulating seasonal variations in GPP even in evergreen forests. Similar observations emerged from
390 a tropical forest, where leaf area index and leaf age explained the seasonal variability of GPP (Wilson
391 et al. 2001; Wu et al. 2016), as the photosynthetic capacity (PC, the maximum rate of GPP in optimal
392 environmental condition) varied with leaf age. In Australian woodlands, PC (A_{max}) of leaves was also
393 found to decrease with leaf age: A_{max} declined by 30% on average between young and old leaves, for
394 10 different species (Reich et al. 2009). In the Cumberland Plain forest, periods with high LAI co-
395 occur with mature, efficient leaves, and periods with low LAI co-occur with old, less efficient leaves.
396 LAI was correlated with PC, which was probably the result of both a greater number of leaves and
397 more efficient leaves. Remotely sensed vegetation indices such as EVI or NDVI assess whether the
398 target being observed contains live green vegetation. In Australia, NDVI and EVI were good
399 predictors of photosynthetic capacity in savanna, mulga and Mediterranean-mallee ecosystems
400 (Restrepo-Coupe et al. 2016). For our site, EVI was a good predictor of PC, which was surprising as
401 satellite-derived LAI values have been found to be typically inaccurate in open forests and forests in
402 southeast Australia (Hill et al. 2006). NDVI was a poor predictor of PC (see figure S9).

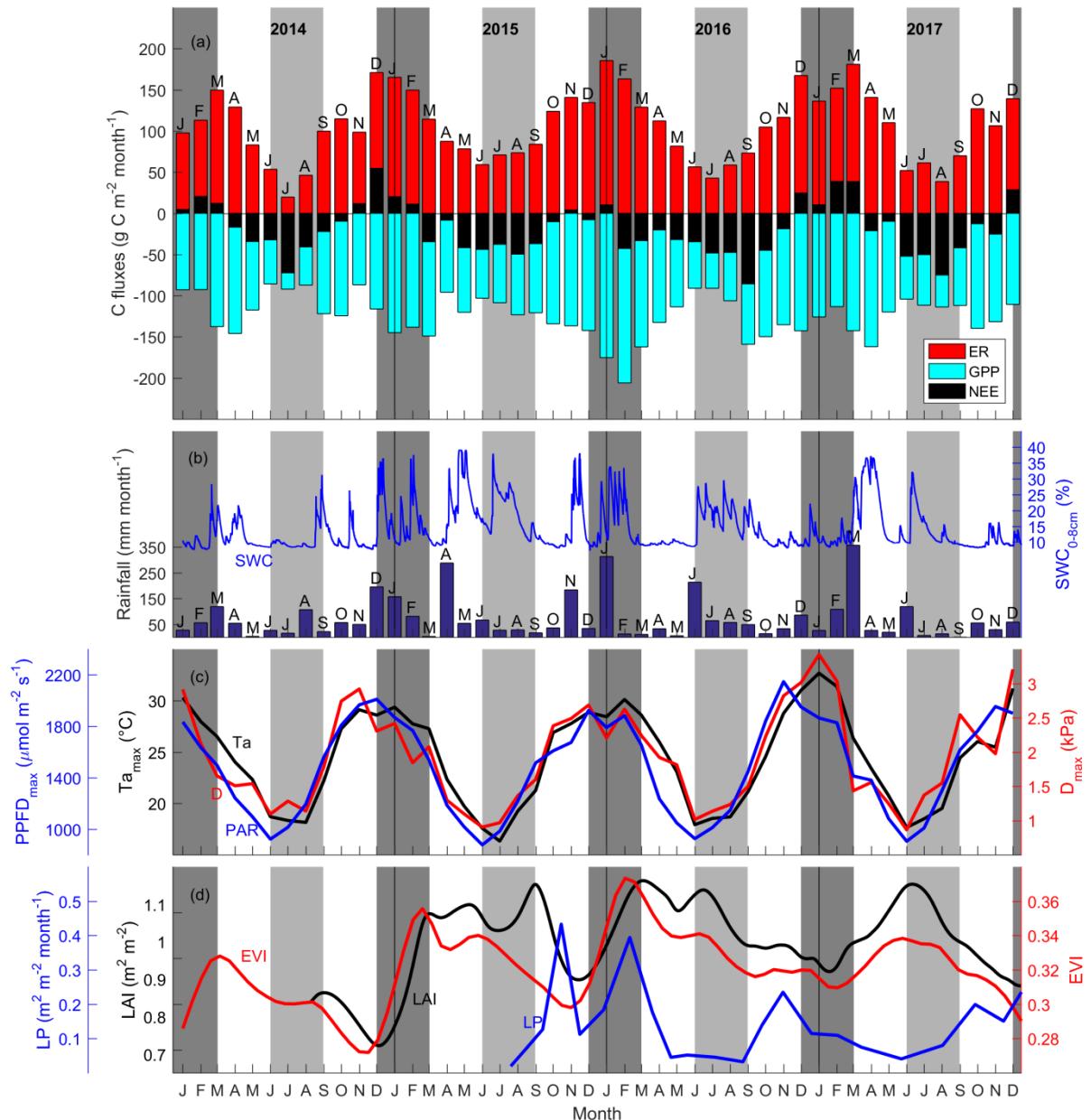
403 In a global study, it was shown that mean annual NEE decreased with increasing dryness index
404 (PET/P) in sites located below 45° N latitude (Yi et al. 2010). It has also been shown that *Eucalyptus*
405 grow more slowly in warm environments (Prior and Bowman 2014). At our site, and in a previous
406 study in eucalyptus forest (van Gorsel et al. 2013), GPP decreased with D above a threshold of ~ 1.3
407 kPa. Our results indicate that surface conductance (G_s) decreased above that threshold, suggesting that
408 the decrease in GPP is caused by stomatal regulation. As D correlates with air temperature, it is
409 difficult to distinguish the relative contribution of D and T_a to the decrease of G_s , but they are thought
410 to both impact G_s (Duursma et al. 2014). Cumberland Plain has the highest mean annual temperature
411 and the highest dryness index among the four eucalyptus forest eddy-covariance sites in south-east
412 Australia (Beringer et al. 2016), which could explain its strong sensitivity to D and hence its unique
413 seasonality.

