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Abstract. This paper presents results of a combined measurement and modelling strategy to analyse N2O and CO2 emissions 

from adjacent arable, forest and grassland sites in Germany. Measured emissions reveal seasonal patterns and management 

effects like fertilizer application, tillage, harvest and grazing. Measured annual N2O fluxes are 4.5, 0.4 and 0.1 kg N ha-1 a-1, 15 

while CO2 fluxes are 20.0, 12.2 and 3.0 t C ha-1 a-1 for the arable, grassland and forest sites, respectively. An innovative model-

data fusion concept based on multi-criteria evaluation (soil moisture in different depths, yield, CO2 and N2O emissions) is used 

to rigorously test the biogeochemical LandscapeDNDC model. The model is run in a Latin Hypercube based uncertainty 

analyses framework to constrain model parameter uncertainty and derive behavioral model runs. Results indicate that the 

model is in general capable to predict the trace gas emissions, evaluated by RMSE as an objective function. The model shows 20 

reasonable performance in simulating the ecosystems C and N balances. The model-data fusion concept helps to detect 

remaining model errors like missing (e.g. freeze-thaw cycling) or incomplete model processes (e.g. respiration amount after 

harvest). It further elucidates identifying missing model input sources (e.g. uptake of N through shallow groundwater on 

grassland during the vegetation period) and uncertainty in measured validation data (e.g. forest N2O emissions in winter 

months). Guidance is provided to improve model structure and field measurements to further advance landscape scale model 25 

predictions. 

1 Introduction 

Carbon dioxide (CO2) and nitrous oxide (N2O) are two prominent greenhouse gases (GHG) contributing to global warming, 

the latter having a 300 times higher global warming potential (GWP) than CO2 considering a 100 year time horizon (Myhre et 

al., 2013). Terrestrial ecosystems play an important role in the global atmospheric budgets of both GHGs (Cole et al., 1997). 30 

Global CO2 emissions from soils are five times higher than anthropogenic (mainly fossil fuel) CO2 emissions (Raich and 

Schlesinger, 1992; updated with recent fossil fuel data by Boden, et al., 2010), while agricultural land use release over 60% of 

the global anthropogenic N2O emissions in 2005 (IPCC, 2007). Besides the radiative forcing of both GHGs, N2O is currently 

the main driver of stratospheric ozone depletion (Ravishankara et al., 2009) causing increased ultraviolet radiation, which 
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could result in skin cancer and other health problems (Graedel and Crutzen, 1989). While CO2 is exchanged with the soil 

(heterotrophic respiration) and the vegetation (photosynthesis and autotrophic respiration), N2O fluxes refer mainly to 

nitrification and denitrification processes occurring only in the soil (Butterbach-Bahl et al., 2013).  

Emissions of both GHGs are highly variable in space, time and depend on a multitude of different interacting environmental 

factors, e.g., land use/management, nitrogen/carbon inputs, meteorological conditions and physical and chemical soil 5 

properties (Davidson, 1992; Smith et al., 2003). They are largely regulated by plant physiological (Rochette et al., 1999) and 

microbial processes (Burton et al., 2008). Field measurements of GHG emissions and environmental drivers have allowed a 

basic understanding of observed emissions patterns. Nevertheless, the large number and complexity of the processes involved 

in the production and consumption of CO2 and N2O still challenge the reliable quantification of GHG emission (Butterbach-

Bahl et al., 2013). Therefore, various biogeochemical models have been developed in recent years for temporal as well as 10 

spatial up-scaling of GHG emissions, hypothesis testing of our process understanding, and, moreover, for scenario analyses 

and evaluation of efficient mitigation options (Kim et al., 2015; Molina-Herrera et al., 2016). These include, e.g. BASFOR 

(Van Oijen et al., 2005), CERES-EGC (Gabrielle et al., 2006), COUP (Jansson, 2012), DAYCENT (Parton et al., 1998) or 

DNDC and its descendant LandscapeDNDC (Haas et al., 2013). However, models remain as simplifications of the real world, 

driven by uncertainties due to intrinsic model structure, parameterization and the current model state (Vrugt, 2016). During 15 

model application, further uncertainties are added by applied forcing data (Kavetski et al., 2006). However, currently there is 

no method available dealing properly with all those sources of uncertainty at the same time (Vrugt, 2016). One promising way 

to reduce the magnitude of model output uncertainties is to use model-data fusion techniques, i.e. matching model prediction 

with multiple observations by varying model parameters or states using statistical uncertainty estimation (Keenan et al., 2011). 

