
1 
 

Global high resolution monthly pCO2 climatology for the coastal ocean derived from 1 

neural network interpolation  2 

Running head: Global coastal pCO2 maps 3 

Goulven G. Laruelle
1
, Peter Landschützer

2
, Nicolas Gruber

3
, Jean-Louis Tison

1
, Bruno 4 

Delille
4
, Pierre Regnier

1 
5 

1. Department Geoscience, Environment & Society (DGES), Université Libre de 6 

Bruxelles, Belgium 7 

2. Max Planck Institute for Meteorology, Hamburg, Germany 8 

3. Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH 9 

Zürich, Zürich, Switzerland 10 

4. Unité d'Oceanographie Chimique, Astrophysics, Geophysics and Oceanography 11 

department, University of Liège, Belgium 12 

Corresponding author: Goulven G. Laruelle 13 

 14 

Revised version of manuscript bg-2017-64 (Minor revisions) 15 

 16 

  17 



2 
 

Abstract 18 

In spite of the recent strong increase in the number of measurements of the partial pressure of 19 

CO2 in the surface ocean (pCO2), the air-sea CO2 balance of the continental shelf seas remains 20 

poorly quantified. This is a consequence of these regions remaining strongly under-sampled 21 

both in time and space, and of surface pCO2 exhibiting much higher temporal and spatial 22 

variability in these regions compared to the open ocean. Here, we use a modified version of a 23 

two-step artificial neural network method (SOM-FFN, Landschützer et al., 2013) to 24 

interpolate the pCO2 data along the continental margins with a spatial resolution of 0.25 25 

degrees and with monthly resolution from 1998 until 2015. The most important modifications 26 

compared to the original SOM-FFN method are (i) the much higher spatial resolution, and (ii) 27 

the inclusion of sea-ice and wind speed as predictors of pCO2. The SOM-FFN is first trained 28 

with pCO2 measurements extracted from the SOCATv4.0 data base. Then, the validity of our 29 

interpolation, both in space and time, is assessed by comparing the generated pCO2 field with 30 

independent data extracted from the LDVEO2015 data base. The new coastal pCO2 product 31 

confirms a previously suggested general meridional trend of the annual mean pCO2 in all the 32 

continental shelves with high values in the tropics and dropping to values beneath those of the 33 

atmosphere at higher latitudes. The monthly resolution of our data product permits us to 34 

reveal significant differences in the seasonality of pCO2 across the ocean basins. The shelves 35 

of the western and northern Pacific, as well as the shelves in the temperate North Atlantic 36 

display particularly pronounced seasonal variations in pCO2, while the shelves in the 37 

southeastern Atlantic and in the South Pacific reveal a much smaller seasonality. The 38 

calculation of temperature normalized pCO2 for several latitudes in different oceanic basins 39 

confirms that the seasonality in shelf pCO2 cannot solely be explained by 40 
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temperature-induced changes in solubility, but are also the result of seasonal changes in 41 

circulation, mixing, and biological productivity. Our results also reveal that the amplitudes of 42 

both thermal and non-thermal seasonal variations in pCO2 are significantly larger at high 43 

latitudes. Finally, because this product’s spatial extent includes parts of the open ocean as well, 44 

it can be readily merged with existing global open ocean products to produce a true global 45 

perspective of the spatial and temporal variability of surface ocean pCO2.  46 

   47 
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1. Introduction  48 

The quantitative contribution of the coastal ocean to the global oceanic uptake of atmospheric 49 

CO2 is still being debated (Borges et al., 2005; Chen and Borges, 2009; Cai, 2011; 50 

Wanninkhof et al., 2013; Gruber, 2015), but several recent studies have suggested that the flux 51 

density, or uptake per unit area, is greater over continental shelf seas than over the open ocean 52 

(Chen et al., 2013; Laruelle et al., 2014). Laruelle et al. (2014) used more than 3·10
6
 pCO2 53 

measurements from the SOCATv2 database (Pfeil et al., 2014 Bakker et al., 2016) to 54 

demonstrate very strong disparities in air-seawater CO2 exchange at the regional scale as well 55 

as pronounced seasonal variations, especially at temperate latitudes. Furthermore, it was 56 

suggested that, despite the presence of a seasonally varying sea-ice cover, Arctic continental 57 

shelves are a regional hotspot of CO2 uptake (Bates et al., 2006; Laruelle et al., 2014; 58 

Yasunaka et al., 2016). Yet, even with this much larger dataset compared to previous studies, 59 

large regions of the global coastal ocean remained either void of data or very poorly 60 

monitored in space and time, including the seasonal cycle. These data gaps not only limit our 61 

ability to reduce uncertainties in flux estimates and to unravel whether they differ from the 62 

adjacent open ocean, but also hamper the identification and quantification of the many 63 

processes controlling the source-sink nature of the coastal ocean (Bauer et al., 2013). Laruelle 64 

et al., (2014) attempted to overcome this limitation by combining various upscaling methods 65 

depending on data density in different regions, e.g., resorted to using annual means, wherever 66 

the seasonal coverage was deemed to be insufficient. But they could not overcome the 67 

limitation that the data alone are insufficient to assess whether there are any trends in coastal 68 

fluxes. This is a serious gap when considering that the influence of human activity on coastal 69 

system is increasing rapidly (Doney, 2010; Cai, 2011; Regnier et al., 2013; Gruber, 2015). 70 
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In the open ocean, novel statistical methods relying on artificial neural networks (ANNs) have 71 

permitted the generation of a series of high-resolution continuous monthly maps for ocean 72 

surface CO2 partial pressures (pCO2) (e.g., Landschützer et al., 2013; Sasse et al., 2013; 73 

Nakaoka et al., 2013; Zeng et al., 2014). Although differing in their details (see e.g., 74 

Rödenbeck et al., 2015 for an overview), these products typically have a nominal spatial 75 

resolution of 1-degree and monthly temporal resolution. By filling in the spatial and temporal 76 

gaps, these products greatly facilitate the calculation of the air-sea CO2 exchange, as they do 77 

not require separate assumptions about the surface ocean pCO2 in areas lacking data. Such 78 

methods are also well suited to resolve spatial gradients, and they also permit to determine 79 

seasonal and inter-annual variations and trends in pCO2 (e.g., Landschützer et al., 2014, 2015, 80 

2016; Zeng et al., 2014). Because of the small relative contribution of the coastal ocean to the 81 

total oceanic surface area and the relatively coarse spatial resolution of the ANN-based 82 

surface ocean pCO2 products so far, they are not well suited to resolve the high 83 

spatio-temporal variations of the surface ocean pCO2 fields along the shelves.  84 