414 **5 Conclusions**

415 The Cumberland Plain forest was a net C source in summer and a net C sink in winter, in contrast to
416 other Australian eucalypt forests which were net C sinks year-round. ER drove NEE seasonality, as
417 the seasonal amplitude of ER was greater than GPP. ER was high in the warmer, wetter months of
418 summer, when environmental conditions supported high autotrophic respiration and heterotrophic
419 decomposition. Meanwhile, GPP was limited by lower LAI and probably older leaves in early
420 summer, and by high D which limited G_s throughout the summer. Despite being evergreen, there was
421 significant temporal variation in LAI, which was correlated with monthly photosynthetic capacity and
422 monthly surface conductance. Understanding LAI dynamics and its response to precipitation regimes
423 will play a key-role in climate change feedback.

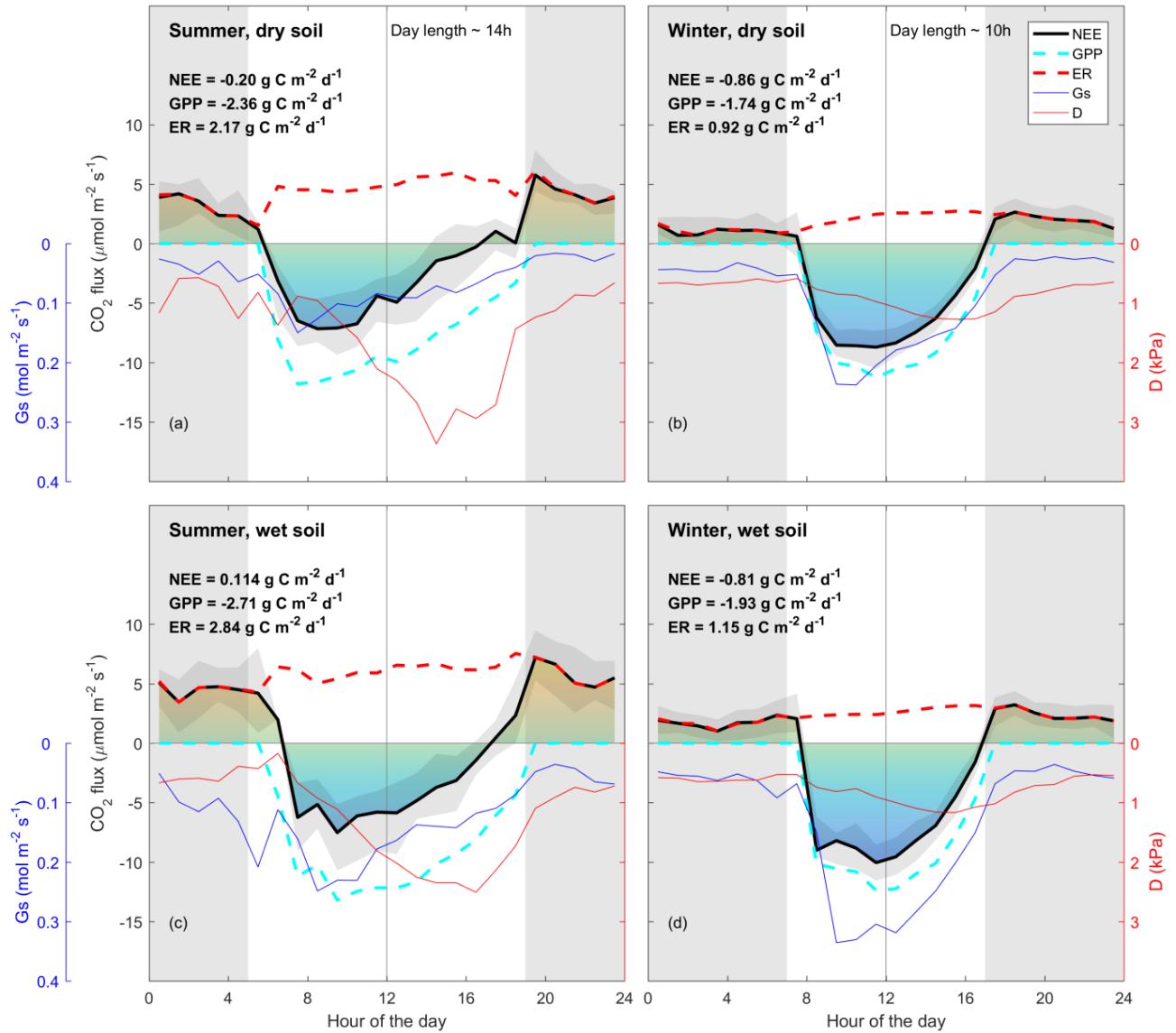
424 **Code and data availability**

425 All the datasets and scripts used in this manuscript can be downloaded at:
426 <http://doi.org/10.5281/zenodo.1219977>