There are several statistical uncertainty estimation methods available, e.g., formal Bayesian approaches like DREAM (Vrugt, 20 

2016) or informal Bayesian approaches like GLUE (Beven and Binley, 1992). However, they are mostly used to fit models to 

single types of observation (Giltrap et al., 2010). Innovative multiple observation data evaluation with model-data fusion is 

getting common in ecosystem carbon modelling (Wang et al., 2009) and is getting more and more important in the nitrogen 

modelling community, too (Wang and Chen, 2012). Gained knowledge can and should be used to guide further model 

improvements (Vrugt, 2016). 25 

This work focuses on establishing model-data fusion in the biogeochemical community – i.e. showing their capability to gain 

knowledge with process-based model application. We present weekly measurements of CO2 and N2O emissions from a 

developed landscape including different land uses, i.e., arable, grassland and forest ecosystems, covering a two years period 

of observations. In addition to field measurements, we set up the biogeochemical LandscapeDNDC model for each of the three 

land uses. During model-data fusion with GLUE, we rigorously accept only model runs, which return concurrent, acceptable 30 

outputs for N2O, CO2, soil moisture in different depths and yields. Posterior model runs are not only evaluated fulfilling 

appropriate objective functions, but also regarding realistic simulations of GHG emissions for separate seasons, annual sums 

as well as before and after land management. The model is finally used to estimate the magnitude and uncertainty of C and N 

fluxes, like N2 emissions or autotrophic and heterotrophic CO2 emissions, which are experimentally not yet quantifiable in 
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situ. Remaining model and data errors are traced back to their potential sources to improve ongoing measurements and future 

model applications. 

2 Material and methods 

2.1 Study area 

The study area is located in the catchment of a low-mountainous creek (Vollnkirchener Bach) in the municipality Hüttenberg, 5 

Hesse, Germany (50°29′56″ N, 8°33′2″ E). One kilometer north of the village Vollnkirchen, next to the creek, we established 

eight transects (oriented mostly vertical to slope) along a valley cross section covering different types of land uses (Fig. 1) for 

GHG emission measurements. See Table 1 for detailed information on soils characteristics. Three transects (A1-A3) are 

located on arable land westwards the creek and were cultivated with the same field management and crop rotations (Table 1). 

Three transects are located in a light beech (Fagus sylvatica) forest (W1-W3) with young and old trees on a steep hillside 10 

(slope: 10%) eastwards the creek. A shallow 0.05 m litter layer characterizes the forest soils. Furthermore, there are two 

transects (G1, G2) located on grassland in 4 m distance on each side to the Vollnkirchener Bach. One of the two transects is 

managed and grazed (G1) and is mainly covered with brown knapweed (Centaurea jacea), meadow foxtail (Alopecurus 

pratensis), red clover (Trifolium pretense) and ribwort plantain (Plantago lanceolate). The second grassland transect (G2) 

represents a wetland and is mainly covered by meadowsweet (Filipendula ulmaria), common nettle (Urtica dioica), hoary 15 

ragwort (Senecio erucifolius) and field bindweed (Convolvulus arvensis). The groundwater table is close to the surface on both 

grassland sites. Mean annual wet deposition of nitrate and ammonium were measured from 2013–2015 with 1.66 kg N ha-1 

and 3.45 kg N ha-1, respectively. In the catchment mean annual precipitation is 588 mm and mean annual temperature is 

10.5 °C for the hydrological year 01.11.2013–31.10.2014 (Seifert et al., 2016). Soil moisture is measured at A3 [0.2, 0.4 and 

0.6 m], at G2 [0.1 and 0.25 m] and at W1 [0.15 and 0.25 m] and recorded in hourly resolution since 2013. 20 