Reproducing the complex seasonal dynamics of the CO2 exchange at the air-water interface in 85 

the coastal ocean is of particular importance considering that they often have large 86 

intra-annual variability (Signorini et al., 2013). For instance, in temperate climates, it is 87 

common for continental shelf waters to turn from CO2 sinks for the atmosphere during spring 88 

to CO2 sources during summer (Shadwick et al., 2010; Cai, 2011; Laruelle et al., 2014, 2015). 89 

Shelf waters are also typically characterized by small-scale physical features such as coastal 90 

currents, river plumes and eddies inducing sharp biogeochemical fronts (Liu et al., 2010) that 91 

markedly influence the spatial patterns of the pCO2 fields (e.g., Turi et al., 2014).  92 
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To resolve the high spatial and temporal variability in air-sea CO2 exchange over the global 93 

shelf region, the two step artificial neural network method developed by Landschützer et al. 94 

(2013) is modified here for the specific conditions that prevail in these environments. Our 95 

calculations are performed at a much finer resolution of 0.25 degree and new environmental 96 

drivers such as sea ice cover are used to account for the potentially significant role of sea-ice 97 

in the CO2 exchange (Bates et al., 2006; Vancoppenolle et al., 2013; Parmentier et al., 2013; 98 

Moreau et al., 2016; Grimm et al., 2016). The definition of the coastal/open oceanic boundary 99 

varies strongly from one study to the other (Walsh, 1988; Laruelle et al., 2013), with a 100 

potentially large impact on the shelf CO2 budget (Laruelle et al., 2010). Here, we use a very 101 

wide definition for this boundary (i.e., 300km width or 1000m depth) to secure spatial 102 

continuity between our new shelf pCO2 product and those already existing for the open ocean 103 

(Landschützer et al., 2013, 2016; Rödenbeck et al., 2015). Our approach leads to the first 104 

continuous and monthly resolved pCO2 maps over the 1998-2015 period across the global 105 

shelf region, permitting us to study the seasonal dynamics of these regions in relationship to 106 

that of the adjacent open ocean. 107 

  108 

2. Methods 109 

The method used in this study is a modified version of the SOM-FFN method developed by 110 

Landschützer et al. (2013) to calculate monthly-resolved pCO2 maps of the Atlantic Ocean at 111 

a 1 degree resolution and later applied to the entire global open ocean (Landschützer et al., 112 

2014). The reconstruction of a continuous pCO2 field involves establishing numerical 113 

relationships between pCO2 and a number of independent environmental predictors that are 114 

known to control its variability both in time and space. The first step of the method relies on 115 
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the use of a neural network clustering algorithm (Self Organizing Map, SOM) to define a 116 

discrete set of biogeochemical provinces characterized by similar relationships between the 117 

independent environmental variables and a monthly resolved pCO2 field. The second step 118 

consists in deriving non-linear and continuous relationships between pCO2 and some or all of 119 

the aforementioned independent variables using a feed-forward network (FFN) method, 120 

within each biogeochemical province created by the SOM. The method is extensively 121 

documented in Landschützer et al. (2013, 2014) but the specific modifications introduced in 122 

this study to better simulate the characteristics of the shelves, the choice of environmental 123 

drivers and their data sources as well as the definition of the geographic extent of this analysis 124 

are described in the following sections. Figure 1 summarizes the different steps involved in 125 

the calculations of the SOM-FFN. 126 

 127 

2.1. Data Sources and processing 128 

All the datasets used in our calculations were converted from their original spatial resolutions 129 

to a regular 0.25 degree resolution grid. The temporal resolution of all datasets is monthly (i.e., 130 

216 months over the entire period), except for the bathymetry that is assumed constant over 131 

the course of the simulations and wind speed whose original resolution is 6 hours. For the 132 

latter, monthly averages are calculated for each grid cell to generate monthly values. SST and 133 

SSS maps were taken from the Met Office’s EN4, which consists of quality controlled 134 

subsurface ocean temperature and salinity profiles and their objective analyses (Good et al., 135 

2009). The bathymetry was extracted from the global ETOPO2 database (US Department of 136 

Commerce, 2006). The sea ice concentrations were taken from the global 25 km resolution 137 

monthly data product compiled by the NSIDC (National Snow and Ice Cover Data; Cavalieri 138 
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et al., 1996). Wind speed data were extracted from ERA-Interim reanalysis (Dee et al., 2011). 139 

The chlorophyll surface concentrations were extracted from the monthly 9 km resolution 140 

SeaWIFS data product prior to 2010 and from MODIS for later years (NASA, 2016). The list 141 

of all data products used in the calculations as well as the transformations applied to produce 142 

monthly 0.25 degrees resolution forcing files are summarized in table 1. 143 

Finally, the surface ocean pCO2 were taken from the gridded SOCATv4 product (Sabine et al., 144 

2013; Bakker et al., 2016) while those used for the validation stem from the LDEOv2015 145 

database (Takahashi et al., 2016). With our definition of the coastal zone, SOCATv4 contains 146 

~8 10
6
 data points and LDEO ~5.6 10

6
, with over 70% of the data shared with SOCATv4. 147 

Because of this significant overlap between both data products, we created two entirely 148 

independent datasets by randomly assigning each of those common data point to either 149 

database to insure that each data only belongs to one dataset. The resulting datasets are named 150 

SOCAT* and LDEO*, respectively, with the former being used for training and the latter for 151 

validation. Prior to the creation of both datasets, all data from SOCAT were converted from 152 

fCO2 (fugacity of CO2 in water) to pCO2 using the formulation reported in Takahashi et al. 153 

(2012). The data densities of SOCAT* and LDEO* are shown on Fig. 2 and reveal a 154 

heterogeneous spatial coverage. Northern temperate shelves are generally well covered, 155 

especially in the North Atlantic. In this region, the data density is better in SOCAT* than 156 

LDEO* thanks to the addition of many European cruises in the SOCAT database. In contrast, 157 

equatorial regions remain under-sampled, especially in the Indian Ocean. Because of the 158 

difficulty of sampling in waters seasonally covered in ice, Polar Regions are very unevenly 159 

represented in SOCAT* and LDEO*. Luckily, some areas, such as some parts of Antarctica 160 



9 
 

and the Bering Sea do contain enough data to train and validate the SOM-FFN. Overall 161 

SOCAT* contains roughly 40% more data than LDEO*.  162 

 163 

2.2. Modifications of the SOM-FFN method  164 

The specific characteristics of the continental shelves motivated a number of modifications of 165 

the global ocean SOM-FFN method, including a 16-fold increase in spatial resolution from 1 166 

degree to 0.25 degree, the addition of new environmental variables as biogeochemical 167 

predictors, and a shortening of the simulation period to the period 1998 through 2015. All 168 

these modifications are detailed here below. 169 

The higher resolution of 0.25°×0.25° results in over 2 million grid cells that help to better 170 

track the global coastline and its complex geomorphological features (Crossland et al., 2005; 171 