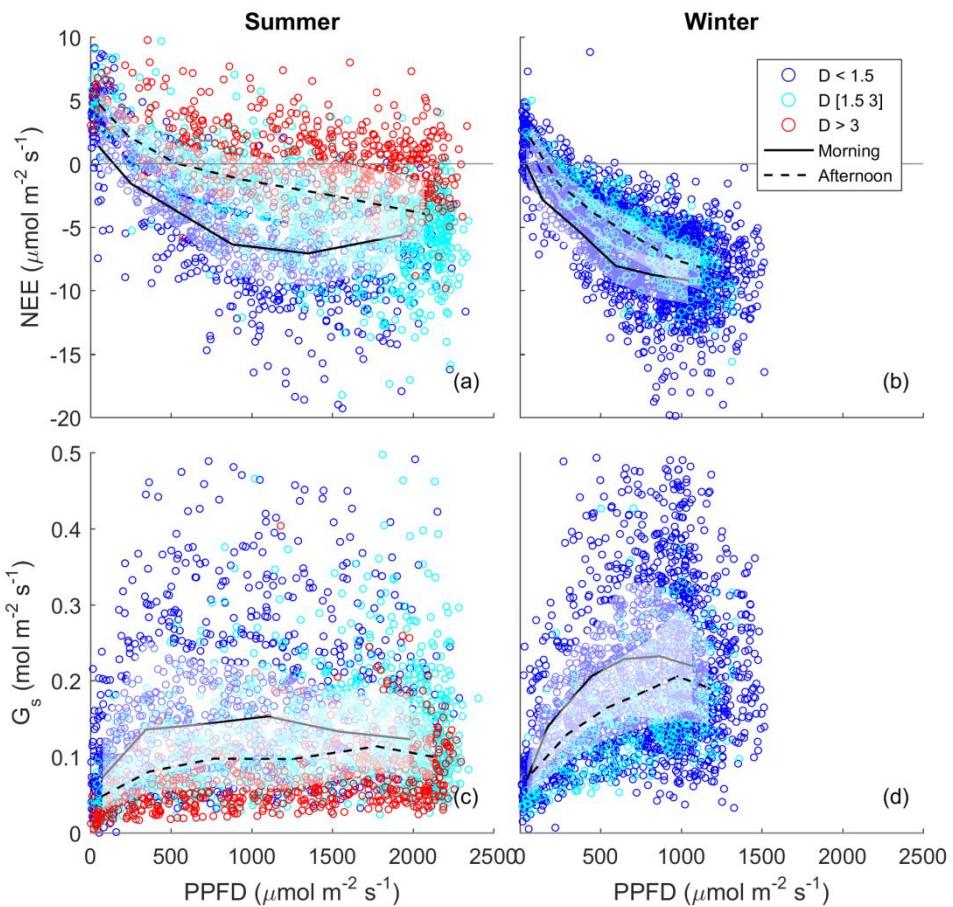

427 **Author contribution**

428 DT, VRD, EP, AAR conceived the project; CVMB, CM, EP, AAR, AG, MMB, DM collected the
429 data and assured the maintenance of the experiment; AAR, AG, DM, CAW, EP, PI, VRD, analysed
430 the data; AAR and EP wrote the manuscript with input from all other authors.

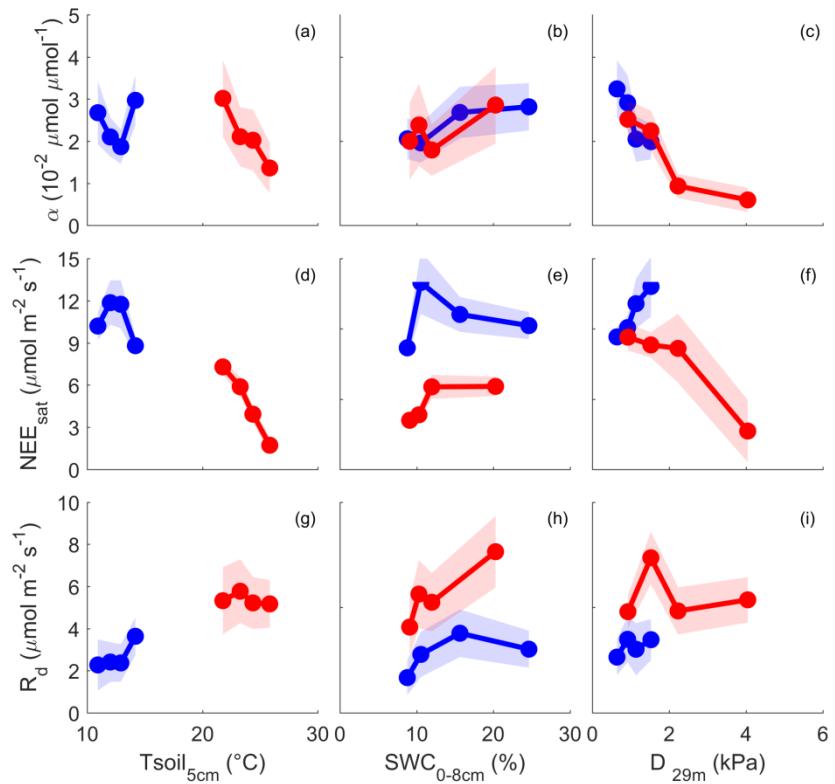
431 The authors declare that they have no conflict of interest.


