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Abstract

Large tropical trees store significant amounts of carbon in woody components and their
distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the
properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area
occupied by canopy above a reference height. We hypothesize that this simple measure of forest
structure representing the crown area of large canopy trees could consistently explain the
landscape variations of forest volume and aboveground biomass (AGB) across a range of climate
and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution
airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old
growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model.
We found that the LCA for trees greater than 27 m (~25-30 m) in height and at least 100 m
crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations,
irrespective of the forest biogeographic conditions. When weighted by average wood density of
the stand, LCA can be used as an unbiased estimator of AGB across sites (R*= 0.78, RMSE =
46.02 Mg ha™', bias = -0.63 Mg ha™). Unlike other Lidar derived metrics with complex nonlinear
relations to biomass, the relationship between LCA and AGB is linear and remains unique across
forest types. A comparison with tree inventories across the study sites indicates that LCA
correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The
spatial invariance of the LCA—AGB relationship across the Neotropics suggests a remarkable
regularity of forest structure across the landscape and a new technique for systematic monitoring
of large trees for their contribution to AGB and changes associated with selective logging, tree

mortality, and other types of tropical forest disturbance and dynamics.
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1 Introduction

In humid tropical forests, tree canopies contribute disproportionately to the exchange of water
and carbon with the atmosphere through photosynthesis (Goldstein et al., 1998; Santiago et al.,
2004). From a physical standpoint, canopies are rough interfaces formed by crowns of emergent
and large trees, regularly disturbed by wind thrusts and gap dynamics. This structurally complex
boundary layer is challenging for scaling of biogeochemical fluxes and modeling of vegetation
dynamics (Baldocchi et al., 2003). Large canopy trees are among the first to be impacted by
storms or heavy precipitation (Espirito-Santo et al., 2010), drought stress (Nepstad et al., 2007;
Saatchi et al., 2013; Phillips et al., 2009), and fragmentation (Laurance et al., 2000), potentially
leading to tree death and formation of large canopy gaps (Denslow, 1980; Espirito-Santo et al.,
2014). Several studies suggest that forest canopies can show fractal properties that tend to evolve
from a non-equilibrium state towards a self-organized critical state, involving gap formation and
recovery (Pascual and Guichard, 2005; Solé and Manrubia, 1995), with crowns preferentially
growing towards more sunlit parts of the canopy (Strigul et al., 2008).

Over the past decade, stand level canopy metrics have been increasingly derived using small
footprint airborne Lidar systems (ALS), a widely used remote sensing technique to study the
structure of forests (Kellner and Asner, 2009; Lefsky et al., 2002). Lidar derived mean top
canopy height (MCH) is a good predictor of tropical forest aboveground carbon content and its
spatial variability (Jubanski et al., 2013), but it does not provide information on the presence of

large trees that are important when monitoring changes of forest biomass from logging and other



82  small scale disturbance (Bastin et al., 2015). Moreover, different forests with the same MCH
83  may differ in their stem density, notably of large trees, and in stand mean wood density, two
84  aspects that are important in constructing a robust model to infer AGB from Lidar data (Asner et
85 al., 2012; Mascaro et al., 2011). Ground observations suggest that stem density, basal area,
86  height and crown size of large tropical trees may all be good indicators of forest AGB (Clark and
87  Clark, 1996; Goodman et al., 2014). This implies that including information on crown area of
88  individual large trees should improve carbon stock assessments, as confirmed in temperate and
89  boreal regions (e.g. Packalen et al., 2015; Popescu et al., 2003; Vauhkonen et al., 2011, 2014).
90 In tropical forests, identifying and delineating crowns of large trees is a difficult and time
91  consuming process due to the layered structure of the forest canopy and overlapping crowns
92  (Zhou et al., 2010, but see Ferraz et al., 2016).
93  Here, we explore how the fractional area occupied by crowns of large trees in a forest stand can
94  be used as a reliable indicator of forest biomass across a wide range of forest structure, climate
95  and edaphic geographic variations. We define large tree canopy area (LCA) as a metric
96  capturing the cluster of crowns of large trees within a forest patch using height and crown area
97  measured by high resolution airborne Lidar measurements. Precisely, LCA is the number of
98  pixels in the canopy height model above a reference height, and excluding the pixel clusters
99  smaller than a reference area. Since this metric quantifies the proportional presence of large
100  trees, it can be used to estimate AGB and monitor changes associated with the disturbance of
101  Ilarge trees from mortality events and selective logging. We first explore the properties of LCA
102 across a range of landscapes in the Neotropics. Next, we hypothesize that LCA is a good

103 predictive metric of the spatial variations of AGB over a wide range of old growth forests.
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To this end, we assembled a collection of airborne Lidar measurements and ground inventory
data at nine sites in old growth Neotropical forests. The Lidar data provide variations in canopy
height and distribution of large trees that allow us to address the following questions: 1) is there
a single definition of LCA at the landscape scale across different sites? 2) does LCA metric

capture variations of AGB?

