

1 **Canopy Area of Large Trees Explains Aboveground**
2 **Biomass Variations across Neotropical Forest**
3 **Landscapes**

7 Victoria Meyer^{1,2}, Sassan Saatchi¹, David B. Clark³, Michael Keller^{4,5}, Grégoire Vincent⁶, António
8 Ferraz¹, Fernando Espírito-Santo⁷, Marcus V.N. d'Oliveira⁵, Dahlia Kaki¹ and Jérôme Chave²

9
10 ¹*Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. USA*

11 ²*Laboratoire Evolution et Diversité Biologique UMR 5174, CNRS Université Paul Sabatier, Toulouse,*
12 *France*

13 ³*Department of Biology, University of Missouri, St. Louis, Missouri, U.S.A.*

14 ⁴*USDA Forest Service, International Institute of Tropical Forestry, San Juan, Puerto Rico*

15 ⁵*EMBRAPA Acre, Rio Branco, Brazil*

16 ⁶*IRD, UMR AMAP, Montpellier, 34000 France*

17 ⁷*School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK*

21 *Correspondence to:*

22 Victoria Meyer

23 *Jet Propulsion Laboratory*

24 *California Institute of Technology*

25 *4800 Oak Grove Drive*

26 *Pasadena, CA. 91109 USA*

27 *Email: victoria.meyer@jpl.nasa.com*

28

29

30

31

32

33

34

35

36 **Abstract**

37 Large tropical trees store significant amounts of carbon in woody components and their
38 distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the
39 properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area
40 occupied by canopy above a reference height. We hypothesize that this simple measure of forest
41 structure representing the crown area of large canopy trees could consistently explain the
42 landscape variations of forest volume and aboveground biomass (AGB) across a range of climate
43 and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution
44 airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old
45 growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model.
46 We found that the LCA for trees greater than 27 m (~25–30 m) in height and at least 100 m²
47 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations,
48 irrespective of the forest biogeographic conditions. When weighted by average wood density of
49 the stand, LCA can be used as an unbiased estimator of AGB across sites ($R^2 = 0.78$, RMSE =
50 46.02 Mg ha⁻¹, bias = -0.63 Mg ha⁻¹). Unlike other Lidar derived metrics with complex nonlinear
51 relations to biomass, the relationship between LCA and AGB is linear and remains unique across
52 forest types. A comparison with tree inventories across the study sites indicates that LCA
53 correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The
54 spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable
55 regularity of forest structure across the landscape and a new technique for systematic monitoring
56 of large trees for their contribution to AGB and changes associated with selective logging, tree
57 mortality, and other types of tropical forest disturbance and dynamics.

58

59 **Keywords**

60 Lidar, biomass, tropical forest, large trees, crown area, wood density

61

62 **1 Introduction**

63 In humid tropical forests, tree canopies contribute disproportionately to the exchange of water
64 and carbon with the atmosphere through photosynthesis (Goldstein et al., 1998; Santiago et al.,
65 2004). From a physical standpoint, canopies are rough interfaces formed by crowns of emergent
66 and large trees, regularly disturbed by wind thrusts and gap dynamics. This structurally complex
67 boundary layer is challenging for scaling of biogeochemical fluxes and modeling of vegetation
68 dynamics (Baldocchi et al., 2003). Large canopy trees are among the first to be impacted by
69 storms or heavy precipitation (Espírito-Santo et al., 2010), drought stress (Nepstad et al., 2007;
70 Saatchi et al., 2013; Phillips et al., 2009), and fragmentation (Laurance et al., 2000), potentially
71 leading to tree death and formation of large canopy gaps (Denslow, 1980; Espírito-Santo et al.,
72 2014). Several studies suggest that forest canopies can show fractal properties that tend to evolve
73 from a non-equilibrium state towards a self-organized critical state, involving gap formation and
74 recovery (Pascual and Guichard, 2005; Solé and Manrubia, 1995), with crowns preferentially
75 growing towards more sunlit parts of the canopy (Strigul et al., 2008).

76 Over the past decade, stand level canopy metrics have been increasingly derived using small
77 footprint airborne Lidar systems (ALS), a widely used remote sensing technique to study the
78 structure of forests (Kellner and Asner, 2009; Lefsky et al., 2002). Lidar derived mean top
79 canopy height (MCH) is a good predictor of tropical forest aboveground carbon content and its
80 spatial variability (Jubanski et al., 2013), but it does not provide information on the presence of
81 large trees that are important when monitoring changes of forest biomass from logging and other

82 small scale disturbance (Bastin et al., 2015). Moreover, different forests with the same MCH
83 may differ in their stem density, notably of large trees, and in stand mean wood density, two
84 aspects that are important in constructing a robust model to infer AGB from Lidar data (Asner et
85 al., 2012; Mascaro et al., 2011). Ground observations suggest that stem density, basal area,
86 height and crown size of large tropical trees may all be good indicators of forest AGB (Clark and
87 Clark, 1996; Goodman et al., 2014). This implies that including information on crown area of
88 individual large trees should improve carbon stock assessments, as confirmed in temperate and
89 boreal regions (e.g. Packalen et al., 2015; Popescu et al., 2003; Vauhkonen et al., 2011, 2014).

90 In tropical forests, identifying and delineating crowns of large trees is a difficult and time
91 consuming process due to the layered structure of the forest canopy and overlapping crowns
92 (Zhou et al., 2010, but see Ferraz et al., 2016).

93 Here, we explore how the fractional area occupied by crowns of large trees in a forest stand can
94 be used as a reliable indicator of forest biomass across a wide range of forest structure, climate
95 and edaphic geographic variations. We define large tree canopy area (LCA) as a metric
96 capturing the cluster of crowns of large trees within a forest patch using height and crown area
97 measured by high resolution airborne Lidar measurements. Precisely, LCA is the number of
98 pixels in the canopy height model above a reference height, and excluding the pixel clusters
99 smaller than a reference area. Since this metric quantifies the proportional presence of large
100 trees, it can be used to estimate AGB and monitor changes associated with the disturbance of
101 large trees from mortality events and selective logging. We first explore the properties of LCA
102 across a range of landscapes in the Neotropics. Next, we hypothesize that LCA is a good
103 predictive metric of the spatial variations of AGB over a wide range of old growth forests.

104 To this end, we assembled a collection of airborne Lidar measurements and ground inventory
105 data at nine sites in old growth Neotropical forests. The Lidar data provide variations in canopy
106 height and distribution of large trees that allow us to address the following questions: 1) is there
107 a single definition of LCA at the landscape scale across different sites? 2) does LCA metric
108 capture variations of AGB?

109

110 **2 Materials and Methods**

111 **2.1 Study sites**

112 We studied the canopy structure at nine old growth lowland Neotropical forest sites that span a
113 broad range of climatic and edaphic conditions (Fig. S1, Table 1). All sites are located in low
114 elevation areas (less than 500 m above sea level) but have small scale surface topography that
115 may influence the distribution of crown formations and gaps. These forests are for the most part
116 undisturbed *terra firme* forests. Tapajós, Antimary and Cotriguaçu get the least rainfall, with
117 approximately 2000 mm yr⁻¹, while La Selva and Chocó both receive more than 4000 mm yr⁻¹
118 (Table 1).

119 Permanent forest inventory plots were available for all sites except Cotriguaçu (Table 1). Sites
120 where tree level inventory data were available were used to estimate the stand level aboveground
121 biomass, thereafter referred to as AGB_{inv}: BCI (50 plots of 1 ha each), Chocó (42 plots of 0.25 ha
122 each), La Selva (11 plots of 1 ha each), Manaus (10 plots of 0.25 ha each), Nouragues (7 plots of
123 1 ha each) and Tapajós (10 plots of 0.25 ha each). In these plots, all trees with a diameter at
124 breast height (DBH) \geq 10 cm have been mapped, measured and identified to the species. Trees
125 with irregularities or buttresses were measured higher on the bole. Total tree height
126 measurements were available for a subset of these trees. The method for calculating AGB_{inv} from

127 forest inventories is reported in S.1 of the supplementary information. Four sites (BCI, La Selva,
128 Nouragues and Paracou) with 1 ha inventory plots, were used as “calibration sites” to compare
129 the LCA metric and AGB. Sites with smaller plots were not used as calibration of LCA because
130 of the probability of crowns of large trees extending outside the plot boundary and the
131 introduction of uncertainty in estimating LCA from edge effects (Meyer et al., 2013; Packalen et
132 al., 2015). For this reason, all plots smaller than 1 ha were excluded from the LCA analysis but
133 were used in estimating average wood density (WD) for each site, which does not depend on plot
134 size. Stand averaged WD was calculated based on the wood density of all trees present in a site,
135 determined using the commonly used global wood density database, and is reported in Table 1
136 (Chave et al., 2009; Zanne et al., 2009). For Cotriguaçu, we used stand averaged WD given by
137 Fearnside (1997) for a region covering the site. Additional plot level data (AGB_{inv} and mean
138 WD) were provided for Antimary (50 plots of 0.25 ha each), Nouragues (27 plots of 1 ha each)
139 and Paracou (85 plots of 1 ha each).

140

141

142 **2.2 Lidar data**

143 Lidar sensors scan the vegetation vertical structure and return a three dimensional point cloud
144 derived from the time it took each pulse to return to the instrument. The Lidar datasets acquired
145 over the study sites come from discrete return Lidar instruments and were gridded horizontally at
146 a 1 m resolution using the echoes classified as either vegetation or ground. They yield three
147 products: digital surface model (DSM) corresponding to the top canopy elevation, digital terrain
148 model (DTM) corresponding to the ground elevation, and canopy height model (CHM), which is
149 the height difference between the DSM and the DTM. DTMs were interpolated from a Delaunay

150 triangulation or comparable interpolation methods, after outliers have been removed. DSMs were
151 created using the highest return within a cell. Lidar data over Paracou were acquired in last
152 return mode, causing a bias of 50 cm on the CHM (Vincent et al., 2012). This bias is not
153 addressed in this study because our height increment for the determination of optimal height
154 thresholding is larger (1 m) (see Sect. 4.3). Data were acquired between 2009 and 2013, using
155 relatively similar sensors and acquisition configurations (Table 2). The potential differences
156 between the Lidar datasets and their impact on the results are addressed in the Discussion.
157 For each site, we selected a 1x1 km (100 ha) area of old growth forest, oriented north-south,
158 without any human disturbance to the extent possible. Topography derived from Lidar data
159 within the selected 1 km² subset images provides information on landscape variations that may
160 impact the forest structure. Data visualization was done using ENVI version 4.8 (Exelis).

