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S1 Derivation of RUSLE factors 

 

The regression equations to calculate the R-factor operate on one or more of the following parameters: total annual 

precipitation, mean elevation, and the simple precipitation intensity index, SDII. SDII is calculated based on the 

hourly precipitation data from ISIMIP2B (Frieler et al., 2016), by dividing the total yearly precipitation by the total 5 

number of wet days (> 1mm) in a year. Mean elevation is derived from the 5 arcmin-resolution ETOPO data 

(National Geophysical Data Center/NESDIS/NOAA, 1995).  

After calculating the R-factor for the year 2005AD using the above-mentioned data, we compared it to the high-

resolution global erosivity dataset from Panagos et al. (2017). We find that our global erosivity map shows a similar 

spatial variability in erosivity as that from Panagos et al. (2017). There are regions where the erosivity values from 10 

our study are at the low side, such as the west coast of North-America, Australia and parts of Asia, which can be 

explained by missing extreme events (Fig. S1A & B).  

 

 

Figure S1: (A) Global rainfall erosivity from this study for the year 2005AD, and (B) global rainfall erosivity map 15 

derived from Panagos et al. (2017). Both maps have the resolution of 5 arcmin 

Due to the lack of data on the normalized difference vegetation index (NDVI), the method presented in the study of 

Naipal et al. (2015) for estimation of the C factor of the Adj.RUSLE model could not be used in this study. Instead, 

the method from the study of Naipal et al. (2016)was used. This method is based on the C values provided by 

Panagos et al. (2015) for Europe for different land cover types, combined with the leaf area index (LAI) from the 20 

ORCHIDEE model. The LAI is used to estimate the percentage vegetation cover (cf), which has been shown to 

influence the overall value of the C factor for a specific land cover type (Walter  & Wischmeier, 1972). cf 

(dimensionless) is estimated according to the Beer’s Law approximation: 

                                                    𝑐𝑓 = 1 −  𝑒−0.5∗𝐿𝐴𝐼                                                (1) 

Five cf classes are distinguished: cf > 0.75, 0.6<cf<=0.75, 0.45<cf<=0.6, 0.2<cf<=0.45 and cf<= 0.2. The 25 

corresponding C-factors for the different land cover types used in this study is given in table S1. If cf was smaller 

than 0.2, all land cover types, except bare soil, were given a maximum value of 0.45. This value corresponds to the 

maximum C values found by United States Department of Agriculture (Walter & Wischmeier, 1972) and Panagos et 

al. (2015). For bare soil the maximum C value is 0.55, which is according to Panagos et al. (2015). 
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The K-factor (t ha h ha
-1

 MJ
-1

 mm
-1

) of the Adj.RUSLE model is calculated using 30 arcsec soil data on sand, silt, 30 

clay fractions and percent organic matter (from Global Soil Data set for use in Earth System Models (GSCE) 

(Shangguan et al., 2014), according to the method of Torri, et al. (1997): 

𝐾 = 0.0293 ∗ (0.65 − 𝐷𝑔 + 0.24 ∗ 𝐷𝑔2) ∗ 𝑒
{−0.0021∗

𝑂𝑀

𝑓𝑐𝑙𝑎𝑦
−0.00037∗(

𝑂𝑀

𝑓𝑐𝑙𝑎𝑦
)

2

−4.02∗𝑓𝑐𝑙𝑎𝑦+1.72∗𝑓𝑐𝑙𝑎𝑦
2  }

                (2) 

where Dg is defined as: 

𝐷𝑔 =  −3.5 ∗ 𝑓𝑠𝑎𝑛𝑑 − 2 ∗ 𝑓𝑠𝑖𝑙𝑡 − 0.5 ∗ 𝑓𝑐𝑙𝑎𝑦                                         (3) 35 

where fsand, fsilt and fclay are the fractions of respectively sand (particle size of 0.05-2mm), silt (particle size of 

0.002-0.05 mm) and clay (particle size of 0.00005-0.002 mm). OM is the percent organic matter. Volcanic soils are 

defined as Andosols according to the FAO 90 in the Harmonized World Soil Database (HWSD), and are given a K 

factor value of 0.08. To account for the effect of stoniness on soil erosion we reduced the total erosion by 30% for 

areas with a gravel percentage larger or equal to 30% for nonagricultural land (Cerdan et al., 2010). For agricultural 40 

and grassland areas we reduced soil erosion by 80% in areas where the gravel percentage exceeded 12% (Doetterl et 

al., 2012). 

The S factor of the adjusted RUSLE model is computed by the continuous function of Nearing (1997): 

𝑆 = 1.5 +
17

1+𝑒(2.3−6.1∗sin 𝜃)            (4) 

where θ is the percent slope that is derived from a 1 km digital elevation model (DEM) and scaled to a resolution of 45 

150m according to the fractal method presented by Naipal et al. (2015). 

 

S2 Variability in NPP, biomass and litter 

 

 50 

Figure S2: Global total NPP over the historical period from the “CO2_constant” simulation (green) and the 

“CO2_variable” simulations (black) using the full ORCHIDEE model 
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Figure S3: Cumulative historical changes in biomass from simulations with the emulator using variable atmospheric 

CO2 (S3, S4, S3-S4), and using constant atmospheric CO2 (S7, S8, S7-S8) 55 

 

Figure S4: Cumulative historical changes in litter from simulations with the emulator using variable atmospheric 

CO2 (S3, S4, S3-S4), and using constant atmospheric CO2 (S7, S8, S7-S8) 

cf Forest Grass Crops Bare 

> 0.75 0.0001 0.01 0.03 0.1 

0.6 - 0.75 0.00089 0.029 0.14 0.2 

0.45 - 0.60 0.00168 0.048 0.26 0.29 

0.20 - 0.45 0.003 0.08 0.45 0.45 

< 0.20 0.45 0.45 0.45 0.55 

Table S1: C values for different PFTs and cover fractions (cf)  
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PFT r 

Bare 5 

Grass 4 

Crop 4 

Forest  1 or 0.8 

Table S2: values of the r parameter (root profile ORCHIDEE) 60 
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0.3 
76 274 242 59 420 264 103 516 439 

1 
145 556 490 84 779 384 139 908 629 

2 
189 718 632 105 1393 437 167 1706 716 

Table S3:  Statistics of the comparison of SOC stocks between GSDE soil database and simulations S1 (with 

erosion) and S3 (without erosion) per land cover type 
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