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Abstract: Spatial patterns of soil carbon (C), nitrogen (N) and phosphorus (P) and 13 

their stoichiometric characteristics (C:N:P) play an important role in nutrient 14 

limitations, community dynamics, nutrient use efficiency and biogeochemical cycles, 15 

etc. To date, the spatial distributions of soil organic C at various spatial scales have 16 

been extensively studied, whereas little is known about the spatial patterns of N and P 17 

and C:N:P ratios in various landscapes, especially across complex terrains. To fill this 18 

gap, we estimated the spatial patterns of concentrations of C, N and P and C:N:P 19 

ratios in Schrenk’s spruce (Picea schrenkiana) forest in the Tianshan Mountains using 20 

multiple linear regression (MLR) model based on data from soil profiles collected 21 

from 2012 to 2017. We found that (1) elevation and climatic variables jointly 22 

contributed to concentrations of C, N and P and C:N:P ratios, (2) soil concentrations 23 

and stoichiometric ratios demonstrated different but continual spatial patterns in 24 

Schrenk’s spruce forest, and (3) MLR models could be reliably used to estimate the 25 

spatial patterns of soil elemental concentrations and stoichiometric ratios in 26 

mountainous terrain. We suggest that more independent variables (including biotic, 27 

abiotic and anthropogenic factors) should be considered in future works. Additionally, 28 

adjustment of MLR and other models should be used for a better delineation of spatial 29 

patterns in the concentrations of soil elements and stoichiometric ratios. 30 
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 34 

Introduction 35 

Like those in grasslands and croplands, stocks of macro-nutrients such as carbon (C), 36 

nitrogen (N) and phosphorus (P) in subalpine forests play an important role in the 37 

terrestrial biogeochemical cycle due to their large stocks and potential feedbacks to 38 

external disturbances (Allison and Treseder, 2010; Huang and Schoenau, 1996; Cao 39 

and Chen, 2017). Theoretically, C, N and P are proportionally organized in 40 

ecosystems and controlled by plant functional type, climate and human activities (De 41 

Long et al., 2016; Tian et al., 2010b; Vitousek, 2002). Since the relative stocks of 42 

these nutrients (as well as other nutrients such as potassium, calcium, sodium and 43 

magnesium) are crucial for the accumulation and allocation of plant biomass under 44 

various environmental stress such as drought, heat and light (Lie and Li, 2016; 45 

Niinemets, 2010), the science of ecological stoichiometry, which focuses on nutrient 46 

ratios and the impact factors of these ratios, has been proposed as a tool to study the 47 

spatial-temporal variation and driving forces of ratios across different ecosystems 48 

(Elser et al., 2000; Sterner and Elser, 2002; Mcgroddy et al., 2004). Currently, 49 

ecological stoichiometry has been successfully used to study nutrient limitation 50 

(Feller et al., 2003; Högberg et al., 2017), community dynamics (Johnson and 51 

Agrawal, 2005), microorganism nutrient status (Hill et al., 2012), symbiosis 52 

relationships (Mariotte et al., 2017), nutrient use efficiency (He et al., 2010) and the 53 

global biogeochemical cycle (Schmidt et al., 2016; Midgley and Phillips, 2016) in 54 

terrestrial and aquatic ecosystems. 55 

 56 

Soil is an important component of global biogeochemical cycles. Spatial patterns of 57 

soil C, N and P stocks and stoichiometry can contribute as input of independent 58 

validation for global and biogeochemical models and consequently provide valuable 59 

information to examine the feedbacks of different terrestrial ecosystems to global 60 
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environmental change (Yang et al., 2010). However, previous studies conducted in 61 

terrestrial ecosystems focused largely on vertical patterns of C, N and P and the 62 

stoichiometric ratios resulting from outputs due to plant growth and inputs from litter 63 

decomposition and soil weathering (Jobbágy, 2000; Yang et al., 2010; Wang et al., 64 

2015), and the elevation patterns induced by climatic gradient and disturbances 65 

(Müller et al., 2017; Richardson, 2004). To date, the spatial distribution of these 66 

nutrients, and especially their stoichiometric ratios, remains poorly understood. Since 67 

the driving forces that play a part in vertical and elevational variations of nutrient 68 

stocks and stoichiometric ratios can also play a role across landscapes and ecosystems, 69 

an improved understanding of spatial distribution of soil C, N, P and C:N:P ratios and 70 

their driving forces is urgently needed to spatially quantify the responses and 71 

feedbacks of nutrient stocks and stoichiometric ratios to spatial variation in plant 72 

uptake, biomass accumulation and other ecological processes.  73 

 74 

Recently, Liu et al. (2013) studied the spatial patterns of soil total N and P across the 75 

Loess Plateau region of China and found that concentrations of N and P are relatively 76 

higher in forestland with higher precipitation and temperature. In addition, their 77 

results also revealed that soil N and P in forestland demonstrated moderate spatial 78 

dependence (Liu et al., 2013). In alpine treeline ecotones, Müller et al. (2017) studied 79 

the availability of soil organic matter, N and P and found that P decrease significantly 80 

as elevation increases. Moreover, the type of tree species mainly contributed to spatial 81 

discrepancies in soil nutrient status (Müller et al., 2017). Compared to these forest 82 

ecosystems, subalpine forests have unique climatic, topographic and pedological 83 

characteristics that closely relate to soil nutrient status and thus may result in different 84 

soil nutrient patterns. However, limited information is available regarding the spatial 85 

pattern of soil C, N, and P in subalpine forests. Therefore, systematic investigation of 86 

soil C, N, and P in subalpine forests is urgently needed in order to improve our 87 

understanding of spatial variations of the nutrient cycle in forest ecosystems and their 88 

responses to global environmental change. 89 

 90 
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In the past several decades, soil C:N:P ratios have been extensively studied due to the 91 

close relationship between C, N and P and the role of the ratio as an indicator of 92 

nutrient limitations on plant growth. Like the limited references to spatial distribution 93 

or variation in soil C, N and P, available information on spatial patterns of soil C:N:P 94 

is also rare. Recently, a study that aimed to explore general soil C:N:P ratios and the 95 

patterns in these ratios with regard to soil depth, developmental stages and climate 96 

was conducted in China and revealed that while C:N ratios showed relatively small 97 

variation among climatic zones, C:P and N:P showed high spatial heterogeneity and 98 

large variation between different climatic zones (Tian et al., 2010a). In addition, 99 

Sardans et al. (2016) examined the soil concentrations of N and P, as well as N:P 100 

ratios, and discussed the relationship between the ratio and climate across European 101 