161

162 **2.3 Computing Large Canopy Area (LCA)**

163 At each study site, we extracted the area of canopy that relates to total area of the canopy height
164 model above a standard height (h) threshold, or LCA (h), and explored how this metric scales
165 along two axes. First, we varied the threshold height h with increments of 1 m, between 5 m and
166 50 m, in 100 m by 100 m subareas (100 subareas for each site). Second, to denoise the data, we
167 excluded the clusters with less than a set number of 1m² pixels (50, 100, 150 or 200). We then
168 prioritized the crown area of large trees, and filtered out pixels that could be related to outliers or
169 to single branches. This method thus quantifies the area of large crowns covering a plot or larger
170 landscape unit area, as a percentage of covered area.

171 LCA maps were produced at 1 ha resolution. Pixel clustering was based on the similarity of the
172 four nearest neighbors (similar results were obtained with an eight neighbor model, results not

173 shown here). Figure S2 summarizes the steps taken to go from the Lidar canopy height model to
174 the final LCA map. Processing was conducted using the IDL software (Interface Description
175 Language, Exelis).

176 We determined the optimal minimum canopy height threshold calculating the coefficient of
177 correlation between AGB_{inv} and LCA at the four calibration sites. This step allowed us to
178 examine if optimal height thresholds differed from one site to the other. The goal was to find a
179 single optimal height threshold and crown size that could be applied for LCA retrieval across
180 closed canopy Neotropical forests. We also estimated AGB from Lidar data locally (AGB_{Local})
181 using a commonly used model fit relating MCH to AGB_{inv} in each site, to further examine the
182 variations of LCA and AGB in all nine sites (see S.2, Table S1).

183

184 **2.4 Relating LCA to biomass**

185 We tested different models to infer AGB_{inv} from LCA, henceforth called AGB_{LCA} , at the four
186 calibration sites, and explored if adding more parameters, such as mean WD of a site, mean WD
187 of large trees ($DBH \geq 50$ cm), mean canopy height or top percentiles of canopy height improved
188 the predicting power of the model. We evaluated our results by applying a jackknife validation to
189 our regression models, based on 1000 iterations of bootstrapping. The coefficients of correlation
190 (R^2), root mean square error (RMSE) and bias (mean difference between the expected values of
191 AGB and the observed values of AGB) are reported for the models providing the best results.

192 The analysis was performed using the R statistical software (R Core Team, 2014).

193 We compared the new approach based on LCA to a similar approach based on MCH, which
194 relies on information on all pixels of an area of interest. In both cases, models were calibrated by
195 using field data from the four calibration sites and their respective mean WD. This comparison is

196 meant to investigate if a metric based on large trees only (LCA) can estimate AGB similarly to a
197 metric that uses information about 100 % of the canopy (MCH).

198

199 **2.5 Detecting changes of selecting logging**

200 Forest degradation due to selective logging is difficult to detect with conventional remote
201 sensing techniques due to small scale and minor impacts on the forest canopy and biomass
202 compared to severe forest disturbances (e.g. fires, storms, or clearing). However, selective
203 logging targets large trees (Pearson et al., 2014) and thus may be detectable using LCA, provided
204 that Lidar data are available from pre and post-logging. Here, we use the Antimary study site that
205 was selectively logged after the 2010 Lidar acquisition to examine the use of LCA for detecting
206 logging impacts on the forest canopy and AGB. We apply the large tree segmentation approach
207 on both the 2010 image and on a 2011 post-logging Lidar image (see Andersen et al., 2014 for
208 details) to quantify the logging impacts in terms of the distribution of large trees removed from
209 the forest and the loss of aboveground biomass.

210

211 **3 Results**

212 **3.1 Intersite comparison of landscapes and MCH**

213 Topographic variation within the 1 km² images ranged from about 4 m elevation gain in flat area
214 of Tapajós to steep elevation gain of up to about 100 m in Cotriguaçu and Chocó (Fig. S3). Top
215 canopy height reached up to 60 m, but varies across sites, with Chocó having the lowest MCH
216 (24.1 m) and Nouragues the highest (29.7 m). Forest height in Manaus was more homogeneous
217 than in the other sites, with a standard deviation of 6.8 m for MCH, versus 10.3 m in Paracou.

218 We found no relationship between topography and canopy height, which suggests that variability
219 in forest structure may be due to other ecological and edaphic factors in each site.

220
221

222 **3.2 Large canopy area index**

223 The choice of the canopy height threshold impacted LCA more than the minimum number of
224 pixels per cluster (Table S2). The difference due to the choice of the minimal cluster size
225 threshold was on average 1.4 %, calculated as the mean of the difference between the smallest
226 grain (50 pixels) and the largest one (200 pixels) across sites and height thresholds. Based on this
227 analysis, we chose to define LCA using a minimum cluster size of 100 pixels (100 m^2 for crown
228 area) in the remainder of this study. This corresponds to an area of at least $10 \text{ m} \times 10 \text{ m}$ or a circle
229 of approximately 11m in diameter, consistent with the average crown diameter of large trees of
230 the region (Bohlman and O'Brien, 2006; Figueiredo et al., 2016; Clark, unpublished results).

231
232 In contrast, the canopy height thresholds markedly impacted the magnitude of LCA among sites
233 (Fig. 1 and Fig. 2, Table S2). As the height threshold increased, intra-site variation of LCA(h)
234 became apparent, showing differences of LCA associated with differences of forest structure
235 (Fig. 1). Tapajós and Nouragues stood out with more area of large trees at the height threshold of
236 30 m ($\text{LCA}_{30\text{m}} = 51$ and 48 %, respectively) , while Antimary and Chocó showed much lower
237 LCA at this height threshold ($\text{LCA}_{30\text{m}} = 21$ %) (Table S2). The steepest slopes of the LCA(h)
238 function corresponded to the highest sensitivity of LCA to height thresholds and the inflection in
239 LCA was found between 24 m in Antimary and 30 m in Nouragues (Fig. 2). The average height
240 of the steepest slope was about 27 m, a value that was used as the optimal threshold across all
241 sites.

242 Regressing AGB_{inv} and LCA at the calibration sites (Fig. 3b) showed the best relationships
243 corresponded to height thresholds between 27 m (Nouragues and Paracou) and 28 m (BCI and
244 La Selva), with maximum coefficients of correlation ranging between 0.5 and 0.8. The same
245 analysis repeated using AGB_{Local} and LCA in the nine sites also confirmed the earlier results that
246 the highest coefficients of correlation between the two metrics occurred between 23 m (Chocó)
247 and 30 m (Tapajós) height thresholds (Fig. 3a), explaining more than 75 % of AGB variation in
248 each site. Based on these results, we defined LCA as the cumulative area of clusters of the
249 canopy height model greater than 27 m height, as the mean of optimal height threshold with
250 highest R² across sites, with clusters covering areas larger than 100 m².

251

252 **3.3 Variation of AGB derived from LCA**

253

254 AGB_{inv} was found to depend linearly on LCA (Eq. 1), with a better coefficient of correlation and
255 RMSE than a power law fit ($R^2_{\text{linear}} = 0.59$, $\text{RMSE}_{\text{linear}} = 62.53 \text{ Mg ha}^{-1}$, vs. $R^2_{\text{power}} = 0.54$,
256 $\text{RMSE}_{\text{power}} = 65.38$). Although this model was unbiased ($\text{bias}_{\text{cross_val}} = 0.16 \text{ Mg}$), there were clear
257 differences among study sites (Fig. 4a, Table 3). These differences were largely explained by
258 landscape scale differences in WD, an important factor representing the influence of species
259 composition on the spatial variation of AGB. Since AGB depends on DBH, H and WD (see
260 Chave et al., 2014), average wood volume can be computed approximately as the ratio of AGB
261 divided by the average WD (Fig. 4b). The linear relationship between LCA and wood volume
262 yielded an estimate of the average total volume of forests independently of the site
263 characteristics, through $\text{Vol} = a \text{ LCA} + b$. Adding more parameters did not improve the

264 performance of the model, except when using WD as a normalizing factor. The two models we
265 retained are therefore of the form of Eq. (1) and Eq. (2):

266 $AGB_{LCA} = a LCA + b$ (1)

267 $AGB_{LCA} = (a LCA + b) \times WD$ (2)

268 where here WD is the mean wood density of a site. The coefficients of the models, as well as
269 their respective coefficients of correlation, RMSE and bias from training data and cross-
270 validation are reported in Table 3.

271 For AGB estimation, the model based on LCA weighted by WD gives the best result by bringing
272 R^2 up to 0.78 and RMSE down to 46.02 Mg ha^{-1} (Fig. 4b, Fig. 4c, Table 3, Eq. (2)), with AGB_{inv}
273 and AGB_{LCA} falling around a one-to-one line in Fig. 4c. At all sites, RMSE values are between
274 20.87 and 42.22 Mg, except Nouragues, where RMSE remains large (71.21 Mg) due to high
275 biomass and several outliers from the linear relation. The relationship between LCA and other
276 metrics derived from ground data, such as Lorey's height or basal area, are presented in S.3 and
277 Table S4.

278

279 **3.4 LCA vs. MCH approach**

280 Finally, we compared these results to AGB estimated using a similar approach based on MCH
281 (AGB_{MCH}) for the calibration plots (Fig. 5a), and we also compared AGB_{LCA} to AGB_{MCH} in all
282 nine sites, using LCA and MCH of the 1 km^2 images (Fig. 5b).

283 Both methods perform similarly ($R^2_{MCH} = 0.80$, $RMSE_{MCH} = 42.52 \text{ Mg ha}^{-1}$, $bias_{cross_val} = -0.21$
284 Mg ha^{-1} , Table S3), showing that relying on a fraction of the Lidar information performs as well
285 as using a metric depending on information from all pixels. However, Fig. 5 also shows that the

286 LCA method tends to overestimate AGB compared to the MCH method (bias = 9.66 Mg ha⁻¹),
287 especially in La Selva, BCI, Cotriguaçu and Manaus.

288

289 **3.5 AGB changes from logging**

290 The impacts of logging on the distribution of large trees and changes of AGB was detected by
291 simply deriving the LCA index from pre and post-logging Lidar data acquired in 2010 and 2011
292 respectively in Antimary (Fig. 6). Difference in LCA between the two dates (2010–2011) (Fig.
293 6a) at 1 ha grid cell captured the areas of largest changes in the few months following logging
294 (logging took place between June and November 2011, Lidar data were collected in late
295 November 2011). The LCA approach was able to detect approximately a 17 % decrease in LCA,
296 from a mean LCA of 34.8 % in 2010 to 29.2 % in 2011.

297 The changes were also captured in the frequency distribution of large canopy trees before and
298 after logging (Fig. 6b) and the differences in the spatial distribution (Fig. 6c and 6d).