 

Figure 1: Map of the study area. Red squares represent GHG chamber positions at the different transects. Dark grey contour lines 

represent 5 m differences in elevation, light grey areas are outside of the catchment area. 
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2.2 Trace gas measurement 

The weekly trace gas measurements started in November 2013. GHG exchange fluxes were manually measured with non-

steady state opaque chambers each covering a basal area of 0.12 m2. Chambers were placed on frames (both polypropylene) 

which were inserted approx. 8 cm into the soil in order to facilitate gas tight sampling as well as to avoid soil structure damage 

and lateral trace gas leakage. Each chamber is equipped with an extraction septum, a counterbalance valve (in-box pressure 5 

balance) and a small fan/ventilator for homogenous mixing of the headspace air. During a 40 minutes closure period five air 

samples are taken from the chamber headspace at regular time intervals t0-t4 of ten minutes (0, 10, 20, 30 and 40 min.). 

Samples are analyzed by gas chromatography (GC 8610C, SRI Instruments, Torrance, US) with an ECD for N2O and a 

methanizer and FID for CO2. Sampling was performed on a weekly basis with five replicated chambers per transect sampled 

by the gas sample pooling technique (Arias-Navarro et al., 2013). According to this approach, at any time interval (t0-t4) 10 10 

ml headspace sample are collected subsequently from any of the five replicated chambers and are pooled into one gas tight 

glass vial (SRI Instruments). Trace gas fluxes are calculated from the rate of change in the headspace gas concentration over 

time by linear regression and were corrected by chamber temperature, atmospheric pressure and chamber volume according 

to Barton et al. (2008). All measurements with regression quality of r2 < 0.7 for CO2 (using at least four individual samples) 

were rejected. 15 

Soil emissions of CO2 and N2O can be subject to significant diurnal patterns with peak values observed in the early afternoon 

(Savage et al., 2014), making an up-scale process of hourly measured emissions (usually obtained at midday) to daily values 

difficult. We performed multiple linear regression (ordinary least square regression including air temperature, relative humidity 

and water filled pores space), to account for difference between, e.g., daytime (Wohlfahrt et al., 2005a) and nighttime 

respiration (Wohlfahrt et al., 2005b). In our dataset, only CO2 emissions showed significant correlations with mentioned 20 

environmental drivers on arable land (r2 = 0.53), grassland (r2 = 0.59) and forest (r2 = 0.51). Following Subke et al. (2003), we 

derived an hourly integration formula in order to obtain daily representative mean values of CO2 emissions from our field 

measurements conducted mostly between 9am–5pm. N2O emissions are up-scaled to daily mean values with the common 

approach, i.e., by multiplying hourly emissions with 24. Annual CO2 and N2O emissions are calculated by linear interpolation 

between the measurements. All the underlying data of chapter 2.1 and 2.2 is available on request from a database (http://fb09-25 

pasig.umwelt.uni-giessen.de:8081/). 

2.3 Modelling approach 

2.3.1 Model set up 

We tested the biogeochemical model framework LandscapeDNDC (Haas et al., 2013) with the observed data of our study area. 

Individual models were set up for arable, grassland and forest ecosystems. The modules describe different processes in 30 

ecosystem compartments, i.e. mathematical descriptions of microclimate, water cycle, plant physiology and soil 

biogeochemical processes. We applied the biogeochemical module MeTrx (Kraus et al., 2015) and the watercycle module 
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watercycleDNDC (Kiese et al., 2011) for all land uses, but selected individual physiology modules, i.e. arableDNDC for arable, 

PSIM/TREEDYN for forest and grasslandDNDC for grassland simulations. As LandscapeDNDC is not yet capable for wetland 

simulation, we included only G1 within the modelling activities. The three different model setups were driven by the same 

meteorological data and initialized by land use specific soil and vegetation characteristics (Table 1).  

Table 1: Input settings of the LandscapeDNDC model for the three different land uses in the Vollnkirchener study region, based on 5 
measurements and farmers management documentation. In case spans are given, they reflect observed ranges for measurements 

used throughout the set up of the soil profile. The soil depth was estimated for model set up. 