432 **Acknowledgements**

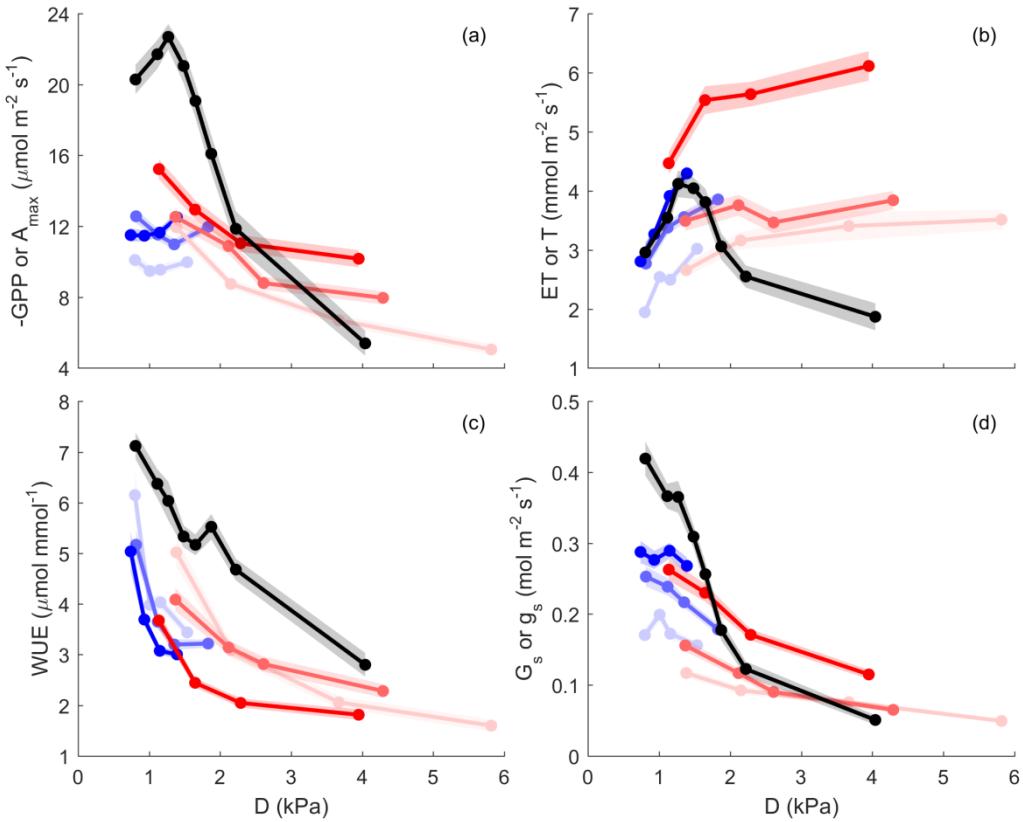
433 The Australian Education Investment Fund, Australian Terrestrial Ecosystem Research Network,
434 Australian Research Council, and Hawkesbury Institute for the Environment at Western Sydney
435 University supported this work. We thank Jason Beringer, Helen Cleugh, Ray Leuning and Eva van
436 Gorsel for advice and support. Senani Karunaratne provided soil classification details.


437

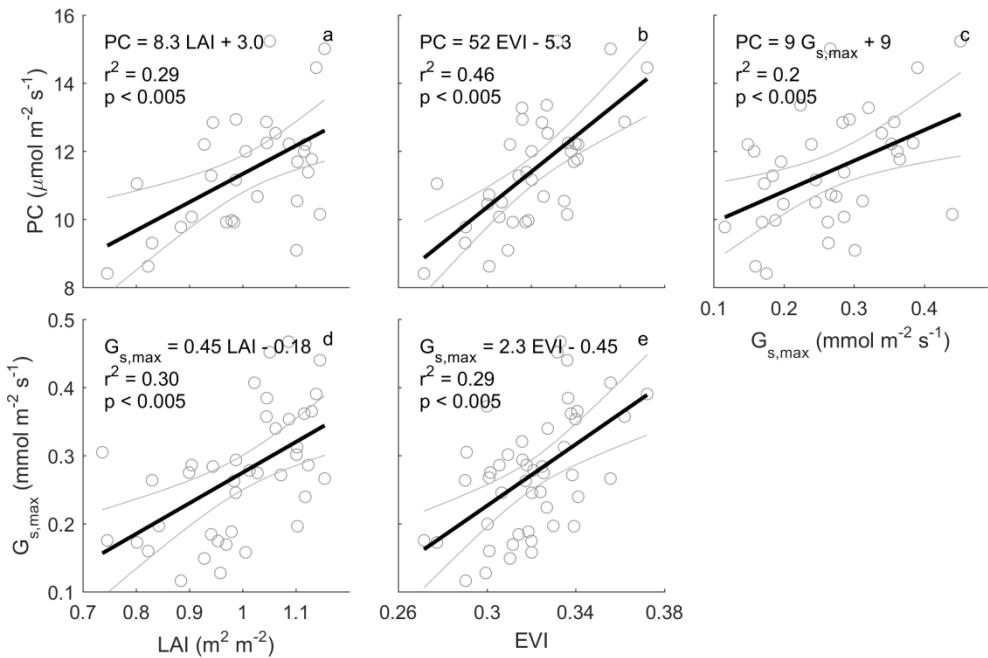
438 **Figure 1** a) Time series of monthly carbon flux (net ecosystem exchange (NEE) and ecosystem respiration (ER) and gross
439 primary productivity (GPP), $\text{g C m}^{-2} \text{month}^{-1}$) (negative indicates ecosystem uptake); b) rainfall, mm month^{-1} ; soil water
440 content from 0 to 8 cm ($\text{SWC}_{0-8\text{cm}} \%$); c) average of daily maximum for each month photosynthetically active radiation
441 (PPFD_{max} , $\mu\text{mol m}^{-2} \text{s}^{-1}$), air temperature (Ta_{max} , $^{\circ}\text{C}$) and vapour pressure deficit (D_{max} , kPa). d) Canopy dynamics trends:
442 enhanced vegetation index (EVI, unitless); leaf area index (LAI, $\text{m}^2 \text{m}^{-2}$) and litter production (LP, $\text{m}^2 \text{m}^{-2} \text{month}^{-1}$). Shaded
443 areas shows summer (dark grey) and winter (light grey). Note Ta_{max} and PPFD_{max} remained above 15°C and $800 \mu\text{mol m}^{-2} \text{s}^{-1}$.
444