299 These changes in LCA correspond to a biomass loss of 15.2 Mg ha⁻¹ when integrated in equation
300 (2) and were of the same magnitude of the planned selectively logging removal rate (12–18 Mg
301 ha⁻¹ or 10–15 m³ ha⁻¹ of timber volume) (Andersen et al., 2014). As a comparison, the MCH
302 model led to an estimated biomass loss of 19 Mg ha⁻¹. Difference in the Lidar index (ΔLCA) at
303 the native resolution of 1 m (Fig. 6e) was able to capture both the location of all large trees
304 removed from the forest stand and partial regeneration and gap filling that occurred in the forest
305 between the two dates.

306

307 **4 Discussion**

308 **4.1 Inter-site Comparisons**

309 Cross-site studies on the structure of tropical forests have led to significant advances in our
310 understanding of tropical forest ecology (Gentry 1993; Phillips et al., 1998; ter Steege et al.,
311 2006). They have also yielded important insights on new techniques to predict carbon stocks
312 across regions (e.g. Asner and Mascaro, 2014). Comparison of sites in terms of MCH derived
313 for the study sites confirms that there is a strong regional variation of AGB with respect to
314 canopy height, and that East Amazonian sites tend to have much taller trees than Central and
315 Western Amazonia sites. This was already apparent in the canopy height maps produced by the
316 GLAS sensor (Lefsky, 2010; Saatchi et al., 2011; Simard et al., 2011). Comparing sites in terms
317 of LCA showed a similar pattern of larger trees, being relatively more present in eastern
318 Amazonia, notably in the French Guiana sites and Tapajos. Our most southwestern site was
319 Antimary, in the state of Acre (Brazilian Amazon). However, this site does not represent forests
320 in the western Amazon or the Amazon-Andes gradients with relatively lower WD (Baker et al.,
321 2004) and more fertile volcanic soils impacting the forest structure and dynamics (Quesada et al.,
322 2011). The site in Chocó is also unique in its characteristics because of extremely wet condition
323 and potential disturbance (e.g., selective logging). Additional Lidar and ground measurements
324 will allow validating the performance of the LCA in representing the AGB variations in the
325 western Amazon region.

326

327 **4.2 Physical Interpretation of LCA**

328 In this study, we introduced a simple structural metric that captures the proportion of area
329 covered by large trees over the landscape (> 1 ha) and explained 78 % of the variation in
330 average forest volume and biomass when weighted by WD in four sites of old growth
331 Neotropical forests. LCA cannot separate the crown areas of individual trees. However, it is

332 adapted for large scale monitoring of forest volume and biomass change, as it is a robust and
333 readily accessible metric. For individual tree separation, complex and more computationally
334 intensive approaches are available (Ferraz et al., 2016).

335 In estimating LCA from Lidar data, we examined the spatial clustering properties of LCA and
336 found that the minimum cluster size was less important than the threshold of canopy height, as
337 long as the analysis focused on the relative covered area instead of on the density of large trees.
338 We found that using the percentage of the area covered by large canopy trees is an efficient way
339 of overcoming the problem of individual crown segmentation in Lidar data. LCA is related to
340 how trees reaching the forest canopy (above a certain height) fill the space and how this
341 characteristic may follow a spatially invariant scaling across tropical forests (West et al., 2009).
342 Clusters smaller than 100 m² add only a small fraction (1.7 % on average) to LCA values across
343 sites. Including these clusters in LCA would not impact the performance of the model (similar
344 R², RMSE and bias) and would allow to skip the final steps of the LCA retrieval (see Fig. S2).
345 However, since these pixels either represent single branches reaching above 27m or the tip of a
346 tree crown, they have no meaning in terms of our LCA metric and do not represent large trees.
347 LCA provides information on the presence of large trees in a study area, which other metrics
348 such as MCH cannot do. It is an important point, considering that large trees are often the most
349 affected by natural disturbance and targeted by logging companies.

350

351 **4.3 Correlation between LCA and AGB**

352 The distribution of R² between LCA and AGB for (Fig. 3) is such that the maximum difference in
353 R² between a threshold of 25m and 30m is approximately 0.1, a negligible value. Hence, AGB
354 retrieval by LCA is relatively insensitive to the height threshold. For most sites, except

355 Antimary, we found a height threshold such that LCA explains about 80–90 % of the variation of
356 AGB or total volume of the forests for each site (60–70 % when compared with ground plots)
357 (Fig. 3). Using a height threshold of 27 m for all sites reduced the R^2 by 0.04 on average (max =
358 0.08) compared to the optimal height threshold for each site.
359 Potential differences in MCH among sites are due to footprint size, scan angle and return density
360 (Disney et al., 2010; Hirata, 2004; Hopkinson, 2007) (Table 2). However, these effects are
361 generally smaller than the 1 m increment that we used to determine the optimal height thresholds
362 of LCA. As a result, LCA estimation, and therefore AGB inferred from LCA, should depend
363 little on instrument, acquisition and processing (Table 2). This is an important finding given the
364 increasing variety of airborne Lidar sensors, and also given the pre and post-processing methods
365 available for monitoring tropical forest structure and aboveground biomass. However,
366 determining whether the 27 m threshold holds for LCA calculation across in the tropics would
367 require a validation at more study studies across continents.

368

369 **4.4 LCA Relation to Ground Measurements**

370 The relation between LCA derived from Lidar and the ground measurements can be further
371 investigated by converting the 27 m height threshold into equivalent DBH values, using a
372 height–diameter relationship. In the absence of a local DBH–height relation at each site, we
373 made use of the following equation (Chave et al., 2014):

$$374 \quad \ln(H) = 0.893 - E + 0.760 \times \ln(D) - 0.0340 \times (\ln(D))^2 \quad (3)$$

375 where E is a measure of environmental stress for each site that potentially impacts the tree
376 allometry. The corresponding DBH values fall around 35–55 cm, except for Chocó, where the
377 best coefficient of correlation is reached with a DBH threshold of 29 cm (Fig. S4). The average

378 minimum DBH to assign for the definition of large trees that represent variations of AGB is
379 below 50 cm. By choosing a DBH threshold of 50 cm for old-growth undisturbed forests, the
380 LCA model for estimating biomass can have an approximate analog in inventory data. This
381 comparison suggests that the LCA model can also be adjusted with the average WD of trees
382 larger than 50 m, allowing a much faster ground data collection of calibrating LCA model for
383 different sites (S.4).

384 A limit to how much LCA can explain variations in AGB relates to forest structure and the AGB
385 of small trees. The lower range of biomass estimation for the LCA model, associated with the
386 intercept for LCA equal to zero, ranged between 122 Mg ha^{-1} in La Selva and 192 Mg ha^{-1} in
387 Paracou (Fig. 7a). This lower range identified with the intercept of the LCA–AGB linear model
388 can be interpreted as the AGB associated with all trees smaller than 27 m height (approximately
389 all trees with $\text{DBH} < 50 \text{ cm}$). Note that the differences between sites are due to differences in
390 their mean WD and not the volume of trees (see Eq. (2) and Fig. 4). Similarly, the contribution of
391 small trees to the total biomass in the ground inventory ranges between around 100 and 200 Mg
392 ha^{-1} , except in Paracou (261 Mg ha^{-1}) (Fig. 7b). AGB estimation based on LCA in these sites
393 cannot go under 100 Mg ha^{-1} or over 500 Mg ha^{-1} . This is not a limitation of the model because
394 LCA is designed to provide AGB estimates for forests reaching at least 27 m in mean canopy
395 height, and such forests generally exceed 100 Mg ha^{-1} in AGB. Also, the upper threshold of 500
396 Mg ha^{-1} is consistent with upper values found globally at 1 ha scale (Brienen et al., 2015; Slik et
397 al., 2013). A recalibration of the method should be envisaged in secondary and highly degraded
398 forests.

399

400

401 **4.5 LCA as AGB Estimator**

402 The correlation of LCA to AGB_{inv} suggests that a Lidar based approach can lead to the
403 estimation of AGB at the landscape scale and give useful information on the presence of large
404 canopy trees and their distribution, extending the analysis of large trees in plot level inventory
405 based studies (Bastin et al., 2015; Slik et al., 2013).

406 Therefore, LCA can explain the variations of total forest volume without any ancillary data about
407 the forest or the landscape. Most bias in conversion of LCA to AGB, however, can be corrected
408 across landscapes and sites by scaling the LCA–AGB relationship with average WD at the
409 landscape scale. Our model can therefore potentially be applied to a wide range of forest types,
410 provided that there is information about WD of the study area in the literature.

411 Wood density has been shown to be a key element of allometric models of AGB estimation
412 (Baker et al., 2004; Brown et al., 1989; Chave et al., 2004; Nogueira et al., 2007). If WD is
413 assumed to be constant across DBH classes, the mean WD at the plot scale can readily be used to
414 scale LCA to biomass. However, if the WD of large trees is smaller or larger than the average
415 WD, (e.g. in BCI and Chocó: S.4, Fig. S5), the use of mean WD to scale LCA may introduce a
416 slight bias in biomass estimation. A difference in mean WD of 0.1 g cm^{-3} would introduce a bias
417 of $\pm 10\%$ in the biomass estimation when using our model. We found that using mean WD of
418 large trees or basal area weighted WD instead can give slightly better results and could
419 circumvent the differences in size distribution of the WD (S.4). Instead we could rely on the
420 WD of large trees only. This would make the collection of ground data easier and cost effective
421 for biomass estimation, because trees $\geq 50 \text{ cm DBH}$ only represent 5–10 % of the stems of a plot
422 (S.4, Fig. S6). Focusing on the WD of dominant or hyper dominant species could also be an
423 alternative approach for future use of Lidar derived LCA for large scale biomass estimation

424 (Fauset et al., 2015; ter Steege et al., 2013). In the absence of information on WD from the
425 literature, modelled WD could potentially be used, but would give greater errors. These errors
426 should be taken into account when reporting on the uncertainty of the results.

427

428 **4.6 LCA and MCH**

429 The comparison of LCA and MCH metrics showed that both performed similarly in estimating
430 AGB, highlighting the importance of large canopy trees to estimate biomass. The differences
431 between the two methods in estimating AGB show that two methods can have similar
432 performance in terms of R^2 and RMSE and nonetheless lead to different estimations, with LCA
433 giving higher AGB estimations in some sites. The choice of a metric is therefore crucial to
434 estimate AGB, especially when estimating the changes in biomass (see Section 4.7).