Pinus sylvestris forests. According to their results, the soil N:P ratios in these forests 102 

displayed spatial variation due to the limiting roles of P and higher levels of N 103 

deposition in the center of the species' distribution. Although these two studies and 104 

other investigations conducted in different ecosystems shed some light on the spatial 105 

distribution of stoichiometric ratios, they only considered the trend of the ratios in a 106 

transect comprising a series of sampling sites distributed along latitudinal, elevational 107 

or climatic gradients, rather than a spatial distribution or pattern of ratios that had the 108 

potential to characterize relative nutrients supply across the soil surface or landscape 109 

of terrestrial ecosystems. Inspired by species distribution models, the pioneer work 110 

conducted by Leroux et al. (2017) developed stoichiometric distribution models to 111 

map the spatial structure of nutrient composition across a landscape and evaluate the 112 

spatial responses of consumers to the composition. They argued that spatial patterns in 113 

nutrient composition may uncover ecosystem properties that are not revealed by 114 

approaches routinely used in ecological stoichiometry. Thus, an improved 115 

understanding of the spatial distribution of C:N:P stoichiometric ratios in different 116 

ecosystems is urgently needed in order to predict and understand the effects of 117 

changing biogeochemistry on ecosystem function and services(Leroux et al., 2017). 118 

 119 

The Schrenk’s spruce (Picea schrenkiana) forest under study is a typical subalpine 120 
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forest in the Tianshan Mountains. The forest ranges from Uzbekistan to the mountains 121 

of northwestern China, spanning more than 1800 km in longitude. The elevational 122 

range of the species is 1600-2800 m a.s.l. The broad elevational range and unique 123 

location of the species offers a unique opportunity to study the spatial distribution of 124 

soil C, N, P and C:N:P stoichiometric ratios in subalpine forest. Using a dataset of 125 

several sampling sites across the distribution of Schrenk’s spruce forest, a previous 126 

study conducted by Chen et al. (2008) reported that the soil nutrient stocks in eastern 127 

distribution of Schrenk’s spruce forest were relatively poor compared to other areas 128 

due to the variation in mean annual precipitation (MAP). In addition, Dai et al. (2013) 129 

studied the spatial variation of treeline and soil nutrient characteristics in a Schrenk’s 130 

spruce forest and found that the C stock was relatively higher in central sites, while 131 

total N and P were relatively higher in the western area. To date, limited data are 132 

available regarding the spatial distribution and variation of soil C, N, P and C:N:P 133 

stoichiometric ratios in the Schrenk’s spruce forest. Since the soil nutrients and 134 

stoichiometric ratios are closely related to spatial variations in climate 135 

conditions(Yang et al., 2010; Sardans et al., 2016; Müller et al., 2017) and the climate 136 

continuously varied from the western to eastern parts of the Tianshan Mountains 137 

(Wang et al., 2011), a continued spatial pattern of soil C, N, P and C:N:P 138 

stoichiometric ratios could be expected. 139 

 140 

In this study, we first investigated soil C, N, P and C:N:P ratios in Schrenk’s spruce 141 

forest. The data were obtained from field investigation and laboratory analysis. We 142 

then conducted statistical analysis in order to construct the multiple linear regression 143 

(MLR) relationship between the independent variables (soil C, N, P and C:N:P ratios) 144 

and dependent variables (elevation, MAT, MAP, etc.). By applying the relationship 145 

across the distribution of the Schrenk’s spruce forest, we examined the spatial pattern 146 

of soil C, N, P and C:N:P ratios in Schrenk’s spruce forest. We hypothesized that (1) 147 

soil C, N, P and C:N:P ratios could be delineated using a linear combination of 148 

elevation and climatic variables and that (2) the spatial distribution of soil C, N, P and 149 

C:N:P ratios would demonstrate a continuous pattern in the Schrenk’s spruce forest. 150 
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 151 

2. Materials and methods 152 

2.1 Study area 153 

The Tianshan Mountains lie in Central Asia. Our study area (Figure 1) is located in 154 

the central and eastern parts of the mountains (N 42°35' - 44°20', E 80°14' - 88°07') 155 

and is characterized by a continental climate, with a cold and dry winter and a warm 156 

and humid summer. Due to the unique geographic location and topographic 157 

characteristics, the daily temperature range is higher than in surrounding regions. 158 

Mean annual sunshine duration is more than 2000 hours. MAT decreases from 159 

13.3 °C at lower elevations to −7.3 °C at higher ones, while MAP increases from less 160 

than 100 mm to over 800 mm with increasing elevation (Li et al., 2016). The 161 

maximum temperature of the warmest month, minimum temperature of the coldest 162 

month, and precipitation of the wettest quarter range from 10.6 to 30.4 °C, from -29.2 163 

to -17.1 °C and from 36 to 104 mm in the Schrenk’s spruce forest of the Tianshan 164 

Mountains. Generally, soil in the forest begins to freeze in late November and starts to 165 

melt in early April. Spring and autumn are short due to a relatively longer summer and 166 

winter. The vegetation types in the Tianshan Mountains include (from low to high 167 

elevations) steppe, steppe–forest, subalpine shrubby meadow, 168 

alpine–frostaction–barren zone, and permanent snow and ice (Li et al., 2016). 169 

Schrenk’s spruce forests form single-species stands between 1,600 m a.s.l. and 2,700 170 

m a.s.l. Shrub species growing at the forest margins include Cotoneaster 171 

melanocarpus, Berberis heteropoda, Rosa spinosissima, Spiraea hypericifolia, 172 

Juniperus pseudosabina, Caragana leucophloea and Lonicera hispida. Understory 173 

herbal species include Geranium rotundifolium, Alchemilla tianschanica and 174 

Aegopodium podagraria(Wang et al., 2016). 175 
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 176 

Figure 1. Location of the study area (Tianshan Mountains) and sampling sites (black 177 

triangles). 178 

 179 

2.2 Field sampling and laboratory analysis 180 

Fieldwork was conducted from 2012 to 2017. We selected seven sites (Zhaosu, Jinghe, 181 

Shihezi, Baiyanggou, Banfanggou, Shuixigou and Tianchi as shown in Figure 1) in 182 

the Schrenk’s spruce forest in order to sample the soils. At each site, several transects 183 

(slopes with continuous elevations and with a distribution of Schrenk’s spruce forest) 184 

were selected, and along the elevational gradient of these transects, a certain number 185 

of sampling plots were set up at approximately 30 m elevational intervals. The 186 

longitude, latitude and elevation of each plot were recorded with a global positioning 187 

system receiver, i.e., eTrex venture with 5 m precision. Soil samples at 10 cm 188 

intervals were collected using a soil auger from three random parallel profiles within 189 

each plot. The collected parallel samples were mixed to obtain a composite sample for 190 

each depth. After being taken to the laboratory, the soil samples were air-dried and 191 

sieved for the subsequent chemical analysis. The soil carbon concentration was 192 

measured using the potassium dichromate method as demonstrated in Yeomans and 193 