Liu, 2010). It is also common along Eastern and Western boundary currents to find 172 

continental shelves as narrow as 10-20 km, i.e., an extension that is significantly smaller than 173 

a single cell at 1-degree resolution. Additionally, biogeochemical fronts associated with river 174 

plumes, coastal currents and upwelling are characterized by spatial scales of the order of tens 175 

of kilometers or even smaller (Wijesekera et al., 2003). The chosen resolution is also identical 176 

to the gridded coastal pCO2 product from the SOCAT initiative (Sabine et al, 2013, Bakker et 177 

al., 2014).  178 

The definition of the geographic extent of the shelf region excludes estuaries and other 179 

inland water bodies, but uses a wide limit for the outer continental shelf that encapsulates all 180 

current definitions of the coastal ocean. This approach facilitates future integration with 181 

existing global ocean data products (e.g., Landschützer et al., 2016; Rödenbeck et al., 2015) 182 

and model outputs, which typically struggle to represent the shallowest parts of the ocean 183 
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(Bourgeois et al., 2016). The outer limit used here is given by whichever point is the furthest 184 

from the coast: either 300 km distance from the coastline (which roughly corresponds to the 185 

outer edge of territorial waters (Crossland et al., 2005)) or the 1000 m isobaths (Laruelle et al., 186 

2013). The resulting domain (Fig SI B) covers 77 million km
2
, more than twice the surface 187 

area generally attributed to the coastal ocean (Walsh et al., 1998; Liu et al., 2010; Laruelle et 188 

al., 2013).  189 

The predictor variables for the SOM-FFN networks were chosen based on a set of 190 

trial-and-error experiments with the selection criteria being the quality of fit, i.e., the best 191 

reconstruction of the available observations. The first step of the SOM-FFN calculations, i.e., 192 

the self-organizing map-based clustering (SOM) relies on the assignment of the surface ocean 193 

data to biogeochemical provinces sharing common spatio-temporal patterns of sea-surface 194 

temperature (SST), sea-surface salinity (SSS), bathymetry, rate of change in sea ice coverage, 195 

wind speed and observed pCO2. Chlorophyll a is not included in the list of environmental 196 

factors used to generate the biogeochemical provinces because of the incomplete data 197 

coverage at high latitude in winter due to cloud coverage. Both the use of wind speed and the 198 

rate of change in monthly sea ice concentration are novelties compared to the set-up of 199 

Landschützer et al. (2013). The latter is calculated from the gridded monthly sea ice 200 

concentration field of Cavalieri et al. (1996). It allows accounting for the complex processes 201 

occurring in melting and forming sea ice that are known to strongly influence the dynamics of 202 

the carbon within sea-ice covered areas (Parmentier et al., 2013). This first step is performed 203 

without any data normalization of the datasets, as this permits us to give more weight to the 204 

pCO2 data. Based on a series of simulations using different numbers of biogeochemical 205 

provinces, we found that a clustering of the data into 10 biogeochemical provinces minimized 206 
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the average deviation between simulated and observed pCO2 (see below) while insuring that 207 

at least 1000 different grid cells can be used for validation against LDEO* in each province. 208 

In the second step of the estimation procedure, i.e., the application of the feed-forward 209 

network method (FFN), SST, SSS, bathymetry, sea-ice concentration and chlorophyll a are 210 

used as predictors to establish the non-linear relationships between these predictors and the 211 

target pCO2 (for data sources, see below). Similar to the SOM in step one, the selected 212 

variables not only comprise proxies representing the solubility and biological pumps of the 213 

coastal ocean, but also yield the best fit to the data. These calculations are done iteratively 214 

using a sigmoid activation function on an incomplete dataset in order to perform an 215 

assessment on the remaining data after each iteration, until an optimal relationship is found. 216 

Additionally, as performed in Landschützer et al. (2015), the output pCO2 data were smoothed 217 

using the spatial and temporal mean of each point’s neighboring pixels both in time and space 218 

within the 3 pixel neighborhood domain. This operation is performed iteratively and does not 219 

significantly alter the results, but it ensures smoother transitions in the pCO2 field at the 220 

boundaries between the provinces. This smoothing method yielded good results for the open 221 

Southern Ocean where marked pCO2 fronts are also observed (Landschützer et al., 2015) and 222 

was deemed relevant here due to the potentially strong pCO2 gradients characterizing the 223 

shelves.  224 

Another change from the most recent global ocean SOM-FFN application (Landschützer 225 

et al., 2016) is the different temporal extension of the simulation period, which covers the 226 

period from 1998 through 2015, instead of 1982 through 2011. This overall shortening was 227 

necessary because one of environmental driver, i.e., chlorophyll data derived from SeaWIFS, 228 

only starts in September 1997 (NASA, 2016). Monthly chlorophyll data throughout the entire 229 
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simulation period was preferred here over the use of a monthly climatology as done in 230 

Landschützer et al. (2016) to better capture inter-annual variability. At the same time, we have 231 

been able to extend the coastal product by 4 years to the end of 2015. 232 

2.3. Model training and evaluation 233 

We evaluated the coastal SOM-FFN product using the root mean squared error (RMSE) 234 

metric, calculated as the difference between estimated and observed pCO2. During the early 235 

development stage, preliminary simulations were performed using only data from SOCAT 236 

v2.0 (Pfeil et al., 2013, Sabine et al. 2013) to train the FFN algorithm. Each simulation was 237 

carried out using different subsets of environmental predictors extracted from the complete set 238 

(SST, SSS, bathymetry, sea ice concentration and chlorophyll a). The results obtained were 239 

then compared to the more complete dataset of SOCAT*, which contain 40% more shelf 240 

pCO2 measurements from 1998 through 2015 (Bakker et al., 2016). This process allowed, for 241 

each province, to calculate the RMSE for several combinations of independent predictor 242 

variables for the pCO2. Next, the combinations of predictors displaying the lowest RMSE 243 

were kept for the final simulations, which then used all data from SOCAT*. Thus, the pCO2 244 

calculations in each province potentially rely on a different set of predictors (Table 1).  245 

