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To: Associate Editor, Jochen Schöngart 1 
 2 

Dear Editor,  3 
 4 

Thank you for handling this manuscript. We are pleased to see that the feedback from the 5 
reviewers was overall positive, and that they both suggested improvements to the manuscript, 6 
which we took onboard. 7 
Both reviewers pointed out issues with the calibration of our new model (henceforth referred to 8 
as LCA model). Our methodology was not clearly stated. The LCA model was not calibrated 9 
from Lidar data but from ground data at 4 sites, and we edited the manuscript to avoid confusion 10 
about it. We developed the local models based on MCH to confirm the optimal height threshold 11 
for segmentation as indicated by Figure 2 and Figure 3. MCH-inferred AGB values are now just 12 
used as a test for validation of our height threshold in Figure 3. We also added sections 13 
comparing the LCA model to a similar model based on MCH calibrated from the same 4 sites, as 14 
suggested by the reviewers. 15 
Comments made by both reviewers were addressed in the authors’ comments as part of the 16 
interactive discussion process, and are presented here again, with additional information about 17 
changes that were made in the manuscript. 18 

Please note that all references to changes in manuscript correspond to the line numbers of the 19 
revised manuscript with track changes. 20 

We believe that these changes and the ones described below improved the clarity of our paper, 21 
and that it is now acceptable for publication in your journal. 22 

 23 
Sincerely, 24 

 25 
Victoria Meyer, on behalf of all co-authors. 26 

  27 
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Response to Anonymous Referee #1 28 

 29 

Response to General comments: 30 
 31 
Thank you for reviewing our manuscript. We greatly appreciate your comments and did our best 32 
to address the issues you brought up. Your comments highlighted the fact that our methodology 33 
was not clearly stated. The LCA model was calibrated using inventory data from the four sites 34 
referred to as “calibration sites” in the manuscript. Based on both reviews of the paper, we 35 
decided to remove Figure 5b and moved the paragraph explaining how AGBLidar (renamed 36 
AGBLocal for clarity) was calculated to the Supplementary Information (S.2), to make the paper 37 
more straight forward and focused on LCA. AGBLocal values are now just used as a test for 38 
validation of our height threshold in Figure 3. 39 
 40 
 41 
Comment: “In the methods section, it is unclear whether they are predicting AGB_Lidar and 42 
AGB_LCA from an equation that already exists or whether they are doing a regression analysis 43 
to find values for parameters ‘a’ and ‘b’ in Eqs. 1-3. If it’s the former, show the actual values for 44 
‘a’ and ‘b’.” 45 
Response: The form of Equation 1 (now Equation S4) is a commonly used model form to 46 
estimate AGB from Lidar locally (see Asner and Mascaro, 2014). For each site (or group of sites 47 
for Manaus, Tapajos and Cotriguaçu), we performed a regression based on that form and 48 
obtained coefficients a and b, presented in Table S1 (SI, ls.50-51: “All coefficients are presented 49 
in Table S1”). 50 
We decided to move this section to the Supplementary Information, as it is not central to the 51 
paper and is just used to obtain Figure 3a in this new version of the paper.  52 
Coefficients a and b for Equation 2) and 3) (now Eq 1 and 2) are presented in Table 3. We added 53 
a sentence that makes a clear reference to the coefficients in that table. Also, we moved the 54 
section presenting the form of the LCA models from the Methods to the Results section, for 55 
clarity (ls.358-364). 56 
Changes to manuscript: ls.334-335 “The coefficients of the models, as well as their respective 57 
coefficients of correlation, RMSE and bias from all training data and cross-validation are 58 
reported in Table 3.” 59 
 60 
Comment: “Either way, it doesn’t seem necessary to predict AGB from MCH other than to 61 
compare AGB estimates from LCA to those from MCH (eg, show improvement in new 62 
method).” 63 
Response: Based on both reviewers’ comments, we removed the part of the analysis that 64 
compared AGBLCA to the locally estimated AGBLidar. As a result, Figure 5b was removed. 65 
Instead, we are now comparing AGB estimations from LCA and MCH based on the same 66 
methodology: in both cases, models were fitted using the field AGBinv of the four calibration 67 
plots. This is presented in the Methods (ls.218-240), in the Results (ls. 345-379) and in the 68 
Discussion (ls.563-569). 69 
Changes to manuscript: see ls. 218-240, ls. 345-379 and ls. 563-569. Figure 5  70 
 71 
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Comment: “In section 2.3 the authors say they have only 4 calibration sites (instead of 9 in the 72 
abstract).” 73 
Response: We realize that the abstract was misleading. We added a sentence stating that the 74 
model was calibrated using 4 sites. We also removed the word “nine” in the title of the paper. 75 
Changes to manuscript: ls.45-46: “…and ground inventory data in nine undisturbed old growth 76 
Neotropical forests, of which four had plots large enough (1ha) to calibrate our model.” 77 
 78 
Comment: “So, is AGB in the other five sites predicted by Eq 1 (MCH)?” 79 
Response: AGBLCA in the other sites was estimated using the same LCA model calibrated from 80 
the 4 calibration sites (Eq 2). AGBMCH was calculated using the MCH model presented in Table 81 
S3. 82 
 83 
Comment: “I suggest the authors remove AGB_Lidar estimates and focus on relating LCA 84 
metrics to AGB determined from ground inventories.” 85 
Response: Thank you for your suggestion. We removed figure 5b and removed the paragraphs 86 
related to AGBLidar in Section 2.2. The information on AGBLidar (renamed as AGBLocal) are now 87 
provided in the Supplementary Information (S.2). AGBLocal is now only used to provide 88 
additional information on the choice of the height threshold in Figure 3. (nb: equation numbers 89 
have changed). 90 
We edited the text to emphasize the role of the calibration plots and show that AGBLocal was just 91 
used as an additional/confirmation step. 92 
Changes to manuscript: ls.200-206: “We determined the optimal minimum canopy height 93 
threshold calculating the coefficient of correlation between AGBinv and LCA at the four 94 
calibration sites.  (…).. We also estimated AGB from Lidar data locally (AGBLocal) using a 95 
commonly used model fit relating MCH to AGBinv in each site, to further examine the variations 96 
of LCA and AGB in all nine sites (see S.2, Table S1).” 97 
 98 
Comment: “Furthermore, I suggest trying to optimize AGB estimates from LiDAR by, for 99 
example, estimating AGB with both LCA and MCH.” 100 
Response: We tested different model forms for Equation 2 and 3 (now Equations 1 and 2), 101 
including models using both LCA and MCH as predictors. Using MCH in addition to LCA did 102 
not improve the performance of the model. This is stated in the sentence ls.234-237 “We tested 103 
different models to infer AGBinv from LCA, henceforth called AGBLCA, at the four calibration 104 
sites, and explored if adding more parameters, such as mean wood density of a site, mean wood 105 
density of large trees (DBH ≥50 cm), mean canopy height or top percentiles of canopy height 106 
improved the predicting power of the moded.” We added: 107 
Changes to manuscript: ls.311-331“Adding more parameters did not improve the performance 108 
of the model, except when using WD as a normalizing factor. The two models we retained are 109 
therefore of the form of Eq. (1) and Eq. (2)” 110 
 111 
Responses to specific comments: 112 
Comment: How is the LCA method weighted by WD if there isn’t ground data at 5 sites?  113 
Response: Ground data are available in all sites except Cotriguaçu, but plot size was too small to 114 
be used in the LCA model calibration process. Howewer, wood density estimation does not 115 
depend on plot size, and wood density information was used from all sites to obtain a site-116 