Bremner (1988). Total N concentration (g kg−1) was analyzed using the Kjeldahl 194 

digestion method (Bremner and Tabatabai, 1972). Total P concentration (g kg−1) was 195 

measured using the perchloric acid digestion method, followed by the molybdate 196 

colorimetric test (Sherman, 1942). Soil C, N and P were expressed as g kg-1 based on 197 

dry weight. Stoichiometric data were calculated by mass ratio. Prior to further 198 
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analysis, we checked the normality of collected data using Kolmogorov-Smirnov test. 199 

 200 

2.3 Climate data 201 

Climate data were obtained from the Worldclim (version 1.4) bioclimatic dataset 202 

(Hijmans et al., 2005), which provides data as 50-year means for averages and 203 

extremes of precipitation and temperature. Based on data observations from more than 204 

40,000 weather stations, climatic variables in the dataset were interpolated using a 205 

thin-plate smoothing spline algorithm and latitude, longitude, and elevation as 206 

independent variables (Hijmans et al., 2005). The data have been successfully used 207 

for various spatial modeling applications(Fick and Hijmans, 2017). The original 208 

spatial resolution of the variables in the dataset was 1km×1km, and further processing 209 

in order to extract the required variables resulted in a resolution of 30m×30m. When 210 

determining the response of soil C, N, P and C:N:P ratio to climatic variables, we 211 

selected MAT, MAP, mean temperature of wettest quarter (TWT), mean temperature 212 

of warmest quarter (TWM) and precipitation of warmest quarter (PWQ) in the dataset 213 

as the independent variables. These three variables (TWT, TWM, PWQ) were selected 214 

due to their direct and indirect controls over biomass production, soil microbial 215 

decomposition and nutrient stocks in terrestrial ecosystems (Peri et al., 2015; 216 

Deblauwe and Murray, 2008). 217 

 218 

2.4 Actual distribution of the Schrenk’s spruce forest and spatial estimation of C, N, P 219 

concentration and C:N:P ratio 220 

The actual distribution of the Schrenk’s spruce forest is necessary for spatial 221 

estimation of C, N, and P concentrations and the C:N:P ratio in the forest. In this study, 222 

the actual distribution of the Schrenk’s spruce forest was compiled by Hou et al. 223 

(2001) and obtained from the Environmental and Ecological Science Data Center for 224 

West China, National Natural Science Foundation of China 225 

(http://westdc.westgis.ac.cn). The original vector data were first converted to raster 226 

format using conversion tool and subsequently resampled to 30m×30m resolution 227 

using raster processing tools in ArcToolbox of ArcMap 10.0 (ESRI Inc). The spatial 228 
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distributions of soil C, N and P concentrations and C:N:P were calculated using the 229 

constructed MLR models and extracted elevation and climatic variables (MAT, MAP, 230 

etc.) at pixels within the Schrenk’s spruce forest. Specifically, the models is 231 

0 1 1 2 2 ... k kY X X Xβ β β β ε= + + + + +                                     (1) 232 

where Y  is the dependent variables (C, N, and P concentrations and C:N:P ratios), 233 

β s are the regression coefficients of independent variables X s, and ε  is the error. 234 

The performances of the MLR models were evaluated using mean absolute 235 

percentage error by 236 

1

100 n
t t

t t

A FM
n A=

−
= ∑

 
                                                 (2) 237 

where tA  denotes the actual value and tF is the modeled value. The determination of 238 

elevation and climatic variables for C, N P concentration and the C:N:P ratio in the 239 

MLR function were evaluated using the coefficient of determination (R2). Correlation 240 

and regression relationships were considered significant if the calculated value was 241 

greater than the threshold value at a 0.05 significance level. All the above mentioned 242 

statistical analyses were carried out using Origin 8.5 (OriginLab corporation). The 243 

Origin software was also used to prepare the figures. 244 

 245 

3. Results 246 

3.1 Regression models for soil C, N and P concentrations and C:N:P ratios 247 

The histograms of C, N and P concentrations and C:N, C:P and N:P ratios are 248 

displayed in Fig. 2. The Kolmogorov-Smirnov normality test demonstrated that the 249 

collected data (C, N and P concentrations and C:N, C:P and N:P ratios) were 250 

significantly drawn from normally distributed populations (0.05 confidence level). 251 

MLR model revealed that elevation positively contributed to C and N concentration 252 

and N:P ratios in the Schrenk’s spruce forest, whereas P concentration, C:N and C:P 253 

responded negatively to elevation (Table 1). MAT and MAP both had a positive effect 254 

on C concentration and C:P ratios; however, their increase may be accompanied by a 255 

decrease in C:N and N:P ratios. C, N and P concentrations and C:N ratios decreased 256 
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with an increase in TTQ; in contrast, C:P and N:P may increase with increasing TTQ 257 

(Table 1). The increase in TWM had a positive effect on N and P concentrations and 258 

C:N and N:P ratios. C, N and P concentrations responded positively to PWQ, whereas 259 

their ratios responded negatively to the variable (Table 1). The MLR model of P and C 260 

concentration had the highest and lowest coefficients of determination (R2): 0.42 and 261 

0.16, respectively. All regression models were significant at a 0.05 confidence level, 262 

and among the six models, the N and P concentration and C:N and N:P models were 263 

significant at 0.01 confidence level. 264 

 265 

Figure 2. Frequency distribution of soil C, N, P, Ln(C:N), Ln(C:P) and N:P in our 266 

study area. Sample sizes for C, N, P, Ln(C:N), Ln(C:P) and N:P were 83, 81, 76, 66, 267 

76 and 85, respectively. According to results of the Kolmogorov-Smirnov test, all the 268 

data were significantly drawn from a normally distributed population (p<0.05). 269 

 270 

 271 

 272 

 273 

 274 
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3.2 Spatial patterns of soil C, N and P concentrations and C:N:P ratios 

Measured C concentrations ranged from 15.85 to 115.67 g kg-1 with an average of 

52.81 g kg-1. The modeled range is 24.72 - 83.96 g kg-1 with an average of 53.15 g 

kg-1 (Table 2). Standard deviation (SD) of the modeled value was lower than that of 

the measured ones. The range of modeled N concentration (0.11 - 0.53 g kg-1) was 

relatively narrower than for the measured values. Similar to SD of the C concentration, 

the modeled N concentration also had a lower SD than the measured value. For P 

concentration, a relatively wider range was found in modeled values (0.04 - 0.44 g 

kg-1) than measured values (0.04 - 0.34 g kg-1), which also resulted in a relatively 

higher average concentration (0.22 g kg-1 compared to 0.13 g kg-1); the SD of the 

modeled P concentration was higher than that of the measured value. The average 

value and SD of the modeled C:N ratio (180.53 and 123.84) were lower than the 

measured average and SD (214.16 and 200.28). C:P and N:P ratios in the modeled 

results have narrower ranges than those of the measured values. In addition, the 

modeled averages of the two ratios were higher than those of the measured ones. As in 

the other estimations, the SDs of these two ratios in the modeled results were lower 

than those of the measured data (Table 2). 