The coastal SOM-FFN results are validated through a comparison with the LDEO* dataset 246 

through the calculation of residuals and RMSE. Additionally, a model-to-model comparison is 247 

also performed with the global ocean results of Landschützer et al. (2016) in the regions 248 

where the domains overlap. To perform this latter analysis, the coastal high resolution coastal 249 

pCO2 product generated here was aggregated to a regular monthly 1° resolution to match the 250 

grid used by Landschützer et al. (2016).  251 
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Finally, the ability of the coastal SOM-FFN to capture seasonal variations is assessed by 252 

comparing the cell-average simulated monthly pCO2 to monthly means for cells extracted 253 

from the LDEO* database. The cells retained for this analysis are all those for which the 254 

average for each month could be calculated from measurements performed on at least three 255 

different years.  256 

 257 

3. Results and discussion 258 

3.1. Biogeochemical provinces 259 

 Despite the fact that the SOM is not given any prior knowledge regarding space and time, 260 

the spatial distribution of the 10 biogeochemical provinces is mostly controlled by latitudinal 261 

gradients and distance from the coast (Figure 3; high-resolution monthly maps are also 262 

available in the supplementary information (SI)). Although the exact spatial extent of each 263 

province varies from one month to the other following the seasonal variations of the 264 

environmental forcing parameters, each province roughly corresponds to one type of 265 

climatological setting. Nevertheless, because of these spatial migrations, most cells belong to 266 

different provinces depending on the month (see figure SI B). These seasonal migrations are 267 

mostly driven by changes in temperature, sea-ice cover, pCO2 and, to a lesser degree, salinity. 268 

P1, P2 (Province 1, etc.) and P4 are three of the largest provinces, covering a total of 35.7·10
6
 269 

km
2
 and representing warm tropical regions with bottoms at shallow to intermediate depths. 270 

During summer, the spatial coverage of P4 expands north- and southward as a consequence of 271 

warming. P2 represents tropical regions with deeper bottom depths. P1 and P2 display less 272 

seasonal changes in their spatial distribution than P4 due to weaker seasonal temperature 273 

changes. P3 and P6, which cover a combined 9.2·10
6
 km

2
, are found in the Southern 274 
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Hemisphere and correspond to sub-polar and temperate regions, respectively. Their spatial 275 

distributions are subject to marked latitudinal migrations throughout the year as a result of the 276 

large amplitude changes in seasonal temperature observed in mid-latitude coastal waters 277 

(Laruelle et al., 2014). Similarly, P7, correspond to temperate Northern Hemisphere waters 278 

and display marked seasonal changes including the shelves of the Norwegian basin in summer 279 

and most of the Mediterranean Sea in winter. P5, P8, P9 and P10 together cover 22.7·10
6
 km

2
. 280 

These provinces are partly (seasonally) covered by sea-ice with an average spatial ice cover 281 

over the study period of 57%, 39%, 54% and 46% for P5, P8, P9 and P10, respectively. P5 282 

represents the shelves of Antarctica all year round. P8 includes large fractions of the enclosed 283 

seas at higher northern latitudes such as the Baltic Sea and Hudson Bay while P9 (only 284 

2.9·10
6
 km

2
) represents permanently deep and cold polar regions. P5 and P10 represent most 285 

of the polar shelves (P5 for the Antarctic and P10 for the Arctic) and are covered in sea ice at 286 

levels of 57% and 46%, respectively. The regions experiencing most notable shifts in province 287 

allocation during the year include the northern Polar Regions as well as the temperate narrow 288 

shelves of the Atlantic and Pacific, particularly Western Europe and Eastern North America 289 

and Eastern Asia (see Fig. SI B).  290 

 291 

3.2. Performance of the coastal SOM-FFN 292 

The mean climatological pCO2 estimated by the coastal SOM-FFN for annually and 293 

seasonally averaged conditions are reported in Figure 4. Before briefly analysing the main 294 

spatial and temporal variability of the pCO2 fields (section 3.3), we evaluate here the overall 295 

performance of our interpolation method globally and at the level of each province, including 296 

its ability to capture the seasonal cycle.   297 
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3.2.1. Comparison with training data (SOCAT*) 298 

Within each province, the pCO2 simulated by the coastal SOM-FFN are compared to the 299 

measurements extracted from SOCAT v4.0 (table 2). Globally, the average difference between 300 

observed and simulated pCO2 is almost null (overall bias = 0.0 µatm) and the absolute bias is 301 

lower than 4 µatm in all ten provinces. The average RMSE over all provinces of 32.9 µatm is 302 

comparable with those reported for other statistical reconstructions of coastal pCO2 fields 303 

summarized by (Chen et al., 2016), although none of these studies were performed at global 304 

scale and many rely on different statistical approaches often using remote sensing data. This 305 

RMSE is about twice that achieved for the open ocean (Landschützer et al., 2014) reflecting 306 

the larger spatiotemporal variability in the coastal ocean, as well as more complex processes 307 

governing that variability. Considering these complexities, achieving at the global scale 308 

RMSE in the same range as those reported for regional coastal studies is quite good.   309 

Significant variations in both bias and RMSE can be observed between provinces (table 2). P1 310 

and P3 have the best fit between simulated and observed pCO2 with RMSE lower than 20 311 

µatm. In 5 provinces that cover a cumulated surface area of 31.2 10
6
 km

2
 (P1, P2, P3, P6 and 312 

P9) RMSE’s do not exceed 25 µatm. In P8 however, the maximum RMSE is found with a 313 

value of 46.8 µatm. Overall, the performance of the SOM-FFN deteriorates for provinces 314 

regularly covered by sea-ice ice (P5, P8-10) in which data coverage is relatively low (RMSE> 315 

34 µatm). This trend is consistent with the spatial distribution of the average residual errors 316 

between the pCO2 field generated by the model and pCO2 data extracted SOCAT* (Fig. 5a). 317 

The residuals are obtained by subtracting the observed values from model output in each grid 318 

cell for every month where observations are available. Thus, positive values correspond to 319 

cells where the simulated pCO2 overestimates the field data, while negative values represent 320 
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cells where the simulated pCO2 underestimates the field data. The bulk of the residuals fall in 321 

the -20 to 20 µatm range in temperate and tropical regions, except for very shallow regions 322 

tha are under the influence of a large river such as the Mississippi. There, the SOM-FFN often 323 

underestimates the observed pCO2. There also exist coastal areas where the SOM-FFN 324 

underestimates the observed pCO2 such as the Nova Scotia, the South Western coast of 325 

England or the shelves of California and Morocco. The complex hydrodynamics of those 326 

regions (some of them being characterized as upwelling regions) may explain the weaker 327 

performance of the SOM-FFN. At high latitudes, the performance of the model deteriorates 328 

somewhat. For example, the Bering Sea both contains cells with very high (>50 µatm) and 329 

very low average residuals (<-50 µatm).   330 

  331 

3.2.2. Evaluation with LDEO* data  332 

The comparison of our results with the data from LDEO* yields a global bias of 0.0 µatm 333 

(calculated as the average difference between observed and SOM-FFN estimated pCO2) for 334 

the entire shelf domain. However, the spread is relatively large with an average RMSE of 39.2 335 