averaged wood density (see Table 1). A sentence was added to highlight this point: 117 
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Changes to manuscript: ls.138-145: “For this reason, all plots smaller than 1 ha were excluded 118 
from the LCA analysis but were used in estimating average wood density for each site, which 119 
does not depend on plot size. Stand averaged wood density was calculated based on the wood 120 
density of all trees present in a site, determined using the commonly used global wood density 121 
database, and is reported in Table 1 (Chave et al., 2009; Zanne et al., 2009). For Cotriguaçu, we 122 
used stand averaged wood density given by Fearnside, (1997) for a region covering the site.” 123 
 124 
Comment: Line104: what do you mean by ‘unique’?  125 
Response: by “unique”, we mean one model that would work across sites in the Neotropics.  126 
Changes to manuscript: l.112: We modified the sentence accordingly to “single”. 127 
 128 
Comment: Line 166: What model? Line 167: what data? 129 
Response: The text was edited to clarify this sentence. 130 
Changes to manuscript:  SI, ls.55-58 “For the remaining sites of the Central Amazon 131 
(Cotriguaçu, Manaus and Tapajós), we developed a model based on existing data in Manaus and 132 
Tapajós from a previous study, derived from airborne and spaceborne Lidar (see Lefsky et al., 133 
2007).” Note that this section is now part of the Supplementary Information, as explained above. 134 
 135 
Comment: Lines 203-4: This indicates that AGB_LCA is being tested against AGB_Lidar, 136 
where LiDAR is being treated as the reference. AGB_Lidar is only an estimate.  137 
Response: This is correct. The goal here was to test AGBLCA against locally derived AGBLidar. 138 
Based on both reviewers’ comments, we realized that this step was not necessary and was 139 
removed from the paper.  140 
Changes to manuscript:  Figure 5b and any text related to this graph were removed from the 141 
paper. 142 
 143 
Comment: Lines 205-6: Here you say that these results were compared to ‘a traditional model 144 
relying on MCH to estimate AGB’. Isn’t AGB_Lidar the model relying on MCH to estimate 145 
AGB? 146 
Response: Thank you for highlighting this point. Here, we refer to a single model based on 147 
MCH from all the calibration sites, the same way that the LCA model was calibrated. This way, 148 
we can compare the LCA model to a MCH model. We realize that this sentence is confusing and 149 
edited the manuscript to clarify it: as stated above, AGBLidar is now only used to obtain Figure 3b 150 
and is no longer compared to AGBLCA. Instead, we added a new section in the methods, results 151 
and discussions comparing AGBLCA and AGBMCH (based on a model calibrated on the same 4 152 
calibration sites). Please report to our response to earlier comment. 153 
 154 
Comment: Section 2.5: Is it possible to apply the same methods to logged areas, since you may 155 
not know which areas have been harvested or not – or have before and after pictures? 156 
Response: We agree that we need before-after data to detect logging. In the example we are 157 
showing, we do have before and after logging Lidar data. Details are provided in Anderson et al., 158 
2014. 159 
We added a sentence to emphasize on the need for this type of datasets.  160 
Changes to manuscript:  ls.246-247: “provided that Lidar data are available from pre and post-161 
logging.”. 162 
 163 
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Comment: Line 269: Where did wood volume data come from? 164 
Response: we edited the manuscript to clarify this point:  165 
Changes to manuscript:  ls.307-309: “Since AGB depends on DBH, H and WD (see Chave et al., 166 
2014), average wood volume can be computed approximately as the ratio of AGB divided by the 167 
average wood density”. 168 
 169 
Comment: Lines 315-6: In what way does Antimary not represent Peruvian Amazon and 170 
Amazon-Andes gradients? 171 
Response: We added the following sentence to be more specific : 172 
Changes to manuscript:  ls.418-421: “However, this site does not represent forests in the 173 
western Amazon or the Amazon-Andes gradients with relatively lower wood density (Baker et 174 
al. 2004) and more fertile volcanic soils impacting the forest structure and dynamics (Quesada et 175 
al., 2011).” 176 
 177 
Comment: Line 323: by how much does it explain the variation?  178 
Response: Overall 78% is explained (R2=0.78). 179 
Changes to manuscript:  l.428: “and explained 78% of the variation”. 180 
 181 
Comment: Section 4.3: Would be helpful to refer to tables and figures  182 
Response: Thank you for the suggestion. We added references to table 2 and figure 3. 183 
Changes to manuscript:  references l.465 and l.468. 184 
 185 
Comment: Lines 344-6: This sentence is unclear to me, but it sounds like it supports my point 186 
that using AGB_Lidar as a reference is circular and not proving anything  187 
Response: This sentence was not clear and was removed from the manuscript. Moreover, we are 188 
now comparing AGB from LCA and MCH in a separate section of the results and discussion to 189 
avoid any confusion. 190 
 191 
Comment: Line 374: Change ‘only’ to ‘primarily’ or something similar.  192 
Response: “only” was removed. 193 
 194 
Comment: Line 391: Change ‘Any’ to ‘Most’ 195 
Response: We changed “‘Any’ to ‘Most’. 196 
 197 
Comment: Lines 423-5: Maybe the relationship is not linear at the high end of LCA 198 
Response: It is indeed a possibility. We added this suggestion to the manuscript.  199 
Changes to manuscript: ls. 589-591: “It is also possible that the relationship between AGB and 200 
LCA is not linear for very high AGB values. This could be tested in the future with a larger 201 
number of sites with very high biomass.” 202 
 203 
Comment: Line 467: If the relationship remains unique across forest types, is it not then broadly 204 
applicable?  205 
Response: Yes, this is an important point of the paper. We added two sentences highlighting this 206 
fact. 207 
Changes to manuscript: 208 
- in the Discussion: 209 
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ls.538-539:  “Our model can therefore potentially be applied to a wide range of forest types, 210 
provided that there is information about wood density of the study area in the literature.”  211 
- in the Conclusion: 212 
ls.640-641: “. This linear relationship remains unique across different forest types, making the 213 
LCA model broadly applicable.” 214 
 215 
Comment: Fig 3: Clever way to find the optimal H threshold  216 
Response: Thank you for this positive comment. 217 
 218 
Comment: Fig 4b: This doesn’t look like a perfectly fit. 219 
Response: With a R2 of 0.78, RMSE of 46 and no bias, we consider the fit to be good. These 220 
number are provided in Table 3. R2 was added to Figure 4b to emphasize this point. 221 
Changes to manuscript: R2 was added to Figure 4b to emphasize this point. 222 
 223 
Comment:  Fig 5b: All calibration sites are above the 1:1 line. Why are Nouragues and Choco 224 
below the line?  225 
Response: Based on your comments and that of Reviewer 2, we removed this figure. The fact 226 
that some plots were above/below the line was likely due to the fact that AGBLidar was estimated 227 
locally for different sites and included some error. We are now simply comparing the LCA and 228 
MCH methods based on the inventory data only (Figure 5, attached here as Fig.1). 229 
 230 
Comment:  Fig 7: It would be helpful to see the actual data, not just regression lines. 231 
Response: The point of this figure is to clearly see where the lines cross the y axis. For Fig 7a), 232 
we are just showing where the LCA model crosses the y axis, with different wood density from 233 
the different sites. Each line represents the model curve with various wood density values. To see 234 
the actual data from the calibration sites, see Figure 4b. 235 
For fig 7b, actual data could be added, but just showing the lines gives the figure a clean look, 236 
considering that the information we are looking for here is the intercept of each line. 237 
 238 
 239 