Input Arable (A1-3) Grassland (G1) Forest (W1-3) Unit 

Vegetation type 09/10–07/11 Winter Barley 

08/11–08/12 Rape 

10/12–08/13 Winter Wheat 

10/13–08/14 Triticale 

09/14–08/15 Triticale 

10/15–07/16 Rape 

Perennial grass Light beech forest - 

Soil texture Sandy clay loam Sandy clay loam Sandy clay loam - 

Soil type Stagnic Luvisol Gleysol Cambisol  

Bulk density 1.55–1.60 1.20–1.44 1.36–1.49 g cm-3 

Organic carbon  1.57–0.91 2.55–0.71 3.61–1.73 % 

Organic nitrogen 0.16–0.09 0.29–0.08 0.21–0.11 % 

Clay content 23–26 24–25 24–26 % 

pH 6.45 4.42 3.5–5.5 - 

Soil depth 2.00 0.50 0.55 m 

 

Arable soils are Stagnic Luvisols with a thick loess layer, modeled down to 2.0 m, while actual soil depth is unknown. Gleysols 

at the meadow grassland site was modeled down to 0.5 m, which is approximately the mean annual groundwater table depth. 10 

The thin and stony soil at the forest site is a Cambisol and modeled until bedrock (0.55 m) with a litter height of 0.05 m. Bulk 

density is increasing for every land use in depth, while soil organic carbon and nitrogen are decreasing with depth. We run 

simulations for any land use in daily time resolution for 6 years, starting on 1st January 2010 with a model spin-up time of two 

years. 

2.3.2 Model-data fusion  15 

For the multi-objective Bayesian model calibration we used a two-tiered Generalized Likelihood Uncertainty Estimation 

(GLUE) approach (Beven and Binley, 1992). The model was started in both tier for 100,000 times by changing the parameter 

sets by Latin Hypercube sampling using the Python software SPOTPY (Houska et al., 2015). Parameters for the physiology 

and the water-cycle modules where treated land use-specifically, while the parameters of the biogeochemical module were 

calibrated using data of all land uses (Table A1). We assume no prior knowledge than the given parameter ranges, i.e. consider 20 

a uniform (non-informative) prior probability distribution for all parameters. We statistically judged the performance of every 

parameter set to reproduce measurements with a root mean squared error (RMSE). Similar to Bloom and Williams (2015), we 

do not explicitly consider measurement uncertainty during model data fusion. As shown in Houska et al. (2017), one-tier 
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GLUE based multi-objective model calibration can result in very low acceptance rates down to 0.01%. We therefor considered 

a two-tiered GLUE approach, in order to increase identifiability and accuracy of accepted model runs: 

Tier I: In a first step we constrained the parameter space of the hydrology and plant physiology modules of 

LandscapeDNDC (Table A1). We accepted only model runs, which are within the best 5% of all simulated RMSEs 

in terms of the respective variable (WFPS in different depths [arable in 0.2, 0.4 and 0.6 m, grassland in 0.1 and 0.25 m 5 

and forest in 0.15 and 0.25 m], as well as yield on arable land). Parameter sets were accepted, if they belong to the 

5% best model runs for each land use. Results of tier I are summarized in supplement Fig. A1-A4 and are not further 

discussed in this paper, as they belong to the initialization of the model.  

Tier II: In order to achieve realistic GHG simulations from the biogeochemical module MeTrx of LandscapeDNDC, 

we took the posterior parameter boundaries of tier I and ran GLUE again. This time, we considered the best 5% of all 10 

RMSEs in terms of respective N2O and CO2 emissions for each land use (A1-3, G1 and W1-3). Again, only the 5% 

best parameter sets were accepted per land use. These results are shown in the following chapters. 

Posterior model runs of tier II were further investigated in three different ways:  

(1) Seasonal comparisons of measured and modeled emissions for spring (21.03-20.06.), summer (21.06.-20.09.), autumn 

(21.09.-20.12.), and winter (21.12.-20.03.). 15 

(2) Management comparison of measured and modeled emissions, i.e. investigation of model performance within two weeks 

before and two weeks after management events to check model performance in generating hot moments, e.g. after fertilizer 

application.  