µatm. This average RMSE is 19% larger than the one obtained when comparing the 336 

SOM-FFN results with the SOCAT* dataset, which has been used to train the model. A 337 

province-based analysis reveals strong differences in the calculated RMSEs, ranging from 20 338 

µatm to 53 µatm (Table 2, LDEO*). A review of various statistical models used to generate 339 

continuous global ocean pCO2 maps, including some using remote sensing data and 340 

algorithms, reports RMSE or uncertainties typically varying within the 10-35 µatm range 341 

(Chen et al., 2016) with outliers as high as 50 µatm in the Mississippi delta (Lohrenz and Cai, 342 

2006). This report also shows that open ocean estimates generally yields RMSE lower than 17 343 
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µatm, in agreement with Landschützer et al. (2014), whereas coastal estimates are associated 344 

with much higher uncertainties. This is likely because these coastal regions have complex 345 

biogeochemical dynamics and high frequency variability that cannot be fully captured with 346 

the current generation of data interpolation techniques using the limited available predictor 347 

data. 348 

In our simulations, the province averaged biases are larger than those calculated with 349 

SOCAT* but their absolute value remains small and never exceed 3.9 µatm (P8). Provinces 350 

P1, P2, P3 and P6 have RMSE < 30 µatm, which compares with the most robust pCO2 351 

regional coastal estimates from the literature (Chen et al., 2016). Together, these 4 provinces 352 

account for 37% of our domain. P4, P5 and P9 display RMSE comprised between 33 µatm 353 

and 38 µatm for P4 and P9, respectively. Overall, these 7 provinces covering the entire 354 

tropical and temperate latitudinal bands as well as some subpolar regions account for >72% of 355 

the shelf surface area and yield RMSE of less than 38 µatm and absolute biases of less than 356 

2.3 µatm. Provinces in the polar regions (P5, P7, P8 and P10) overall display larger deviations 357 

with respect to the LDEO* dataset, but the absolute value of their biases never exceeds 3.9 358 

µatm. Their RMSE all fall in the 51-53 µatm range. This suggests a significantly lower 359 

performance of the SOM-FFN in regions partly covered in sea-ice. This can be attributed to 360 

the limited number of available data points and their very heterogeneous distribution in time 361 

and space, as well as to the very limited range of variation of some of the controlling variable 362 

such as temperature and salinity. The relatively good performance of the model in tropical 363 

region might be partly attributed to the relatively small seasonal variations in pCO2 within 364 

these areas. The residuals calculated by subtracting the SOM-FFN results from LDEO* are 365 

very similar to those obtained by subtracting the SOM-FFN results from SOCAT* (Fig. 5b). 366 
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The residual errors have a nearly Gaussian distribution for every biogeochemical province 367 

with the exception of province P8 (Fig. 6). In this case, the distribution has not only the 368 

highest spread, but is also skewed toward high values.  369 

In order to evaluate the contribution of the newly added predictors compared to the oceanic 370 

set up of the SOM-FFN (Landschützer et al., 2013), the model was also trained without wind 371 

speed and sea ice cover. The RMSE obtained with those simulations (Table 4) are 372 

significantly higher than those obtained using all predictors (Table 3). However, the overall 373 

bias remain small. The results of those simulations are presented in the table below and allow 374 

to quantify how the addition of new predictors affects the performance of the model. For 375 

instance, it can be noticed that the global RMSE increases significantly (from 39.2 to 48 μatm 376 

in the comparison with LDEO* when chlorophyll, sea ice and wind speed are not taken into 377 

account and from 39.2 to 45 μatm when only sea ice and wind speed are not taken into 378 

account). This deterioration of the performance of the model, however, is not evenly affecting 379 

all provinces. Provinces located at high latitudes (i.e. P8, P9 and P10) perform significantly 380 

worse without the inclusion of wind speed and sea ice. 381 

 Finally, while the use of residuals and RMSE provide valid quantitative assessment of the 382 

model performance, it does not provide insights regarding its ability to reproduce the seasonal 383 

pCO2 cycle. To address this issue, Figure 7 displays observed mean monthly pCO2 extracted 384 

from LDEO* and calculated by the coastal SOM-FFN for the 40 locations where the LDEO* 385 

database has the most data (>40 month). The error bars associated with the observations 386 

reflect the inter-annual variability. Overall, the coastal SOM-FFN captures the timing of the 387 

seasonal pCO2 cycle in most locations well with pCO2 minima and maxima occurring at the 388 

same time in our results and in the uninterpolated LDEO* data. The pCO2 maximum 389 
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generally taking place in early summer is accurately captured by the coastal SOM-FFN. In 390 

terms of amplitudes in the pCO2 signal, the coastal SOM-FFN and the LDEO* data reveal 391 

primarily how different the seasonal pCO2 cycle is from one region to the other, with very low 392 

amplitude (<40 µatm) in some sub-tropical areas, amplitudes > 100 µatm at high Northern 393 

and Southern latitudes, and sometimes very sharp increases during summer like off the coast 394 

of Japan. In most regions, the SOM-FFN-based reconstructions are able to capture these 395 

variations and predict seasonal amplitudes comparable to those observed in the data. However, 396 

in cells for which the difference between observed and simulated seasonal pCO2 amplitude is 397 

larger than 20%, the coastal SOM-FFN tends to systematically underestimate the amplitude of 398 

the seasonal pCO2 cycle. This limitation of our model might result from the often short time 399 

scales associated with the continental influences in near-shore locations, which are not 400 

captured by the environmental predictors used in our calculation. It may also be the result of 401 

very short-term events that are aliased in our monthly average calculations.  402 

3.2.3. Comparison with global SOM-FFN   403 

The comparison of our coastal SOM-FFN results with those of Landschützer et al. (2016) for 404 

the overlapping grid cells (Table 3) reveals significant differences between both interpolated 405 

data products with a RMSE between 24 and 32 µatm for most provinces except P7, P9 and 406 

P10 (53, 55 and 37 µatm, respectively). These RMSE values are comparable, but slightly 407 

lower than those obtained for the comparison with the LDEO* database, in line with those 408 

observed with the SOCAT* database. The differences (coastal SOM-FFN minus global 409 

SOM-FFN), however, are much larger than those observed between our results and the 410 

LDEO* database and highlight the current knowledge gap regarding the mean state and 411 
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variability of the transition zone. They range from -17.9 to 11.7 µatm from one province to 412 

the other but only amount to -0.6 µatm when considering the cells from all provinces at once.  413 