2 Materials and Methods

2.1 Study sites

We studied the canopy structure at nine old growth lowland Neotropical forest sites that span a
broad range of climatic and edaphic conditions (Fig. S1, Table 1). All sites are located in low
elevation areas (less than 500 m above sea level) but have small scale surface topography that
may influence the distribution of crown formations and gaps. These forests are for the most part
undisturbed terra firme forests. Tapajos, Antimary and Cotriguacu get the least rainfall, with
approximately 2000 mm yr™', while La Selva and Choc6 both receive more than 4000 mm yr'
(Table 1).

Permanent forest inventory plots were available for all sites except Cotriguagu (Table 1). Sites
where tree level inventory data were available were used to estimate the stand level aboveground
biomass, thereafter referred to as AGBiyy: BCI (50 plots of 1 ha each), Choc6 (42 plots of 0.25 ha
each), La Selva (11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each), Nouragues (7 plots of
1 ha each) and Tapajos (10 plots of 0.25 ha each). In these plots, all trees with a diameter at
breast height (DBH) > 10 cm have been mapped, measured and identified to the species. Trees
with irregularities or buttresses were measured higher on the bole. Total tree height

measurements were available for a subset of these trees. The method for calculating AGBy, from
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forest inventories is reported in S.1 of the supplementary information. Four sites (BCI, La Selva,
Nouragues and Paracou) with 1 ha inventory plots, were used as “calibration sites” to compare
the LCA metric and AGB. Sites with smaller plots were not used as calibration of LCA because
of the probability of crowns of large trees extending outside the plot boundary and the
introduction of uncertainty in estimating LCA from edge effects (Meyer et al., 2013; Packalen et
al., 2015). For this reason, all plots smaller than 1 ha were excluded from the LCA analysis but
were used in estimating average wood density (WD) for each site, which does not depend on plot
size. Stand averaged WD was calculated based on the wood density of all trees present in a site,
determined using the commonly used global wood density database, and is reported in Table 1
(Chave et al., 2009; Zanne et al., 2009). For Cotriguagu, we used stand averaged WD given by
Fearnside (1997) for a region covering the site. Additional plot level data (AGB;,, and mean
WD) were provided for Antimary (50 plots of 0.25 ha each), Nouragues (27 plots of 1 ha each)

and Paracou (85 plots of 1 ha each).

2.2 Lidar data

Lidar sensors scan the vegetation vertical structure and return a three dimensional point cloud
derived from the time it took each pulse to return to the instrument. The Lidar datasets acquired
over the study sites come from discrete return Lidar instruments and were gridded horizontally at
a 1 m resolution using the echoes classified as either vegetation or ground. They yield three
products: digital surface model (DSM) corresponding to the top canopy elevation, digital terrain
model (DTM) corresponding to the ground elevation, and canopy height model (CHM), which is

the height difference between the DSM and the DTM. DTMs were interpolated from a Delaunay
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triangulation or comparable interpolation methods, after outliers have been removed. DSMs were
created using the highest return within a cell. Lidar data over Paracou were acquired in last
return mode, causing a bias of 50 cm on the CHM (Vincent et al., 2012). This bias is not
addressed in this study because our height increment for the determination of optimal height
thresholding is larger (1 m) (see Sect. 4.3). Data were acquired between 2009 and 2013, using
relatively similar sensors and acquisition configurations (Table 2). The potential differences
between the Lidar datasets and their impact on the results are addressed in the Discussion.

For each site, we selected a 1x1 km (100 ha) area of old growth forest, oriented north-south,
without any human disturbance to the extent possible. Topography derived from Lidar data
within the selected 1 km” subset images provides information on landscape variations that may

impact the forest structure. Data visualization was done using ENVI version 4.8 (Exelis).

2.3  Computing Large Canopy Area (LCA)

At each study site, we extracted the area of canopy that relates to total area of the canopy height
model above a standard height (h) threshold, or LCA (h), and explored how this metric scales
along two axes. First, we varied the threshold height h with increments of 1 m, between 5 m and
50 m, in 100 m by 100 m subareas (100 subareas for each site). Second, to denoise the data, we
excluded the clusters with less than a set number of 1m? pixels (50, 100, 150 or 200). We then
prioritized the crown area of large trees, and filtered out pixels that could be related to outliers or
to single branches. This method thus quantifies the area of large crowns covering a plot or larger
landscape unit area, as a percentage of covered area.

LCA maps were produced at 1 ha resolution. Pixel clustering was based on the similarity of the

four nearest neighbors (similar results were obtained with an eight neighbor model, results not
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shown here). Figure S2 summarizes the steps taken to go from the Lidar canopy height model to
the final LCA map. Processing was conducted using the IDL software (Interface Description
Language, Exelis).