(3) Model performance in simulating magnitude and uncertainty of C and N fluxes not measured in situ, like N2 or autotrophic 

and heterotrophic components of CO2 emissions. 20 

3 Results and discussion 

3.1 Measured N2O fluxes 

To determine the representativeness of each transect for a given land use, respective differences of measured N2O emissions 

were compared (Table 2). Temporal dynamics of N2O emissions are presented (Fig. 3), separated into different seasons (Fig. 4) 

and before/after management-events occur (Fig. 5). The mean annual N cycle is given  in Table 4. 25 

Arable N2O fluxes: Emissions on arable land vary between 0 and 0.3 kg N2O-N ha-1 day-1. There were no statistical differences 

over time between the three arable transects. Highest emissions occur after management events. Especially mineral fertilizer 

application stimulates N2O emissions, causing hot moments from e.g., March to May 2014. Input of N through manure 

application has a minor influence on the magnitude of N2O emissions. Mean annual measured N2O emissions from arable land 

are comparably high with 4.5 kg N2O-N ha-1 a-1 (Jungkunst et al., 2006), equaling a GWP of 1,338 kg CO2-C equiv. ha-1 a-1. 30 

With yearly fertilizer application of 248.2 kg N a-1 a mean annual emission factor (EF) of 1.4% (varying between 1.2% for A2 

and 1.8% for A3) can be calculated, where 1 kg N ha-1 a-1 is attributed to background emissions of unfertilized soil (IPCC, 
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1997). This EF is inside the IPCC assumed range 1.25 ±1% and close to the average EF (1.56%) of several (n=56) agricultural 

sites in Germany (Jungkunst et al., 2006). A robust finding throughout the literature is that reduced nitrogen input would lead 

to lower and therefore more climate-friendly agriculture (Bouwman et al., 2002). 

Grassland N2O fluxes: N2O emissions vary significantly between the grazed site G1 and the wetland site G2, which can be 

attribute to differences in management, hydrological, soil and vegetation characteristics. Most likely, nitrate supply through 5 

groundwater and uptake by the rooting system of the plants is important (Liebermann et al., 2017). Even though the 

groundwater table (0.2 - 0.4 m below ground) is rather shallow in winter/spring, uptake rates in summer/autumn (groundwater 

table 0.3 - 1.0 m below ground) are supposedly larger due to the vegetation period. Here, capillary rise might play a relevant 

role (Orlowski et al., 2016). While G1, with a mix of Centaurea jacea, Alopercurus pratensis, Plantago lancelotata and 

Trifolium prantense, is grazed by sheep twice a year and cut once a year, the non-managed transect G2 is dominated by other 10 

species like Urtica dioca, Filipendula ulmaria and Senecio erucifolius. Typically, a deeper rooting system is found compared 

to G1 and accordingly, additional nitrate uptake from the groundwater is more prevalent. Mean measured emissions are higher 

on non-managed G2 than on grazed G1 throughout the year, especially during summer and autumn (Fig. 3). Emissions from 

grazed grassland vary between -0.0019 and 0.014 kg N ha-1 day-1. High emissions were measured after grazing, e.g. in March 

2014 when sheep dung was stimulating N2O emissions. Negative values depict N2O uptake, frequently found under prevailing 15 

wet conditions in spring, also reported by Glatzel and Stahr (2001). The grassland annual N2O emissions are much lower than 

observed for the arable system (A1-3). However, with 0.29 (G1) and 0.52 kg N2O-N ha-1 a-1 (G2) they are in line with a study 

site 12 km northeast of our site, where annual emissions amount to 0.18 to 0.79 kg N2O-N ha-1 a-1 on an unfertilized grassland 

with shallow groundwater table (Kammann et al., 1998). They also report a similar seasonal pattern we found, with emissions 

close to zero in the dry and colder autumn months. Measured annual emissions are below the assumed background level of 20 

N2O-N emissions of 1 kg N2O-N ha-1 a-1 from agricultural soils (IPCC, 1997). Our annual N2O emissions equal a GWP of 87 

(G1) and 156 kg CO2-C equiv. ha-1 a-1 (G2). The EF through grazing is 5.4%, which is in line with usually found emissions 

factors from extensive grazed grasslands, ranging globally from 0.2 - 9.9% (Oenema et al., 1997). 