The overlapping cells used for the comparison with Landschützer et al. (2016) are mostly 414 

located over 100km away from the coastline and therefore the open ocean as well as our new 415 

shelf ocean data set are constrained by fairly different data because all the ‘shelf’ cells from 416 

the open ocean data product have a pCO2 calculated by a model calibrated mostly for 417 

conditions representative of the open ocean. Overall, the occurrence of large residuals in the 418 

shallowest cells of our calculation domain in our results (Fig. 5) suggest that the very 419 

nearshore processes controlling the CO2 dynamics likely are the most difficult to reproduce at 420 

the global scale. However, the added value of performing our simulations at the spatial 421 

resolution of 0.25° is exemplified by the ability of our model to capture the plumes of larges 422 

rivers such as the Amazon, where pCO2 is significantly lower than that of the surrounding 423 

waters (Cooley et al., 2007; Ibanez et al., 2015). 424 

 425 

3.3. Spatial and temporal variability of the coastal pCO2  426 

3.3.1 Spatial variability 427 

Figure 4a presents the annual average pCO2 estimated by the coastal SOM-FFN, representing 428 

the mean over 1998 through 2015 period (monthly climatological maps are shown in Fig. SI 429 

A). High annual mean values of pCO2, close to or above atmospheric levels, are estimated 430 

around the equator up to the tropics. This is consistent with previous studies that identified 431 

tropical and equatorial coastal regions as weak CO2 sources for the atmosphere (Borges et al., 432 

2005; Cai, 2011; Laruelle et al., 2010; 2014). A hotspot of very high pCO2 emerges from our 433 

analysis around the Arabian Peninsula, extending into the eastern Mediterranean Sea as well 434 
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as into the Red Sea and the Persian Gulf. These regions are poorly monitored and it remains 435 

difficult to assess if pCO2 values in excess of 450 µatm are realistic or not, but the limited 436 

body of available literature suggests that very high pCO2 are indeed observed in these regions 437 

(Ali, 2008; Omer, 2010). The very high temperature and salinity conditions observed in the 438 

Red Sea, in particular, reduce the CO2 solubility and induce very high pCO2 conditions. 439 

However, these predicted pCO2 lie outside of the range used for the training of the SOM-FFN 440 

(typically 200-450 µatm) and should thus be considered with caution. Along the oceanic coast 441 

of the Arabian Peninsula, the SOM-FFN predicts pCO2 ranging from 365 to 390 µatm all year 442 

round and thus does not capture the well-known increase in pCO2 resulting from the monsoon 443 

driven summer upwelling in the region (Sarma, 2003; Takahashi et al., 2009).   444 

In both hemispheres, pCO2 values in the 325 to 370 µatm range are generally reconstructed at 445 

temperate latitudes, i.e., up to 50°N and 50°S, respectively. The northern high latitudes 446 

generally have very low pCO2 values, down to 300 µatm and below, a result that is consistent 447 

with the Arctic shelves contributing a large proportion (up to 60%) of the global coastal 448 

carbon sink (Bates and Mathis, 2009; Cai, 2011; Laruelle et al., 2014). Several hotspots of 449 

pCO2 with values as high as 450 µatm can be observed nevertheless north of 70°N, most 450 

notably along the eastern coast of Siberia in winter (see Fig. SI P), which displays a large 451 

zone characterized by pCO2 > 400 µatm centred on the mouth of the Kolyma River. Such high 452 

pCO2 values have been punctually observed in Arctic coastal waters (Anderson et al., 2009) 453 

and could result from the discharge of highly oversaturated riverine waters. But, overall, 454 

pCO2 measurements over Siberian shelves are rare. Thus, our results should be considered 455 

with caution in this region because of the scarcity of data to train and validate the coastal 456 

SOM-FFN. It should also be noted that the vast majority of this high pCO2 region is covered 457 



22 
 

by sea ice (Fig. 4b&c) and, although the model estimates pCO2 values over the entire domain, 458 

only ice-free (or partially ice-free) cells will contribute to the CO2 exchange across the air-sea 459 

interface (Bates and Mathis, 2009; Laruelle et al., 2014).  460 

3.3.2. Temporal variability 461 

The reconstructed pCO2 field is also subject to large seasonal variations (see figures SI P&A).  462 

To explore these variations further, Figure 8 reports seasonal-mean latitudinal profiles of 463 

pCO2 for continental shelves neighbouring the Eastern Pacific, Atlantic, Indian and Western 464 

Pacific, respectively. The analysis excludes continental shelves at latitudes higher than 65 465 

degrees, because a large fraction of these shelves are seasonally covered by sea ice. The 466 

latitudinal pCO2 profiles reveal that, in most regions, highest and lowest pCO2 values are 467 

observed during the warmest and coldest months, respectively. This trend is particularly 468 

pronounced at temperate latitudes where the seasonal pCO2 amplitude can reach 60µatm and 469 

is exemplified by regions such as the western Mediterranean Sea or the eastern coast of 470 

America, which become supersaturated in CO2 compared to the atmosphere during the 471 

summer months. However, there are a few other regions, where the lowest pCO2 is found in 472 

the summer, such as the Baltic Sea (Thomas and Schneider, 1999). Around the equator, the 473 

magnitude of the seasonal variations in pCO2 is limited and does not exceed 30 µatm.  474 

Although the general latitudinal trend of the annual mean pCO2 is similar across all 475 

continental shelves, significant differences in the seasonality can be observed across the 476 

largest ocean basins. In particular, most of the East Pacific shelves, except for latitudes north 477 

of 55°N, display limited seasonal change in pCO2 (typically below 30 µatm) while the West 478 

Pacific shelves have seasonal pCO2 amplitudes that can exceed 50 µatm in temperate regions 479 

and 100 µatm at high latitudes (above 55° N). Along the Atlantic shelves, the seasonal signal 480 
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is more pronounced in the north compared to the south, in agreement with Laruelle et al. 481 

(2014). Overall, the North Pacific (north of 55°N) displays the most pronounced seasonal 482 

change in pCO2 with a difference of 80 µatm between summer and winter. In the Indian 483 

Ocean, the seasonal dynamics of pCO2 is partly regulated by seasonal upwelling induced by 484 

the Monsoon (Liu et al., 2010). In this basin north the equator, April, May and June are the 485 

months having the highest pCO2 and the seasonal variations do not exceed 30 µatm. In 486 

contrast, the seasonal cycle is quite pronounced in the Indian Ocean south of the equator (~50 487 

µatm).  488 

Latitudinal profiles of SST (Fig 8, bottom) are similar in all coastal oceans with minimal 489 

seasonal variations around the equator and amplitudes as large as 20°C at temperate latitudes. 490 