445

446 **Figure 2** Diurnal trend (line: median and shade: quartile) of clear-sky measured net ecosystem exchange (NEE, thick black
 447 line, $\mu\text{mol m}^{-2} \text{ s}^{-1}$); estimated daytime ecosystem respiration (ER, inferred from a neural network fitted on nighttime NEE,
 448 thick dotted red line, $\mu\text{mol m}^{-2} \text{ s}^{-1}$); estimated gross primary productivity (GPP, inferred as NEE – estimated daytime ER,
 449 thick dotted cyan line, $\mu\text{mol m}^{-2} \text{ s}^{-1}$); measured vapour pressure deficit (D, thin red line, kPa); and estimated surface
 450 conductance (G_s , inferred from Penman-Monteith, blue line, $\text{mmol m}^{-2} \text{ s}^{-1}$). Grey shade shows night-time (sunset to sunrise).
 451 NEE, GPP and ER number are calculated by integrating the diurnal fluxes as shown in the figure. “Wet” and “dry” soil is
 452 defined as below or above the median of soil water content during summer or winter. Summer is December through
 453 February. Winter is June through August, as defined by the Sydney bureau of meteorology. Colours under NEE rate are
 454 shown for visualisation. Note that there is an asymmetry between morning and afternoon NEE in summer, less so in winter.
 455 Note that ecosystem respiration (nighttime NEE) is enhanced by SWC in summer, less so in winter. Data used in this figure
 456 correspond to clear-sky half-hour values, where high quality measured data for NEE were available.


457

458 **Figure 3** Half-hourly measured NEE vs. PPFD, coloured by D (blue, D < 1.5 kPa, cyan: D [1.5-3] kPa, red: D > 3 kPa) for
459 (a) summer, and (b) winter periods. Raw data are binned by light levels to show median (lines) and quartiles (white shades)
460 for morning (continuous lines) and afternoon (dotted lines) hours separately.


461

462 **Figure 4** NEE $\mu\text{mol m}^{-2} \text{s}^{-1}$ light response parameters, calculated for different bins of climatic drivers (soil temperature (T_{soil} ,
463 °C) at 5cm depth, soil water content (SWC, %) from 0 cm to 8 cm depth, and atmospheric demand (D, kPa) at 29 m height),
464 only raw, qc filtered daytime data is used. Light response curve was fitted using Mitscherlich equation (see methods), α is
465 the initial slope, near PPFD = 0 ($\mu\text{mol } \mu\text{mol}^{-1}$), NEE_{sat} $\mu\text{mol m}^{-2} \text{s}^{-1}$ is NEE at light saturation, and R_d $\mu\text{mol m}^{-2} \text{s}^{-1}$ is the dark
466 respiration (NEE when PPFD = 0). Blue indicates winter months, Red indicates summer months. Dots are parameters value
467 for each quartile of driver, plotted at x = median of driver for each bin. Shading is 95% confidence interval of the parameter
468 fit.

469

470 **Figure 5** Gross primary productivity or net assimilation (GPP or A_{\max} , $\mu\text{mol m}^{-2} \text{[ground or leaf]} \text{ s}^{-1}$), evapotranspiration or
471 leaf transpiration (ET or T, $\text{mmol m}^{-2} \text{[ground or leaf]} \text{ s}^{-1}$), water use efficiency (WUE = GPP/ET or A_{\max}/T , $\mu\text{mol mmol}^{-1}$)
472 and surface conductance or leaf conductance (G_s or g_s , $\text{mmol m}^{-2} \text{s}^{-1}$) vs. vapour pressure deficit (D). Leaf level is shown in
473 black, ecosystem scale is shown in color; summer (red) and winter (blue), at saturated PPF ($>1000 \mu\text{mol m}^{-2} \text{ s}^{-1}$). D is
474 binned into 4 quartiles for ecosystem and 8 for leaf; Y is mean value for each D bins, plotted at the median of D bin. Shaded
475 area indicates the standard error of the mean. The three color intensity show SWC quantiles (SWC < 0.33, SWC [0.33-0.67]
476 and SWC [0.67-1.00] shown in decreasing color intensity).

477

478 **Figure 6** Relationships between monthly photosynthetic capacity (PC, $\mu\text{mol m}^{-2} \text{s}^{-1}$), leaf area index (LAI, $\text{m}^2 \text{m}^{-2}$),
479 enhanced vegetation index (EVI), and maximum surface conductance ($\text{G}_{\text{s,max}}$). Monthly PC and monthly $\text{G}_{\text{s,max}}$ are calculated
480 as the median of half-hourly GPP and half-hourly G_s when PPF [800-1200 $\mu\text{mol m}^{-2} \text{s}^{-1}$] and D [1-1.5 kPa]; rain events are
481 filtered for $\text{G}_{\text{s,max}}$ estimation, to minimise evaporation contribution to evapotranspiration (see methods). Monthly LAI is
482 calculated as mean of LAI smoothed by a spline. Thick black line shows a linear regression. For PC calculation, GPP data is
483 only used when quality-checked NEE is available (GPP = NEE measured – ER estimated by a neural network, see method).