Response to Anonymous Referee #2 240 

 241 
Thank you for taking the time to review our paper. We did our best to address all your comments 242 
in the hope this will improve the quality of the manuscript.  243 
 244 
Comment: For this method to be useful, it must either (1) outperform existing methods, (2) 245 
perform similarly to existing methods but at lower computational cost or (3) open up new 246 
applications not allowed by existing methods.  247 
 248 
Response : Our study does open up new applications compared with existing methods. We 249 
demonstrate that our method performs similarly to another method relying on information from 250 
all trees within a plot (MCH). The point of our paper is not to say that the LCA method is better 251 
than the MCH method, but rather to show that information on large trees is enough to estimate 252 
biomass. Our findings confirm what has been shown in several studies focusing on ground data 253 
(Bastin et al, Slik et al…) and shows for the first time that relying on large trees from a remote 254 
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sensing perspective allows to estimate AGB. It opens up new applications both for field 255 
inventory and remote sensing applications. In the discussion (section 4.8), we talk about how 256 
methods focusing on large trees could help future space missions, such as BIOMASS and GEDI, 257 
to accurately estimate biomass and open up new applications. LCA also gives information on the 258 
presence of large trees in a study area, which other metrics such as MCH cannot do. It is an 259 
important point, considering that large trees are often the most affected by natural disturbance 260 
and targeted by logging companies. 261 
Changes to manuscript: ls.455-457: “LCA provides information on the presence of large trees 262 
in a study area, which other metrics such as MCH cannot do. It is an important point, considering 263 
that large trees are often the most affected by natural disturbance and targeted by logging 264 
companies.” 265 
ls.564-565: “The comparison of LCA and MCH metrics showed that both performed similarly in 266 
estimating AGB, highlighting the importance of large canopy trees to estimate biomass.” 267 
ls.645-647: “The results of our study may encourage further research in the use of Lidar data for 268 
detecting the distribution of larger trees in tropical forests for ecological and conservation 269 
studies.” 270 
 271 
Comment: The paper is framed around comparing the new LCA method against the existing 272 
MCH method, but a clear comparison of the two against ground-based validation data is not 273 
presented.  274 
 275 
Response: Thank you for pointing this out. We added a short paragraph in the method section, as 276 
well as a new section in the Results and in the Discussion, comparing the performance of LCA 277 
and MCH methods. This is presented in the Methods (ls.218-240), in the Results (ls. 345-379) 278 
and in the Discussion (ls.563-569). 279 
To avoid any confusion, we moved the MCH local estimations of AGB from the main Lidar data 280 
paragraph to the Supplementary information (S.2). AGBLidar was also renamed LCALocal for 281 
clarity. 282 
Changes to manuscript: see ls. 218-240, ls. 345-379 and ls. 563-569. Figure 5 (attached here as 283 
Fig. 1) 284 
We chose to keep Table S3 in the Supplementary Information for clarity, but we added a figure 285 
comparing AGB estimations using the 2 methods (Figure 5). 286 
 287 
Comment: Is LCA quicker to calculate than MCH? It would be useful to present a comparison 288 
of the computational time taken to calculate LCA versus MCH.  289 
 290 
Response: LCA is not quicker to calculate than MCH, but it is not significantly slower either 291 
(below 1s for both methods). Also, the strength of LCA lies in the structural information it 292 
provides, not in its computational time. Thus, we chose not to add a detailed comparison of 293 
computational time. 294 
 295 
Comment: The application to detect the impacts of selective logging is potentially very 296 
important.  297 
 298 
Response: We agree. We emphasized this point in the Discussion: 299 
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Changes to manuscript: ls.609-611: “LCA could become an important tool to detect forest 300 
degradation, in particular selective logging, considering that large trees are targeted by logging 301 
companies.” 302 
 303 
Comment: My main suggestion to improve this paper are to concentrate on testing the relative 304 
performance of LCA and MCH approaches at estimating biomass when validated against 305 
inventory data (even if LCA performs worse, this is still a very useful result for method 306 
development),  307 
 308 
Response: Thank you for your suggestion. As mentioned above, we added a paragraph in the 309 
method section, as well as two new sections (results and discussion) and a figure comparing the 310 
two methods, showing that they perform very similarly. We also show how they differ in terms 311 
of AGB estimations in different sites.  312 
 313 
Comment: and comparing the performance of the two approaches when applied to detect the 314 
impacts of selective logging.  315 
 316 
Response: We compared the performance of the 2 approaches when applied to selective logging 317 
detection. The MCH model showed a loss of biomass of 19 Mg ha-1, compared to 15 with LCA 318 
and 9 from a previous study based on rh25. We added this information in the results and the 319 
discussion. 320 
Changes to manuscript: ls.393-394: “As a comparison, the MCH model led to an estimated 321 
biomass loss of 19 Mg ha-1.” 322 
ls.607-609: “The higher biomass loss estimation from the MCH model (19 Mg ha-1) again shows 323 
how different metrics can lead to different results. Here, three methods based on three different 324 
Lidar metrics yielded results that differed by more than twofold.”. 325 
 326 
Comment: I agree with reviewer 1 in that I don’t see much value in testing the performance of 327 
LCA against biomass estimates using MCH.  328 
 329 
Response: Thank you for your suggestion. We removed Figure 5b. Performance comparison of 330 
LCA and MCH model at the calibration sites is now based on Figure 5a. The models applied to 331 
the nine sites are now Figure 5b, following your other suggestion to focus on the comparison of 332 
LCA and MCH methods.  333 

 334 
Specific comments: 335 
 336 
Comment: Line 205 – How was bias calculated?  337 
 338 
Response: We added the definition of bias to the manuscript: 339 
Changes to manuscript: ls.214-215: “bias (mean difference between the expected values of 340 
AGB and the observed values of AGB)”. 341 
 342 
Comment: Line 262 – What are the other models apart from a power law fit?  343 
 344 
Response: For both LCA and MCH models, we tested linear models and power laws, which are 345 
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the 2 common fits. We modified the sentence to avoid any confusion: 346 
Changes to manuscript: ls.302-303: “with a better coefficient of correlation and RMSE than a 347 
power law fit” 348 
 349 
Comment: Line 262 – 263 – Are RMSE values and r squared values here from cross-validation 350 
or from the training data? Line 263 – Just present the bias from cross-validation.  351 
 352 
Response: R2 and RMSE are from training data. 353 
We removed the bias from the training data and present the bias from cross-validation. 354 
Changes to manuscript: l.304: “biascross_val = 0.16 Mg” 355 
ls.334-336: “coefficients of correlation, RMSE and bias from training data and cross-validation 356 
are reported in Table 3.” 357 
 358 
Comment: Line 271 – How feasible is it to scale by wood density in the absence of inventory 359 
data? Presumably errors would be larger if modelled estimates of wood density were used.  360 
 361 
Response: We agree. If there is no information in the literature from previous studies, modelled 362 
WD could be used, but would indeed give greater errors. This is now covered in the Discussion. 363 
Changes to manuscript: ls.558-561: “In the absence of information on wood density from the 364 
literature, modelled wood density could potentially be used, but would give greater errors. These 365 
errors should be taken into account when reporting on the uncertainty of the results.” 366 
 367 
Comment: Lines 287-301 – It would be useful to also see how MCH performs at detecting this 368 
loss of biomass.  369 
 370 
Response: The MCH model (Table S3) gives a biomass loss of 19mg/ha, more than twice what 371 
was reported in Andersen et al., 2014. These results were added to the results section and the 372 
discussion section 4.6.: 373 
Changes to manuscript: ls.393-394: “As a comparison, the MCH model led to an estimated 374 
biomass loss of 19 Mg ha-1.” 375 
ls.607-609: “The higher biomass loss estimation from the MCH model (19 Mg ha-1) again shows 376 
how different metrics can lead to different results. Here, three methods based on three different 377 
Lidar metrics yielded results that differed by more than twofold.”. 378 
 379 
Comment: Lines 376-377 – This is a very nice approach to identify how much biomass is 380 
missed by LCA.  381 
 382 
Response: Thank you for this positive comment. 383 
 384 
Comment: Figure S2 - Given that the minimum cluster size didn’t have a major effect on the 385 
AGB estimates, I would be interested in seeing a comparison of the performance of the LCA 386 
metric just following masking versus the LCA metric following removal of segments below the 387 
threshold cluster size. How computationally costly are these last steps?  388 
 389 
Response: This is a good point. For a reference image of 1000x1000m pixels, the full process 390 
takes less than one second. Just using masking may be slightly faster, but the computational cost 391 
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is not an issue here. Just using masking gives similar results as when using LCA, because the 392 
pixels removed by the full process represent a small fraction of the area covered by large trees 393 
(1.73% on average). (R2=0.78, RMSE=45.7, bias=0.55) 394 
These isolated pixels either represent single branches reaching above 27m or the tip of a tree 395 
whose crown is mainly below 27m. Therefore, these pixels have no meaning in terms of our 396 
LCA metric and do not represent large trees. This is why we chose to remove them. The goal of 397 
our study is to show that large trees are sufficient to estimate AGB. We clarified this point in the 398 
manuscript: 399 
Changes to manuscript: ls.450-454: “Clusters smaller than 100 m2 add only a small fraction 400 
(1.7% on average) to LCA values across sites.  Including these clusters in LCA would not impact 401 
the performance of the model (similar R2, RMSE and bias) and would allow to skip the final 402 
steps of the LCA retrieval (see Fig. S2).  However, since these pixels either represent single 403 
branches reaching above 27m or the tip of a tree crown, they have no meaning in terms of our 404 
LCA metric and do not represent large trees.”. 405 
 406 
Comment: Technical comments: Inconsistent approach to using capitals in section headings. 407 
Line 209 – => Detecting changes of selective logging. Line 385 - => LCA as an AGB estimator  408 
 409 
Response: Thank you for pointing this out. We removed the capital letters accordingly. 410 
 411 

 412 
 413 

Additional changes  414 

We made some additional minor edits to the paper to clarify some sentences. Please refer to the 415 
track changes of the revised manuscript, notably: � 416 

- Paragraph ls.485-503.� 417 
- Figure 6: “2012” was replaced by “2011”.  418 
- The word “nine” was removed from the title to be more consistent with the content of the 419 

manuscript. 420 

 421 
 422 

 423 
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Abstract 37 

Large tropical trees store significant amounts of carbon in woody components and their 38 

distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the 39 

properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area 40 

occupied by canopy above a reference height.  We hypothesize that this simple measure of forest 41 

structure representing the crown area of large canopy trees could consistently explain the 42 

landscape variations of forest volume and aboveground biomass (AGB) across a range of climate 43 

and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution 44 

airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old 45 

growth Neotropical forests, of which four had plots large enough (1ha) to calibrate our model.  46 

