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Abstract 36 

Large tropical trees store significant amounts of carbon in woody components and their 37 

distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the 38 

properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area 39 

occupied by canopy above a reference height.  We hypothesize that this simple measure of forest 40 

structure representing the crown area of large canopy trees could consistently explain the 41 

landscape variations of forest volume and aboveground biomass (AGB) across a range of climate 42 

and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution 43 

airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old 44 

growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model.  45 

We found that the LCA for trees greater than 27 m (~25–30 m) in height and at least 100 m2 46 

crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, 47 

irrespective of the forest biogeographic conditions. When weighted by average wood density of 48 

the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 49 

46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other Lidar derived metrics with complex nonlinear 50 

relations to biomass, the relationship between LCA and AGB is linear and remains unique across 51 

forest types.  A comparison with tree inventories across the study sites indicates that LCA 52 

correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm.  The 53 

spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable 54 

regularity of forest structure across the landscape and a new technique for systematic monitoring 55 

of large trees for their contribution to AGB and changes associated with selective logging, tree 56 

mortality, and other types of tropical forest disturbance and dynamics.  57 

 58 
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1 Introduction 62 

In humid tropical forests, tree canopies contribute disproportionately to the exchange of water 63 

and carbon with the atmosphere through photosynthesis (Goldstein et al., 1998; Santiago et al., 64 

2004). From a physical standpoint, canopies are rough interfaces formed by crowns of emergent 65 

and large trees, regularly disturbed by wind thrusts and gap dynamics. This structurally complex 66 

boundary layer is challenging for scaling of biogeochemical fluxes and modeling of vegetation 67 

dynamics (Baldocchi et al., 2003). Large canopy trees are among the first to be impacted by 68 

storms or heavy precipitation (Espírito-Santo et al., 2010), drought stress (Nepstad et al., 2007; 69 

Saatchi et al., 2013; Phillips et al., 2009), and fragmentation (Laurance et al., 2000), potentially 70 

leading to tree death and formation of large canopy gaps (Denslow, 1980; Espírito-Santo et al., 71 

2014). Several studies suggest that forest canopies can show fractal properties that tend to evolve 72 

from a non-equilibrium state towards a self-organized critical state, involving gap formation and 73 

recovery (Pascual and Guichard, 2005; Solé and Manrubia, 1995), with crowns preferentially 74 

growing towards more sunlit parts of the canopy (Strigul et al., 2008).  75 

Over the past decade, stand level canopy metrics have been increasingly derived using small 76 

footprint airborne Lidar systems (ALS), a widely used remote sensing technique to study the 77 

structure of forests (Kellner and Asner, 2009; Lefsky et al., 2002). Lidar derived mean top 78 

canopy height (MCH) is a good predictor of tropical forest aboveground carbon content and its 79 

spatial variability (Jubanski et al., 2013), but it does not provide information on the presence of 80 

large trees that are important when monitoring changes of forest biomass from logging and other 81 
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small scale disturbance (Bastin et al., 2015). Moreover, different forests with the same MCH 82 

may differ in their stem density, notably of large trees, and in stand mean wood density, two 83 

aspects that are important in constructing a robust model to infer AGB from Lidar data (Asner et 84 

al., 2012; Mascaro et al., 2011). Ground observations suggest that stem density, basal area, 85 

height and crown size of large tropical trees may all be good indicators of forest AGB (Clark and 86 

Clark, 1996; Goodman et al., 2014). This implies that including information on crown area of 87 

individual large trees should improve carbon stock assessments, as confirmed in temperate and 88 

boreal regions (e.g. Packalen et al., 2015; Popescu et al., 2003; Vauhkonen et al., 2011, 2014).  89 

In tropical forests, identifying and delineating crowns of large trees is a difficult and time 90 

consuming process due to the layered structure of the forest canopy and overlapping crowns 91 

(Zhou et al., 2010, but see Ferraz et al., 2016). 92 

Here, we explore how the fractional area occupied by crowns of large trees in a forest stand can 93 

be used as a reliable indicator of forest biomass across a wide range of forest structure, climate 94 

and edaphic geographic variations.  We define large tree canopy area (LCA) as a metric 95 

capturing the cluster of crowns of large trees within a forest patch using height and crown area 96 

measured by high resolution airborne Lidar measurements. Precisely, LCA is the number of 97 

pixels in the canopy height model above a reference height, and excluding the pixel clusters 98 

smaller than a reference area. Since this metric quantifies the proportional presence of large 99 

trees, it can be used to estimate AGB and monitor changes associated with the disturbance of 100 

large trees from mortality events and selective logging.   We first explore the properties of LCA 101 

across a range of landscapes in the Neotropics. Next, we hypothesize that LCA is a good 102 

predictive metric of the spatial variations of AGB over a wide range of old growth forests.  103 
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To this end, we assembled a collection of airborne Lidar measurements and ground inventory 104 

data at nine sites in old growth Neotropical forests. The Lidar data provide variations in canopy 105 

height and distribution of large trees that allow us to address the following questions: 1) is there 106 

a single definition of LCA at the landscape scale across different sites? 2) does LCA metric 107 

capture variations of AGB? 108 

 109 

2 Materials and Methods 110 

2.1 Study sites 111 

We studied the canopy structure at nine old growth lowland Neotropical forest sites that span a 112 

broad range of climatic and edaphic conditions (Fig. S1, Table 1). All sites are located in low 113 

elevation areas (less than 500 m above sea level) but have small scale surface topography that 114 

may influence the distribution of crown formations and gaps. These forests are for the most part 115 

undisturbed terra firme forests. Tapajós, Antimary and Cotriguaçu get the least rainfall, with 116 

approximately 2000 mm yr-1, while La Selva and Chocó both receive more than 4000 mm yr-1 117 