We determined the optimal minimum canopy height threshold calculating the coefficient of
correlation between AGB;,, and LCA at the four calibration sites. This step allowed us to
examine if optimal height thresholds differed from one site to the other. The goal was to find a
single optimal height threshold and crown size that could be applied for LCA retrieval across
closed canopy Neotropical forests. We also estimated AGB from Lidar data locally (AGByocar)
using a commonly used model fit relating MCH to AGBi,y in each site, to further examine the

variations of LCA and AGB in all nine sites (see S.2, Table S1).

24 Relating LCA to biomass

We tested different models to infer AGB;,, from LCA, henceforth called AGByca, at the four
calibration sites, and explored if adding more parameters, such as mean WD of a site, mean WD
of large trees (DBH > 50 cm), mean canopy height or top percentiles of canopy height improved
the predicting power of the model. We evaluated our results by applying a jackknife validation to
our regression models, based on 1000 iterations of bootstrapping. The coefficients of correlation
(R?), root mean square error (RMSE) and bias (mean difference between the expected values of
AGB and the observed values of AGB) are reported for the models providing the best results.
The analysis was performed using the R statistical software (R Core Team, 2014).

We compared the new approach based on LCA to a similar approach based on MCH, which
relies on information on all pixels of an area of interest. In both cases, models were calibrated by

using field data from the four calibration sites and their respective mean WD. This comparison is
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meant to investigate if a metric based on large trees only (LCA) can estimate AGB similarly to a

metric that uses information about 100 % of the canopy (MCH).

2.5 Detecting changes of selecting logging

Forest degradation due to selective logging is difficult to detect with conventional remote
sensing techniques due to small scale and minor impacts on the forest canopy and biomass
compared to severe forest disturbances (e.g. fires, storms, or clearing). However, selective
logging targets large trees (Pearson et al., 2014) and thus may be detectable using LCA, provided
that Lidar data are available from pre and post-logging. Here, we use the Antimary study site that
was selectively logged after the 2010 Lidar acquisition to examine the use of LCA for detecting
logging impacts on the forest canopy and AGB. We apply the large tree segmentation approach
on both the 2010 image and on a 2011 post-logging Lidar image (see Andersen et al., 2014 for
details) to quantify the logging impacts in terms of the distribution of large trees removed from

the forest and the loss of aboveground biomass.

3 Results

3.1 Intersite comparison of landscapes and MCH

Topographic variation within the 1 km® images ranged from about 4 m elevation gain in flat area
of Tapajos to steep elevation gain of up to about 100 m in Cotriguacu and Choco (Fig. S3). Top
canopy height reached up to 60 m, but varies across sites, with Chocé having the lowest MCH
(24.1 m) and Nouragues the highest (29.7 m). Forest height in Manaus was more homogeneous

than in the other sites, with a standard deviation of 6.8 m for MCH, versus 10.3 m in Paracou.
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We found no relationship between topography and canopy height, which suggests that variability

in forest structure may be due to other ecological and edaphic factors in each site.

3.2 Large canopy area index

The choice of the canopy height threshold impacted LCA more than the minimum number of
pixels per cluster (Table S2). The difference due to the choice of the minimal cluster size
threshold was on average 1.4 %, calculated as the mean of the difference between the smallest
grain (50 pixels) and the largest one (200 pixels) across sites and height thresholds. Based on this
analysis, we chose to define LCA using a minimum cluster size of 100 pixels (100 m* for crown
area) in the remainder of this study. This corresponds to an area of at least 10 m x10 m or a circle
of approximately 11m in diameter, consistent with the average crown diameter of large trees of

the region (Bohlman and O'Brien, 2006; Figueiredo et al., 2016; Clark, unpublished results).

In contrast, the canopy height thresholds markedly impacted the magnitude of LCA among sites
(Fig. 1 and Fig. 2, Table S2). As the height threshold increased, intra-site variation of LCA(h)
became apparent, showing differences of LCA associated with differences of forest structure
(Fig. 1). Tapajos and Nouragues stood out with more area of large trees at the height threshold of
30 m (LCA3om = 51 and 48 %, respectively) , while Antimary and Choc6 showed much lower
LCA at this height threshold (LCAsom = 21 %) (Table S2). The steepest slopes of the LCA(h)
function corresponded to the highest sensitivity of LCA to height thresholds and the inflection in
LCA was found between 24 m in Antimary and 30 m in Nouragues (Fig. 2). The average height
of the steepest slope was about 27 m, a value that was used as the optimal threshold across all

sites.
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Regressing AGBi,, and LCA at the calibration sites (Fig. 3b) showed the best relationships
corresponded to height thresholds between 27 m (Nouragues and Paracou) and 28 m (BCI and
La Selva), with maximum coefficients of correlation ranging between 0.5 and 0.8. The same
analysis repeated using AGBpca and LCA in the nine sites also confirmed the earlier results that
the highest coefficients of correlation between the two metrics occurred between 23 m (Chocd)
and 30 m (Tapajos) height thresholds (Fig. 3a), explaining more than 75 % of AGB variation in
each site. Based on these results, we defined LCA as the cumulative area of clusters of the
canopy height model greater than 27 m height, as the mean of optimal height threshold with

highest R? across sites, with clusters covering areas larger than 100 m®.