The comparison between the seasonal pCO2 and SST profiles allows us to assess the 491 

contribution of temperature-induced changes in CO2 solubility to the seasonal pCO2 variations 492 

in the continental shelf waters. However, other factors such as seasonal upwelling and 493 

biological activity also strongly influence coastal pCO2 and contribute to the complexity of 494 

the seasonal pCO2 profiles. To quantify the effect of temperature on seasonal variations of 495 

pCO2, the latter is normalized to the mean temperature at different latitudes in each oceanic 496 

basin (Fig. 8) using the formula proposed by Takahashi et al. (1993): 497 

𝑝𝐶𝑂2(𝑆𝑆𝑇𝑚𝑒𝑎𝑛) = 𝑝𝐶𝑂2,𝑜𝑏𝑠 × 𝑒𝑥𝑝(0.0423 × (𝑇𝑚𝑒𝑎𝑛 − 𝑇𝑜𝑏𝑠))   (1) 498 

where pCO2(SSTmean) is the temperature normalized pCO2, 𝑝𝐶𝑂2,𝑜𝑏𝑠 is the observed pCO2 at 499 

the observed temperature Tobs, and Tmean is the yearly mean temperature at the considered 500 

location. In sea-water, an increase in water temperature induces a decrease in gas solubility 501 

which leads to a higher water pCO2. Thus, comparing pCO2(SSTmean) with observed pCO2 502 
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monthly values provides a quantitative estimate of the influence of seasonal temperature 503 

change on the seasonality of pCO2.  504 

For most latitudes and oceanic basins, pCO2 is minimum in late winter or early spring, i.e., at 505 

the time when pCO2(SSTmean) has its maximum. pCO2 also generally displays a maximum in 506 

summer, while pCO2(SSTmean) reaches its minimum then (Fig. 9). The amplitude of the changes 507 

in pCO2(SSTmean) is quite consistent across oceans and about 2 to 3 times larger than that of 508 

pCO2. Between 45°N and 60° N, the variations in pCO2(SSTmean) largely exceed 100 µatm (up 509 

to 220 µatm at 60° N in the West Pacific). In these regions, the magnitude of the seasonal 510 

temperature changes is also maximum and reaches 20° C between winter and summer (Fig. 5). 511 

A seasonal signal in pCO2 with a minimum in late winter or spring when pCO2(SSTmean) is 512 

maximal can also be identified. However, the magnitude of the seasonal variations in pCO2 is 513 

significantly smaller than those of pCO2(SSTmean), suggesting that other processes such as 514 

biological uptake or transport/mixing partly offsets the temperature effect on solubility. In the 515 

subpolar western Pacific shelves (60° N), a second pronounced dip in pCO2 following a 516 

weaker one in spring is observed in summer, which suggests the occurrence of a pronounced 517 

summer biological activity taking up large amounts of CO2. This would also explain the sharp 518 

increase in pCO2 in the following month, as a result of the degradation of organic matter 519 

synthesized during the summer bloom. Although this region is also the one subjected to the 520 

strongest seasonal temperature, the amplitude of the seasonal pCO2(SSTmean) which reaches 521 

220µatm suggests that non thermal processes drive most of the seasonal pCO2 variations in 522 

the regions. At 20° N, the amplitude of the changes in both pCO2 and pCO2(SSTmean) are lower 523 

than at higher latitudes. pCO2 varies by ~30µatm between summer and winter in all oceanic 524 

basin while the seasonal variations in pCO2(SSTmean) are more pronounced in the Pacific 525 
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(~60µatm) than in the Atlantic or the Indian Oceans. In the Southern Hemisphere, the 526 

seasonal variations in pCO2 are not as pronounced as in the Northern Hemisphere suggesting 527 

that the changes induced by the solubility pump are compensated by biological activities. At 528 

10°S and 30°S, the seasonal variations in pCO2 rarely exceed 30 µatm in either basin with a 529 

minimum observed around August.  530 

 531 

4. Summary  532 

This study presents the first global high-resolution monthly pCO2 maps for continental shelf 533 

waters at an unprecedented 0.25° spatial resolution. We show that when tailored for the 534 

specific conditions of shelf systems, the SOM-FFN method previously employed in the open 535 

ocean is capable of reproducing well-known and well-observed features of the pCO2 field in 536 

the coastal ocean. Our continuous shelf product allows, for the first time, to analyze the 537 

dominant spatial patterns of pCO2 across all ocean basins and their seasonality. The data 538 

product associated to this manuscript consists of a netcdf file containing the pCO2 for ice-free 539 

cells at a 0.25° spatial resolution for each of the 216 month of the simulation period (from 540 

January 1998 to December 2015). 12 maps representing mean pCO2 fields calculated for each 541 

month over the simulation period are also provided. This data product can be combined with 542 

wind field products such as ERA-interim (Dee, 2010; Dee et al., 2011) or CCMP (Atlas et al., 543 

2011) to compute spatially and temporally resolved air-sea CO2 fluxes across the global shelf 544 

region, including the Arctic. Maps including pCO2 for ice covered cells are also available but 545 

should be treated with care because the dynamics of CO2 fluxes through sea ice are still 546 

poorly understood and air-sea gas transfer velocities in partially sea ice covered areas cannot 547 

be predicted from classical wind speed relationships (Lovely et al. 2015) 548 
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 549 

5. Data availability 550 

The version 4 of the SOCAT database (Bakker et al., 2016) can be downloaded from 551 

www.socat.info/upload/SOCAT_v4.zip. The observation-based global monthly gridded sea 552 

surface pCO2 product is provided by Landschützer, et al. (2015; doi: 553 

10.3334/CDIAC/OTG.SPCO2_1982_2011_ETH_SOM-FFN.), was downloaded from 554 

http://cdiac.ornl.gov/ftp/oceans/SPCO2_1982_2011_ETH_SOM_FFN and is now available at: 555 

https://www.nodc.noaa.gov/ocads/oceans/SPCO2_1982_2015_ETH_SOM_FFN.html. The 556 

LDEOv2015 database (Takahashi et al., 2015; doi: 10.3334/CDIAC/OTG.NDP088(V2015)) 557 

was downloaded from http://cdiac.ornl.gov/oceans/LDEO_Underway_Database/. The global 558 

atmospheric reanalysis ERA-interim datasets (Dee et al., 2011, 559 

http://doi.wiley.com/10.1002/qj.828) are accessible on the European Centre for 560 

Medium-Range Weather Forecasts (ECMWF) website. SST and SSS were extracted from the 561 