435 Both MCH and LCA–AGB models performed relatively poorly in high biomass plots of the
436 Nouragues study area, by underestimating biomass values greater than 500 Mg ha^{-1} (Fig. 4 and
437 5). To explain the underestimation, we performed three tests: 1. We examined the differences in
438 the ground estimated biomass values with and without tree height and found no significant
439 impact in reducing the effect of underestimation. 2. We tested the hypothesis that the height
440 threshold used for LCA estimation across sites was not suitable for the Nouragues study site and
441 dismissed the hypothesis because 27 m was found to be the optimum threshold for Nouragues
442 plots. 3. We examined the errors in the Lidar estimation of forest height and found that except
443 for an extremely high AGB_{inv} of 617 Mg ha^{-1} , the four other high biomass outliers are all located
444 in the 6 ha Pararé plot located on a very steep topography. The Lidar digital terrain model
445 (DTM) of this area shows an average within plots elevation range of 90 m. Ground detection on
446 steep terrain can be erroneous, depending on the Lidar point density and the view angle, causing

447 large area interpolation errors for DTM development and significant error in canopy height
448 measurements (Leitold et al., 2015). Other factors that may affect the underestimation of AGB
449 by LCA or MCH in the Nouragues site may be due to the presence of forest patches with clusters
450 of large trees and overlapping crown areas. It is also possible that the relationship between AGB
451 and LCA is not linear for very high AGB values. This could be tested in the future with a larger
452 number of sites with very high biomass.

453

454 **4.7 LCA and forest degradation**

455 Although LCA and MCH may perform similarly in capturing the forest biomass variations and
456 changes, the use of LCA in detecting forest degradation and logging is more straightforward
457 because of its relation to large trees. The LCA approach was able to accurately detect changes
458 in forests after logging by locating where the large trees are extracted. Our estimate of biomass
459 change from the LCA approach was higher than the biomass loss of 9.1 Mg ha^{-1} reported by
460 another study using the 25th percentile height above ground as the Lidar metric for biomass
461 estimation (Andersen et al., 2014). It can be expected that relying on the 25th percentile height
462 metric for biomass estimation would place more emphasis on the lower part of the canopy
463 (understory) that is either less damaged or has gone through some level of regeneration after
464 logging. Models based on LCA or MCH, on the other hand, may be more realistic for estimating
465 AGB changes because they capture the changes in large trees and upper forest canopy structure
466 that contain most of the biomass and are directly impacted by logging and biomass removal.
467 The higher biomass loss estimation from the MCH model (19 Mg ha^{-1}) again shows how
468 different metrics can lead to different results. Here, three methods based on three different Lidar
469 metrics yielded results that differed by more than twofold. LCA could become an important tool

470 to detect forest degradation, in particular selective logging, considering that large trees are
471 targeted by logging companies.

472

473 **4.8 Future Applications of LCA**

474 LCA definition in our study relies on the high resolution information on forest height, allowing
475 for the detection of crown area of large canopy trees. Can a similar measure be derived from
476 large footprint Lidar observations such as the future NASA spaceborne Lidar mission GEDI
477 (Global Ecosystem Dynamic Investigation)? GEDI will not provide spatially continuous data
478 on forest height, but its footprint size (~ 25 m) and dense sampling may be adequate to develop
479 statistical indicators of large trees over the landscape.

480 Similarly, future spaceborne radar missions could also provide useful information to retrieve
481 large canopy areas. The synthetic aperture radar (SAR) tomographical observations of the
482 European Space Agency (ESA) BIOMASS mission will provide wall-to-wall imagery of canopy
483 profile that could be converted to LCA over the landscape (Le Toan et al., 2011). Preliminary
484 research based on airborne TomoSAR measurements has already shown that backscatter power
485 at about 30 m above the ground, with sensitivity to the distribution of large trees, explained the
486 variation of AGB over Nouragues and Paracou plots better than the backscatter power related to
487 the lower part of the canopy (0–15 m) (Minh et al., 2016; Rocca et al., 2014). Future research on
488 exploring the use of an equivalent radar index product from BIOMASS height or tomography
489 measurements at a height threshold (e.g. 27 m) may provide a potential algorithm to map the area
490 of large trees and estimate forest volume and biomass changes across the landscape.

491

492

493 **5 Conclusions**

494 We introduce LCA as a new Lidar derived index to capture the variations of large trees and total
495 volume and biomass across landscapes that remain spatially and regionally invariant. The
496 importance of LCA is in its relevance to the structure and ecological characteristics of large trees
497 in filling the canopy space and their unique contribution in determining the total volume and
498 biomass of forests. Unlike other Lidar derived metrics, LCA is linearly related to total
499 aboveground biomass after being weighted by average WD. This linear relationship remains
500 unique across different forest types, making the LCA model broadly applicable. The comparison
501 of LCA index with ground plots suggests that DBH > 50 cm is a more reliable threshold to
502 quantify the number and distribution of large trees in undisturbed old growth tropical forests and
503 in capturing the variations of the total aboveground biomass across landscapes and regions. The
504 results of our study may encourage further research in the use of Lidar data for detecting the
505 distribution of larger trees in tropical forests for ecological and conservation studies.

506

507

508 **Author contribution**

509 V. Meyer and S. Saatchi developed the model and designed the study. V. Meyer developed the
510 model code and performed the analysis. J. Chave, G. Vincent, M. Keller, F. Espírito-Santo, D.
511 Clark and M. d’Oliveira provided inventory data and derived metrics necessary to run the
512 experiments. A. Ferraz contributed to the data processing. D. Kaki performed a preliminary
513 analysis of the data. V. Meyer prepared the manuscript with contributions from all co-authors.
514 The authors declare that they have no conflict of interest.

515

516 **Acknowledgements**

517 The work described in this paper was carried out at the Jet Propulsion Laboratory, California
518 Institute of Technology, under contract with the National Aeronautics and Space Administration.
519 This work has benefited from “*Investissement d’Avenir*” grants managed by the French *Agence*
520 *Nationale de la Recherche* (CEBA, ref. ANR-10-LABX-25-01 and TULIP, ref. ANR-10-LABX-
521 0041; ANAEE-France: ANR-11-INBS-0001) and from CNES (TOSCA project; PI T Le Toan).
522 Field and Lidar data from the Brazilian sites were acquired by the Sustainable Landscapes Brazil
523 project supported by the Brazilian Agricultural Research Corporation (EMBRAPA), the US
524 Forest Service, and USAID, and the US Department of State. La Selva field work was supported
525 by the U.S. National Science Foundation LTREB Program NSF LTREB 1357177. Data in Chocó
526 are available as part of the Reducing Emissions from Deforestation and forest Degradation
527 (REDD) project. FES was supported by Natural Environment Research Council (NERC) grants
528 (‘BIO-RED’ NE/N012542/1 and ‘AFIRE’ NE/P004512/1) and Newton Fund (‘The UK
529 Academies/FAPESP Proc. N°: 2015/50392-8 Fellowship and Research Mobility’). The AGB
530 data for Paracou were made available courtesy of CIRAD (B. Hérault).
531
532 © 2018. All rights reserved.
533
534
535

536 **Data accessibility**

537 The BCI Lidar and forest inventory dataset used in this research are publically available from the
538 Office of Bioinformatics, Smithsonian Tropical Research Institute. All relevant data are within
539 the paper and its Supporting Information files.
540

541

542 **References**

543

544 Andersen, H. E., Reutebuch, S. E., McGaughey, R. J., d’Oliveira, M. V. and Keller, M.:
545 Monitoring selective logging in western Amazonia with repeat Lidar flights. *Remote Sens.*
546 *Environ.*, 151, 157-165, 2014.
547
548 Asner, G. P., Mascaro, J., Muller-Landau, H. C., Vieilledent, G., Vaudry, R., Rasamoelina, M.,
549 Hall, J. S. and van Breugel, M.: A universal airborne Lidar approach for tropical forest carbon
550 mapping. *Oecologia*, 168(4), 1147-1160, 2012.
551
552 Asner, G. P. and Mascaro, J.: Mapping tropical forest carbon: Calibrating plot estimates to a simple
553 Lidar metric. *Remote Sens. Environ.* 140, 614-624, 2014.
554
555 Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen,
556 T. J., Laurance, S. G., Laurance, W. F. and Lewis, S. L.: Variation in wood density determines

557 spatial patterns in Amazonian forest biomass. *Glob. Change Biol.*, 10(5), 545-562. doi:
558 10.1111/j.1365-2486.2004.00751.x, 2004.

559

560 Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange
561 rates of ecosystems: past, present and future. *Glob. Change Biol.*, 9(4), 479-492, 2003.

562

563 Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Novotny, V.,
564 Ødegaard, F., Roslin, T., Schmidl, J. and Tishechkin, A. K.: Arthropod diversity in a tropical
565 forest. *Science*, 338(6113), 1481-1484, 2012.

566

567 Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., de
568 Haulleville, T., Baya, F., Beeckman, H., Beina, D. and Couteron, P.: Seeing Central African forests
569 through their largest trees. *Sci. Rep.-UK*, 5, 13156, 2015.

570

571 Bioredd.org/ accessed 4.13.2016

572

573 Bohlman, S., and O'Brien, S.: Allometry, adult stature and regeneration requirement of 65 tree
574 species on Barro Colorado Island, Panama. *J. Trop. Ecol.*, 22(02), 123-136, 2006.

575

576 Brienen, R. J. W., Phillips, O. L., Feldpausch T. R., Gloor E., Baker, T. R., Lloyd, J. and Lopez-
577 Gonzalez G.: Long-Term Decline of the Amazon Carbon Sink. *Nature*, 519, 344.
578 <http://dx.doi.org/10.1038/nature14283>, 2015.

579

580 Brown, S., Gillespie, A. J., and Lugo, A. E.: Biomass estimation methods for tropical forests with
581 applications to forest inventory data. *Forest Sci.*, 35(4), 881-902, 1989.

582

583 Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., and Perez, R.: Error propagation and
584 scaling for tropical forest biomass estimates, *Philos. T. R. Soc. B*, 359, 409–420, 2004.

585

586 Chave, J., Réjou-Méchain, M., Bürquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., and
587 Vieilledent, G.: Improved allometric models to estimate the aboveground biomass of tropical trees.
588 *Glob. Change Biol.*, 20(10), 3177-3190, 2014.

589

590 Clark D. B. and Clark D. A.: Abundance, growth and mortality of very large trees in neotropical
591 lowland rain forest. *Forest Ecol. and Manag.*, 80, 235–244, 1996.

592

593 Clark, D. B. and Clark, D. A.: Landscape-scale variation in forest structure and biomass in a
594 tropical rain forest. *Forest Ecol. and Manag.*, 137, 185–198, 2000.

595

596 Condit, R.: Tropical Forest Census Plots. Springer Verlag and R.G. Landes Company. Berlin and
597 Georgetown, TX, 1998.

598

599 d'Oliveira, M. V. N., Reutebuch, S. E., McGaughey, R. J. and Andersen, H. E. : Estimating
600 forest biomass and identifying low-intensity logging areas using airborne scanning Lidar in
601 Antimary State Forest, Acre State, Western Brazilian Amazon. *Remote Sens. Environ.*, 124, 479-
602 491, 2012.