(Table 1).  118 

Permanent forest inventory plots were available for all sites except Cotriguaçu (Table 1). Sites 119 

where tree level inventory data were available were used to estimate the stand level aboveground 120 

biomass, thereafter referred to as AGBinv: BCI (50 plots of 1 ha each), Chocó (42 plots of 0.25 ha 121 

each), La Selva (11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each), Nouragues (7 plots of 122 

1 ha each) and Tapajós (10 plots of 0.25 ha each). In these plots, all trees with a diameter at 123 

breast height (DBH) ≥ 10 cm have been mapped, measured and identified to the species. Trees 124 

with irregularities or buttresses were measured higher on the bole. Total tree height 125 

measurements were available for a subset of these trees. The method for calculating AGBinv from 126 
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forest inventories is reported in S.1 of the supplementary information. Four sites (BCI, La Selva, 127 

Nouragues and Paracou) with 1 ha inventory plots, were used as “calibration sites” to compare 128 

the LCA metric and AGB.   Sites with smaller plots were not used as calibration of LCA because 129 

of the probability of crowns of large trees extending outside the plot boundary and the 130 

introduction of uncertainty in estimating LCA from edge effects (Meyer et al., 2013; Packalen et 131 

al., 2015). For this reason, all plots smaller than 1 ha were excluded from the LCA analysis but 132 

were used in estimating average wood density (WD) for each site, which does not depend on plot 133 

size.  Stand averaged WD was calculated based on the wood density of all trees present in a site, 134 

determined using the commonly used global wood density database, and is reported in Table 1 135 

(Chave et al., 2009; Zanne et al., 2009). For Cotriguaçu, we used stand averaged WD given by 136 

Fearnside (1997) for a region covering the site. Additional plot level data (AGBinv and mean 137 

WD) were provided for Antimary (50 plots of 0.25 ha each), Nouragues (27 plots of 1 ha each) 138 

and Paracou (85 plots of 1 ha each). 139 

 140 

 141 

2.2  Lidar data 142 

Lidar sensors scan the vegetation vertical structure and return a three dimensional point cloud 143 

derived from the time it took each pulse to return to the instrument. The Lidar datasets acquired 144 

over the study sites come from discrete return Lidar instruments and were gridded horizontally at 145 

a 1 m resolution using the echoes classified as either vegetation or ground. They yield three 146 

products: digital surface model (DSM) corresponding to the top canopy elevation, digital terrain 147 

model (DTM) corresponding to the ground elevation, and canopy height model (CHM), which is 148 

the height difference between the DSM and the DTM. DTMs were interpolated from a Delaunay 149 
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triangulation or comparable interpolation methods, after outliers have been removed. DSMs were 150 

created using the highest return within a cell. Lidar data over Paracou were acquired in last 151 

return mode, causing a bias of 50 cm on the CHM (Vincent et al., 2012). This bias is not 152 

addressed in this study because our height increment for the determination of optimal height 153 

thresholding is larger (1 m) (see Sect. 4.3). Data were acquired between 2009 and 2013, using 154 

relatively similar sensors and acquisition configurations (Table 2). The potential differences 155 

between the Lidar datasets and their impact on the results are addressed in the Discussion.  156 

For each site, we selected a 1x1 km (100 ha) area of old growth forest, oriented north-south, 157 

without any human disturbance to the extent possible. Topography derived from Lidar data 158 

within the selected 1 km2 subset images provides information on landscape variations that may 159 

impact the forest structure. Data visualization was done using ENVI version 4.8 (Exelis).  160 

 161 

2.3 Computing Large Canopy Area (LCA) 162 

At each study site, we extracted the area of canopy that relates to total area of the canopy height 163 

model above a standard height (h) threshold, or LCA (h), and explored how this metric scales 164 

along two axes. First, we varied the threshold height h with increments of 1 m, between 5 m and 165 

50 m, in 100 m by 100 m subareas (100 subareas for each site).  Second, to denoise the data, we 166 

excluded the clusters with less than a set number of 1m2 pixels (50, 100, 150 or 200). We then 167 

prioritized the crown area of large trees, and filtered out pixels that could be related to outliers or 168 

to single branches. This method thus quantifies the area of large crowns covering a plot or larger 169 

landscape unit area, as a percentage of covered area.  170 

LCA maps were produced at 1 ha resolution. Pixel clustering was based on the similarity of the 171 

four nearest neighbors (similar results were obtained with an eight neighbor model, results not 172 
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shown here). Figure S2 summarizes the steps taken to go from the Lidar canopy height model to 173 

the final LCA map.  Processing was conducted using the IDL software (Interface Description 174 