Met Office’s EN4 data set (Good et al., 2009; doi:10.1002/2013JC009067). The bathymetry 562 

used is the global ETOPO2 database (US Department of Commerce, 2006), which can be 563 

downloaded from http://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html. The sea ice 564 

concentrations are derived from the global 25 km resolution monthly data product compiled 565 

by the NSIDC (National Snow and Ice Cover Data; Cavalieri et al., 1996). 566 
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Table 1: Datasets used to create the environmental forcing files. The original spatial and 817 

temporal resolution and the main manipulations applied for their use in the SOM_FFN are 818 

also reported.   819 

Predictor dataset resolution reference Manipulation 

SST EN4 0.25°, daily Good et al., 

2013 

Monthly average 

SSS EN4 0.25°, daily Good et al., 

2013 

Monthly average 

Bathymetry ETOPO2 2 minutes US Department 

of Commerce, 

2006 

Aggregation to 0.25° 

Sea ice NSIDC 0.25°, monthly Cavalieri et al., 

1996 

Monthly rate of 

change in sea ice 

coverage  

Chlorophyll a SeaWifs, 

MODIS 

9km, monthly NASA, 2016 Aggregation to 0.25° 

Wind speed ERA 0.25°, 6hours Dee et al., 2011 Monthly average 

 820 

  821 
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Table 2: List of the biogeochemical provinces, their geographic distribution and the 822 

environmental predictors used to calculate surface ocean pCO2. SSS stands for sea surface 823 

salinity, SST for sea surface temperature, Bathy for bathymetry, Ice for sea-ice cover, Chl for 824 

chlorophyll concentration and Wind for wind speed.  825 

Province SSS SST Bathy Ice Chl Wind 

P1 X X X  X X 

P2 X X X  X X 

P3 X X X  X X 

P4 X X X  X X 

P5 X X X X X X 

P6 X X X X X X 

P7 X X X X X X 

P8 X X X X  X 

P9 X X X X  X 

P10 X X X X  X 

 826 
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Table 3: Root mean squared error between observed and calculated pCO2 in the different biogeochemical provinces. The SOM-FFN results are compared to 827 

data extracted from the LDEO database (Takahashi et al, 2014) and the overlapping cells from the Landschützer et al. (2016) pCO2 climatology.  828 

 

Province 

Surface 

Area 

(km
2
) 

Ice Cover 

(%) 

SOCAT* 

Bias 

(µatm) 

 

RMSE 

(µatm) 

Landschützer  

Bias 

(µatm) 

2016 

RMSE  

(µatm) 

LDEO 

Bias 

(µatm) 

 

RMSE (µatm) 

P1 8.2 10
6
 0 0.0 19.1 2.0 27.2 2.0 20.5 

P2 10.9 10
6
 0 0.2 24.7 9.3 24.2 1.3 27.2 

P3 4.4 10
6
 0 -0.3 16.1 2.2 37.9 2.3 22.7 

P4 16.6 10
6
 0 -0.2 31.2 8.0 21.1 -1.6 33.0 

P5 7.5 10
6
 57.1 0.0 34.2 11.5 30.9 -1.4 38.0 

P6 4.8 10
6
 0 0.0 24.3 6.8 18.1 1.3 27.9 

P7 9.3 10
6
 0.0 0.1 37.2 0.7 23.5 -0.2 52.5 

P8 3.3 10
6
 38.5 0.2 46.8 13.9 70.1 3.9 51.4 

P9 2.9 10
6
 54.3 -0.1 23.0 -5.2 42.5 -2.5 33.4 

P10 9.0 10
6
 45.8 0.0 35.7 -9.7 50.9 1.6 53.1 

 76.9 10
6
  0.0 32.9 3.9 34.7 0.0 39.2 

 829 
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Table 4: Biases and root mean squared error (RMSE) between observed and calculated pCO2 using only SST, 

SSS and bathymetry (STB) or SST, SSS, bathymetry and chlorophyll (STBC) as predictors.  

 

Province 

SOCAT*  

Bias (µatm) 

 

RMSE (µatm) 

LDEO* 

Bias (µatm) 

 

RMSE (µatm) 

 STB STBC STB STBC STB STBC STB STBC 

P1 0.0 -0.2 20.8 21.0 2.4 2.0 21.7 21.5 

P2 -0.1 0.1 26.9 27.8 0.5 0.8 29.0 29.6 

P3 0.0 -0.5 22.7 21.3 3.0 2.3 27.1 26.8 

P4 0.0 -0.2 33.0 33.0 -1.7 -2.3 33.8 33.8 

P5 0.2 0.1 52.7 42.2 -1.7 -0.9 56.9 44.5 

P6 0.0 0.1 26.8 26.5 -0.5 0.6 28.9 28.0 

P7 0.4 0.3 44.3 44.1 1.2 0.3 59.3 58.8 

P8 0.1 0.4 82.6 80.0 9.1 9.0 56.3 58.5 

P9 0.1 0.9 34.7 36.5 -2.6 -2.8 39.8 41.8 

P10 -0.3 0.7 49.8 49.5 -3.9 -3.0 76.5 75.4 

Global 0.1 0.2 43.9 42.4 0.0 0.0 48.0 45.0 
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Figure 1: Schematic scheme of the different steps involved in the SOM-FFN artificial neural network 

calculations leading to continuous monthly pCO2 maps over the 1998-2015 period.  
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Figure 2: Number of observations contained in each 0.25° grid cell of the SOCAT* (top) and LDEO* (bottom) 

databases. 
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Figure 3: Map of the 10 different biogeochemical provinces generated by the artificial neural network method 

SOM-FFN.  
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Figure 4: Climatological mean pCO2 for (a) the long-term averaged pCO2 (rainbow color scale) and sea-ice 

coverage (black-white color scale). The long-term average pCO2 corresponds to roughly the nominal year 

2006, as the average was formed over the full analysis period from 1998 through 2015; (b) the months of 

January, February and March; and (c) the months of July, August and September.   
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Figure 5: Mean residuals calculated as the difference between the SOM_FFM pCO2 outputs and pCO2 

observations from SOCAT* (top) and LDEO* (bottom).  
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Figure 6: Histograms reporting the distribution of residuals between observed (LDEO*) and computed 

(SOM_FFN) pCO2 in each biogeochemical province. 
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Figure 7: Climatological monthly mean pCO2 extracted from the LDEO* database (points) and generated by 

the artificial neural network (lines) for grid cells having more than 40 months of data. The error bars 

associated with the data represent the inter-annual variability, reported as the highest and lowest recorded 

values for a given month at a given location.   
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Figure 8: Seasonal-mean latitudinal profiles of pCO2 (top) and SST (bottom) for the continental shelves 

surrounding 4 oceanic basins. Blue lines: averages over the months of January, February and March; green 

lines: averages over the months of April, May and June; red lines: averages over the months of July, August 

and September; yellow lines: averages over the months of October, November and December. The dashed line 

in the top panels represents the average atmospheric pCO2 for year 2006. 
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Figure 9: Seasonal cycle of observed (continuous lines) and temperature normalized pCO2 (pCO2(SSTmean) 

dashed lines) at 5 different latitudes in 4 oceanic basins.  

 