603
604 Denslow, J. S. : Gap portioning among tropical rainforest trees. *Biotropica*, 12, 47–55, 1980.
605
606 Disney, M. I., Kalogirou, V., Lewis, P., Prieto-Blanco, A., Hancock, S., and Pfeifer, M.:
607 Simulating the impact of discrete-return Lidar system and survey characteristics over young
608 conifer and broadleaf forests. *Remote Sens. Environ.*, 114(7), 1546-1560, 2010.
609
610 ENVI/IDL, Exelis Visual Information Solutions, Boulder, Colorado.
611
612 Espírito-Santo, F. D. B., Keller, M., Braswell, B., Nelson, B. W., Frolking, S., and Vicente, G.:
613 Storm intensity and old-growth forest disturbances in the Amazon region. *Geophys. Res. Lett.*,
614 37(11), 2010.
615
616 Espírito-Santo, F. D. B., Keller, M. M., Linder, E., Oliveira, R. C. Junior, Pereira, C. and
617 Oliveira, C. G.: Gap formation and carbon cycling in the Brazilian Amazon: measurement using
618 high-resolution optical remote sensing and studies in large forest plots. *Plant Ecol. Divers.*, 7,
619 305–318, 2014.
620
621 Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, A., Brienen, R. J., Feldpausch,
622 T. R., Lopez-Gonzalez, G., Malhi, Y., Ter Steege, H. and Pitman, N. C.: Hyperdominance in
623 Amazonian forest carbon cycling. *Nat. Commun.*, 6, 2015.
624
625 Fearnside, P. M.: Wood density for estimating forest biomass in Brazilian Amazonia. *Forest Ecol.*
626 and Manag., 90(1), 59-87, 1997.
627
628 Ferraz, A., Saatchi, S., Mallet, C., and Meyer, V.: Lidar detection of individual tree size in tropical
629 forests. *Remote Sens. Environ.*, 183, 318-333, 2016.
630
631 Figueiredo, E. O., d'Oliveira, M. V. N., Braz, E. M., de Almeida Papa, D. and Fearnside, P. M.:
632 LIDAR-based estimation of bole biomass for precision management of an Amazonian forest:
633 Comparisons of ground-based and remotely sensed estimates. *Remote Sens. Environ.*, 187, 281-
634 293, 2016.
635
636 Gentry, A. H.: *Four neotropical rainforests*. Yale University Press, 1993.
637
638 Goldstein, G., Andrade, J. L., Meinzer, F. C., Holbrook, N. M., Cavelier, J., Jackson, P., and Celis,
639 A.: Stem water storage and diurnal patterns of water use in tropical forest canopy trees. *Plant Cell*
640 *Environ.*, 21(4), 397-406, 1998.
641
642 Goodman, R. C., Phillips, O. L., and Baker, T. R.: The importance of crown dimensions to improve
643 tropical tree biomass estimates. *Ecol. Appl.*, 24(4), 680-698, 2014.
644
645 Gourlet-Fleury, S., Guehl, J.-M. and Laroussinie, O.: *Ecology and management of a neotropical*
646 *rainforest. Lessons drawn from Paracou, a long-term experimental research site in French*
647 *Guiana*. Elsevier, Amsterdam, 2004.
648

649 Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis.: Very high resolution
650 interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15),
651 1965-1978, 2005.

652 Hirata, Y.: The effects of footprint size and sampling density in airborne laser scanning to extract
653 individual trees in mountainous terrain. Proc. ISPRS WG VIII/2 "Laser-scanners for forestry and
654 landscape assessment", Vol. XXXVI, Part 8/W2, 3-6 October 2004, Freiburg, Germany, 2004.

655 Hopkinson, C.: The influence of flying altitude, beam divergence, and pulse repetition frequency
656 on laser pulse return intensity and canopy frequency distribution. Can. J. Remote Sens., 33(4),
657 312-324, 2007.

658

659 Hubbell, S. P., Foster, R. B., O'Brien, S. T., Harms, K. E., Condit, R., Wechsler, B., Wright, S. J.
660 and De Lao, S. L.: Light gap disturbances, recruitment limitation, and tree diversity in a
661 neotropical forest. Science, 283, 554-557, 1999.

662

663 Jubanski, J., Ballhorn, U., Kronseeder, K., Franke, J., and Siegert, F.: Detection of large above-
664 ground biomass variability in lowland forest ecosystems by airborne Lidar. Biogeosciences, 10(6),
665 3917-3930, 2013.

666

667 Kellner, J. R., and Asner, G. P.: Convergent structural responses of tropical forests to diverse
668 disturbance regimes. Ecol. Lett., 12(9), 887-897, 2009.

669

670 Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L., and Lovejoy, T. E.:
671 Conservation: rainforest fragmentation kills big trees. Nature, 404(6780), 836-836.
672 doi:10.1038/35009032, 2000.

673

674 Le Toan, T., Quegan, S., Davidson, M. W. J., Balzter, H., Paillou, P., Papathanassiou, K.,
675 Plummer, S., Rocca, F., Saatchi, S., Shugart, H. and Ulander, L.: The BIOMASS mission:
676 Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens.
677 Environ., 115(11), 2850-2860, 2011.

678

679 Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J.: Lidar remote sensing for ecosystem
680 studies, BioScience, 52, 19-30, 2002.

681

682 Lefsky, M. A.: A global forest canopy height map from the Moderate Resolution Imaging
683 Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett., 37(15), 2010.

684

685 Lefsky, M. A., Keller, M., Pang, Y., De Camargo, P. B., and Hunter, M. O.: Revised method for
686 forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J. Appl.
687 Remote Sens., 1(1), 013537, 2007.

688

689 Leitold, V., Keller, M., Morton, D. C., Cook, B. D., and Shimabukuro, Y. E.: Airborne Lidar-
690 based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for
691 REDD+. Carbon Balance Management, 10(1), 3, 2015.

692

693 Mascaro, J., Detto, M., Asner, G. P., and Muller-Landau, H. C.: Evaluating uncertainty in mapping
694 forest carbon with airborne Lidar. *Remote Sens. Environ.*, 115, 3770-3774, 2011.

695

696 Meyer, V., Saatchi, S. S., Chave, J., Dalling, J. W., Bohlman, S., Fricker, G. A., Robinson, C.,
697 Neumann, M., and Hubbell, S.: Detecting tropical forest biomass dynamics from repeated airborne
698 Lidar measurements. *Biogeosciences*, 10(8), 5421-5438, 2013.

699

700 Minh, D. H. T., Le Toan, T., Rocca, F., Tebaldini, S., Villard, L., Réjou-Méchain, M., Phillips, O.
701 L., Feldpausch, T.R., Dubois-Fernandez, P., Scipal, K. and Chave, J.: SAR tomography for the
702 retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French
703 Guiana. *Remote Sens. Environ.*, 175, 138-147, 2016.

704

705 Nepstad, D. C., Tohver. I. M., Ray D., Moutinho, P., and Cardinot, G.: Mortality of large trees and
706 lianas following experimental drought in an Amazon forest. *Ecology* 88, 2259–2269, 2007.

707

708 Nogueira, E. M., Fearnside, P. M., Nelson, B. W., and França, M. B.: Wood density in forests of
709 Brazil's 'arc of deforestation': Implications for biomass and flux of carbon from land-use change
710 in Amazonia. *Forest Ecol. and Manag.*, 248(3), 119-135, 2007.

711

712 Packalen, P., Strunk, J. L., Pitkänen, J. A., Temesgen, H., and Maltamo, M.: Edge-tree correction
713 for predicting forest inventory attributes using area-based approach with airborne laser scanning.
714 *IEEE J. Sel. Top. Appl.*, 8(3), 1274-1280, 2015.

715

716 Pascual, M., and Guichard, F.: Criticality and disturbance in spatial ecological systems. *Trends
717 Ecol. Evol.*, 20(2), 88-95, 2005.

718

719 Pearson, T. R., Brown, S., and Casarim, F. M.: Carbon emissions from tropical forest degradation
720 caused by logging. *Environ. Res. Lett.*, 9(3), 034017, 2014.

721

722 Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Núñez, P. V., Vásquez, R. M., Laurance,
723 S. G., Ferreira, L. V., Stern, M., Brown, S. and Grace, J.: Changes in the carbon balance of tropical
724 forests: evidence from long-term plots. *Science*, 282(5388), 439-442, 1998.

725

726 Phillips, O. L., Aragão, L. E., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y.,
727 Monteagudo, A., Peacock, J., Quesada, C. A. and Van Der Heijden, G.: Drought sensitivity of the
728 Amazon rainforest. *Science*, 323(5919), 1344-1347, 2009.

729

730 Popescu, S. C., Wynne, R. H., and Nelson, R. F.: Measuring individual tree crown diameter with
731 Lidar and assessing its influence on estimating forest volume and biomass. *Can. J. Remote Sens.*,
732 29(5), 564-577, 2003.

733

734 Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., and Czimczik, C. I.:
735 Soils of Amazonia with particular reference to the RAINFOR sites, *Biogeosciences*, 8, 1415-
736 1440, <https://doi.org/10.5194/bg-8-1415-2011>, 2011.

737

738 R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for

739 Statistical Computing, Vienna, Austria. URL <http://www.R-project.org/>.
740

741 Réjou-Méchain, M., Tymen, B., Blanc, L., Fauset, S., Feldpausch, T. R., Monteagudo, A., Phillips,
742 O. L., Richard, H. and Chave, J.: Using repeated small-footprint Lidar acquisitions to infer spatial
743 and temporal variations of a high-biomass Neotropical forest. *Remote Sens. Environ.*, 169, 93-
744 101, 2015.

745

746 Rocca, F., Dinh, H. T. M., Le Toan, T., Villard, L., Tebaldini, S., d'Alessandro, M. M., and Scipal,
747 K.: Biomass tomography: A new opportunity to observe the earth forests. *Int. Geosci. Remote
748 Se.*, 1421-1424 , 2014.

749

750 Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., Zutta, B. R.,
751 Buermann, W., Lewis, S. L., Hagen, S. and Petrova, S.: Benchmark map of forest carbon stocks
752 in tropical regions across three continents. *P. Natl Acad. Sci. USA*, 108(24), 9899-9904, 2011.

753

754 Saatchi, S. S., Asefi-Najafabady, S., Malhi, Y., Aragão, L. E., Anderson, L. O., Myneni, R. B.,
755 and Nemani, R.: Persistent effects of a severe drought on Amazonian forest canopy. *P. Natl Acad.
756 Sci. USA*, 110(2), 565-570, 2013.

757

758 Santiago, L. S., Goldstein, G., Meinzer, F. C., Fisher, J. B., Machado, K., Woodruff, D., and Jones,
759 T.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian
760 forest canopy trees. *Oecologia*, 140(4), 543-550, 2004.

761

762 Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy height globally with
763 spaceborne Lidar, *Journal of Geophysical Research - Biogeosciences*, 116, G04021,
764 doi:10.1029/2011JG001708, 2011.