 

Table 2. Comparison between measured and modeled C, N, P, Ln(C:N), Ln(C:P) and 

N:P. 

 
Measured Modeled 

Range Average SD Range Average SD 
C concentration 15.85-115.67 52.81 23.00 24.72-83.96 53.15 7.56 
N concentration 0.02-0.74 0.31 0.16 0.11-0.53 0.36 0.07 
P concentration 0.04-0.34 0.13 0.06 0.04-0.44 0.22 0.07 

C:N ratio 49.43-1327.37 214.16 200.28 15.15-1574.52 180.53 123.84 
C:P ratio 80.56-2339.14 514.57 350.98 138.99-2064.22 538.99 281.33 
N:P ratio 0.22-9.74 2.96 1.76 2.00-4.03 3.04 0.37 

The measured concentrations and ratios were values at sampling sites. The modeled 

values were extracted from spatially interpolated results. SD denotes the standard 

deviation. 
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C concentration was highest in the eastern part of the study area, while the central and 

southwest parts corresponded to relatively lower C concentrations (Fig. 3a). The 

northwestern study area also had a relatively higher C concentration. N concentration 

displayed an opposing trend with C concentration: a relatively lower concentration 

appeared in the eastern study area, while the southwestern part had a relatively higher 

concentration (Fig. 3b). The trend in the P concentration was similar to that of the C 

concentration, which increased from west to east in the study area (Fig. 3c). C:N 

ratios showed a complex pattern in the western part of the study area, whereas 

generally, the ratios decreased from west to east, as illustrated in Figure 4a. C:P ratios 

showed a spatial pattern similar to that of the C:N ratios (Fig. 4b). In contrast with the 

overall trend of C:N and C:P ratios, N:P ratios were lower in the west, higher in the 

east, and exhibited an increasing trend from the western to eastern parts of the study 

area (Fig. 4c). 

Page 13

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



 
Figure 3. Spatial distribution of soil C, N and P in the P. schrenkiana forest. 
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Figure 4. Spatial distribution of soil C:N, C:P and N:P in the P. schrenkiana forest. 

 

3.3 Comparison between measured and modeled value 

The correlation coefficient (r) between actual and modeled C concentration was 0.41 

(p<0.01, Fig. 5a). The majority of measured C concentrations were higher than 40 g 

kg-1, whereas in Fig. 5a, more scatters with modeled values lower than 40 g 

kg-1appeared, indicating restricted performance of the multiple regression model. 

Relatively higher r (0.61) with a high confidence level (p<0.01) between measured 

and modeled N concentrations (Fig. 5b) suggested reliability of the N concentration 

model compared with the C model. The r between measured and modeled values of P 

concentration was highest among the C, N and P concentrations at 0.75 (p<0.01, Fig. 

5c), indicating that the P model was the most reliable among the three concentration 

models. Fig. 5d displays the scatter of measured and modeled Ln(C:N) at our 
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sampling sites: a correlation coefficient of 0.57 with 0.01 significance level between 

measured and modeled Ln(C:N) suggested the reliability of the model, whereas the 

scatters at the lower-right corner indicated the moderate confidence of the model to 

the higher values of the C:N ratios. Moderate and significant r values (0.51 and 

p<0.01) between measured and modeled values of Ln(C:P) were partly impacted by 

the restricted estimation of the median value of the C:P ratios, as displayed in Fig. 5e. 

The performance of the N:P ratios model was also acceptable, as shown in Fig. 5f.  

 

Figure 5. Scatter plots of MLR, estimated and measured C, N and P concentrations, 

and stoichiometric ratios at the sampling plots. C:N and C:P ratios were 

log-transformed values. 

 

4. Discussion 

4.1 Spatial patterns of C, N and P concentrations and C:N:P stoichiometry in the 

Schrenk’s spruce forest 

We hypothesized that the spatial distribution of soil C, N, P and C:N:P ratios would 

demonstrate a continuous pattern in the Schrenk’s spruce forest. As demonstrated in 

Figs. 3 and 4, C and P concentrations and N:P ratios increased from west to east 

within the study area, while N concentration and the other two ratios (C:N and C: P) 

decreased along the west-east direction. A previous investigation by Dai et al. 

(2013)revealed similar variations in soil organic C and total N at sampling sites 
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distributed from west to east in the Tianshan Mountains. According to their results, 

the differences in soil nutrient concentrations were caused by variation in abiotic 

variables including temperature, precipitation, evaporation capacity and solar 

radiation. In addition, a systematic soil survey conducted in the Tianshan Mountains 

reported relatively lower concentrations of soil C and P in the eastern part of the study 

area compared with the western part (Cui et al., 1996). It should be noted that the 

comparison of the concentrations and stochiometric ratios of previous studies were 

conducted among sampling sites. In contrast, our study not only confirmed the general 

variations in the concentrations of elements and their stochiometric ratios but also 

provided the spatial patterns or variations of the concentrations and stochiometric 

ratios based on the data derived from sampling sites. In fact, these spatial patterns are 

more useful for a better understanding of the regional biological and ecological 

processes corresponding to soil chemical characteristics (Prater et al., 2017; Leroux et 

al., 2017). 

 

4.2 Reliability of MLR models 

Ecological stoichiometry plays an important role in nutrient limitation (Feller et al., 

2003; Högberg et al., 2017), nutrient use efficiency (He et al., 2010), community 

dynamics (Johnson and Agrawal, 2005), symbiosis relationship(Mariotte et al., 2017) 

and regional and global biogeochemical cycles (Schmidt et al., 2016; Midgley and 

Phillips, 2016). However, very few studies have investigated the spatial patterns of 

variability in nutrient stoichiometry and the implications of these patterns on 

ecosystem functioning. In their pioneering work, Leroux et al. (2017) reported that the 

spatial patterning of trait variation within populations is crucial for our understanding 

of ecological interactions. Therefore, an improved understanding of the spatial 

patterns of nutrients and their stoichiometric characteristics may contribute to our 

understanding of material stocks and fluxes in aquatic and terrestrial ecosystems. To 

date, some studies have been conducted to describe the latitudinal and elevational 

trends in elemental stoichiometry and their climatic drivers. For example, through 

analysis of foliar and below-ground biomass samples obtained along a Chinese 
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grassland transect, Yu et al. (2017) investigated the N:P stoichiometric characteristics 

of below-ground biomass and foliar and their climatic and altitudinal correlates. 

According to their results, foliar N and P increased with elevation and below-ground 

biomass N and P decreased with elevation (Yu et al., 2017). In addition, foliar N 

decreased and below-ground biomass N increased with MAT (Yu et al., 2017). 

Sardans et al. (2016) studied foliar and soil concentrations and stoichiometry of N and 

P across European Pinus sylvestris forests and found that Log (N:P) linearly 

decreased with latitude.  