We found that the LCA for trees greater than 27 m (~25–30 m) in height and at least 100 m2 47 

crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, 48 

irrespective of the forest biogeographic conditions. When weighted by average wood density of 49 

the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 50 

46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other Lidar derived metrics with complex nonlinear 51 

relations to biomass, the relationship between LCA and AGB is linear and remains unique across 52 

forest types.  A comparison with tree inventories across the study sites indicates that LCA 53 

correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm.  The 54 

spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable 55 

regularity of forest structure across the landscape and a new technique for systematic monitoring 56 

of large trees for their contribution to AGB and changes associated with selective logging, tree 57 

mortality, and other types of tropical forest disturbance and dynamics.  58 

 59 
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Keywords 64 

Lidar, biomass, tropical forest, large trees, crown area, wood density 65 

 66 

1 Introduction 67 

In humid tropical forests, tree canopies contribute disproportionately to the exchange of water 68 

and carbon with the atmosphere through photosynthesis (Goldstein et al., 1998; Santiago et al., 69 

2004). From a physical standpoint, canopies are rough interfaces formed by crowns of emergent 70 

and large trees, regularly disturbed by wind thrusts and gap dynamics. This structurally complex 71 

boundary layer is challenging for scaling of biogeochemical fluxes and modeling of vegetation 72 

dynamics (Baldocchi et al., 2003). Large canopy trees are among the first to be impacted by 73 

storms or heavy precipitation (Espírito-Santo et al., 2010), drought stress (Nepstad et al., 2007; 74 

Saatchi et al., 2013; Phillips et al., 2009), and fragmentation (Laurance et al., 2000), potentially 75 

leading to tree death and formation of large canopy gaps (Denslow, 1980; Espírito-Santo et al., 76 

2014). Several studies suggest that forest canopies can show fractal properties that tend to evolve 77 

from a non-equilibrium state towards a self-organized critical state, involving gap formation and 78 

recovery (Pascual and Guichard, 2005; Solé and Manrubia, 1995), with crowns preferentially 79 

growing towards more sunlit parts of the canopy (Strigul et al., 2008).  80 

Over the past decade, stand level canopy metrics have been increasingly derived using small 81 

footprint airborne Lidar systems (ALS), a widely used remote sensing technique to study the 82 

structure of forests (Kellner and Asner, 2009; Lefsky et al., 2002). Lidar derived mean top 83 

canopy height (MCH) is a good predictor of tropical forest aboveground carbon content and its 84 

spatial variability (Jubanski et al., 2013), but it does not provide information on the presence of 85 

large trees that are important when monitoring changes of forest biomass from logging and other 86 
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small scale disturbance (Bastin et al., 2015). Moreover, different forests with the same MCH 87 

may differ in their stem density, notably of large trees, and in stand mean wood density, two 88 

aspects that are important in constructing a robust model to infer AGB from lidar data (Asner et 89 

al., 2012; Mascaro et al., 2011). Ground observations suggest that stem density, basal area, 90 

height and crown size of large tropical trees may all be good indicators of forest AGB (Clark and 91 

Clark, 1996; Goodman et al., 2014). This implies that including information on crown area of 92 

individual large trees should improve carbon stock assessments, as confirmed in temperate and 93 

boreal regions (eg. Packalen et al., 2015; Popescu et al., 2003; Vauhkonen et al., 2011, 2014).  In 94 

tropical forests, identifying and delineating crowns of large trees is a difficult and time 95 

consuming process due to the layered structure of the forest canopy and overlapping crowns 96 

(Zhou et al., 2010, but see Ferraz et al., 2016). 97 

Here, we explore how the fractional area occupied by crowns of large trees in a forest stand can 98 

be used as a reliable indicator of forest biomass across a wide range of forest structure, climate 99 

and edaphic geographic variations.  We define large tree canopy area (LCA) as a metric 100 

capturing the cluster of crowns of large trees within a forest patch using height and crown area 101 

measured by high resolution airborne Lidar measurements. Precisely, LCA is the number of 102 

pixels in the canopy height model above a reference height, and excluding the pixel clusters 103 

smaller than a reference area. Since this metric quantifies the proportional presence of large 104 

trees, it can be used to estimate AGB and monitor changes associated with the disturbance of 105 

large trees from mortality events and selective logging.   We first explore the properties of LCA 106 

across a range of landscapes in the Neotropics. Next, we hypothesize that LCA is a good 107 

predictive metric of the spatial variations of AGB over a wide range of old growth forests.  108 
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To this end, we assembled a collection of airborne Lidar measurements and ground inventory 109 

data at nine sites in old growth Neotropical forests. The Lidar data provide variations in canopy 110 

height and distribution of large trees that allow us to address the following questions: 1) is there 111 

a single definition of LCA at the landscape scale across different sites? 2) does LCA metric 112 

capture variations of AGB? 113 

 114 

2 Materials and Methods 115 

2.1 Study sites 116 

We studied the canopy structure at nine old growth lowland Neotropical forest sites that span a 117 

broad range of climatic and edaphic conditions (Fig. S1, Table 1). All sites are located in low 118 

elevation areas (less than 500 m above sea level) but have small scale surface topography that 119 

may influence the distribution of crown formations and gaps. These forests are for the most part 120 

undisturbed terra firme forests. Tapajós, Antimary and Cotriguaçu get the least rainfall, with 121 

approximately 2000mm yr-1, while La Selva and Chocó both receive more than 4000 mm yr-1 122 

(Table 1).  123 

Permanent forest inventory plots were available for all sites except Cotriguaçu (Table 1). Sites 124 

where tree level inventory data were available were used to estimate the stand level aboveground 125 

biomass, thereafter referred to as AGBinv: BCI (50 plots of 1 ha each), Chocó (42 plots of 0.25 ha 126 

each), La Selva (11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each), Nouragues (7 plots of 127 

1 ha each) and Tapajós (10 plots of 0.25 ha each). In these plots, all trees with a diameter at 128 

breast height (DBH) ≥10 cm have been mapped, measured and identified to the species. Trees 129 

with irregularities or buttresses were measured higher on the bole. Total tree height 130 

measurements were available for a subset of these trees. The method for calculating AGBinv from 131 
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forest inventories is reported in S.1 of the supplementary information. Four sites (BCI, La Selva, 133 

Nouragues and Paracou) with 1 ha inventory plots, were used as “calibration sites” to compare 134 

the LCA metric and AGB.   Sites with smaller plots were not used as calibration of LCA because 135 

of the probability of crowns of large trees extending outside the plot boundary and the 136 

introduction of uncertainty in estimating LCA from edge effects (Meyer et al., 2013; Packalen et 137 

al., 2015). For this reason, all plots smaller than 1 ha were excluded from the LCA analysis but 138 

were used in estimating average wood density for each site, which does not depend on plot size.  139 

Stand averaged wood density was calculated based on the wood density of all trees present in a 140 

site, determined using the commonly used global wood density database, and is reported in Table 141 

1 (Chave et al., 2009; Zanne et al., 2009). For Cotriguaçu, we used stand averaged wood density 142 

given by Fearnside, (1997) for a region covering the site. Additional plot level data (AGBinv and 143 

mean wood density) were provided for Antimary (50 plots of 0.25 ha each), Nouragues (27 plots 144 

of 1 ha each) and Paracou (85 plots of 1 ha each). 145 

 146 

 147 

2.2  Lidar data 148 

Lidar sensors scan the vegetation vertical structure and return a three dimensional point cloud 149 

derived from the time it took each pulse to return to the instrument. The Lidar datasets acquired 150 

over the study sites come from discrete return Lidar instruments and were gridded horizontally at 151 

a 1m resolution using the echoes classified as either vegetation or ground. They yield three 152 

products: digital surface model (DSM) corresponding to the top canopy elevation, digital terrain 153 

model (DTM) corresponding to the ground elevation, and canopy height model (CHM), which is 154 

the height difference between the DSM and the DTM. DTMs were interpolated from a Delaunay 155 
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triangulation or comparable interpolation methods, after outliers have been removed. DSMs were 172 

created using the highest return within a cell. Lidar data over Paracou were acquired in last 173 

return mode, causing a bias of 50 cm on the CHM (Vincent et al., 2012). This bias is not 174 

addressed in this study because our height increment for the determination of optimal height 175 

thresholding is larger (1m) (see Sect. 4.3). Data were acquired between 2009 and 2013, using 176 

relatively similar sensors and acquisition configurations (Table 2). The potential differences 177 

between the Lidar datasets and their impact on the results are addressed in the Discussion.  178 