Forest N2O fluxes: Significant differences were found for the forest transects W2 and W3, which can be explained by natural 

variations along the steep hillslope: On the hillside (W2) the soil is potentially washed out through lateral transport leading to 25 

decreased nutrition availability, compared to the dryer top (W1, +300% N2O emissions) and the wetter hillfoot (W3, +430% 

N2O emissions). N2O emissions from the forest transects are most of the time low between -0.003 and 0.004 kg N ha-1 day-1. 

Higher emissions were measured only for several weeks in January 2014, with highest values observed at W1. We contribute 

this to freeze thaw effects, typically found when year-around measurements are considered (Papen and Butterbach‐Bahl, 1999). 

Negative fluxes were measured e.g. in March and May 2014. The underlying process of N2O uptake has been reported before 30 

(e.g. Flechard et al., 2005; Neftel et al., 2007) and is assumed to be a microbial process, in which denitrifier use N2O as an 

electron acceptor for respiration under wet/anaerobic conditions (Bremner, 1997). Negative emissions are positively correlated 

with WFPS (Fig. A3) being in line with Bremner (1997). Our annual measured emissions in forest are with 

0.08 kg N2O-N ha-1 a-1 (GWP of 25 kg CO2-C equiv. ha-1 a-1 CO2 emissions) much lower than at adjacent grassland and arable 
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sites. Even more they are a magnitude lower than the N2O emissions (5.1 kg N2O-N ha-1 a-1) measured from a beech forest in 

the Högelwald, Germany (Papen and Butterbach‐Bahl, 1999). A likely reason is the substantially higher annual deposition rate 

of 25 kg N ha-1 a-1, a five times higher N input as compared to our system. However, our measurements of N deposition only 

includes wet deposition. Additional dry depositions is often assumed to add another 30-60% to total atmospheric N deposition 

(Flechard et al., 2011).  5 

 

Table 2: Mean measured annual fluxes (11/2013-12/2015) on the different land use transects of the Vollnkirchener Bach study area. 

Differences between the investigated transects and land uses for measured and modeled N2O emissions in kg N-N2O ha-1 a-1. * = 

significant difference (p < 0.05, Kruskal-Wallis test). Arable (A1-3), Grassland (G1), Wetland (G2), Forest (W1-3), RMSE in 

kg N-N2O ha-1 day-1. 10 

 
A1 A2 A3 G1 G2 W1 W2 Measured 

Mean 

measured 

Mean 

simulated Posterior RMSE 

A1        4.08 

4.49 7.33 

0.0326 - 0.0353 

A2        3.87 0.0238 - 0.0278 

A3        5.53 0.0285 - 0.0329 

G1 * * *     0.29 0.29 0.69 0.0029 - 0.0038 

G2 * * * *    0.52 not simulated 

W1 * * *  *   0.09 

0.08 0.33 

0.0022 - 0.0025 

W2 * * * * *   0.03 0.0014 - 0.0021 

W3 * * *  *  * 0.13 0.0018 - 0.0021 

 

3.2 Measured CO2 fluxes 

Emissions measured using our closed chamber on arable and grassland include those from soil and vegetation as the entire 

plants are covered by the chamber. Therefore, we interpret these emissions as total ecosystem respiration (TER). In contrast, 

chambers in the forest were placed on the forest floor without any vegetation inside, thus, these measurements include soil 15 

(heterotroph) and root (autotroph) respiration, only. For the sake of a better read-flow, we decide to define emissions from the 

different land use as ‘CO2 emissions’, even though we considered the different flux components on different land use. To 

determine the representativeness of each transect for a given land use, respective differences of measured CO2 emissions were 

compared to each other (Table 3). Measured CO2 emissions are given in time (Fig. 6), separated into different seasons (Fig. 7) 

and before/after management-events occur (Fig. 8). The mean annual N cycle is given in Table 5. 20 