Language, Exelis). 175 

We determined the optimal minimum canopy height threshold calculating the coefficient of 176 

correlation between AGBinv and LCA at the four calibration sites. This step allowed us to 177 

examine if optimal height thresholds differed from one site to the other. The goal was to find a 178 

single optimal height threshold and crown size that could be applied for LCA retrieval across 179 

closed canopy Neotropical forests. We also estimated AGB from Lidar data locally (AGBLocal) 180 

using a commonly used model fit relating MCH to AGBinv in each site, to further examine the 181 

variations of LCA and AGB in all nine sites (see S.2, Table S1).  182 

 183 

2.4  Relating LCA to biomass 184 

We tested different models to infer AGBinv from LCA, henceforth called AGBLCA, at the four 185 

calibration sites, and explored if adding more parameters, such as mean WD of a site, mean WD 186 

of large trees (DBH ≥ 50 cm), mean canopy height or top percentiles of canopy height improved 187 

the predicting power of the model. We evaluated our results by applying a jackknife validation to 188 

our regression models, based on 1000 iterations of bootstrapping. The coefficients of correlation 189 

(R2), root mean square error (RMSE) and bias (mean difference between the expected values of 190 

AGB and the observed values of AGB) are reported for the models providing the best results. 191 

The analysis was performed using the R statistical software (R Core Team, 2014). 192 

We compared the new approach based on LCA to a similar approach based on MCH, which 193 

relies on information on all pixels of an area of interest. In both cases, models were calibrated by 194 

using field data from the four calibration sites and their respective mean WD. This comparison is 195 
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meant to investigate if a metric based on large trees only (LCA) can estimate AGB similarly to a 196 

metric that uses information about 100 % of the canopy (MCH). 197 

 198 

2.5  Detecting changes of selecting logging 199 

Forest degradation due to selective logging is difficult to detect with conventional remote 200 

sensing techniques due to small scale and minor impacts on the forest canopy and biomass 201 

compared to severe forest disturbances (e.g. fires, storms, or clearing). However, selective 202 

logging targets large trees (Pearson et al., 2014) and thus may be detectable using LCA, provided 203 

that Lidar data are available from pre and post-logging. Here, we use the Antimary study site that 204 

was selectively logged after the 2010 Lidar acquisition to examine the use of LCA for detecting 205 

logging impacts on the forest canopy and AGB.  We apply the large tree segmentation approach 206 

on both the 2010 image and on a 2011 post-logging Lidar image (see Andersen et al., 2014 for 207 

details) to quantify the logging impacts in terms of the distribution of large trees removed from 208 

the forest and the loss of aboveground biomass.   209 

 210 

3 Results 211 

3.1  Intersite comparison of landscapes and MCH 212 

 Topographic variation within the 1 km2 images ranged from about 4 m elevation gain in flat area 213 

of Tapajós to steep elevation gain of up to about 100 m in Cotriguaçu and Chocó (Fig. S3). Top 214 

canopy height reached up to 60 m, but varies across sites, with Chocó having the lowest MCH 215 

(24.1 m) and Nouragues the highest (29.7 m). Forest height in Manaus was more homogeneous 216 

than in the other sites, with a standard deviation of 6.8 m for MCH, versus 10.3 m in Paracou. 217 
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We found no relationship between topography and canopy height, which suggests that variability 218 

in forest structure may be due to other ecological and edaphic factors in each site. 219 

 220 
 221 
3.2 Large canopy area index 222 

The choice of the canopy height threshold impacted LCA more than the minimum number of 223 

pixels per cluster (Table S2). The difference due to the choice of the minimal cluster size 224 

threshold was on average 1.4 %, calculated as the mean of the difference between the smallest 225 

grain (50 pixels) and the largest one (200 pixels) across sites and height thresholds. Based on this 226 

analysis, we chose to define LCA using a minimum cluster size of 100 pixels (100 m2 for crown 227 

area) in the remainder of this study. This corresponds to an area of at least 10 m x10 m or a circle 228 

of approximately 11m in diameter, consistent with the average crown diameter of large trees of 229 

the region (Bohlman and O'Brien, 2006; Figueiredo et al., 2016; Clark, unpublished results).  230 

 231 
In contrast, the canopy height thresholds markedly impacted the magnitude of LCA among sites 232 

(Fig. 1 and Fig. 2, Table S2). As the height threshold increased, intra-site variation of LCA(h) 233 

became apparent, showing differences of LCA associated with differences of forest structure 234 

(Fig. 1). Tapajós and Nouragues stood out with more area of large trees at the height threshold of 235 

30 m (LCA30m = 51 and 48 %, respectively) , while Antimary and Chocó showed much lower 236 

LCA at this height threshold (LCA30m = 21 %) (Table S2). The steepest slopes of the LCA(h) 237 

function corresponded to the highest sensitivity of LCA to height thresholds and the inflection in 238 

LCA was found between 24 m in Antimary and 30 m in Nouragues (Fig. 2).  The average height 239 

of the steepest slope was about 27 m, a value that was used as the optimal threshold across all 240 

sites.  241 



 11 

Regressing AGBinv and LCA at the calibration sites (Fig. 3b) showed the best relationships 242 

corresponded to height thresholds between 27 m (Nouragues and Paracou) and 28 m (BCI and 243 

La Selva), with maximum coefficients of correlation ranging between 0.5 and 0.8.  The same 244 

analysis repeated using AGBLocal and LCA in the nine sites also confirmed the earlier results that 245 

the highest coefficients of correlation between the two metrics occurred between 23 m (Chocó) 246 

and 30 m (Tapajós) height thresholds (Fig. 3a), explaining more than 75 % of AGB variation in 247 

each site. Based on these results, we defined LCA as the cumulative area of clusters of the 248 

canopy height model greater than 27 m height, as the mean of optimal height threshold with 249 

highest R2 across sites,  with clusters covering areas larger than 100 m2. 250 

 251 

3.3 Variation of AGB derived from LCA 252 

 253 

AGBinv was found to depend linearly on LCA (Eq. 1), with a better coefficient of correlation and 254 