765

766 Slik, J. W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F.,
767 Boundja, P., Clark, C. and Collins, M. : Large trees drive forest aboveground biomass variation in
768 moist lowland forests across the tropics. *Global Ecol. and Biogeogr.*, 22(12), 1261-1271, 2013.

769

770 Solé, R. V., and Manrubia, S. C.: Are rainforests self-organized in a critical state?. *J. Theor. Biol.*,
771 173(1), 31-40, 1995.

772

773 Strigul, N., Pristinski, D., Purves, D., Dushoff, J., and Pacala, S.: Scaling from trees to forests:
774 tractable macroscopic equations for forest dynamics. *Ecol. Monogr.*, 78(4), 523-545, 2008.

775

776 Ter Steege, H., Pitman, N. C., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molino, J. F.,
777 Prévost, M. F., Spichiger, R., Castellanos, H. and Von Hildebrand, P.: Continental-scale patterns
778 of canopy tree composition and function across Amazonia. *Nature*, 443(7110), 444-447, 2006.

779

780 Ter Steege, H., Pitman, N.C., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J.E., Phillips,
781 O. L., Castilho, C. V., Magnusson, W. E., Molino, J. F. and Monteagudo, A. :Hyperdominance in
782 the Amazonian tree flora. *Science*, 342(6156), 1243092, 2013.

783

784 Vauhkonen, J., Ene, L., Gupta, S., Heinzel, J., Holmgren, J., Pitkänen, J., Solberg, S., Wang, Y.,
785 Weinacker, H., Hauglin, K. M. and Lien, V.: Comparative testing of single-tree detection
786 algorithms under different types of forest. *Forestry*, 85(1), 27-40, 2011.

787

788 Vauhkonen, J., Næsset, E., and Gobakken, T.: Deriving airborne laser scanning based
789 computational canopy volume for forest biomass and allometry studies. *ISPRS J. Photogramm.*,
790 96, 57-66, 2014.

791

792 Vincent, G., Sabatier, D., Blanc, L., Chave, J., Weissenbacher, E., Pélissier, R., Fonty, E., Molino,
793 J. F. and Couteron, P.: Accuracy of small footprint airborne Lidar in its predictions of tropical
794 moist forest stand structure. *Remote Sens. Environ.*, 125, 23-33, 2012.

795

796 West, G.B., Enquist, B. J. and Brown, J. H. : A general quantitative theory of forest structure and
797 dynamics. *P. Natl Acad. Sci. USA*, 106, 7040–7045, 2009.

798

799 Zhou, J., Proisy, C., Descombes, X., Hedhli, I., Barbier, N., Zerubia, J., Gastellu-Etchegorry, J.
800 P. and Couteron, P.: Tree crown detection in high resolution optical and Lidar images of tropical
801 forest. *P. Soc. Photo-Opt. Ins.*, 7824. SPIE, 2010.

802

803
804
805
806
807
808
809
810
811

Table 1. Information on forest inventory plots. * Indicates that a site has been used for the calibration of the LCA model. Sources: Antimary and Cotriguaçu: (d'Oliveira et al., 2012; Fearnside, 1997), BCI: Center for Tropical Forest Science (CTFS) (Condit, 1998; Hubbell et al., 1999, 2005), Chocó: (bioredd.org), La Selva: Carbono project (Clark and Clark, 2000), Manaus and Tapajós: Espírito-Santo (unpublished results), Nouragues: (Réjou-Méchain et al., 2015), Paracou: (Gourlet-Fleury et al., 2004; Vincent et al., 2012). Rainfall data from WorldClim (Hijmans et al., 2005). AGB: aboveground biomass, WD: wood density.

Site	Data	Plots Size (ha)	N plots	Year	Mean WD (g cm ⁻³)	Mean AGB (Mg ha ⁻¹)	Annual rainfall (mm)
Antimary (Brazil)	Plot level	0.25	50	2010	0.61	234	2000
BCI * (Panama)	Tree level	1	50	2010	0.56	235	2600
Chocó (Colombia)	Tree level	0.25	42	2013	0.60	224	6000
Cotriguaçu (Brazil)	Not available	-	-	-	0.60	-	2000
La Selva * (Costa Rica)	Tree level	1	11	2009	0.45	178	4000
Manaus (Brazil)	Tree level	0.25	10	2014	0.66	263	2200
Nouragues * (French Guiana)	Plot level Tree level	1 1	33 7/33	2012	0.66	424	3000
Paracou * (French Guiana)	Plot level	1	85	2009-10	0.71	353	3000
Tapajós (Brazil)	Tree level	0.25	10	2014	0.62	238	1900

812
813

814

Table 2. Information on Lidar data and locations of the 9 research sites.

Site	Sensor	Year	Retur	Flight	Scanning	Frequency	NW corner lat	NW corner lon
(1km ² images)			ns m ⁻²	Altitude (m)	angle (°)	(kHz)		
Antimary	Optech ALTM3100EA	2010-2011	10-15	500	11	70	9°17'47.26"S	68°17'15.06"W
BCI	Optech ALTM3100EA	2009	8	1000	35	70	9°9'28.56"N	79°51'18.9"W
Chocó	Optech ALTM3033	2013	4	1000	20	33	3°57'5.71"N	76°49'10.31"W
Cotriguaçu	Optech ALTM3100EA	2011	10-15	850	11	60	9°27'8.87"S	58°51'51.22"W
La Selva	Optech ALTM3100EA	2009	4	1500	20	70	10°25'37.97"N	84°18.76"W
Manaus	Optech ALTM3100EA	2012	10-15	850 (max)	11	60	2°56'38.48"S	59°56'12.57"W
Nouragues	Riegl LMS-Q560	2012	12	400	45	200	4°3'10.0"N	52°42'19.95"W
Paracou	Riegl LMS-280i	2009	4	120-220	30	24	5°15'47.73"N	52°56'26.96"W
Tapajós	Optech ALTM3100EA	2011	10-15	850 (max)	11	60	2°50'53.41"S	54°57'44.53"W

815

816

817 **Table 3.** Coefficients, R^2 , RMSE and bias for the models used to estimate AGB_{LCA} without and with wood density
 818 (WD) as a weighting factor (m_{LCA}) and m_{LCA_wd} , respectively.

Model	Equation	a	b	R^2	RMSE	Bias	R^2 cross-val	RMSE cross-val	Bias cross-val
m_{LCA}	$AGB = aLCA + b$ (Eq. (2))	3.56	136.91	0.59	62.53	0.0	0.58	63.26	0.16
m_{LCA_wd}	$AGB = (aLCA+b) \times WD$ (Eq. (3))	4.47	270.27	0.78	46.02	-0.76	0.77	46.47	-0.63

819
820

822 **Figure 1.** Segmentation of the 1 km × 1 km images in each site using five canopy height thresholds. A minimum of
 823 100 contiguous pixels was used as a segmentation threshold in all cases.

824
 825 **Figure 2.** LCA in function of height thresholds in the nine study sites. The steepest slopes are between 24 m
 826 (Antimary) and 30 m (Nouragues), with an average of 27 m across sites. Steepness of slope was obtained by calculating
 827 the derivative of the sigmoid models characterizing each site.

828
 829 **Figure 3.** Distribution of R^2 between tree height thresholds used to determine LCA and AGB_{Local} in the nine 1 ha
 830 subareas (a) and distribution of R^2 between tree height thresholds and AGB_{inv} in 1 ha inventory plots of the four
 831 calibration sites (b). All optimal thresholds are between 23 m and 30 m. The average maximal height threshold is 27
 832 m.

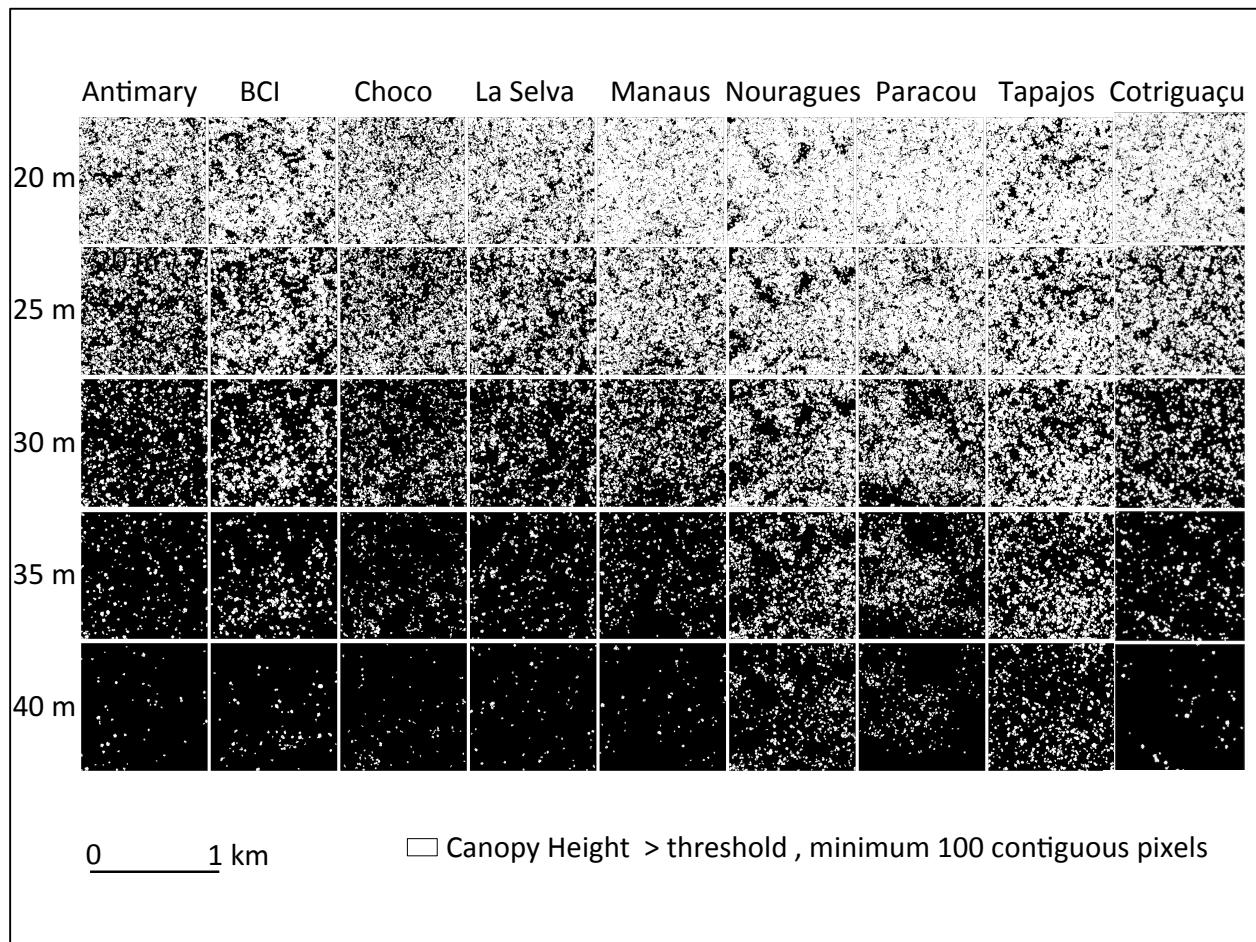
833
 834 **Figure 4.** Relationship between AGB_{inv} and LCA (a), AGB_{inv} normalized by averaged wood density (WD) (b), and
 835 AGB_{inv} vs. AGB_{LCA} estimated with LCA_wd model (c). The black line represents the 1-to-1 line. Normalizing AGB
 836 by averaged wood density brings the data from different sites closer to a common fit.