 

The abovementioned studies shed light on the spatial patterns of nutrients and their 

stoichiometric ratios in different ecosystems, whereas the corresponding patterns were 

primarily derived from basic statistical analysis. Specifically, the relationships 

between concentrations of nutrients and stoichiometric ratios with topographic and 

climatic variables were obtained based on systematic sampling, Pearson’s correlation 

and simple linear regression analysis (Feng et al., 2017; Agren et al., 2012; Zinke and 

Stangenberger, 2000). These relationships were useful when examining the response 

of dependent variables (concentrations and stoichiometric ratios) to independent 

variables (elevation, latitude, MAT, MAP, etc.). However, their application might be 

restricted since the spatial variability in the concentrations and stoichiometric ratios 

across the landscape could not be derived through use of only Pearson’s r and simple 

linear regression relationships. Fortunately, some attempts that aim to derive the 

spatial patterns of stoichiometry have been conducted, and valuable results were 

reported. These methods include geostatistics and spatial interpolation as reported in 

Liu et al. (2013), in which the authors obtained a spatial distribution map of soil total 

N and P density across the Loess Plateau of China. Similar work was also reported 

elsewhere (Wang et al., 2009; Smith et al., 2014). Unfortunately, the successful 

application of spatial interpolation might be restricted due to the large amount of 

samples required for accurate spatial estimation, especially in regions with complex 

topography. In addition, the specific response of concentrations and stoichiometric 

ratios to determinants cannot be identified. Remote sensing methods can also be 
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applied for spatial estimation of ecological stoichiometry. For example, Asner et al. 

(2015) developed maps of canopy traits, including elemental concentrations and 

related stoichiometric ratios, in the Amazonian lowland using airborne laser-guided 

imaging spectroscopy. According to their results, remote sensing technologies have 

the potential to provide spatially explicit distributional data on multiple canopy foliar 

traits (including elemental concentrations and stoichiometric ratios) which are 

unachievable in field studies (Asner et al., 2015). However, as in spatial interpolation 

methodology, the remote sensing estimates cannot offer the specific response of 

concentrations and stoichiometric ratios to determinants. Moreover, the traits of soils 

beneath the canopy cannot be reliably estimated using remote sensing technologies. 

 

Recently, stoichiometric distribution models (StDMs), which imitate the species 

distribution model and aim to delineate the spatial pattern of elemental stoichiometry, 

were developed and used to map spatial structures in resource elemental composition 

and the response of consumers across a landscape (Leroux et al., 2017). Similarly to 

our approach, the StDMs also fitted generalized linear regression models between 

elemental response variables and covariates. According to their results, StDMs will 

allow researchers to map element resources across geographic spaces and hold the 

promise of describing geographical patterns in organismal elemental traits at various 

spatial extents (Leroux et al., 2017). In this study, we found that the R2 of the MLR 

models are high (Table 1), further supporting the reliability of MLR models in spatial 

estimation of elemental concentrations and stoichiometric ratios. In addition, Rial et al. 

(2016) also reported good predictive performance of MLR when estimatingsoil C 

concentration in NW Spain. 

 

4.2 Predictor selection 

There are three basic categories of variables that could influence soil element 

concentration and stoichiometric characteristics, namely, the biotic, abiotic and 

anthropogenic variables (Peñuelas et al., 2015). Biotic interactions, which couple 

cycles of elements, are therefore critical to spatial delineation of ecological 
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stoichiometry in terrestrial ecosystems. Currently, the influences of plant uptake on 

soil nutrient status and elemental stoichiometry have been confirmed in some 

terrestrial and aquatic ecosystems. For example, See et al. (2015) found that the 

resorption efficiency of P by plant species increased with soil N content, suggesting 

that soil nutrient status is correlated with plant uptake. Similarly, in a study focused on 

linkages of plant and soil elemental stoichiometry and their relationships to forest 

growth in subtropical plantations, Fan et al. (2015) also reported that nutrient 

concentrations in soil and plants are tightly linked. The variables correlated to soil 

microbes should also be included in model construction since variations in microbial 

stoichiometric ratios were primarily associated with changes in the community 

structure of soil microbes (Chen et al., 2016).  

 

As we have learned so far from past works, soil elemental concentration and 

stoichiometry may also be limited by temperature, water, light and other abiotic 

factors. Generally, there are many interacting factors rather than just one controlling 

abiotic factor. These factors actually contribute to the stocking and flux rate of the 

elements and consequently elemental concentrations and stoichiometric ratios. For 

example, soil C concentrations differ primarily with respect to litter fall and 

decomposition, which in turn vary with temperature, precipitation, light, etc.(Elser et 

al., 2000; Tian et al., 2010b). Theoretically, temperature together with precipitation (or 

available water in soil) mainly determines the plant functional type and controls the 

biomass accumulation of plants in terrestrial ecosystems (De Long et al., 2016). The 

more suitable the temperature and precipitation condition, the more litter fall 

accumulation above soils. Climatic variables also have an impact on microbial 

activities, which are of vital importance for the decomposition of organic matter 

(Cleveland and Liptzin, 2007; Delgado-Baquerizo et al., 2017). To date, the most used 

dataset of climatic variables in ecological modeling consists largely of annual trends 

(e.g., MAT and MAP), seasonality (e.g., annual range of temperature and precipitation) 

and extreme or limiting conditions (e.g., TTQ, TWM) of temperature and 

precipitation. Such climatic datasets include NEW01(New et al., 2002), CliMond 
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(Kriticos et al., 2012), the Worldclim series (Hijmans et al., 2005; Fick and Hijmans, 

2017), etc. Since climate variables in these datasets may be linearly correlated with 

one another (colinearity) due to interpolation methods (Hijmans et al., 2005; Kriticos 

et al., 2012), the candidate variables used for linear regression need to be selected in 

order to find the dataset with the lowest colinearity. The effect of light on soil 

elements and stoichiometry mainly manifests in soil nutrient use by plants under 

different solar radiation conditions (Urabe et al., 2002). In addition, Martyniuk et al. 

(2016) found that the biomass, photosynthetic parameters and elemental content of 

plant species in forest ecosystems exhibited close relationships to light availability. 

Therefore, the radiation and corresponding variables should be considered as 

important indirect variables in the regression model used for spatial estimation of 

elemental concentration and stoichiometry. 