RMSE than a power law fit (R2
linear = 0.59, RMSElinear = 62.53  Mg ha-1, vs. R2

power = 0.54, 255 

RMSEpower = 65.38). Although this model was unbiased (biascross_val = 0.16 Mg), there were clear 256 

differences among study sites (Fig. 4a, Table 3). These differences were largely explained by 257 

landscape scale differences in WD, an important factor representing the influence of species 258 

composition on the spatial variation of AGB. Since AGB depends on DBH, H and WD (see 259 

Chave et al., 2014), average wood volume can be computed approximately as the ratio of AGB 260 

divided by the average WD (Fig. 4b).   The linear relationship between LCA and wood volume 261 

yielded an estimate of the average total volume of forests independently of the site 262 

characteristics, through Vol = a LCA + b. Adding more parameters did not improve the 263 
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performance of the model, except when using WD as a normalizing factor. The two models we 264 

retained are therefore of the form of Eq. (1) and Eq. (2): 265 

𝐴𝐺𝐵$%& = 𝑎	𝐿𝐶𝐴 + 𝑏         (1) 266 

𝐴𝐺𝐵$%& = 𝑎	𝐿𝐶𝐴 + 𝑏 	×	𝑊𝐷        (2) 267 

where here WD is the mean wood density of a site.  The coefficients of the models, as well as 268 

their respective coefficients of correlation, RMSE and bias from training data and cross-269 

validation are reported in Table 3. 270 

For AGB estimation, the model based on LCA weighted by WD gives the best result by bringing 271 

R2 up to 0.78 and RMSE down to 46.02  Mg ha-1 (Fig. 4b, Fig. 4c, Table 3, Eq. (2)), with AGBinv 272 

and AGBLCA falling around a one-to-one line in Fig. 4c. At all sites, RMSE values are between 273 

20.87 and 42.22 Mg, except Nouragues, where RMSE remains large (71.21 Mg) due to high 274 

biomass and several outliers from the linear relation. The relationship between LCA and other 275 

metrics derived from ground data, such as Lorey’s height or basal area, are presented in S.3 and 276 

Table S4. 277 

 278 

3.4 LCA vs. MCH approach 279 

Finally, we compared these results to AGB estimated using a similar approach based on MCH 280 

(AGBMCH) for the calibration plots (Fig. 5a), and we also compared AGBLCA to AGBMCH in all 281 

nine sites, using LCA and MCH of the 1 km2 images (Fig. 5b).  282 

Both methods perform similarly (R2
MCH = 0.80, RMSEMCH = 42.52 Mg ha-1, biascross_val = -0.21 283 

Mg ha-1, Table S3),  showing that relying on a fraction of the Lidar information performs as well 284 

as using a metric depending on information from all pixels. However, Fig. 5 also shows that the 285 
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LCA method tends to overestimate AGB compared to the MCH method (bias = 9.66 Mg ha-1), 286 

especially in La Selva, BCI, Cotriguaçu and Manaus. 287 

 288 

3.5 AGB changes from logging 289 

The impacts of logging on the distribution of large trees and changes of AGB was detected by 290 

simply deriving the LCA index from pre and post-logging Lidar data acquired in 2010 and 2011 291 

respectively in Antimary (Fig. 6).  Difference in LCA between the two dates (2010–2011) (Fig. 292 

6a) at 1 ha grid cell captured the areas of largest changes in the few months following logging 293 

(logging took place between June and November 2011, Lidar data were collected in late 294 

November 2011). The LCA approach was able to detect approximately a 17 % decrease in LCA, 295 

from a mean LCA of 34.8 % in 2010 to 29.2 % in 2011.   296 

The changes were also captured in the frequency distribution of large canopy trees before and 297 

after logging (Fig. 6b) and the differences in the spatial distribution (Fig. 6c and 6d).    298 

These changes in LCA correspond to a biomass loss of 15.2  Mg ha-1 when integrated in equation 299 

(2) and were of the same magnitude of the planned selectively logging removal rate (12–18  Mg 300 

ha-1 or 10–15 m3 ha-1 of timber volume) (Andersen et al., 2014). As a comparison, the MCH 301 

model led to an estimated biomass loss of 19 Mg ha-1. Difference in the Lidar index (Δ𝐿𝐶𝐴) at 302 

the native resolution of 1 m (Fig. 6e) was able to capture both the location of all large trees 303 

removed from the forest stand and partial regeneration and gap filling that occurred in the forest 304 

between the two dates.  305 

 306 

4 Discussion 307 

4.1 Inter-site Comparisons 308 
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Cross-site studies on the structure of tropical forests have led to significant advances in our 309 

understanding of tropical forest ecology (Gentry 1993; Phillips et al., 1998; ter Steege et al., 310 

2006). They have also yielded important insights on new techniques to predict carbon stocks 311 

across regions (e.g. Asner and Mascaro, 2014).   Comparison of sites in terms of MCH derived 312 

for the study sites confirms that there is a strong regional variation of AGB with respect to 313 

canopy height, and that East Amazonian sites tend to have much taller trees than Central and 314 