484
485 **Table 1** Annual precipitation (P, mm y^{-1}), evapotranspiration (ET, mm y^{-1}), air temperature T_a ($^{\circ}C$), net ecosystem exchange
486 (NEE, g $C\ m^{-2}\ y^{-1}$), gross ecosystem production (GPP, g $C\ m^{-2}\ y^{-1}$) and ecosystem respiration (ER, g $C\ m^{-2}\ y^{-1}$) for the four
year study period.

Period	P (mm y^{-1})	ET (mm y^{-1})	T_a ($^{\circ}C$)	NEE (g $C\ m^{-2}\ y^{-1}$)	GPP (g $C\ m^{-2}\ y^{-1}$)	ER (g $C\ m^{-2}\ y^{-1}$)
2014 all	733	797	18	-124	-1301	1177
Winter	149	142	13	-145	-265	120
Spring	129	189	19	-20	-333	313
Summer	279	275	23	80	-302	382
Autumn	176	190	19	-39	-401	362
2015 all	978	938	18	-234	-1517	1283
Winter	122	160	12	-131	-335	204
Spring	237	223	19	-43	-392	349
Summer	273	318	23	24	-426	449
Autumn	345	238	18	-84	-365	280
2016 all	893	852	19	-372	-1664	1292
Winter	335	164	13	-130	-288	158
Spring	96	207	19	-149	-444	295
Summer	412	311	24	-8	-524	516
Autumn	50	171	20	-85	-408	323
2017 all	821	798	19	-171	-1486	1315
Winter	139	148	13	-177	-329	152
Spring	85	178	19	-80	-383	303
Summer	194	236	25	78	-350	428
Autumn	403	237	18	8	-424	432

487

488 **References**

- 489 Aubinet, M., T. Vesala, and D. Papale, 2012: *Eddy Covariance A Practical Guide to Measurement*
490 and *Data Analysis*. Springer.
- 491 Aubinet, M., B. Chermanne, M. Vandenhaute, B. Longdoz, M. Yernaux, and E. Laitat, 2001: Long
492 term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. *Agricultural and Forest*
493 *Meteorology*, **108**, 293-315.
- 494 Baldocchi, D., Y. Ryu, and T. Keenan, 2016: Terrestrial Carbon Cycle Variability. *F1000Research*, **5**.
- 495 Baldocchi, D. D., B. B. Hicks, and T. P. Meyers, 1988: MEASURING BIOSPHERE-ATMOSPHERE
496 EXCHANGES OF BIOLOGICALLY RELATED GASES WITH MICROMETEOROLOGICAL
497 METHODS. *Ecology*, **69**, 1331-1340.
- 498 Barr, A., and Coauthors, 2013: Use of change-point detection for friction–velocity threshold
499 evaluation in eddy-covariance studies. *Agricultural and Forest Meteorology*, **171**, 31-45.
- 500 Beringer, J., and Coauthors, 2016: An introduction to the Australian and New Zealand flux tower
501 network - OzFlux. *Biogeosciences*, **13**, 5895-5916.
- 502 Breiman, L., 2001: Random forests. *Machine learning*, **45**, 5-32.
- 503 Didan, K., 2015: MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid
504 V006. *NASA EOSDIS Land Processes DAAC*.
- 505 Dixon, R. K., S. Brown, R. e. a. Houghton, A. Solomon, M. Trexler, and J. Wisniewski, 1994: Carbon
506 pools and flux of global forest ecosystems. *Science(Washington)*, **263**, 185-189.
- 507 Duursma, R. A., T. E. Gimeno, M. M. Boer, K. Y. Crous, M. G. Tjoelker, and D. S. Ellsworth, 2016:
508 Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated
509 atmospheric CO₂ but tracks water availability. *Global Change Biology*, **22**, 1666-1676.
- 510 Duursma, R. A., and Coauthors, 2014: The peaked response of transpiration rate to vapour pressure
511 deficit in field conditions can be explained by the temperature optimum of photosynthesis.
512 *Agricultural and Forest Meteorology*, **189**, 2-10.
- 513 Fan, S.-M., S. C. Wofsy, P. S. Bakwin, D. J. Jacob, and D. R. Fitzjarrald, 1990: Atmosphere-
514 biosphere exchange of CO₂ and O₃ in the central Amazon forest.
- 515 Foken, T., 2008: The energy balance closure problem: an overview. *Ecological Applications*, **18**,
516 1351-1367.
- 517 Foken, T., F. Wimmer, M. Mauder, C. Thomas, and C. Liebethal, 2006: Some aspects of the energy
518 balance closure problem. *Atmospheric Chemistry and Physics*, **6**, 4395-4402.
- 519 Foken, T., M. Gockede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, 2004: Post-field data
520 quality control. *Handbook of Micrometeorology: A Guide for Surface Flux Measurement and*
521 *Analysis*, **29**, 181-208.
- 522 Gash, J., and A. Culf, 1996: Applying a linear detrend to eddy correlation data in realtime. *Boundary-*
523 *Layer Meteorology*, **79**, 301-306.
- 524 Gimeno, T. E., K. Y. Crous, J. Cooke, A. P. O'Grady, A. Ósvaldsson, B. E. Medlyn, and D. S.
525 Ellsworth, 2016: Conserved stomatal behaviour under elevated CO₂ and varying water availability in
526 a mature woodland. *Functional Ecology*, **30**, 700-709.