837
 838 **Figure 5.** AGB_{MCH} vs. AGB_{LCA} in the plots of the four calibration sites (a), and AGB_{MCH} vs. AGB_{LCA} in the 1 km²
 839 images of the nine sites (b). The black line represents the 1-to-1 line.

840
 841 **Figure 6.** Detection of changes of forest structure from selective logging in the Antimary study area showing a) the
 842 difference between pre- and post-logging (2010–2011) Lidar derived LCA at 1 ha grid cells over the entire study area,
 843 b) the histogram of LCA for the two Lidar datasets showing the mean difference and the reduction of medium and
 844 large LCA areas from selective logging, c) 2010 Lidar LCA segmentation at 1 m resolution over a sample area in the
 845 north of the study site, d) same LCA segmentation for 2011 Lidar data, and e) difference of the two segmented areas
 846 showing the extent of the logging impact on large trees in addition to natural changes of forest structure from changes
 847 in canopy gaps from tree falls and tree growth.

848
 849 **Figure 7.** Relationship between LCA and AGB_{LCA} (a) and relationship between AGB_{inv} of large trees (> 50 cm DBH)
 850 and total AGB_{inv} (b). In both cases, the intercepts represent the contribution of small trees to total AGB. Note that
 851 Manaus and Nouragues overlap because they have the same mean wood density, as well as Chocó and Cotriguaçu.