Western Amazonia sites. This was already apparent in the canopy height maps produced by the 315 

GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et al., 2011). Comparing sites in terms 316 

of LCA showed a similar pattern of larger trees, being relatively more present in eastern 317 

Amazonia, notably in the French Guiana sites and Tapajos.   Our most southwestern site was 318 

Antimary, in the state of Acre (Brazilian Amazon). However, this site does not represent forests 319 

in the western Amazon or the Amazon-Andes gradients with relatively lower WD (Baker et al., 320 

2004) and more fertile volcanic soils impacting the forest structure and dynamics (Quesada et al., 321 

2011). The site in Chocó is also unique in its characteristics because of extremely wet condition 322 

and potential disturbance (e.g., selective logging). Additional Lidar and ground measurements 323 

will allow validating the performance of the LCA in representing the AGB variations in the 324 

western Amazon region. 325 

 326 

4.2 Physical Interpretation of LCA 327 

In this study, we introduced a simple structural metric that captures the proportion of area 328 

covered by large trees over the landscape ( > 1 ha) and explained 78 % of the variation in 329 

average forest volume and biomass when weighted by WD in four sites of old growth 330 

Neotropical forests. LCA cannot separate the crown areas of individual trees.  However, it is 331 
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adapted for large scale monitoring of forest volume and biomass change, as it is a robust and 332 

readily accessible metric. For individual tree separation, complex and more computationally 333 

intensive approaches are available (Ferraz et al., 2016).  334 

In estimating LCA from Lidar data, we examined the spatial clustering properties of LCA and 335 

found that the minimum cluster size was less important than the threshold of canopy height, as 336 

long as the analysis focused on the relative covered area instead of on the density of large trees.  337 

We found that using the percentage of the area covered by large canopy trees is an efficient way 338 

of overcoming the problem of individual crown segmentation in Lidar data. LCA is related to 339 

how trees reaching the forest canopy (above a certain height) fill the space and how this 340 

characteristic may follow a spatially invariant scaling across tropical forests (West et al., 2009).  341 

Clusters smaller than 100 m2 add only a small fraction (1.7 % on average) to LCA values across 342 

sites.  Including these clusters in LCA would not impact the performance of the model (similar 343 

R2, RMSE and bias) and would allow to skip the final steps of the LCA retrieval (see Fig. S2).  344 

However, since these pixels either represent single branches reaching above 27m or the tip of a 345 

tree crown, they have no meaning in terms of our LCA metric and do not represent large trees. 346 

LCA provides information on the presence of large trees in a study area, which other metrics 347 

such as MCH cannot do. It is an important point, considering that large trees are often the most 348 

affected by natural disturbance and targeted by logging companies. 349 

 350 

4.3  Correlation between LCA and AGB 351 

The distribution of R2 between LCA and AGB for (Fig. 3) is such that the maximum difference in 352 

R2 between a threshold of 25m and 30m is approximately 0.1, a negligible value. Hence, AGB 353 

retrieval by LCA is relatively insensitive to the height threshold.  For most sites, except 354 
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Antimary, we found a height threshold such that LCA explains about 80–90 % of the variation of 355 

AGB or total volume of the forests for each site (60–70 % when compared with ground plots) 356 

(Fig. 3).  Using a height threshold of 27 m for all sites reduced the R2 by 0.04 on average (max = 357 

0.08) compared to the optimal height threshold for each site.  358 

Potential differences in MCH among sites are due to footprint size, scan angle and return density 359 

(Disney et al., 2010; Hirata, 2004; Hopkinson, 2007) (Table 2). However, these effects are 360 

generally smaller than the 1 m increment that we used to determine the optimal height thresholds 361 

of LCA. As a result, LCA estimation, and therefore AGB inferred from LCA, should depend 362 

little on instrument, acquisition and processing (Table 2).  This is an important finding given the 363 

increasing variety of airborne Lidar sensors, and also given the pre and post-processing methods 364 

available for monitoring tropical forest structure and aboveground biomass.  However, 365 

determining whether the 27 m threshold holds for LCA calculation across in the tropics would 366 

require a validation at more study studies across continents.  367 

 368 

4.4  LCA Relation to Ground Measurements 369 

The relation between LCA derived from Lidar and the ground measurements can be further 370 

investigated by converting the 27 m height threshold into equivalent DBH values, using a 371 

height–diameter relationship.  In the absence of a local DBH–height relation at each site, we 372 

made use of the following equation (Chave et al., 2014): 373 

ln(H) = 0.893− E + 0.760 × ln(D)− 0.0340 × (ln(D))2
   (3) 374 

where E is a measure of environmental stress for each site that potentially impacts the tree 375 

allometry. The corresponding DBH values fall around 35–55 cm, except for Chocó, where the 376 

best coefficient of correlation is reached with a DBH threshold of 29 cm (Fig. S4). The average 377 
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minimum DBH to assign for the definition of large trees that represent variations of AGB is 378 

below 50 cm.  By choosing a DBH threshold of 50 cm for old-growth undisturbed forests, the 379 

LCA model for estimating biomass can have an approximate analog in inventory data.  This 380 

comparison suggests that the LCA model can also be adjusted with the average WD of trees 381 

lager than 50 m, allowing a much faster ground data collection of calibrating LCA model for 382 

different sites (S.4).    383 

A limit to how much LCA can explain variations in AGB relates to forest structure and the AGB 384 

of small trees. The lower range of biomass estimation for the LCA model, associated with the 385 

intercept for LCA equal to zero, ranged between 122 Mg ha-1 in La Selva and 192  Mg ha-1 in 386 