- 527 Graham, E. A., S. S. Mulkey, K. Kitajima, N. G. Phillips, and S. J. Wright, 2003: Cloud cover limits
528 net CO₂ uptake and growth of a rainforest tree during tropical rainy seasons. *Proceedings of the*
529 *National Academy of Sciences*, **100**, 572-576.
- 530 Griebel, A., D. M. Watson, and E. Pendall, 2017: Mistletoe, friend and foe: synthesizing ecosystem
531 implications of mistletoe infection. *Environmental Research Letters*.
- 532 Griebel, A., L. T. Bennett, D. S. Culvenor, G. J. Newnham, and S. K. Arndt, 2015: Reliability and
533 limitations of a novel terrestrial laser scanner for daily monitoring of forest canopy dynamics. *Remote*
534 *Sensing of Environment*, **166**, 205-213.
- 535 Hill, M. J., U. Senarath, A. Lee, M. Zeppel, J. M. Nightingale, R. D. J. Williams, and T. R. McVicar,
536 2006: Assessment of the MODIS LAI product for Australian ecosystems. *Remote Sensing of*
537 *Environment*, **101**, 495-518.
- 538 Hinko-Najera, N., and Coauthors, 2017: Net ecosystem carbon exchange of a dry temperate eucalypt
539 forest. *Biogeosciences*, **14**, 3781-3800.
- 540 Hutyra, L. R., and Coauthors, 2007: Seasonal controls on the exchange of carbon and water in an
541 Amazonian rain forest. *Journal of Geophysical Research: Biogeosciences*, **112**.
- 542 Isaac, P., J. Cleverly, I. McHugh, E. van Gorsel, C. Ewenz, and J. Beringer, 2017: OzFlux Data:
543 Network integration from collection to curation. *Biogeosciences*, **14**, 2903.
- 544 Jones, T. L., D. E. Tucker, and D. R. Ort, 1998: Chilling delays circadian pattern of sucrose phosphate
545 synthase and nitrate reductase activity in tomato. *Plant Physiology*, **118**, 149-158.
- 546 Karan, M., and Coauthors, 2016: The Australian Supersite Network: a continental, long-term
547 terrestrial ecosystem observatory. *Science of the Total Environment*, **568**, 1263-1274.
- 548 Keeling, C. D., S. C. Piper, R. B. Bacastow, M. Wahlen, T. P. Whorf, M. Heimann, and H. A. Meijer,
549 2001: Exchanges of atmospheric CO₂ and ¹³CO₂ with the terrestrial biosphere and oceans from 1978
550 to 2000. I. Global aspects. *Scripps Institution of Oceanography*.
- 551 Keith, H., E. van Gorsel, K. L. Jacobsen, and H. A. Cleugh, 2012: Dynamics of carbon exchange in a
552 Eucalyptus forest in response to interacting disturbance factors. *Agricultural and Forest Meteorology*,
553 **153**, 67-81.
- 554 Knauer, J., C. Werner, and S. Zaehle, 2015: Evaluating stomatal models and their atmospheric
555 drought response in a land surface scheme: A multibiomass analysis. *Journal of Geophysical Research: Biogeosciences*, **120**, 1894-1911.
- 557 Knauer, J., and Coauthors, 2017: Towards physiologically meaningful water-use efficiency estimates
558 from eddy covariance data. *Global Change Biology*.
- 559 Kolari, P., H. K. Lappalainen, H. Hänninen, and P. Hari, 2007: Relationship between temperature and
560 the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone.
561 *Tellus B*, **59**, 542-552.
- 562 Kormann, R., and F. X. Meixner, 2001: An analytical footprint model for non-neutral stratification.
563 *Boundary-Layer Meteorology*, **99**, 207-224.
- 564 Lim, P. O., H. J. Kim, and H. Gil Nam, 2007: Leaf senescence. *Annu. Rev. Plant Biol.*, **58**, 115-136.