Arable CO2 fluxes: Weekly measured values from our arable transects range between 0 and 199.6 kg C-CO2 ha-1 day-1 and are 

not significantly different. Emissions occur mainly during the growing season, starting in March and ending in November. For 

a comparable study site in southern Finland, reported daily TER values under barley during May and September were between 

23.6 to 235.6 kg C-CO2 ha-1 day-1 (Lohila et al., 2003), which is in the same range as our observations. The annual sum of our 

TER emissions is 19.96 t C-CO2
 ha-1 a-1. This is slightly lower than yearly TER measured on a winter wheat study site in 25 

Belgium with 23.18 t C-CO2 ha-1 a-1 (Suleau et al., 2011). Demyan et al. (2016) reported lower values with an average sum of 

11.43 t C-CO2 ha-1 a-1, derived from observations spanning six growing seasons in southwest Germany. However, all studies 

are possibly prone to overestimations of the emissions from September to November, as daily emissions are generated with a 
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multiple linear regression, in our case based on our hourly measurements of air temperature and soil moisture. Such methods 

do not fully account for management effects like harvest (Subke et al., 2003). 

Grassland CO2 fluxes: Emissions from grassland vary from 5.0 to 68.3 (G1) and from 0 to 92 kg C-CO2 ha-1 day-1 (G2), with 

no significant difference between the two transects. Emissions are close to zero in the winter months (December to February) 

and highest during the growing season. A distinct negative correlation of measured CO2 fluxes was found during wet conditions 5 

from end of June to July in 2014. In this time emissions drop to values of 41.0 kg C-CO2 ha-1 day-1. The TER of a grassland 

CO2 is mainly driven by the growing season (Soussana et al., 2007). Emissions typically end with pasture growth during 

temperatures under 5°C (Parsons, 1988). Total yearly emissions are 11.79 t C-CO2 ha-1 a-1, which agrees well with mean yearly 

emissions reported for 19 different grassland sites across Europe with mean annual emissions of 12.83 t C-CO2 ha-1 a-1 

(Gilmanov et al., 2007). However, due to the many different grassland sites considered in their study, Gilmanov et al. report a 10 

much wider range of observed annual TER values from 4.9 to 16.4 t C-CO2 ha-1 a-1. They also found that management as a 

main influence on TER, where intensively managed grassland produce higher emissions than extensively managed grasslands. 

With regard to grazing, we found only a minor direct impact on measured flux rates (Fig. 7).  

Forest CO2 fluxes: Mean measured soil respiration span from 2.1 to 19.9 kg C-CO2 ha-1 day-1. While we found higher 

emissions in the summer months, seasonal differences have a lower magnitude as TER on arable and grassland. This was 15 

expected, as we do not measure above ground biomass respiration on our forest study site. Overall, rewetting has the strongest 

influence on changes of soil respiration in our forest study sites. Highest emissions occur in July 2014 after several rewetting 

events of the uppermost soil layer (Fig. A1). Xiang et al. (2008) reported that multiple rewetting led up to eight-times higher 

respiration rates. Total yearly soil emissions are with 2.98 t C-CO2 ha-1 a-1 at the lower end of other European forest ecosystems, 

e.g. 6.6 ± 2.9 t C-CO2 ha-1 a-1 as reported by Janssens et al., (2001). The uphill transect W1 has the highest emission rates 20 

throughout the year and shows significant differences to W2 and W3. This transect is less shaded through trees, resulting in a 

1.3°C higher annual mean soil temperature compared to W2 and W3, likely causing higher CO2-emissions (Table 3). 
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Table 3: Mean measured annual fluxes (11/2013-12/2015) on the different land use transects of the Vollnkirchener Bach study area. 

Differences between the investigated transects and land uses for measured and modeled CO2 emissions in t C-CO2 ha-1 a-1. 

* = significant difference (p < 0.05, Kruskal-Wallis test). Arable (A1-3), Grassland (G1), Wetland (G2), Forest (W1-3) , RMSE in 

kg C-CO2 ha-1 day-1. 