Paracou (Fig. 7a).   This lower range identified with the intercept of the LCA–AGB linear model 387 

can be interpreted as the AGB associated with all trees smaller than 27 m height (approximately 388 

all trees with DBH < 50 cm). Note that the differences between sites are due to differences in 389 

their mean WD and not the volume of trees (see Eq. (2) and Fig. 4). Similarly, the contribution of 390 

small trees to the total biomass in the ground inventory ranges between around 100 and 200 Mg 391 

ha-1, except in Paracou (261 Mg ha-1) (Fig. 7b).  AGB estimation based on LCA in these sites 392 

cannot go under 100 Mg ha-1 or over 500 Mg ha-1. This is not a limitation of the model because 393 

LCA is designed to provide AGB estimates for forests reaching at least 27 m in mean canopy 394 

height, and such forests generally exceed 100 Mg ha-1 in AGB. Also, the upper threshold of 500 395 

Mg ha-1 is consistent with upper values found globally at 1 ha scale (Brienen et al., 2015; Slik et 396 

al., 2013). A recalibration of the method should be envisaged in secondary and highly degraded 397 

forests. 398 

 399 

 400 
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4.5  LCA as AGB Estimator 401 

The correlation of LCA to AGBinv suggests that a Lidar based approach can lead to the 402 

estimation of AGB at the landscape scale and give useful information on the presence of large 403 

canopy trees and their distribution, extending the analysis of large trees in plot level inventory 404 

based studies (Bastin et al., 2015; Slik et al., 2013).   405 

Therefore, LCA can explain the variations of total forest volume without any ancillary data about 406 

the forest or the landscape.  Most bias in conversion of LCA to AGB, however, can be corrected 407 

across landscapes and sites by scaling the LCA–AGB relationship with average WD at the 408 

landscape scale. Our model can therefore potentially be applied to a wide range of forest types, 409 

provided that there is information about WD of the study area in the literature. 410 

Wood density has been shown to be a key element of allometric models of AGB estimation 411 

(Baker et al., 2004; Brown et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If WD is 412 

assumed to be constant across DBH classes, the mean WD at the plot scale can readily be used to 413 

scale LCA to biomass. However, if the WD of large trees is smaller or larger than the average 414 

WD, (e.g. in BCI and Chocó: S.4, Fig. S5), the use of mean WD to scale LCA may introduce a 415 

slight bias in biomass estimation. A difference in mean WD of 0.1 g cm-3 would introduce a bias 416 

of ± 10 % in the biomass estimation when using our model. We found that using mean WD of 417 

large trees or basal area weighted WD instead can give slightly better results and could 418 

circumvent the differences in size distribution of the WD (S.4).  Instead we could rely on the 419 

WD of large trees only. This would make the collection of ground data easier and cost effective 420 

for biomass estimation, because trees ≥ 50 cm DBH only represent 5–10 % of the stems of a plot 421 

(S.4, Fig. S6). Focusing on the WD of dominant or hyper dominant species could also be an 422 

alternative approach for future use of Lidar derived LCA for large scale biomass estimation 423 
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(Fauset et al., 2015; ter Steege et al., 2013). In the absence of information on WD from the 424 

literature, modelled WD could potentially be used, but would give greater errors. These errors 425 

should be taken into account when reporting on the uncertainty of the results. 426 

 427 

4.6 LCA and MCH 428 

The comparison of LCA and MCH metrics showed that both performed similarly in estimating 429 

AGB, highlighting the importance of large canopy trees to estimate biomass. The differences 430 

between the two methods in estimating AGB show that two methods can have similar 431 

performance in terms of R2 and RMSE and nonetheless lead to different estimations, with LCA 432 

giving higher AGB estimations in some sites. The choice of a metric is therefore crucial to 433 

estimate AGB, especially when estimating the changes in biomass (see Section 4.7). 434 

Both MCH and LCA–AGB models performed relatively poorly in high biomass plots of the 435 

Nouragues study area, by underestimating biomass values greater than 500 Mg ha-1 (Fig. 4 and 436 

5).  To explain the underestimation, we performed three tests: 1. We examined the differences in 437 

the ground estimated biomass values with and without tree height and found no significant 438 

impact in reducing the effect of underestimation. 2.  We tested the hypothesis that the height 439 

threshold used for LCA estimation across sites was not suitable for the Nouragues study site and 440 

dismissed the hypothesis because 27 m was found to be the optimum threshold for Nouragues 441 

plots. 3. We examined the errors in the Lidar estimation of forest height and found that except 442 

for an extremely high AGBinv of 617 Mg ha-1, the four other high biomass outliers are all located 443 

in the 6 ha Pararé plot located on a very steep topography. The Lidar digital terrain model 444 