 

The combustion of fossil fuel increased the concentration of CO2 in the atmosphere 

from less than 300 particles per million (ppm) pre-industrial revolution to more than 

400 ppm in 2014, according to Tans and Keeling (2014). Through plant 

photosynthesis and soil respiration, the increased C in the atmosphere could be 

sequestrated in soil and resulted in an increase of soil C concentration. Accompanied 

by C increase, human activities also add N into the biosphere through fossil fuel 

burning, crop fertilization, and anthropogenic N2 fixation, at a rate of approximately 

165-259 M ton N year-1; this is equal to the total amount of N fixed naturally 

(Peñuelas et al., 2012). The altered pools and cycles of C and N, together with human 

intervention (such as application of phosphate fertilizer and changing of plant 

community structure) on soil P pools, created a C:N:P imbalance in global pedosphere 

(Wang et al., 2014). To our knowledge, human activities have not been used in the 

spatial estimation of concentrations of nutrients and stoichiometric ratios as 

independent variables. In consideration of the notable impact of human activities on 

soil nutrient statues, anthropogenic variables, for example, the global human footprint 

(Sanderson et al., 2002), should be used for model construction. 
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4.3 Advantages and limitations of MLR 

Here, we document the potential application of MLR in spatial estimation of 

elemental concentrations and stoichiometry. Through modeling the spatial distribution 

of concentrations of C, N and P and their stoichiometric ratios in Schrenk’s spruce 

forest, we identified advantages of the MLR model: (1) the responses of 

concentrations and stoichiometric ratios to independent variables could be reliably 

quantified using the model, (2) the regression parameters of the model could be easily 

estimated using data obtained from collected samples, (3) the spatial variations in the 

concentrations and stoichiometric ratios could be delineated using geographic 

information systems platforms, and (4) the modeled results were reliable according to 

corresponding evaluation (Table 2 and Fig. 5).  

 

While MLR is only one of the approaches that enable us for spatial estimation, other 

models have potential in similar applications, and obvious limitations of MLR models 

also exist to compare with those of other spatial delineation methods. For example, 

artificial neural networks (ANN) have the ability to detect complex nonlinear 

relationships between dependent and independent variables and possible interactions 

between predictor variables (Martiny et al., 2013). In multivariate adaptive regression 

splines (MARS), interactions between variables can be fitted, and rather than fitting a 

global interaction between a pair of variables, the interactions are specified locally 

using basis functions (Lek and Guégan, 1999). Classification and regression trees 

(boosted regression trees, random forests, etc.) are a valuable addition to statistical 

approaches for the analysis of complex ecological data due to their invariance to 

transformations of explanatory variables and procedures for handling missing values 

(De'ath and Fabricius, 2000). Genetic algorithms (GA) are a global optimization 

method that mimics the action of natural selection to solve complex optimization 

problems and provide a very efficient method of convergence towards the ideal 

solution (Hamblin, 2013).  

 

Conclusions 
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In summary, we estimated the spatial patterns of concentrations of C, N and P and 

their stoichiometric ratios in Schrenk’s spruce forest in the Tianshan Mountains of 

China. The corresponding results demonstrated the importance of developing reliable 

methods to delineate the spatial distributions of nutrient concentrations and 

stoichiometric characteristics. The results have considerable relevance for studies on 

regional biogeochemical cycles, particularly in complex terrains. We conclude that the 

concentrations of C, N and P and their stoichiometric ratios in Schrenk’s spruce forest 

could be accurately estimated use MLR methods and that future works can be 

improved with more independent variables (biotic, abiotic and anthropogenic factors), 

with adjustment of MLR models, or with implementation of other models (ANN, 

MARS, GA) that have been successfully adopted for the spatial estimation of soil 

organic C (Rial et al., 2016; Zhang et al., 2008; Martin et al., 2014). 

 

Author contribution: ZLX designed the experiments and YC, LL, QL, ZX, XL, XQ, 

XX, XS and YW carried them out. ZLX, LL and YC performed the simulations. ZLX 

prepared the manuscript with contributions from all co-authors. 

 

Competing interests: The authors declare that they have no conflict of interest. 

 

Acknowledgment 

Financial support for this study was provided by the National Science Foundation of 

China (Nos. 41361098, 31500398, and 31400409). We would like to thank Dr. 

Abudukeremujiang Zayiti for his assistance during the laboratory analysis. 

 

 

References: 
Agren, G. I., Wetterstedt, J. Å., and Billberger, M. F.: Nutrient limitation on terrestrial plant 
growth--modeling the interaction between nitrogen and phosphorus, New Phytol., 194, 953, 2012. 
Allison, S. D., and Treseder, K. K.: Warming and drying suppress microbial activity and carbon cycling 
in boreal forest soils, Glob. Chang. Biol., 14, 2898-2909, 2010. 
Asner, G. P., Anderson, C. B., Martin, R. E., Tupayachi, R., Knapp, D. E., and Sinca, F.: Landscape 

Page 23

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy, 
Nature Geoscience, 8, 567-573, 2015. 
Bremner, J. M., and Tabatabai, M. A.: Use of an ammonia electrode for determination of ammonium in 
Kjeldahl analysis of soils, Communications in Soil Science & Plant Analysis, 3, 159-165, 1972. 
Cao, Y., and Chen, Y.: Ecosystem C:N:P stoichiometry and carbon storage in plantations and a 
secondary forest on the Loess Plateau, China, Ecol. Eng., 105, 125-132, 2017. 
Chen, X., Xu, W., Luo, G., Lin, Q., and Xiao, L.: Soil properties at the tree limits of Picea schrenkiana 
forests in response to varying environmental conditions on the northern slope of Tianshan mountains, 
Acta Ecologica Sinica, 28, 53-61, 2008. 
Chen, Y. L., Chen, L. Y., Peng, Y. F., Ding, J. Z., Li, F., Yang, G. B., Kou, D., Liu, L., Fang, K., and 
Zhang, B. B.: Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along 
a 3500‐km grassland transect on the Tibetan Plateau, Global Ecology & Biogeography, 25, 1416-1427, 
2016. 
Cleveland, C. C., and Liptzin, D.: C: N: P stoichiometry in soil: is there a “Redfield ratio” for the 
microbial biomass?, Biogeochemistry, 85, 235-252, 2007. 
Cui, W., Li, Z., Chang, Z., Wang, J., Hou, Z., and Ding, Q.: Soils in Xinjiang, Soil types and their 
properties, edited by: Liu, Z., Science Press, Beijing, 1996. 
Dai, L., Li, Y., Luo, G., Xu, W., Lu, L., Li, C., and Feng, Y.: The spatial variation of alpine timberlines 
and their biogeographical characteristics in the northern Tianshan Mountains of China, Environmental 
Earth Sciences, 68, 129-137, 2013. 
De'ath, G., and Fabricius, K. E.: Classification and regression trees : a powerful yet simple technique 
for the analysis of complex ecological data, Ecology, 81, 3178-3192, 2000. 
De Long, J. R., Sundqvist, M. K., Gundale, M. J., Giesler, R., and Wardle, D. A.: Effects of elevation 
and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath 
vegetation, Funct. Ecol., 30, 314-325, 2016. 
Deblauwe, V., and Murray, B.: The global biogeography of semi-arid periodic vegetation patterns, 
Global Ecology & Biogeography, 17, 715–723, 2008. 
Delgado-Baquerizo, M., Reich, P. B., Khachane, A. N., Campbell, C. D., Thomas, N., Freitag, T. E., 
Abu, A.-S. W., Sørensen, S., Bardgett, R. D., and Singh, B. K.: It is elemental: Soil nutrient 
stoichiometry drives bacterial diversity, Environ. Microbiol., 19, 2017. 
Elser, J. J., Sterner, R. W., Gorokhova, E., Fagan, W. F., Markow, T. A., Cotner, J. B., Harrison, J. F., 
Hobbie, S. E., Odell, G. M., and Weider, L. W.: Biological stoichiometry from genes to ecosystems, 
Ecol. Lett., 3, 540-550, 2000. 
Fan, H., Wu, J., Liu, W., Yuan, Y., Hu, L., and Cai, Q.: Linkages of plant and soil C:N:P stoichiometry 
and their relationships to forest growth in subtropical plantations, Plant & Soil, 392, 127-138, 2015. 
Feller, I. C., Mckee, K. L., Whigham, D. F., and O'Neill, J. P.: Nitrogen vs. phosphorus limitation 
across an ecotonal gradient in a mangrove forest, Biogeochemistry, 62, 145-175(131), 2003. 
Feng, D., Bao, W., and Pang, X.: Consistent profile pattern and spatial variation of soil C/N/P 
stoichiometric ratios in the subalpine forests, Journal of Soils & Sediments, 1-12, 2017. 
Fick, S. E., and Hijmans, R. J.: WorldClim 2: new 1‐km spatial resolution climate surfaces for global 
land areas, International Journal of Climatology, 2017. 
Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.: Tamm Review: On the nature of the 
nitrogen limitation to plant growth in Fennoscandian boreal forests, Forest Ecology & Management, 
2017. 