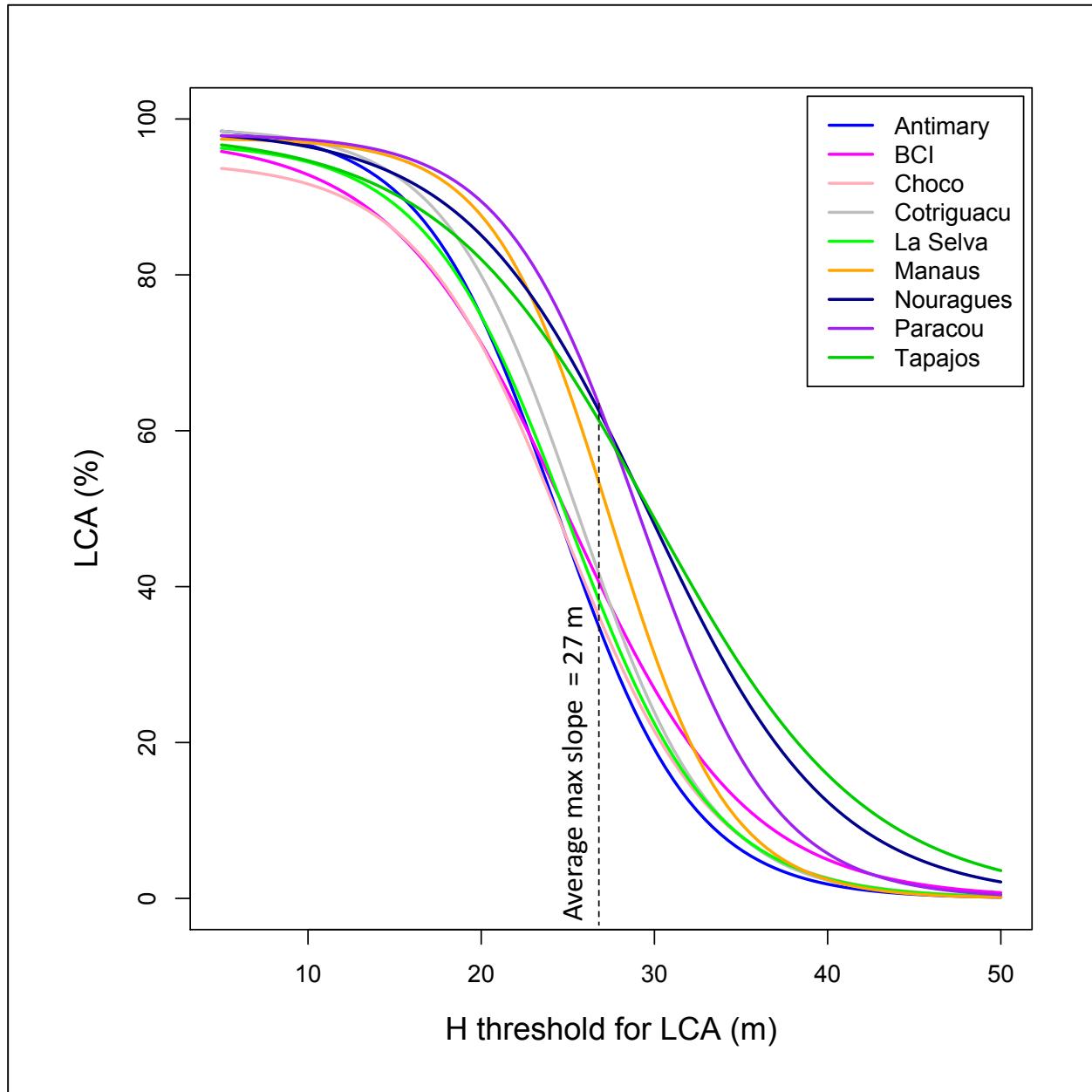
855 Figure 1



856

857

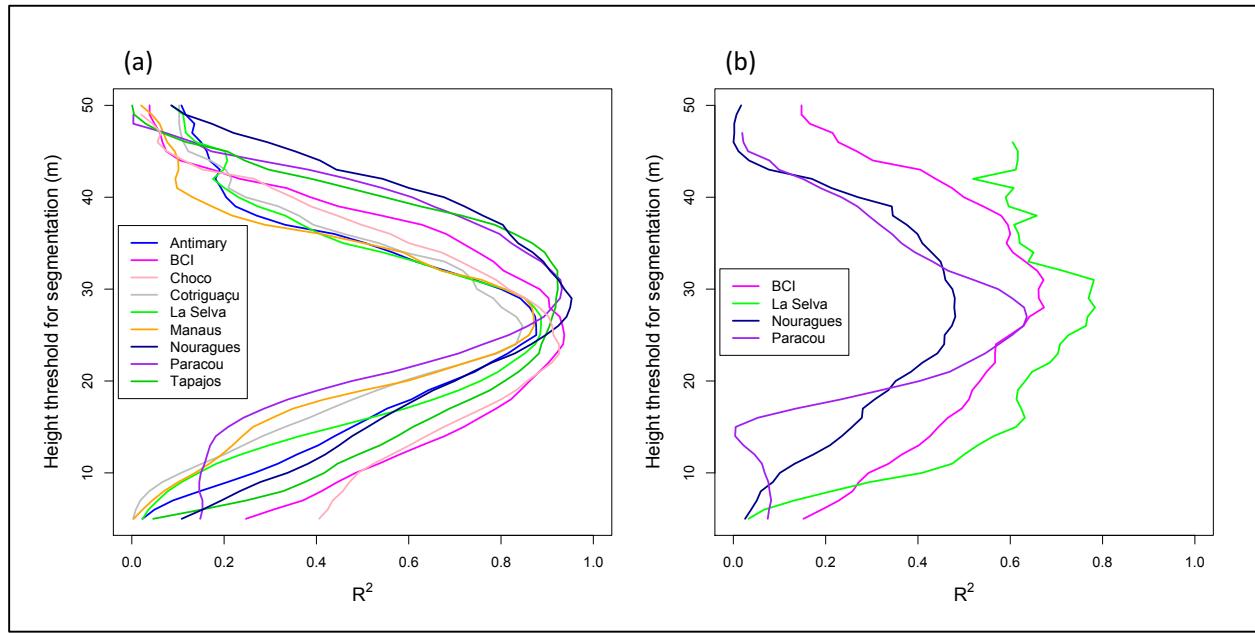
858 Figure 2



859

860

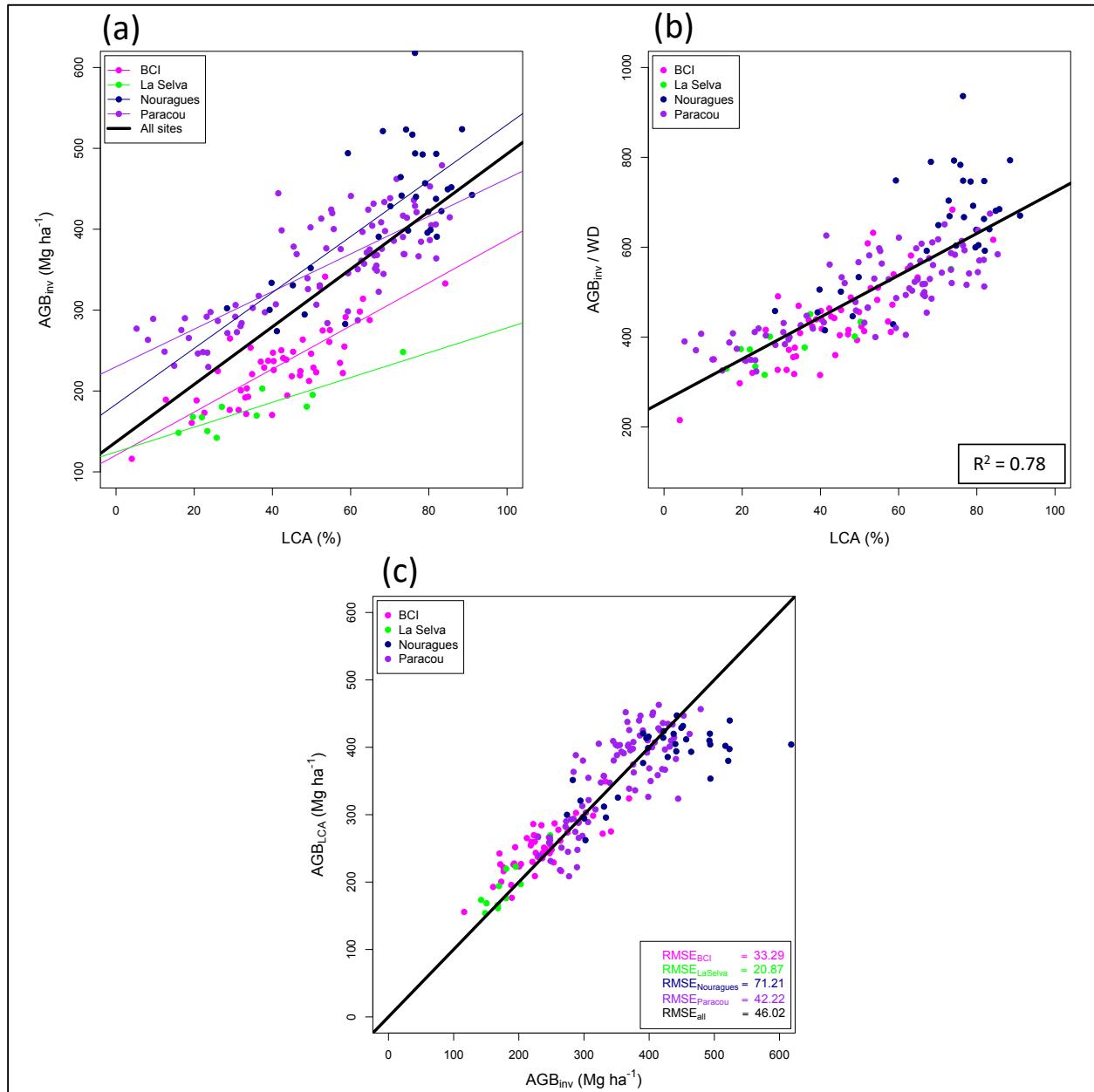
861 Figure 3



862

863

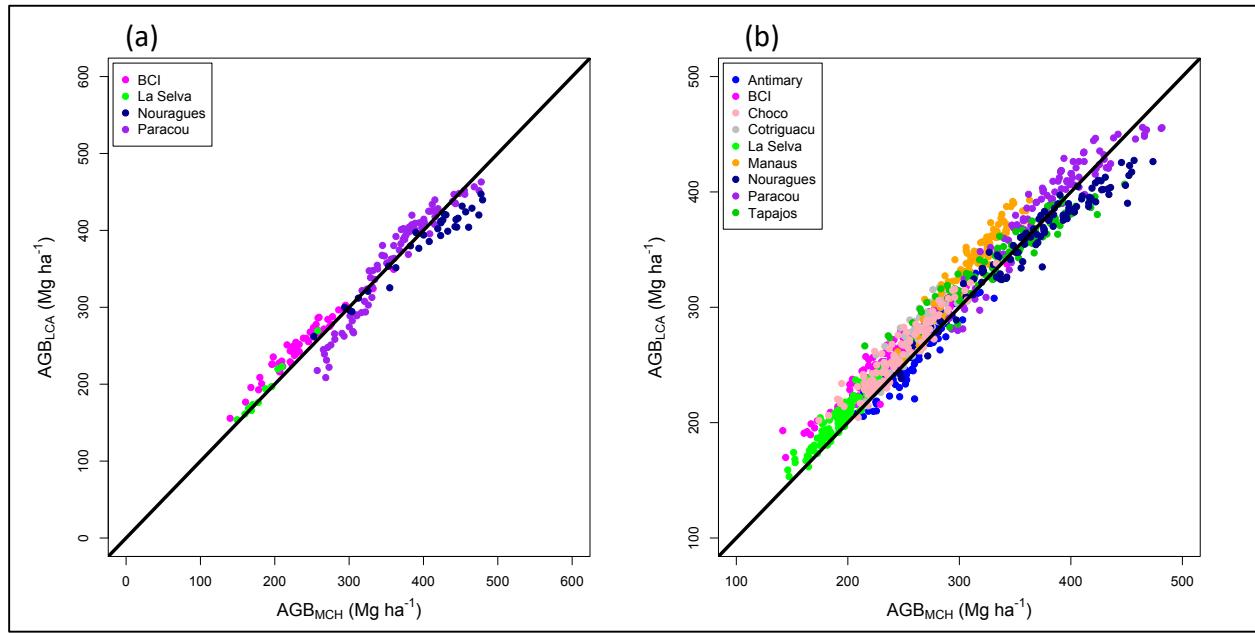
864 Figure 4



865

866

867 Figure 5

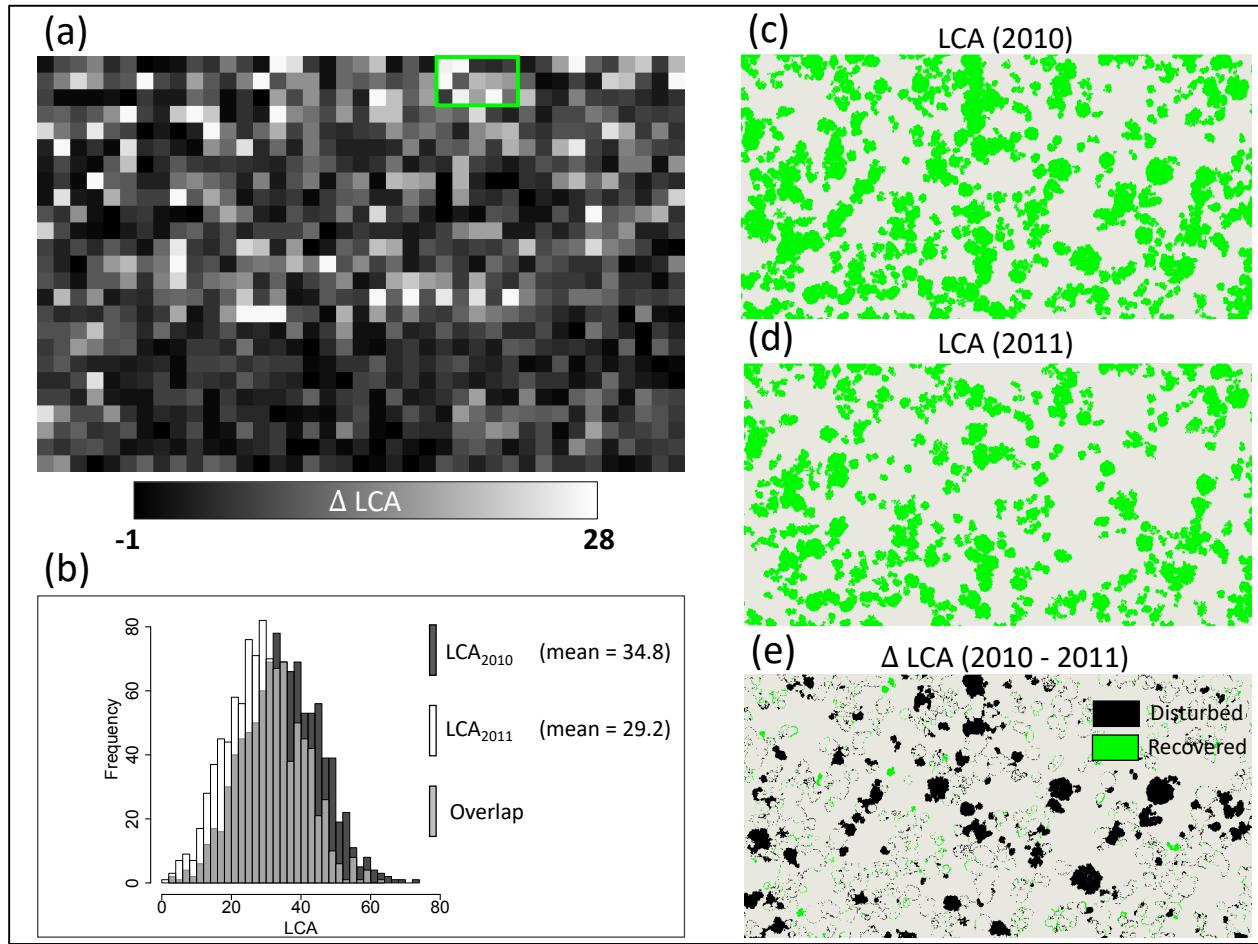


868

869

870

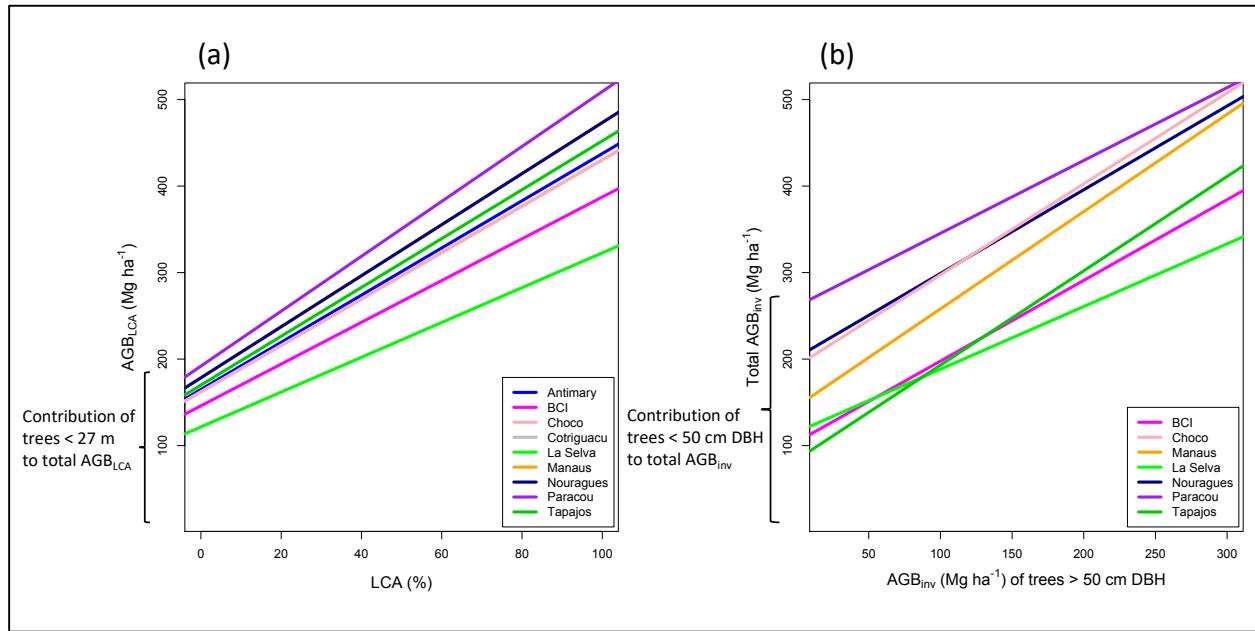
871 Figure 6



872

873

874 Figure 7



875