(DTM) of this area shows an average within plots elevation range of 90 m. Ground detection on 445 

steep terrain can be erroneous, depending on the Lidar point density and the view angle, causing 446 
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large area interpolation errors for DTM development and significant error in canopy height 447 

measurements (Leitold et al., 2015). Other factors that may affect the underestimation of AGB 448 

by LCA or MCH in the Nouragues site may be due to the presence of forest patches with clusters 449 

of large trees and overlapping crown areas.  It is also possible that the relationship between AGB 450 

and LCA is not linear for very high AGB values. This could be tested in the future with a larger 451 

number of sites with very high biomass. 452 

 453 

4.7 LCA and forest degradation 454 

Although LCA and MCH may perform similarly in capturing the forest biomass variations and 455 

changes, the use of LCA in detecting forest degradation and logging is more straightforward 456 

because of its relation to large trees.   The LCA approach was able to accurately detect changes 457 

in forests after logging by locating where the large trees are extracted.  Our estimate of biomass 458 

change from  the LCA approach was higher than the biomass loss of 9.1  Mg ha-1 reported by 459 

another study using the 25th percentile height above ground as the Lidar metric for biomass 460 

estimation (Andersen et al., 2014).  It can be expected that relying on the 25th percentile height 461 

metric for biomass estimation would place more emphasis on the lower part of the canopy 462 

(understory) that is either less damaged or has gone through some level of regeneration after 463 

logging. Models based on LCA or MCH, on the other hand, may be more realistic for estimating 464 

AGB changes because they capture the changes in large trees and upper forest canopy structure 465 

that contain most of the biomass and are directly impacted by logging and biomass removal.    466 

The higher biomass loss estimation from the MCH model (19 Mg ha-1) again shows how 467 

different metrics can lead to different results. Here, three methods based on three different Lidar 468 

metrics yielded results that differed by more than twofold. LCA could become an important tool 469 
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to detect forest degradation, in particular selective logging, considering that large trees are 470 

targeted by logging companies. 471 

 472 

4.8 Future Applications of LCA  473 

LCA definition in our study relies on the high resolution information on forest height, allowing 474 

for the detection of crown area of large canopy trees.  Can a similar measure be derived from 475 

large footprint Lidar observations such as the future NASA spaceborne Lidar mission GEDI 476 

(Global Ecosystem Dynamic Investigation)?   GEDI will not provide spatially continuous data 477 

on forest height, but its footprint size (~ 25 m) and dense sampling may be adequate to develop 478 

statistical indicators of large trees over the landscape.  479 

Similarly, future spaceborne radar missions could also provide useful information to retrieve 480 

large canopy areas. The synthetic aperture radar (SAR) tomographical observations of the 481 

European Space Agency (ESA) BIOMASS mission will provide wall-to-wall imagery of canopy 482 

profile that could be converted to LCA over the landscape (Le Toan et al., 2011).   Preliminary 483 

research based on airborne TomoSAR measurements has already shown that backscatter power 484 

at about 30 m above the ground, with sensitivity to the distribution of large trees, explained the 485 

variation of AGB over Nouragues and Paracou plots better than the backscatter power related to 486 

the lower part of the canopy (0–15 m) (Minh et al., 2016; Rocca et al., 2014). Future research on 487 

exploring the use of an equivalent radar index product from BIOMASS height or tomography 488 

measurements at a height threshold (e.g. 27 m) may provide a potential algorithm to map the area 489 

of large trees and estimate forest volume and biomass changes across the landscape.  490 

 491 

 492 
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5  Conclusions 493 

We introduce LCA as a new Lidar derived index to capture the variations of large trees and total 494 

volume and biomass across landscapes that remain spatially and regionally invariant.  The 495 

importance of LCA is in its relevance to the structure and ecological characteristics of large trees 496 

in filling the canopy space and their unique contribution in determining the total volume and 497 

biomass of forests.  Unlike other Lidar derived metrics, LCA is linearly related to total 498 

aboveground biomass after being weighted by average WD. This linear relationship remains 499 

unique across different forest types, making the LCA model broadly applicable.  The comparison 500 

of LCA index with ground plots suggests that DBH > 50 cm is a more reliable threshold to 501 

quantify the number and distribution of large trees in undisturbed old growth tropical forests and 502 

in capturing the variations of the total aboveground biomass across landscapes and regions.  The 503 

results of our study may encourage further research in the use of Lidar data for detecting the 504 

distribution of larger trees in tropical forests for ecological and conservation studies.  505 
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 803 
 804 
 805 
Table 1. Information on forest inventory plots. * Indicates that a site has been used for the calibration of the LCA 806 
model. Sources: Antimary and Cotriguaçu: (d’Oliveira et al., 2012; Fearnside, 1997), BCI: Center for Tropical Forest 807 
Science (CTFS) (Condit, 1998; Hubbell et al., 1999, 2005), Chocó: (bioredd.org), La Selva: Carbono project (Clark 808 
and Clark, 2000), Manaus and Tapajós: Espírito-Santo (unpublished results), Nouragues: (Réjou-Méchain et al., 809 
2015), Paracou: (Gourlet-Fleury et al., 2004; Vincent et al., 2012). Rainfall data from WorldClim (Hijmans et al., 810 
2005). AGB: aboveground biomass, WD: wood density. 811 

Site Data Plots Size 
(ha) 

N plots Year Mean WD 
(g cm-3) 

Mean AGB 
(Mg ha-1) 

Annual rainfall 
(mm) 

 
Antimary 
(Brazil) 

 

Plot level 0.25 50 2010 0.61 234 2000 

BCI * 
(Panama) 

 

Tree level 1 50 2010 0.56 235 2600 

Chocó 
(Colombia) 

 

Tree level 0.25 42 2013 0.60 224 6000 

Cotriguaçu 
(Brazil) 

 

Not 
available 

- - - 0.60 - 2000 

La Selva * 
(Costa Rica) 