3.3 Variation of AGB derived from LCA

AGBi,, was found to depend linearly on LCA (Eq. 1), with a better coefficient of correlation and
RMSE than a power law fit (Rjincar = 0.59, RMSEjinear = 62.53 Mg ha™', vs. R*power = 0.54,
RMSE, ower = 65.38). Although this model was unbiased (biascross vai = 0.16 Mg), there were clear
differences among study sites (Fig. 4a, Table 3). These differences were largely explained by
landscape scale differences in WD, an important factor representing the influence of species
composition on the spatial variation of AGB. Since AGB depends on DBH, H and WD (see
Chave et al., 2014), average wood volume can be computed approximately as the ratio of AGB
divided by the average WD (Fig. 4b). The linear relationship between LCA and wood volume
yielded an estimate of the average total volume of forests independently of the site

characteristics, through Vol =a LCA + b. Adding more parameters did not improve the
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performance of the model, except when using WD as a normalizing factor. The two models we
retained are therefore of the form of Eq. (1) and Eq. (2):

AGByca =alLCA+Db (1)

AGBycy = (@LCA+b) x WD (2)

where here WD is the mean wood density of a site. The coefficients of the models, as well as
their respective coefficients of correlation, RMSE and bias from training data and cross-
validation are reported in Table 3.

For AGB estimation, the model based on LCA weighted by WD gives the best result by bringing
R” up to 0.78 and RMSE down to 46.02 Mg ha™ (Fig. 4b, Fig. 4c, Table 3, Eq. (2)), with AGBiny
and AGByca falling around a one-to-one line in Fig. 4c. At all sites, RMSE values are between
20.87 and 42.22 Mg, except Nouragues, where RMSE remains large (71.21 Mg) due to high
biomass and several outliers from the linear relation. The relationship between LCA and other
metrics derived from ground data, such as Lorey’s height or basal area, are presented in S.3 and

Table S4.

3.4 LCA vs. MCH approach

Finally, we compared these results to AGB estimated using a similar approach based on MCH
(AGBwcn) for the calibration plots (Fig. 5a), and we also compared AGBrca to AGBycn in all
nine sites, using LCA and MCH of the 1 km* images (Fig. 5b).

Both methods perform similarly (R*ycu= 0.80, RMSEycr = 42.52 Mg ha™', biascross val=-0.21
Mg ha™', Table S3), showing that relying on a fraction of the Lidar information performs as well

as using a metric depending on information from all pixels. However, Fig. 5 also shows that the
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LCA method tends to overestimate AGB compared to the MCH method (bias = 9.66 Mg ha™),

especially in La Selva, BCI, Cotriguagu and Manaus.

3.5 AGB changes from logging

The impacts of logging on the distribution of large trees and changes of AGB was detected by
simply deriving the LCA index from pre and post-logging Lidar data acquired in 2010 and 2011
respectively in Antimary (Fig. 6). Difference in LCA between the two dates (2010-2011) (Fig.
6a) at 1 ha grid cell captured the areas of largest changes in the few months following logging
(logging took place between June and November 2011, Lidar data were collected in late
November 2011). The LCA approach was able to detect approximately a 17 % decrease in LCA,
from a mean LCA of 34.8 % in 2010 to 29.2 % in 2011.

The changes were also captured in the frequency distribution of large canopy trees before and
after logging (Fig. 6b) and the differences in the spatial distribution (Fig. 6¢ and 6d).

These changes in LCA correspond to a biomass loss of 15.2 Mg ha when integrated in equation
(2) and were of the same magnitude of the planned selectively logging removal rate (12—-18 Mg
ha™' or 10-15 m® ha™' of timber volume) (Andersen et al., 2014). As a comparison, the MCH
model led to an estimated biomass loss of 19 Mg ha™'. Difference in the Lidar index (ALCA) at
the native resolution of 1 m (Fig. 6e) was able to capture both the location of all large trees
removed from the forest stand and partial regeneration and gap filling that occurred in the forest

between the two dates.