Page 24

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Hamblin, S.: On the practical usage of genetic algorithms in ecology and evolution, Methods in 
Ecology and Evolution, 4, 184-194, 2013. 
He, W. M., Yu, F. H., and Zhang, L. L.: Physiological integration impacts nutrient use and 
stoichiometry in three clonal plants under heterogeneous habitats, Ecol. Res., 25, 967-972, 2010. 
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution 
interpolated climate surfaces for global land areas, International Journal of Climatology, 25, 1965-1978, 
2005. 
Hill, B. H., Elonen, C. M., Seifert, L. R., May, A. A., and Tarquinio, E.: Microbial enzyme 
stoichiometry and nutrient limitation in US streams and rivers, Ecol. Indicators, 18, 540-551, 2012. 
Hou, X., Sun, S., and Zhang, J.: Vegetation atlas of China. Chinese Academy of Science, the editorial 
board of vegetation map of China, 2001. 
Huang, W. Z., and Schoenau, J. J.: Forms, amounts and distribution of carbon, nitrogen, phosphorus 
and sulfur in a boreal aspen forest soil, Can. J. Soil Sci., 76, 373-385, 1996. 
Jobbágy, E. G.: The vertical distribution of soil organic carbon and its relation to climate and vegetation, 
Ecol. Appl., 10, 423-436, 2000. 
Johnson, M. T., and Agrawal, A. A.: Plant genotype and environment interact to shape a diverse 
arthropod community on evening primrose (Oenothera biennis), Ecology, 86, 874-885, 2005. 
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., and Scott, J. K.: CliMond: 
global high-resolution historical and future scenario climate surfaces for bioclimatic modelling, 
Methods in Ecology & Evolution, 3, 53-64, 2012. 
Lek, S., and Guégan, J. F.: Artificial neural networks as a tool in ecological modelling, an introduction, 
Ecol. Model., 120, 65-73, 1999. 
Leroux, S. J., Wal, E. V., Wiersma, Y. F., Charron, L., Ebel, J. D., Ellis, N. M., Hart, C., Kissler, E., 
Saunders, P. W., and Moudrá, L.: Stoichiometric distribution models: ecological stoichiometry at the 
landscape extent, Ecol. Lett., 20, 1495-1506, 2017. 
Li, L., Chang, Y., Li, X., Qiao, X., Luo, Q., Xu, Z., and Xu, Z.: Carbon sequestration potential of 
cropland reforestation on the northern slope of the Tianshan Mountains, Can. J. Soil Sci., 96, 461-471, 
2016. 
Lie, G., and Li, X.: Biomass allocation patterns in forests growing different climatic zones of China, 
Trees, 30, 639-646, 2016. 
Liu, Z., Shao, M., and Wang, Y.: Spatial patterns of soil total nitrogen and soil total phosphorus across 
the entire Loess Plateau region of China, Geoderma, s 197–198, 67–78, 2013. 
Müller, M., Oelmann, Y., Schickhoff, U., Böhner, J., and Scholten, T.: Himalayan treeline soil and 
foliar C:N:P stoichiometry indicate nutrient shortage with elevation, Geoderma, 291, 21-32, 2017. 
Mariotte, P., Canarini, A., and Dijkstra, F. A.: Stoichiometric N:P flexibility and mycorrhizal symbiosis 
favour plant resistance against drought, J. Ecol., 2017. 
Martin, M. P., Orton, T. G., Lacarce, E., Meersmans, J., Saby, N. P. A., Paroissien, J. B., Jolivet, C., 
Boulonne, L., and Arrouays, D.: Evaluation of modelling approaches for predicting the spatial 
distribution of soil organic carbon stocks at the national scale, Geoderma, s 223–225, 97-107, 2014. 
Martiny, A. C., Vrugt, J. A., Primeau, F. W., and Lomas, M. W.: Regional variation in the particulate 
organic carbon to nitrogen ratio in the surface ocean, Global Biogeochem. Cycles, 27, 723-731, 2013. 
Martyniuk, N., Modenutti, B., and Balseiro, E.: Forest Structure Affects the Stoichiometry of 
Periphyton Primary Producers in Mountain Streams of Northern Patagonia, Ecosystems, 19, 1-15, 
2016. 