For each site, we selected a 1x1 km (100 ha) area of old growth forest, oriented north-south, 179 

without any human disturbance to the extent possible. Topography derived from Lidar data 180 

within the selected 1 km2 subset images provides information on landscape variations that may 181 

impact the forest structure. Data visualization was done using ENVI version 4.8 (Exelis).  182 

 183 

2.3 Computing Large Canopy Area (LCA) 184 

At each study site, we extracted the area of canopy that relates to total area of the canopy height 185 

model above a standard height (h) threshold, or LCA(h), and explored how this metric scales 186 

along two axes. First, we varied the threshold height h with increments of 1m, between 5m and 187 

50m, in 100 m by 100 m subareas (100 subareas for each site).  Second, to denoise the data, we 188 

excluded the clusters with less than a set number of 1m2 pixels (50, 100, 150 or 200). We then 189 

prioritized the crown area of large trees, and filtered out pixels that could be related to outliers or 190 

to single branches. This method thus quantifies the area of large crowns covering a plot or larger 191 

landscape unit area, as a percentage of covered area.  192 

LCA maps were produced at 1 ha resolution. Pixel clustering was based on the similarity of the 193 

four nearest neighbors (similar results were obtained with an eight neighbor model, results not 194 
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shown here). Figure S2 summarizes the steps taken to go from the Lidar canopy height model to 197 

the final LCA map.  Processing was conducted using the IDL software (Interface Description 198 

Language, Exelis). 199 

We determined the optimal minimum canopy height threshold calculating the coefficient of 200 

correlation between AGBinv and LCA at the four calibration sites. This step allowed us to 201 

examine if optimal height thresholds differed from one site to the other. The goal was to find a 202 

single optimal height threshold and crown size that could be applied for LCA retrieval across 203 

closed canopy Neotropical forests. We also estimated AGB from Lidar data locally (AGBLocal) 204 

using a commonly used model fit relating MCH to AGBinv in each site, to further examine the 205 

variations of LCA and AGB in all nine sites (see S.2, Table S1).  206 

 207 

2.4  Relating LCA to biomass 208 

We tested different models to infer AGBinv from LCA, henceforth called AGBLCA, at the four 209 

calibration sites, and explored if adding more parameters, such as mean wood density of a site, 210 

mean wood density of large trees (DBH ≥50 cm), mean canopy height or top percentiles of 211 

canopy height improved the predicting power of the model. We evaluated our results by applying 212 

a jackknife validation to our regression models, based on 1000 iterations of bootstrapping. The 213 

coefficients of correlation (R2), root mean square error (RMSE) and bias (mean difference 214 

between the expected values of AGB and the observed values of AGB) are reported for the 215 

models providing the best results. The analysis was performed using the R statistical software (R 216 

Core Team, 2014). 217 

We compared the new approach based on LCA to a similar approach based on MCH, which 218 

relies on information on all pixels of an area of interest. In both cases, models were calibrated by 219 
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using field data from the four calibration sites and their respective mean wood density. This 238 

comparison is meant to investigate if a metric based on large trees only (LCA) can estimate AGB 239 

similarly to a metric that uses information about 100% of the canopy (MCH). 240 

 241 

2.5  Detecting changes of selecting logging 242 

Forest degradation due to selective logging is difficult to detect with conventional remote 243 

sensing techniques due to small scale and minor impacts on the forest canopy and biomass 244 

compared to severe forest disturbances (e.g. fires, storms, or clearing). However, selective 245 

logging targets large trees (Pearson et al., 2014) and thus may be detectable using LCA, provided 246 

that lidar data are available from pre and post-logging. Here, we use the Antimary study site that 247 

was selectively logged after the 2010 Lidar acquisition to examine the use of LCA for detecting 248 

logging impacts on the forest canopy and AGB.  We apply the large tree segmentation approach 249 

on both the 2010 image and on a 2011 post-logging Lidar image (see Andersen et al., 2014 for 250 

details) to quantify the logging impacts in terms of the distribution of large trees removed from 251 

the forest and the loss of aboveground biomass.   252 

 253 

3 Results 254 

3.1  Intersite comparison of landscapes and MCH 255 

 Topographic variation within the 1 km2 images ranged from about 4 m elevation gain in flat area 256 

of Tapajós to steep elevation gain of up to about 100 m in Cotriguaçu and Chocó (Fig. S3). Top 257 

canopy height reached up to 60m, but varies across sites, with Chocó having the lowest MCH 258 

(24.1 m) and Nouragues the highest (29.7 m). Forest height in Manaus was more homogeneous 259 

than in the other sites, with a standard deviation of 6.8 m for MCH, versus 10.3 m in Paracou. 260 
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We found no relationship between topography and canopy height, which suggests that variability 266 

in forest structure may be due to other ecological and edaphic factors in each site. 267 

 268 
 269 
3.2 Large canopy area index 270 

The choice of the canopy height threshold impacted LCA more than the minimum number of 271 

pixels per cluster (Table S2). The difference due to the choice of the minimal cluster size 272 

threshold was on average 1.4 %, calculated as the mean of the difference between the smallest 273 

grain (50 pixels) and the largest one (200 pixels) across sites and height thresholds. Based on this 274 

analysis, we chose to define LCA using a minimum cluster size of 100 pixels (100 m2 for crown 275 

area) in the remainder of this study. This corresponds to an area of at least 10 m x10 m or a circle 276 

of approximately 11m in diameter, consistent with the average crown diameter of large trees of 277 

the region (Bohlman and O'Brien, 2006; Figueiredo et al., 2016; Clark, unpublished results).  278 

 279 
In contrast, the canopy height thresholds markedly impacted the magnitude of LCA among sites 280 

(Fig. 1 and Fig. 2, Table S2). As the height threshold increased, intra-site variation of LCA(h) 281 

became apparent, showing differences of LCA associated with differences of forest structure 282 

(Fig. 1). Tapajós and Nouragues stood out with more area of large trees at the height threshold of 283 

30 m (LCA30m = 51 and 48 %, respectively) , while Antimary and Chocó showed much lower 284 

LCA at this height threshold (LCA30m = 21 %) (Table S2). The steepest slopes of the LCA(h) 285 

function corresponded to the highest sensitivity of LCA to height thresholds and the inflection in 286 

LCA was found between 24m in Antimary and 30m in Nouragues (Fig. 2).  The average height 287 

of the steepest slope was about 27 m, a value that was used as the optimal threshold across all 288 

sites.  289 
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Regressing AGBinv and LCA at the calibration sites (Fig. 3b) showed the best relationships 290 

corresponded to height thresholds between 27m (Nouragues and Paracou) and 28m (BCI and La 291 

Selva), with maximum coefficients of correlation ranging between 0.5 and 0.8.  The same 292 

analysis repeated using AGBLocal and LCA in the nine sites also confirmed the earlier results that 293 

the highest coefficients of correlation between the two metrics occurred between 23 m (Chocó) 294 

and 30 m (Tapajós) height thresholds (Fig. 3a), explaining more than 75 % of AGB variation in 295 

each site. Based on these results, we defined LCA as the cumulative area of clusters of the 296 

canopy height model greater than 27 m height, as the mean of optimal height threshold with 297 

highest R2 across sites,  with clusters covering areas larger than 100 m2. 298 

 299 

3.3 Variation of AGB derived from LCA 300 

 301 

AGBinv was found to depend linearly on LCA (Eq. 1), with a better coefficient of correlation and 302 

RMSE than a power law fit (R2
linear = 0.59, RMSElinear = 62.53  Mg ha-1, vs. R2

power = 0.54, 303 

RMSEpower = 65.38). Although this model was unbiased (biascross_val = 0.16 Mg), there were clear 304 

differences among study sites (Fig. 4a, Table 3). These differences were largely explained by 305 

landscape scale differences in wood density, an important factor representing the influence of 306 

species composition on the spatial variation of AGB. Since AGB depends on DBH, H and WD 307 

(see Chave et al., 2014), average wood volume can be computed approximately as the ratio of 308 