4 Discussion

4.1 Inter-site Comparisons
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Cross-site studies on the structure of tropical forests have led to significant advances in our
understanding of tropical forest ecology (Gentry 1993; Phillips et al., 1998; ter Steege et al.,
2006). They have also yielded important insights on new techniques to predict carbon stocks
across regions (e.g. Asner and Mascaro, 2014). Comparison of sites in terms of MCH derived
for the study sites confirms that there is a strong regional variation of AGB with respect to
canopy height, and that East Amazonian sites tend to have much taller trees than Central and
Western Amazonia sites. This was already apparent in the canopy height maps produced by the
GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et al., 2011). Comparing sites in terms
of LCA showed a similar pattern of larger trees, being relatively more present in eastern
Amazonia, notably in the French Guiana sites and Tapajos. Our most southwestern site was
Antimary, in the state of Acre (Brazilian Amazon). However, this site does not represent forests
in the western Amazon or the Amazon-Andes gradients with relatively lower WD (Baker et al.,
2004) and more fertile volcanic soils impacting the forest structure and dynamics (Quesada et al.,
2011). The site in Choc¢ is also unique in its characteristics because of extremely wet condition
and potential disturbance (e.g., selective logging). Additional Lidar and ground measurements
will allow validating the performance of the LCA in representing the AGB variations in the

western Amazon region.

4.2 Physical Interpretation of LCA

In this study, we introduced a simple structural metric that captures the proportion of area
covered by large trees over the landscape (> 1 ha) and explained 78 % of the variation in
average forest volume and biomass when weighted by WD in four sites of old growth

Neotropical forests. LCA cannot separate the crown areas of individual trees. However, it is
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adapted for large scale monitoring of forest volume and biomass change, as it is a robust and
readily accessible metric. For individual tree separation, complex and more computationally
intensive approaches are available (Ferraz et al., 2016).

In estimating LCA from Lidar data, we examined the spatial clustering properties of LCA and
found that the minimum cluster size was less important than the threshold of canopy height, as
long as the analysis focused on the relative covered area instead of on the density of large trees.
We found that using the percentage of the area covered by large canopy trees is an efficient way
of overcoming the problem of individual crown segmentation in Lidar data. LCA is related to
how trees reaching the forest canopy (above a certain height) fill the space and how this
characteristic may follow a spatially invariant scaling across tropical forests (West et al., 2009).
Clusters smaller than 100 m* add only a small fraction (1.7 % on average) to LCA values across
sites. Including these clusters in LCA would not impact the performance of the model (similar
R, RMSE and bias) and would allow to skip the final steps of the LCA retrieval (see Fig. S2).
However, since these pixels either represent single branches reaching above 27m or the tip of a
tree crown, they have no meaning in terms of our LCA metric and do not represent large trees.
LCA provides information on the presence of large trees in a study area, which other metrics
such as MCH cannot do. It is an important point, considering that large trees are often the most

affected by natural disturbance and targeted by logging companies.

4.3  Correlation between LCA and AGB
The distribution of R? between LCA and AGB for (Fig. 3) is such that the maximum difference in
R’ between a threshold of 25m and 30m is approximately 0.1, a negligible value. Hence, AGB

retrieval by LCA is relatively insensitive to the height threshold. For most sites, except
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Antimary, we found a height threshold such that LCA explains about 80-90 % of the variation of
AGB or total volume of the forests for each site (60—70 % when compared with ground plots)
(Fig. 3). Using a height threshold of 27 m for all sites reduced the R* by 0.04 on average (max =
0.08) compared to the optimal height threshold for each site.

Potential differences in MCH among sites are due to footprint size, scan angle and return density
(Disney et al., 2010; Hirata, 2004; Hopkinson, 2007) (Table 2). However, these effects are
generally smaller than the 1 m increment that we used to determine the optimal height thresholds
of LCA. As aresult, LCA estimation, and therefore AGB inferred from LCA, should depend
little on instrument, acquisition and processing (Table 2). This is an important finding given the
increasing variety of airborne Lidar sensors, and also given the pre and post-processing methods
available for monitoring tropical forest structure and aboveground biomass. However,
determining whether the 27 m threshold holds for LCA calculation across in the tropics would

require a validation at more study studies across continents.

44  LCA Relation to Ground Measurements
The relation between LCA derived from Lidar and the ground measurements can be further
investigated by converting the 27 m height threshold into equivalent DBH values, using a
height—diameter relationship. In the absence of a local DBH-height relation at each site, we
made use of the following equation (Chave et al., 2014):

In(H) = 0.893— E + 0.760 x In(D)— 0.0340 % (In(D))’ 3)
where E is a measure of environmental stress for each site that potentially impacts the tree
allometry. The corresponding DBH values fall around 35-55 cm, except for Choco, where the

best coefficient of correlation is reached with a DBH threshold of 29 cm (Fig. S4). The average
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minimum DBH to assign for the definition of large trees that represent variations of AGB is
below 50 cm. By choosing a DBH threshold of 50 cm for old-growth undisturbed forests, the
LCA model for estimating biomass can have an approximate analog in inventory data. This
comparison suggests that the LCA model can also be adjusted with the average WD of trees
lager than 50 m, allowing a much faster ground data collection of calibrating LCA model for
different sites (S.4).