 

Tree level 1 11 2009 0.45 178 4000 

Manaus 
(Brazil) 

 

Tree level 0.25 10 2014 0.66 263 2200 

Nouragues * 
(French 
Guiana) 

 

Plot level 
Tree level 

1 
1 

33 
7/33 

2012 0.66 424 3000 

Paracou * 
(French 
Guiana) 

 

Plot level 1 85 2009-10 0.71 353 3000 

Tapajós 
(Brazil) 

Tree level 0.25 10 2014 0.62 238 1900 

 812 

  813 
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Table 2. Information on Lidar data and locations of the 9 research sites.  814 
Site 

(1km2  images) 

Sensor Year Retur

ns m-2 

Flight 

Altitude (m) 

Scanning 

angle (º) 

Frequency 

(kHz) 

NW corner lat NW corner lon 

Antimary Optech ALTM3100EA 2010-2011 10-15 500 11 70 9°17'47.26"S 68°17'15.06"W 

BCI Optech ALTM3100EA 2009 8 1000 35 70 9°9'28.56"N 79°51'18.9"W 

Chocó Optech ALTM3033 2013 4 1000 20 33 3°57'5.71"N 76°49'10.31"W 

Cotriguaçu Optech ALTM3100EA 2011 10-15 850 11 60 9°27'8.87"S 58°51'51.22"W 

La Selva Optech ALTM3100EA 2009 4 1500 20 70 10°25'37.97"N 84°1'8.76"W 

Manaus Optech ALTM3100EA 2012 10-15 850 (max) 11 60 2°56'38.48"S 59°56'12.57"W 

Nouragues Riegl  LMS-Q560 2012 12 400 45 200 4°3'10.0"N 52°42'19.95"W 

Paracou Riegl  LMS-280i 2009 4 120-220 30 24 5°15'47.73"N 52°56'26.96"W 

Tapajós Optech ALTM3100EA 2011 10-15 850 (max) 11 60 2°50'53.41"S 54°57'44.53"W 

 815 

  816 
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Table 3. Coefficients, R2, RMSE and bias for the models used to estimate AGBLCA without and with wood density 817 
(WD)  as a weighting factor (m_LCA) and m_LCA_wd, respectively). 818 

Model Equation a b R2 RMSE Bias R2  
cross-val 

RMSE 
cross-val 

Bias  
cross-val 

m_LCA AGB = aLCA + b  
(Eq. (2)) 

 

3.56 136.91 0.59 62.53 0.0 0.58 63.26 0.16 

m_LCA_wd AGB = (aLCA+b) × WD 
(Eq. (3)) 

4.47 270.27 0.78 46.02 -0.76 0.77 46.47 -0.63 

 819 
  820 
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 821 

Figure 1. Segmentation of the 1 km × 1 km images in each site using five canopy height thresholds. A minimum of 822 
100 contiguous pixels was used as a segmentation threshold in all cases. 823 
 824 
Figure 2. LCA in function of height thresholds in the nine study sites. The steepest slopes are between 24 m 825 
(Antimary) and 30 m (Nouragues), with an average of 27 m across sites. Steepness of slope was obtained by calculating 826 
the derivative of the sigmoid models charactering each site. 827 
 828 
Figure 3. Distribution of R2 between tree height thresholds used to determine LCA and AGBLocal in the nine 1 ha 829 
subareas (a) and distribution of R2 between tree height thresholds and AGBinv in 1 ha inventory plots of the four 830 
calibration sites (b). All optimal thresholds are between 23 m and 30 m. The average maximal height threshold is 27 831 
m.  832 
 833 
Figure 4. Relationship between AGBinv and LCA (a), AGBinv normalized by averaged wood density (WD) (b), and 834 
AGBinv vs. AGBLCA estimated with LCA_wd model (c). The black line represents the 1-to-1 line. Normalizing AGB 835 
by averaged wood density brings the data from different sites closer to a common fit. 836 
 837 
Figure 5. AGBMCH vs. AGBLCA in the plots of the four calibration sites (a), and AGBMCH vs. AGBLCA in the 1 km2 838 
images of the nine sites (b). The black line represents the 1-to-1 line.  839 
 840 
Figure 6. Detection of changes of forest structure from selective logging in the Antimary study area showing a) the 841 
difference between pre- and post- logging (2010–2011) Lidar derived LCA at 1 ha grid cells over the entire study area, 842 
b) the histogram of LCA for the two Lidar datasets showing the mean difference and the reduction of medium and 843 
large LCA areas from selective logging, c) 2010 Lidar LCA segmentation at 1 m resolution over a sample area in the 844 
north of the study site, d) same LCA segmentation for 2011 Lidar data, and e) difference of the two segmented areas 845 
showing the extent of the logging impact on large trees in addition to natural changes of forest structure from changes 846 
in canopy gaps from tree falls and tree growth. 847 
 848 
Figure 7. Relationship between LCA and AGBLCA (a) and relationship between AGBinv of large trees (> 50 cm DBH) 849 
and total AGBinv (b). In both cases, the intercepts represent the contribution of small trees to total AGB. Note that 850 
Manaus and Nouragues overlap because they have the same mean wood density, as well as Chocó and Cotriguaçu. 851 
 852 
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Figure 1 855 
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Figure 2 858 
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Figure 3 861 
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Figure 4 864 
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Figure 5 867 
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Figure 6 871 
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Figure 7 874 
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