AGB divided by the average wood density (Fig. 4b).   The linear relationship between LCA and 309 

wood volume yielded an estimate of the average total volume of forests independently of the site 310 

characteristics, through Vol = a LCA + b. Adding more parameters did not improve the 311 
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performance of the model, except when using WD as a normalizing factor. The two models we 330 

retained are therefore of the form of Eq. (1) and Eq. (2): 331 

!"#$%& = (	*+! + -         (1) 332 

!"#$%& = (	*+! + - 	×	/0        (2) 333 

where here WD is the mean wood density of a site.  The coefficients of the models, as well as 334 

their respective coefficients of correlation, RMSE and bias from training data and cross-335 

validation are reported in Table 3. 336 

For AGB estimation, the model based on LCA weighted by WD gives the best result by bringing 337 

R2 up to 0.78 and RMSE down to 46.02  Mg ha-1 (Fig. 4b, Fig. 4c, Table 3, Eq. (2)), with AGBinv 338 

and AGBLCA falling around a one-to-one line in Fig. 4c. At all sites, RMSE values are between 339 

20.87 and 42.22 Mg, except Nouragues, where RMSE remains large (71.21 Mg) due to high 340 

biomass and several outliers from the linear relation. The relationship between LCA and other 341 

metrics derived from ground data, such as Lorey’s height or basal area, are presented in S.3 and 342 

Table S4. 343 

 344 

3.4 LCA vs. MCH approach 345 

Finally, we compared these results to AGB estimated using a similar approach based on MCH 346 

(AGBMCH) for the calibration plots (Fig. 5a), and we also compared AGBLCA to AGBMCH in all 347 

nine sites, using LCA and MCH of the 1km2 images (Fig. 5b).  348 

Both methods perform similarly (R2
MCH = 0.80, RMSEMCH = 42.52 Mg ha-1, biascross_val=-0.21 Mg 349 

ha-1, Table S3),  showing that relying on a fraction of the Lidar information performs as well as 350 

using a metric depending on information from all pixels. However, Fig. 5 also shows that the 351 
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LCA method tends to overestimate AGB compared to the MCH method (bias=9.66 Mg ha-1), 378 

especially in La Selva, BCI, Cotriguaçu and Manaus. 379 

 380 

3.5 AGB changes from logging 381 

The impacts of logging on the distribution of large trees and changes of AGB was detected by 382 

simply deriving the LCA index from pre and post-logging Lidar data acquired in 2010 and 2011 383 

respectively in Antimary (Fig. 6).  Difference in LCA between the two dates (2010–2011) (Fig. 384 

6a) at 1 ha grid cell captured the areas of largest changes in the few months following logging 385 

(logging took place between June and November 2011, Lidar data were collected in late 386 

November 2011). The LCA approach was able to detect approximately a 17 % decrease in LCA, 387 

from a mean LCA of 34.8 % in 2010 to 29.2 % in 2011.   388 

The changes were also captured in the frequency distribution of large canopy trees before and 389 

after logging (Fig. 6b) and the differences in the spatial distribution (Fig. 6c and 6d).    390 

These changes in LCA correspond to a biomass loss of 15.2  Mg ha-1 when integrated in equation 391 

(2) and were of the same magnitude of the planned selectively logging removal rate (12–18  Mg 392 

ha-1 or 10–15 m3 ha-1 of timber volume) (Andersen et al., 2014). As a comparison, the MCH 393 

model led to an estimated biomass loss of 19 Mg ha-1. Difference in the Lidar index (Δ*+!) at 394 

the native resolution of 1 m (Fig. 6e) was able to capture both the location of all large trees 395 

removed from the forest stand and partial regeneration and gap filling that occurred in the forest 396 

between the two dates.  397 

 398 

4 Discussion 399 

4.1 Inter-site Comparisons 400 
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Cross-site studies on the structure of tropical forests have led to significant advances in our 408 

understanding of tropical forest ecology (Gentry 1993; Phillips et al., 1998; ter Steege et al., 409 

2006). They have also yielded important insights on new techniques to predict carbon stocks 410 

across regions (eg. Asner and Mascaro, 2014).   Comparison of sites in terms of MCH derived 411 

for the study sites confirms that there is a strong regional variation of AGB with respect to 412 

canopy height, and that East Amazonian sites tend to have much taller trees than Central and 413 

Western Amazonia sites. This was already apparent in the canopy height maps produced by the 414 

GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et al., 2011). Comparing sites in terms 415 

of LCA showed a similar pattern of larger trees, being relatively more present in eastern 416 

Amazonia, notably in the French Guiana sites and Tapajos.   Our most southwestern site was 417 

Antimary, in the state of Acre (Brazilian Amazon). However, this site does not represent forests 418 

in the western Amazon or the Amazon-Andes gradients with relatively lower wood density 419 

(Baker et al. 2004) and more fertile volcanic soils impacting the forest structure and dynamics 420 

(Quesada et al., 2011). The site in Chocó is also unique in its characteristics because of 421 

extremely wet condition and potential disturbance (e.g., selective logging). Additional lidar and 422 

ground measurements will allow validating the performance of the LCA in representing the AGB 423 

variations in the western Amazon region. 424 

 425 

4.2 Physical Interpretation of LCA 426 

In this study, we introduced a simple structural metric that captures the proportion of area 427 

covered by large trees over the landscape ( > 1 ha) and explained 78% of the variation in average 428 

forest volume and biomass when weighted by wood density in four sites of old growth 429 

Neotropical forests. LCA cannot separate the crown areas of individual trees.  However, it is 430 
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adapted for large scale monitoring of forest volume and biomass change, as it is a robust and 440 

readily accessible metric. For individual tree separation, complex and more computationally 441 

intensive approaches are available (Ferraz et al., 2016).  442 

In estimating LCA from Lidar data, we examined the spatial clustering properties of LCA and 443 

found that the minimum cluster size was less important than the threshold of canopy height, as 444 

long as the analysis focused on the relative covered area instead of on the density of large trees.  445 

We found that using the percentage of the area covered by large canopy trees is an efficient way 446 

of overcoming the problem of individual crown segmentation in Lidar data. LCA is related to 447 

how trees reaching the forest canopy (above a certain height) fill the space and how this 448 

characteristic may follow a spatially invariant scaling across tropical forests (West et al., 2009).  449 

Clusters smaller than 100 m2 add only a small fraction (1.7% on average) to LCA values across 450 

sites.  Including these clusters in LCA would not impact the performance of the model (similar 451 

R2, RMSE and bias) and would allow to skip the final steps of the LCA retrieval (see Fig. S2).  452 

However, since these pixels either represent single branches reaching above 27m or the tip of a 453 

tree crown, they have no meaning in terms of our LCA metric and do not represent large trees. 454 

LCA provides information on the presence of large trees in a study area, which other metrics 455 

such as MCH cannot do. It is an important point, considering that large trees are often the most 456 

affected by natural disturbance and targeted by logging companies. 457 

 458 

4.3  Correlation between LCA and AGB 459 

The distribution of R2 between LCA and AGB for (Fig. 3) is such that the maximum difference in 460 

R2 between a threshold of 25m and 30m is approximately 0.1, a negligible value. Hence, AGB 461 

retrieval by LCA is relatively insensitive to the height threshold.  For most sites, except 462 
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Antimary, we found a height threshold such that LCA explains about 80–90 % of the variation of 463 

AGB or total volume of the forests for each site (60–70 % when compared with ground plots) 464 

(Fig. 3).  Using a height threshold of 27 m for all sites reduced the R2 by 0.04 on average (max = 465 

0.08) compared to the optimal height threshold for each site.  466 

Potential differences in MCH among sites are due to footprint size, scan angle and return density 467 

(Disney et al., 2010; Hirata, 2004; Hopkinson, 2007) (Table 2). However, these effects are 468 

generally smaller than the 1m increment that we used to determine the optimal height thresholds 469 

of LCA. As a result, LCA estimation, and therefore AGB inferred from LCA, should depend 470 

little on instrument, acquisition and processing (Table 2).  This is an important finding given the 471 

increasing variety of airborne Lidar sensors, and also given the pre and post-processing methods 472 

available for monitoring tropical forest structure and aboveground biomass.  However, 473 

determining whether the 27m threshold holds for LCA calculation across in the tropics would 474 

require a validation at more study studies across continents.  475 

 476 

4.4  LCA Relation to Ground Measurements 477 

The relation between LCA derived from Lidar and the ground measurements can be further 478 

investigated by converting the 27 m height threshold into equivalent DBH values, using a 479 

height–diameter relationship.  In the absence of a local DBH–height relation at each site, we 480 

made use of the following equation (Chave et al., 2014): 481 

ln(H) = 0.893− E + 0.760 × ln(D)− 0.0340 × (ln(D))2
   (3) 482 

where E is a measure of environmental stress for each site that potentially impacts the tree 483 

allometry. The corresponding DBH values fall around 35–55 cm, except for Chocó, where the 484 

best coefficient of correlation is reached with a DBH threshold of 29 cm (Fig. S4). The average 485 
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minimum DBH to assign for the definition of large trees that represent variations of AGB is 498 

below 50 cm.  By choosing a DBH threshold of 50 cm for old-growth undisturbed forests, the 499 