A limit to how much LCA can explain variations in AGB relates to forest structure and the AGB
of small trees. The lower range of biomass estimation for the LCA model, associated with the
intercept for LCA equal to zero, ranged between 122 Mg ha™ in La Selva and 192 Mg ha™ in
Paracou (Fig. 7a). This lower range identified with the intercept of the LCA—AGB linear model
can be interpreted as the AGB associated with all trees smaller than 27 m height (approximately
all trees with DBH < 50 cm). Note that the differences between sites are due to differences in
their mean WD and not the volume of trees (see Eq. (2) and Fig. 4). Similarly, the contribution of
small trees to the total biomass in the ground inventory ranges between around 100 and 200 Mg
ha™', except in Paracou (261 Mg ha™) (Fig. 7b). AGB estimation based on LCA in these sites
cannot go under 100 Mg ha™ or over 500 Mg ha™'. This is not a limitation of the model because
LCA is designed to provide AGB estimates for forests reaching at least 27 m in mean canopy
height, and such forests generally exceed 100 Mg ha™ in AGB. Also, the upper threshold of 500
Mg ha™ is consistent with upper values found globally at 1 ha scale (Brienen et al., 2015; Slik et
al., 2013). A recalibration of the method should be envisaged in secondary and highly degraded

forests.
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4.5 LCA as AGB Estimator

The correlation of LCA to AGBi,, suggests that a Lidar based approach can lead to the
estimation of AGB at the landscape scale and give useful information on the presence of large
canopy trees and their distribution, extending the analysis of large trees in plot level inventory
based studies (Bastin et al., 2015; Slik et al., 2013).

Therefore, LCA can explain the variations of total forest volume without any ancillary data about
the forest or the landscape. Most bias in conversion of LCA to AGB, however, can be corrected
across landscapes and sites by scaling the LCA—AGB relationship with average WD at the
landscape scale. Our model can therefore potentially be applied to a wide range of forest types,
provided that there is information about WD of the study area in the literature.

Wood density has been shown to be a key element of allometric models of AGB estimation
(Baker et al., 2004; Brown et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If WD is
assumed to be constant across DBH classes, the mean WD at the plot scale can readily be used to
scale LCA to biomass. However, if the WD of large trees is smaller or larger than the average
WD, (e.g. in BCI and Chocé: S.4, Fig. S5), the use of mean WD to scale LCA may introduce a
slight bias in biomass estimation. A difference in mean WD of 0.1 g cm™ would introduce a bias
of £ 10 % in the biomass estimation when using our model. We found that using mean WD of
large trees or basal area weighted WD instead can give slightly better results and could
circumvent the differences in size distribution of the WD (S.4). Instead we could rely on the
WD of large trees only. This would make the collection of ground data easier and cost effective
for biomass estimation, because trees > 50 cm DBH only represent 5—-10 % of the stems of a plot
(S.4, Fig. S6). Focusing on the WD of dominant or hyper dominant species could also be an

alternative approach for future use of Lidar derived LCA for large scale biomass estimation
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(Fauset et al., 2015; ter Steege et al., 2013). In the absence of information on WD from the
literature, modelled WD could potentially be used, but would give greater errors. These errors

should be taken into account when reporting on the uncertainty of the results.

4.6 LCA and MCH

The comparison of LCA and MCH metrics showed that both performed similarly in estimating
AGB, highlighting the importance of large canopy trees to estimate biomass. The differences
between the two methods in estimating AGB show that two methods can have similar
performance in terms of R* and RMSE and nonetheless lead to different estimations, with LCA
giving higher AGB estimations in some sites. The choice of a metric is therefore crucial to
estimate AGB, especially when estimating the changes in biomass (see Section 4.7).

Both MCH and LCA-AGB models performed relatively poorly in high biomass plots of the
Nouragues study area, by underestimating biomass values greater than 500 Mg ha (Fig. 4 and
5). To explain the underestimation, we performed three tests: 1. We examined the differences in
the ground estimated biomass values with and without tree height and found no significant
impact in reducing the effect of underestimation. 2. We tested the hypothesis that the height
threshold used for LCA estimation across sites was not suitable for the Nouragues study site and
dismissed the hypothesis because 27 m was found to be the optimum threshold for Nouragues
plots. 3. We examined the errors in the Lidar estimation of forest height and found that except
for an extremely high AGB;,, of 617 Mg ha™, the four other high biomass outliers are all located
in the 6 ha Pararé plot located on a very steep topography. The Lidar digital terrain model
(DTM) of this area shows an average within plots elevation range of 90 m. Ground detection on

steep terrain can be erroneous, depending on the Lidar point density and the view angle, causing
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large area interpolation errors for DTM development and significant error in canopy height
measurements (Leitold et al., 2015). Other factors that may affect the underestimation of AGB
by LCA or MCH in the Nouragues site may be due to the presence of forest patches with clusters
of large trees and overlapping crown areas. It is also possible that the relationship between AGB
and LCA is not linear for very high AGB values. This could be tested in the future with a larger

number of sites with very high biomass.