Page 25

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Mcgroddy, M. E., Daufresne, T., and Hedin, L. O.: Scalling of C:N:P stoichiometry in forests 
worldwide: implications of terrestrial redfield-type ratios, Ecology, 85, 2390-2401, 2004. 
Midgley, M. G., and Phillips, R. P.: Resource stoichiometry and the biogeochemical consequences of 
nitrogen deposition in a mixed deciduous forest, Ecology, 97, 3369, 2016. 
New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over global 
land areas, Clim. Res., 21, 1--25, 2002. 
Niinemets, Ü.: Responses of forest trees to single and multiple environmental stresses from seedlings 
to mature plants: Past stress history, stress interactions, tolerance and acclimation, For. Ecol. Manage., 
260, 1623-1639, 2010. 
Peñuelas, J., Sardans, J., Rivas-ubach, A., and Janssens, I. A.: The human-induced imbalance between 
C, N and P in Earth's life system, Glob. Chang. Biol., 18, 3-6, 2012. 
Peñuelas, J., Sardans, J., Rivas‐Ubach, A., and Janssens, I. A.: The human‐induced imbalance between 
C, N and P in Earth's life system, Glob. Chang. Biol., 18, 3-6, 2015. 
Peri, P. L., Ladd, B., Pepper, D. A., Bonser, S. P., Laffan, S. W., and Amelung, W.: Carbon (δ13C) and 
nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia's native forests, 
Glob. Chang. Biol., 18, 311-321, 2015. 
Prater, C., Frost, P. C., Howell, E. T., Watson, S. B., Zastepa, A., King, S. S. E., Vogt, R. J., and 
Xenopoulos, M. A.: Variation in particulate C : N : P stoichiometry across the Lake Erie watershed from 
tributaries to its outflow, Limnol. Oceanogr., 62, S194-S206, 2017. 
Rial, M., Cortizas, A. M., and Rodríguezlado, L.: Mapping soil organic carbon content using 
spectroscopic and environmental data: A case study in acidic soils from NW Spain, Sci. Total Environ., 
539, 26, 2016. 
Richardson, A. D.: Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy 
light gradient in the mountains of the northeastern United States, Plant & Soil, 260, 291-299, 2004. 
Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., and Woolmer, G.: The 
Human Footprint and the Last of the Wild, Bioscience, 52, 891-904, 2002. 
Sardans, J., Alonso, R., Janssens, I. A., Carnicer, J., Vereseglou, S., Rillig, M. C., Fernández‐Martínez, 
M., Sanders, T. G. M., and Peñuelas, J.: Foliar and soil concentrations and stoichiometry of nitrogen 
and phosphorous across European Pinus sylvestris forests: relationships with climate, N deposition and 
tree growth, Funct. Ecol., 30, 676-689, 2016. 
Schmidt, S. K., Porazinska, D., Concienne, B. L., Darcy, J. L., King, A. J., and Nemergut, D. R.: 
Biogeochemical Stoichiometry Reveals P and N Limitation Across the Post-glacial Landscape of 
Denali National Park, Alaska, Ecosystems, 19, 1164-1177, 2016. 
See, C. R., Yanai, R. D., Fisk, M. C., Vadeboncoeur, M. A., Quintero, B. A., and Fahey, T. J.: Soil 
nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern 
hardwood forest, Ecology, 96, 2488, 2015. 
Sherman, M.: Colorimetric Determination of Phosphorus in Soils. Provision for Eliminating the 
Interference of Arsenic, Industrial & Engineering Chemistry Analytical Edition, 14, 182-185, 1942. 
Smith, D. B., Cannon, W. F., Woodruff, L. G., Solano, F., and Ellefsen, K. J.: Geochemical and 
mineralogical maps for soils of the conterminous United States, Reston, VA, Report 2014-1082, 399, 
2014. 
Sterner, R. W., and Elser, J. J.: Ecological Stoichiometry: The Biology of Elements From Molecules to 
The Biosphere, 225-226 pp., 2002. 
Tans, P., and Keeling, R.: Atmospheric CO2 at Mauna Loa Observatory, 2014. 

Page 26

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Tian, H., Chen, G., Zhang, C., Melillo, J., and Hall, C.: Pattern and variation of C:N:P ratios in China's 
soils: a synthesis of observational data, Biogeochemistry, 98, 139-151, 2010a. 
Tian, H., Chen, G., Zhang, C., Melillo, J. M., and Hall, C. A. S.: Pattern and variation of C:N:P ratios in 
China’s soils: a synthesis of observational data, Biogeochemistry, 98, 139-151, 2010b. 
Urabe, J., Kyle, M., Makino, W., Yoshida, T., Andersen, T., and Elser, J. J.: Reduced light increases 
herbivore production due to stoichiometric effects of light/nutrient balance, Ecology, 83, 619-627, 
2002. 
Vitousek, P.: Issues in Ecology, Issue 01: Human Alteration of the Global Nitrogen Cycle: Causes and 
Consequences, Anhui Architecture, 42, 667-675, 2002. 
Wang, D., Geng, Z. C., She, D., He, W. X., and Hou, L.: Soil organic carbon storage and vertical 
distribution of carbon and nitrogen across different forest types in the Qinling Mountains, Acta 
Ecologica Sinica, 35, 5421-5429, 2015. 
Wang, H., Chang, S., Zhang, Y., Xie, J., He, P., Song, C., and Sun, X.: Density-dependent effects in 
Picea schrenkiana forest in Tianshan Mountains, Biodiversity Science, 24, 252-261, 2016. 
Wang, S., Zhang, M., Li, Z., Wang, F., Li, H., Li, Y., and Huang, X.: Glacier area variation and climate 
change in the Chinese Tianshan Mountains since 1960, Journal of Geographical Sciences, 21, 263-273, 
2011. 
Wang, W., Sardans, J., Zeng, C., Zhong, C., Li, Y., and Peñuelas, J.: Responses of soil nutrient 
concentrations and stoichiometry to different human land uses in a subtropical tidal wetland, Geoderma, 
232-234, 459-470, 2014. 
Wang, Y., Zhang, X., and Huang, C.: Spatial variability of soil total nitrogen and soil total phosphorus 
under different land uses in a small watershed on the Loess Plateau, China, Geoderma, 150, 141-149, 
2009. 
Yang, Y. H., Fang, J. Y., Guo, D. L., and Ji, C. J.: Vertical patterns of soil carbon, nitrogen and carbon: 
nitrogen stoichiometry in Tibetan grasslands, Cancer epidemiology, biomarkers & prevention : a 
publication of the American Association for Cancer Research, cosponsored by the American Society of 
Preventive Oncology, 9, 631-633, 2010. 
Yeomans, J. C., and Bremner, J. M.: A rapid and precise method for routine determination of organic 
carbon in soil Communications in Soil Science & Plant Analysis, 19, 1467-1476, 1988. 
Yu, H., Fan, J., Harris, W., and Li, Y.: Relationships between below-ground biomass and foliar N:P 
stoichiometry along climatic and altitudinal gradients of the Chinese grassland transect, Plant Ecol., 
1-11, 2017. 
Zhang, Y., Zhao, Y. C., Shi, X. Z., Lu, X. X., Yu, D. S., Wang, H. J., Sun, W. X., and Darilek, J. L.: 
Variation of soil organic carbon estimates in mountain regions: A case study from Southwest China, 
Geoderma, 146, 449-456, 2008. 
Zinke, P. J., and Stangenberger, A. G.: Elemental storage of forest soil from local to global scales, 
Forest Ecology & Management, 138, 159-165, 2000. 

 

Page 27

Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-536
Manuscript under review for journal Biogeosciences
Discussion started: 16 January 2018
c© Author(s) 2018. CC BY 4.0 License.