LCA model for estimating biomass can have an approximate analog in inventory data.  This 500 

comparison suggests that the LCA model can also be adjusted with the average wood density of 501 

trees lager than 50 m, allowing a much faster ground data collection of calibrating LCA model 502 

for different sites (S.4).    503 

A limit to how much LCA can explain variations in AGB relates to forest structure and the AGB 504 

of small trees. The lower range of biomass estimation for the LCA model, associated with the 505 

intercept for LCA equal to zero, ranged between 122 Mg ha-1 in La Selva and 192  Mg ha-1 in 506 

Paracou (Fig. 7a).   This lower range identified with the intercept of the LCA–AGB linear model 507 

can be interpreted as the AGB associated with all trees smaller than 27 m height (approximately 508 

all trees with DBH <50 cm). Note that the differences between sites are due to differences in 509 

their mean wood density and not the volume of trees (see Eq. (2) and Fig. 4). Similarly, the 510 

contribution of small trees to the total biomass in the ground inventory ranges between around 511 

100 and 200 Mg ha-1, except in Paracou (261 Mg ha-1) (Fig. 7b).  AGB estimation based on LCA 512 

in these sites cannot go under 100 Mg ha-1 or over 500 Mg ha-1. This is not a limitation of the 513 

model because LCA is designed to provide AGB estimates for forests reaching at least 27 m in 514 

mean canopy height, and such forests generally exceed 100 Mg ha-1 in AGB. Also, the upper 515 

threshold of 500 Mg ha-1 is consistent with upper values found globally at 1 ha scale (Brienen et 516 

al., 2015; Slik et al., 2013). A recalibration of the method should be envisaged in secondary and 517 

highly degraded forests. 518 

 519 

 520 

Deleted: DBH estimation suggests that using a minimal 521 
DBH threshold of about 50 cm for large trees for old growth 522 
neo-tropical forests better represents the total AGB 523 
variations.  524 
Deleted: Finally, a525 
Deleted:  of 526 

Deleted:  527 

Deleted: only 528 

Deleted: 3529 



 18 

4.5  LCA as AGB Estimator 530 

The correlation of LCA to AGBinv suggests that a Lidar based approach can lead to the 531 

estimation of AGB at the landscape scale and give useful information on the presence of large 532 

canopy trees and their distribution, extending the analysis of large trees in plot level inventory 533 

based studies (Bastin et al., 2015; Slik et al., 2013).   534 

Therefore, LCA can explain the variations of total forest volume without any ancillary data about 535 

the forest or the landscape.  Most bias in conversion of LCA to AGB, however, can be corrected 536 

across landscapes and sites by scaling the LCA–AGB relationship with average wood density at 537 

the landscape scale. Our model can therefore potentially be applied to a wide range of forest 538 

types, provided that there is information about wood density of the study area in the literature. 539 

Wood density has been shown to be a key element of allometric models of AGB estimation 540 

(Baker et al., 2004; Brown et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If wood 541 

density is assumed to be constant across DBH classes, the mean wood density at the plot scale 542 

can readily be used to scale LCA to biomass. However, if the wood density of large trees is 543 

smaller or larger than the average wood density, (e.g. in BCI and Chocó: S.4, Fig. S5), the use of 544 

mean wood density to scale LCA may introduce a slight bias in biomass estimation. A difference 545 

in mean wood density of 0.1 g cm-3 would introduce a bias of ±10 % in the biomass estimation 546 

when using our model. We found that using mean wood density of large trees or basal area 547 

weighted wood density instead can give slightly better results and could circumvent the 548 

differences in size distribution of the wood density (S.4).  Instead we could rely on the wood 549 

density of large trees only. This would make the collection of ground data easier and cost 550 

effective for biomass estimation, because trees ≥50 cm DBH only represent 5–10 % of the stems 551 

of a plot (S.4, Fig. S6). Focusing on the wood density of dominant or hyper dominant species 552 
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could also be an alternative approach for future use of Lidar derived LCA for large scale biomass 557 

estimation (Fauset et al., 2015; ter Steege et al., 2013). In the absence of information on wood 558 

density from the literature, modelled wood density could potentially be used, but would give 559 

greater errors. These errors should be taken into account when reporting on the uncertainty of the 560 

results. 561 

 562 

4.6 LCA and MCH 563 

The comparison of LCA and MCH metrics showed that both performed similarly in estimating 564 

AGB, highlighting the importance of large canopy trees to estimate biomass. The differences 565 

between the two methods in estimating AGB show that two methods can have similar 566 

performance in terms of R2 and RMSE and nonetheless lead to different estimations, with LCA 567 

giving higher AGB estimations in some sites. The choice of a metric is therefore crucial to 568 

estimate AGB, especially when estimating the changes in biomass (see Section 4.7). 569 

Both MCH and LCA–AGB models performed relatively poorly in high biomass plots of the 570 

Nouragues study area, by underestimating biomass values greater than 500 Mg ha-1 (Fig. 4 and 571 

5).  To explain the underestimation, we performed three tests: 1. We examined the differences in 572 

the ground estimated biomass values with and without tree height and found no significant 573 

impact in reducing the effect of underestimation. 2.  We tested the hypothesis that the height 574 

threshold used for LCA estimation across sites was not suitable for the Nouragues study site and 575 

dismissed the hypothesis because 27 m was found to be the optimum threshold for Nouragues 576 

plots. 3. We examined the errors in the Lidar estimation of forest height and found that except 577 

for an extremely high AGBinv of 617 Mg ha-1, the four other high biomass outliers are all located 578 

in the 6 ha Pararé plot located on a very steep topography. The Lidar digital terrain model 579 
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(DTM) of this area shows an average within plots elevation range of 90 m. Ground detection on 584 

steep terrain can be erroneous, depending on the Lidar point density and the view angle, causing 585 

large area interpolation errors for DTM development and significant error in canopy height 586 

measurements (Leitold et al., 2015). Other factors that may affect the underestimation of AGB 587 

by LCA or MCH in the Nouragues site may be due to the presence of forest patches with clusters 588 

of large trees and overlapping crown areas.  It is also possible that the relationship between AGB 589 

and LCA is not linear for very high AGB values. This could be tested in the future with a larger 590 

number of sites with very high biomass. 591 

 592 

4.7 LCA and forest degradation 593 

Although LCA and MCH may perform similarly in capturing the forest biomass variations and 594 

changes, the use of LCA in detecting forest degradation and logging is more straightforward 595 

because of its relation to large trees.   The LCA approach was able to accurately detect changes 596 

in forests after logging by locating where the large trees are extracted.  Our estimate of biomass 597 

change from  the LCA approach was higher than the biomass loss of 9.1  Mg ha-1 reported by 598 

another study using the 25th percentile height above ground as the Lidar metric for biomass 599 

estimation (Andersen et al. 2014).  It can be expected that relying on the 25th percentile height 600 

metric for biomass estimation would place more emphasis on the lower part of the canopy 601 

(understory) that is either less damaged or has gone through some level of regeneration after 602 

logging. Models based on LCA or MCH, on the other hand, may be more realistic for estimating 603 

AGB changes because they capture the changes in large trees and upper forest canopy structure 604 

that contain most of the biomass and are directly impacted by logging and biomass removal.    605 
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The higher biomass loss estimation from the MCH model (19 Mg ha-1) again shows how 607 

different metrics can lead to different results. Here, three methods based on three different Lidar 608 

metrics yielded results that differed by more than twofold. LCA could become an important tool 609 

to detect forest degradation, in particular selective logging, considering that large trees are 610 

targeted by logging companies. 611 

 612 

4.8 Future Applications of LCA  613 

LCA definition in our study relies on the high resolution information on forest height, allowing 614 

for the detection of crown area of large canopy trees.  Can a similar measure be derived from 615 

large footprint Lidar observations such as the future NASA spaceborne Lidar mission GEDI 616 