4.7  LCA and forest degradation

Although LCA and MCH may perform similarly in capturing the forest biomass variations and
changes, the use of LCA in detecting forest degradation and logging is more straightforward
because of its relation to large trees. The LCA approach was able to accurately detect changes
in forests after logging by locating where the large trees are extracted. Our estimate of biomass
change from the LCA approach was higher than the biomass loss of 9.1 Mg ha™ reported by
another study using the 25" percentile height above ground as the Lidar metric for biomass
estimation (Andersen et al., 2014). It can be expected that relying on the 25" percentile height
metric for biomass estimation would place more emphasis on the lower part of the canopy
(understory) that is either less damaged or has gone through some level of regeneration after
logging. Models based on LCA or MCH, on the other hand, may be more realistic for estimating
AGB changes because they capture the changes in large trees and upper forest canopy structure
that contain most of the biomass and are directly impacted by logging and biomass removal.
The higher biomass loss estimation from the MCH model (19 Mg ha™) again shows how
different metrics can lead to different results. Here, three methods based on three different Lidar

metrics yielded results that differed by more than twofold. LCA could become an important tool
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to detect forest degradation, in particular selective logging, considering that large trees are

targeted by logging companies.

4.8  Future Applications of LCA

LCA definition in our study relies on the high resolution information on forest height, allowing
for the detection of crown area of large canopy trees. Can a similar measure be derived from
large footprint Lidar observations such as the future NASA spaceborne Lidar mission GEDI
(Global Ecosystem Dynamic Investigation)? GEDI will not provide spatially continuous data
on forest height, but its footprint size (~ 25 m) and dense sampling may be adequate to develop
statistical indicators of large trees over the landscape.

Similarly, future spaceborne radar missions could also provide useful information to retrieve
large canopy areas. The synthetic aperture radar (SAR) tomographical observations of the
European Space Agency (ESA) BIOMASS mission will provide wall-to-wall imagery of canopy
profile that could be converted to LCA over the landscape (Le Toan et al., 2011). Preliminary
research based on airborne TomoSAR measurements has already shown that backscatter power
at about 30 m above the ground, with sensitivity to the distribution of large trees, explained the
variation of AGB over Nouragues and Paracou plots better than the backscatter power related to
the lower part of the canopy (0—15 m) (Minh et al., 2016; Rocca et al., 2014). Future research on
exploring the use of an equivalent radar index product from BIOMASS height or tomography
measurements at a height threshold (e.g. 27 m) may provide a potential algorithm to map the area

of large trees and estimate forest volume and biomass changes across the landscape.
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5 Conclusions

We introduce LCA as a new Lidar derived index to capture the variations of large trees and total
volume and biomass across landscapes that remain spatially and regionally invariant. The
importance of LCA is in its relevance to the structure and ecological characteristics of large trees
in filling the canopy space and their unique contribution in determining the total volume and
biomass of forests. Unlike other Lidar derived metrics, LCA is linearly related to total
aboveground biomass after being weighted by average WD. This linear relationship remains
unique across different forest types, making the LCA model broadly applicable. The comparison
of LCA index with ground plots suggests that DBH > 50 cm is a more reliable threshold to
quantify the number and distribution of large trees in undisturbed old growth tropical forests and
in capturing the variations of the total aboveground biomass across landscapes and regions. The
results of our study may encourage further research in the use of Lidar data for detecting the

distribution of larger trees in tropical forests for ecological and conservation studies.
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806 Table 1. Information on forest inventory plots. * Indicates that a site has been used for the calibration of the LCA
807 model. Sources: Antimary and Cotriguagu: (d’Oliveira et al., 2012; Fearnside, 1997), BCI: Center for Tropical Forest
808 Science (CTFS) (Condit, 1998; Hubbell et al., 1999, 2005), Chocd: (bioredd.org), La Selva: Carbono project (Clark
809  and Clark, 2000), Manaus and Tapajos: Espirito-Santo (unpublished results), Nouragues: (Réjou-Méchain et al.,
810 2015), Paracou: (Gourlet-Fleury et al., 2004; Vincent et al., 2012). Rainfall data from WorldClim (Hijmans et al.,
811  2005). AGB: aboveground biomass, WD: wood density.