- 565 Lindroth, A., L. Klemmedsson, A. Grelle, P. Weslien, and O. Langvall, 2008: Measurement of net
566 ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows
567 unexpectedly large soil carbon losses. *Biogeochemistry*, **89**, 43-60.
- 568 Lloyd, J., and J. A. Taylor, 1994: ON THE TEMPERATURE-DEPENDENCE OF SOIL
569 RESPIRATION. *Functional Ecology*, **8**, 315-323.
- 570 Medlyn, B. E., and Coauthors, 2011: Reconciling the optimal and empirical approaches to modelling
571 stomatal conductance. *Global Change Biology*, **17**, 2134-2144.
- 572 Mitscherlich, E. A., 1909: Das Gesetz des Minimums und das Gesetz des abnehmenden
573 Bodenertrages. *Landw. Jahrb*, **38**, 537-552.
- 574 Moncrieff, J., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending, and filtering of
575 eddy covariance time series. *Handbook of micrometeorology*, Springer, 7-31.
- 576 Moncrieff, J. B., and Coauthors, 1997: A system to measure surface fluxes of momentum, sensible
577 heat, water vapour and carbon dioxide. *Journal of Hydrology*, **189**, 589-611.
- 578 Monteith, J. L., 1965: Evaporation and environment. *Symp. Soc. Exp. Biol*, **4**.
- 579 Moore, C. E., T. F. Keenan, R. A. Duursma, A. I. van Dijk, L. B. Hutley, J. R. Taylor, and M. J.
580 Liddell, 2016: Reviews and syntheses: Australian vegetation phenology: new insights from satellite
581 remote sensing and digital repeat photography. *Biogeosciences*, **13**, 5085.
- 582 Munné-Bosch, S., and L. Alegre, 2004: Die and let live: leaf senescence contributes to plant survival
583 under drought stress. *Functional Plant Biology*, **31**, 203-216.
- 584 Novick, K. A., A. C. Oishi, E. J. Ward, M. B. S. Siqueira, J. Y. Juang, and P. C. Stoy, 2015: On the
585 difference in the net ecosystem exchange of CO₂ between deciduous and evergreen forests in the
586 southeastern United States. *Global Change Biology*, **21**, 827-842.
- 587 Novick, K. A., and Coauthors, 2016: The increasing importance of atmospheric demand for
588 ecosystem water and carbon fluxes. *Nature Climate Change*, **6**, 1023-1027.
- 589 Pan, Y., and Coauthors, 2011: A large and persistent carbon sink in the world's forests. *Science*, **333**,
590 988-993.
- 591 Pook, E., 1984: Canopy dynamics of Eucalyptus maculata Hook. II. Canopy leaf area balance.
592 *Australian Journal of Botany*, **32**, 405-413.
- 593 Poulter, B., and Coauthors, 2014: Contribution of semi-arid ecosystems to interannual variability of
594 the global carbon cycle. *Nature*, **509**, 600-603.
- 595 Prior, L. D., and D. M. Bowman, 2014: Big eucalypts grow more slowly in a warm climate: evidence
596 of an interaction between tree size and temperature. *Global change biology*, **20**, 2793-2799.
- 597 Reich, P. B., D. S. Falster, D. S. Ellsworth, I. J. Wright, M. Westoby, J. Oleksyn, and T. D. Lee, 2009:
598 Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland:
599 do leaves have zero daily net carbon balances when they die? *New Phytologist*, **183**, 153-166.
- 600 Resco de Dios, V., A. W. Fellows, R. H. Nolan, M. M. Boer, R. A. Bradstock, F. Domingo, and M. L.
601 Goulden, 2015: A semi-mechanistic model for predicting the moisture content of fine litter.
602 *Agricultural and Forest Meteorology*, **203**, 64-73.

- 603 Restrepo-Coupe, N., and Coauthors, 2016: MODIS vegetation products as proxies of photosynthetic
604 potential along a gradient of meteorologically and biologically driven ecosystem productivity.
605 *Biogeosciences*, **13**, 5587-5608.
- 606 Restrepo-Coupe, N., and Coauthors, 2017: Do dynamic global vegetation models capture the
607 seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. *Global change*
608 *biology*, **23**, 191-208.
- 609 Saleska, S. R., and Coauthors, 2003: Carbon in Amazon forests: unexpected seasonal fluxes and
610 disturbance-induced losses. *Science*, **302**, 1554-1557.
- 611 Schimel, D. S., and Coauthors, 2001: Recent patterns and mechanisms of carbon exchange by
612 terrestrial ecosystems. *Nature*, **414**, 169-172.
- 613 Thom, A., 1972: Momentum, mass and heat exchange of vegetation. *Quarterly Journal of the Royal*
614 *Meteorological Society*, **98**, 124-134.
- 615 Tjoelker, M. G., J. Oleksyn, and P. B. Reich, 2001: Modelling respiration of vegetation: evidence for
616 a general temperature-dependent Q10. *Global Change Biology*, **7**, 223-230.
- 617 Trenberth, K. E., 1983: What are the seasons? *Bulletin of the American Meteorological Society*, **64**,
618 1276-1282.
- 619 van Gorsel, E., and Coauthors, 2013: Primary and secondary effects of climate variability on net
620 ecosystem carbon exchange in an evergreen Eucalyptus forest. *Agricultural and Forest Meteorology*,
621 **182-183**, 248-256.
- 622 Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft
623 data. *Journal of Atmospheric and Oceanic Technology*, **14**, 512-526.
- 624 Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density
625 effects due to heat and water vapour transfer. *Quarterly Journal of the Royal Meteorological Society*,
626 **106**, 85-100.
- 627 Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms.
628 *Boundary-Layer Meteorology*, **99**, 127-150.
- 629 Wilson, K., and Coauthors, 2002: Energy balance closure at FLUXNET sites. *Agricultural and Forest*
630 *Meteorology*, **113**, 223-243.
- 631 Wilson, K. B., D. D. Baldocchi, and P. J. Hanson, 2001: Leaf age affects the seasonal pattern of
632 photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest. *Plant Cell and*
633 *Environment*, **24**, 571-583.
- 634 Windsor, D. M., 1990: Climate and moisture variability in a tropical forest: long-term records from
635 Barro Colorado Island, Panama.
- 636 Wu, J., and Coauthors, 2016: Leaf development and demography explain photosynthetic seasonality
637 in Amazon evergreen forests. *Science*, **351**, 972-976.
- 638 Xia, J. Y., and Coauthors, 2015: Joint control of terrestrial gross primary productivity by plant
639 phenology and physiology. *Proceedings of the National Academy of Sciences of the United States of*
640 *America*, **112**, 2788-2793.

- 641 Yi, C., and Coauthors, 2010: Climate control of terrestrial carbon exchange across biomes and
642 continents. *Environmental Research Letters*, **5**, 034007.
- 643 Zhang, Y., Z. Tan, Q. Song, G. Yu, and X. Sun, 2010: Respiration controls the unexpected seasonal
644 pattern of carbon flux in an Asian tropical rain forest. *Atmospheric Environment*, **44**, 3886-3893.
- 645