(Global Ecosystem Dynamic Investigation)?   GEDI will not provide spatially continuous data 617 

on forest height, but its footprint size (~ 25 m) and dense sampling may be adequate to develop 618 

statistical indicators of large trees over the landscape.  619 

Similarly, future spaceborne radar missions could also provide useful information to retrieve 620 

large canopy areas. The synthetic aperture radar (SAR) tomographical observations of the 621 

European Space Agency (ESA) BIOMASS mission will provide wall-to-wall imagery of canopy 622 

profile that could be converted to LCA over the landscape (Le Toan et al., 2011).   Preliminary 623 

research based on airborne TomoSAR measurements has already shown that backscatter power 624 

at about 30 m above the ground, with sensitivity to the distribution of large trees, explained the 625 

variation of AGB over Nouragues and Paracou plots better than the backscatter power related to 626 

the lower part of the canopy (0–15 m) (Minh et al., 2016; Rocca et al., 2014). Future research on 627 

exploring the use of an equivalent radar index product from BIOMASS height or tomography 628 
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measurements at a height threshold (e.g. 27 m) may provide a potential algorithm to map the area 630 

of large trees and estimate forest volume and biomass changes across the landscape.  631 

 632 

 633 

5  Conclusions 634 

We introduce LCA as a new Lidar derived index to capture the variations of large trees and total 635 

volume and biomass across landscapes that remain spatially and regionally invariant.  The 636 

importance of LCA is in its relevance to the structure and ecological characteristics of large trees 637 

in filling the canopy space and their unique contribution in determining the total volume and 638 

biomass of forests.  Unlike other Lidar derived metrics, LCA is linearly related to total 639 

aboveground biomass after being weighted by average wood density. This linear relationship 640 

remains unique across different forest types, making the LCA model broadly applicable.  The 641 

comparison of LCA index with ground plots suggests that DBH >50 cm is a more reliable 642 

threshold to quantify the number and distribution of large trees in undisturbed old growth 643 

tropical forests and in capturing the variations of the total aboveground biomass across 644 

landscapes and regions.  The results of our study may encourage further research in the use of 645 

Lidar data for detecting the distribution of larger trees in tropical forests for ecological and 646 

conservation studies.  647 
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 944 
 945 
 946 
Table 1. Information on forest inventory plots. * indicates that a site has been used for the calibration of the LCA 947 
model. Sources: Antimary and Cotriguaçu: Fearnside, 1997; d’Oliveira et al., 2012, BCI: Center for Tropical Forest 948 
Science (CTFS) (Condit, 1998; Hubbell et al., 1999, 2005), Chocó: (bioredd.org), La Selva: Carbono project (Clark 949 
and Clark, 2000), Manaus and Tapajós: Espírito-Santo (unpublished results), Nouragues: Réjou-Méchain et al., 2015, 950 
Paracou: Gourlet-Fleury et al., 2004; Vincent et al., 2012. 951 

Site Data Plots Size 
(ha) 

N plots Year Mean WD 
(g cm-3) 

Mean AGB 
(Mg ha-1) 

Annual rainfall 
(mm yr-1) 

 
Antimary 
(Brazil) 

 

Plot level 0.25 50 2010 0.61 234 2000 

BCI * 
(Panama) 

 

Tree level 1 50 2010 0.56 235 2600 

Chocó 
(Colombia) 

 

Tree level 0.25 42 2013 0.60 224 10000 

Cotriguaçu 
(Brazil) 

 

Not 
available 

- - - 0.60 - 2000 

La Selva * 
(Costa Rica) 

 

Tree level 1 11 2009 0.45 178 4000 

Manaus 
(Brazil) 

 

Tree level 0.25 10 2014 0.66 263 2200 

Nouragues * 
(French 
Guiana) 

 

Plot level 
Tree level 

1 
1 

33 
7/33 

2012 0.66 424 3000 

Paracou * 
(French 
Guiana) 

 

Plot level 1 85 2009-10 0.71 353 3000 

Tapajós 
(Brazil) 

Tree level 0.25 10 2014 0.62 238 1900 
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Table 2. Information on Lidar data and locations of the 9 research sites.  954 
Site 

(1km2  images) 

Sensor Year Retur

ns m-2 

Flight 

Altitude (m) 

Scanning 

angle (º) 

Frequency 

(kHz) 

NW corner lat NW corner lon 

Antimary Optech ALTM3100EA 2010-2011 10-15 500 11 70 9°17'47.26"S 68°17'15.06"W 

BCI Optech ALTM3100EA 2009 8 1000 35 70 9°9'28.56"N 79°51'18.9"W 

Chocó Optech ALTM3033 2013 4 1000 20 33 3°57'5.71"N 76°49'10.31"W 

Cotriguaçu Optech ALTM3100EA 2011 10-15 850 11 60 9°27'8.87"S 58°51'51.22"W 

La Selva Optech ALTM3100EA 2009 4 1500 20 70 10°25'37.97"N 84°1'8.76"W 

Manaus Optech ALTM3100EA 2012 10-15 850 (max) 11 60 2°56'38.48"S 59°56'12.57"W 

Nouragues Riegl  LMS-Q560 2012 12 400 45 200 4°3'10.0"N 52°42'19.95"W 

Paracou Riegl  LMS-280i 2009 4 120-220 30 24 5°15'47.73"N 52°56'26.96"W 

Tapajós Optech ALTM3100EA 2011 10-15 850 (max) 11 60 2°50'53.41"S 54°57'44.53"W 
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Table 3. Coefficients, R2, RMSE and bias for the models used to estimate AGBLCA without and with wood density as 957 
a weighting factor (m_LCA) and m_LCA_wd, respectively). 958 

Model Equation a b R2 RMSE Bias R2  
cross-val 

RMSE 
cross-val 

Bias  
cross-val 

m_LCA AGB = aLCA + b  
(Eq. (2)) 

 

3.56 136.91 0.59 62.53 0.0 0.58 63.26 0.16 

m_LCA_wd AGB = (aLCA+b) × WD 
(Eq. (3)) 

4.47 270.27 0.78 46.02 -0.76 0.77 46.47 -0.63 
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 961 

Figure 1. Segmentation of the 1 km × 1 km images in each site using five canopy height thresholds. A minimum of 962 
100 contiguous pixels was used as a segmentation threshold in all cases. 963 
 964 
Figure 2. LCA in function of height thresholds in the nine study sites. The steepest slopes are between 24 m 965 
(Antimary) and 30 m (Nouragues), with an average of 27 m across sites. Steepness of slope was obtained by calculating 966 
the derivative of the sigmoid models charactering each site. 967 
 968 
Figure 3. Distribution of R2 between tree height thresholds used to determine LCA and AGBLocal in the nine 1 ha 969 
subareas (a) and distribution of R2 between tree height thresholds and AGBinv in 1 ha inventory plots of the four 970 
calibration sites (b). All optimal thresholds are between 23 m and 30 m. The average maximal height threshold is 27 971 
m.  972 
 973 
Figure 4. Relationship between AGBinv and LCA (a), AGBinv normalized by averaged wood (b), and AGBinv vs. 974 
AGBLCA estimated with LCA_wd model (c). The black line represents the 1-to-1 line. Normalizing AGB by averaged 975 
wood density brings the data from different sites closer to a common fit. 976 
 977 
Figure 5. AGBMCH vs. AGBLCA in the plots of the four calibration sites (a), and AGBMCH vs. AGBLCA in the 1km2 978 
images of the nine sites (b). The black line represents the 1-to-1 line.  979 
 980 
Figure 6. Detection of changes of forest structure from selective logging in the Antimary study area showing a) the 981 
difference between pre- and post- logging (2010–2011) Lidar derived LCA at 1 ha grid cells over the entire study area, 982 
b) the histogram of LCA for the two Lidar datasets showing the mean difference and the reduction of medium and 983 
large LCA areas from selective logging, c) 2010 Lidar LCA segmentation at 1 m resolution over a sample area in the 984 
north of the study site, d) same LCA segmentation for 2011 Lidar data, and e) difference of the two segmented areas 985 
showing the extent of the logging impact on large trees in addition to natural changes of forest structure from changes 986 
in canopy gaps from tree falls and tree growth. 987 
 988 
Figure 7. Relationship between LCA and AGBLCA (a) and relationship between AGBinv of large trees (>50 cm DBH) 989 
and total AGBinv (b). In both cases, the intercepts represent the contribution of small trees to total AGB. Note that 990 
Manaus and Nouragues overlap because they have the same mean wood density, as well as Chocó and Cotriguaçu. 991 
 992 
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Figure 3 1013 
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Figure 4 1016 
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Figure 7 1029 
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