Site Data Plots Size N plots Year Mean WD Mean AGB  Annual rainfall
(ha) (g em™) (Mg ha™) (mm)
Antimary Plot level 0.25 50 2010 0.61 234 2000
(Brazil)
BCI * Tree level 1 50 2010 0.56 235 2600
(Panama)
Chocé Tree level 0.25 42 2013 0.60 224 6000
(Colombia)
Cotriguagu Not - - - 0.60 - 2000
(Brazil) available
La Selva * Tree level 1 11 2009 0.45 178 4000
(Costa Rica)
Manaus Tree level 0.25 10 2014 0.66 263 2200
(Brazil)
Nouragues * Plot level 1 33 2012 0.66 424 3000
(French Tree level 1 7/33
Guiana)
Paracou * Plot level 1 85 2009-10 0.71 353 3000
(French
Guiana)
Tapajos Tree level 0.25 10 2014 0.62 238 1900
(Brazil)
812
813
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814

Table 2. Information on Lidar data and locations of the 9 research sites.

Site Sensor Year Retur Flight Scanning Frequency NW corner lat NW corner lon
(1km? images) ns m? Altitude (m) angle (°) (kHz)
Antimary Optech ALTM3100EA 2010-2011 10-15 500 11 70 9°17'47.26"S 68°17'15.06"W
BC1 Optech ALTM3100EA 2009 8 1000 35 70 9°9'28.56"N 79°51'18.9"W
Chocé Optech ALTM3033 2013 4 1000 20 33 3°57'5.71"N 76°49'10.31"W
Cotriguagu Optech ALTM3100EA 2011 10-15 850 11 60 9°27'8.87"S 58°51'51.22"W
La Selva Optech ALTM3100EA 2009 4 1500 20 70 10°25'37.97"N 84°1'8.76"W
Manaus Optech ALTM3100EA 2012 10-15 850 (max) 11 60 2°56'38.48"S 59°56'12.57"W
Nouragues Riegl LMS-Q560 2012 12 400 45 200 4°3'10.0"N 52°42'19.95"W
Paracou Riegl LMS-280i 2009 4 120-220 30 24 5°15'47.73"N 52°56'26.96"W
Tapajos Optech ALTM3100EA 2011 10-15 850 (max) 11 60 2°50'53.41"S 54°57'44.53"W

815

816
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817 Table 3. Coefficients, R%, RMSE and bias for the models used to estimate AGB; ¢, without and with wood density
818 (WD) as a weighting factor (m LCA) and m LCA wd, respectively).

Model Equation a b R’ RMSE  Bias R RMSE Bias
cross-val cross-val cross-val

m_LCA AGB=alLCA +b 356 13691 059 6253 0.0 0.58 63.26 0.16
(Eqa. (2))
m_LCA wd AGB=(aLCA+b)x WD 447 27027 078 4602  -0.76 0.77 46.47 -0.63
(N E)]
819
820
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Figure 1. Segmentation of the 1 km X 1 km images in each site using five canopy height thresholds. A minimum of
100 contiguous pixels was used as a segmentation threshold in all cases.

Figure 2. LCA in function of height thresholds in the nine study sites. The steepest slopes are between 24 m
(Antimary) and 30 m (Nouragues), with an average of 27 m across sites. Steepness of slope was obtained by calculating
the derivative of the sigmoid models charactering each site.

Figure 3. Distribution of R? between tree height thresholds used to determine LCA and AGBy o, in the nine 1 ha
subareas (a) and distribution of R” between tree height thresholds and AGBy,, in 1 ha inventory plots of the four
calibration sites (b). All optimal thresholds are between 23 m and 30 m. The average maximal height threshold is 27
m.

Figure 4. Relationship between AGB;,, and LCA (a), AGB;,, normalized by averaged wood density (WD) (b), and
AGBi,y, vs. AGB_ ¢, estimated with LCA_wd model (c). The black line represents the 1-to-1 line. Normalizing AGB
by averaged wood density brings the data from different sites closer to a common fit.

Figure 5. AGBycy vs. AGB| ¢, in the plots of the four calibration sites (a), and AGBycy vs. AGByca in the 1 km®
images of the nine sites (b). The black line represents the 1-to-1 line.

Figure 6. Detection of changes of forest structure from selective logging in the Antimary study area showing a) the
difference between pre- and post- logging (2010-2011) Lidar derived LCA at 1 ha grid cells over the entire study area,
b) the histogram of LCA for the two Lidar datasets showing the mean difference and the reduction of medium and
large LCA areas from selective logging, ¢) 2010 Lidar LCA segmentation at 1 m resolution over a sample area in the
north of the study site, d) same LCA segmentation for 2011 Lidar data, and e) difference of the two segmented areas
showing the extent of the logging impact on large trees in addition to natural changes of forest structure from changes
in canopy gaps from tree falls and tree growth.

Figure 7. Relationship between LCA and AGB| ca (a) and relationship between AGB;,, of large trees (> 50 cm DBH)
and total AGB,,, (b). In both cases, the intercepts represent the contribution of small trees to total AGB. Note that
Manaus and Nouragues overlap because they have the same mean wood density, as well as Chocé and Cotriguagu.
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867  Figure 5
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Figure 6
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Figure 7
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