 A1 A2 A3 G1 G2 W1 W2 Measured 

Mean 

measured 

Mean 

simulated Posterior RMSE 

A1        20.10 

19.96 20.53 

30.73 - 36.38 

A2        22.25 35.66 - 42.26 

A3        17.54 22.90 -  28.46 

G1        11.79 12.17 13.24 7.01 -  9.08 

G2        12.54  

W1 * * * * *   4.00 

2.98 3.28 

3.53 - 3.89 

W2 * * * * * *  2.38 3.37 -  4.07 

W3 * * * * * *  2.56 3.15 -  3.96 

 5 

3.3 Modeled N fluxes 

After selecting the posterior model runs according to chapter 2.3.2, we found the model generally capable in reproducing the 

measured data and consequently investigate the modeled C and N cycle in more detail. Modeled N2O emissions are shown for 

the different land use over time (Fig. 2), separated into different seasons (Fig. 3) and before/after management-events occur 

(Fig. 4). The complete modeled N cycle is given in Table 4. 10 

Arable N cycle: Arable simulations consider an annual N input of 198 kg N ha-1 a-1. This input is balanced by 109 kg N ha-1 a-1 

gaseous (primarily N2), 30 kg N ha-1 a-1 nitrate leaching and 99 kg N ha-1 a-1 harvest losses (Table 4), meaning that modeled 

outputs are higher as the given inputs. This gap in the annual N cycle is fed by storages of the soil in the model, indicating N 

depletion over time. Even though N losses of NO3
- and particularly N2O emission (7 kg N ha-1 a-1) have only a minor 

percentage in the total N balance, both rates are high regarding their environmental impact as a GHG contributing to global 15 

warming and as a water pollutant regarding eutrophication and drinking water supply, respectively. However, the uncertainty 

related to our estimated NO3
- leaching rate is overall the second largest uncertainty source in our N balance. These estimates 

cannot be sufficiently constraint with the given observation data, but they are in line with other reported N leaching rates on 

arable land in Germany (Siemens and Kaupenjohann, 2002). 

The simulated N2O emission contribute 3.1% to total simulated N losses. The underlying model runs follow the trend of the 20 

observation data. Hot moments can be observed after fertilizer applications, which are predicted by the model in time, but 

sometimes not in magnitude (e.g. March to May 2014). During these events, soil moisture is often not modeled accurately: 

The model predicts rewetting processes that have not been measured in the same magnitude (Fig. A1), which might explain 

the overestimated fluxes. A possible reason can also be uncertain rainfall model input data. Kavetski et al. (2006) found the 

measurements of precipitation within a catchment to be uncertain, as the trajectory of storm cells through a catchment may be 25 

different for each storm and may not have its center at the rain gauge where traditionally rainfall inputs are measured. Our 

rainfall data is measured 4 km northeast of the trace gas study area and is likely effected by such uncertainties.  
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For both, simulated and measured emissions on the arable site are highest in spring (Fig. 3). While the transects A1 and A2 

vary with 95% of the values between 0 and 0.05 kg N2O-N ha-1 day-1, A3 shows a higher variation up to 

0.15 kg N2O-N ha-1 day-1. As A3 is located at the hill toe, we attribute this effect to lateral transport of nitrate from uphill. 

However, our one-dimensional model set up does not cover lateral water and nutrition transport, accordingly the model is not 

able to predict the higher emissions at A3 in spring. While such a process is part of complex integrated hydro-biogeochemical 5 

catchment models (Haas et al., 2013; Klatt et al., 2017; Wlotzka et al., 2013), it has not yet been confirmed experimentally. 

The distributions of the summer, autumn and winter seasons measured emissions are well in line with the modeled emissions. 

Furthermore, the modeled emissions are also in agreement with measured emissions before and after manure applications (Fig. 

4). This result corresponds with a study of Molina-Herrera et al., (2016) who found LandscapeDNDC to be capable of 

simulating agricultural N2O emissions. However, in our case the model overestimates peak emissions before fertilizer 10 

applications, which leads to higher mean annual modeled emissions (7.33 kg N2O-N ha-1 a-1). This is 2.8 kg N2O-N ha-1 a-1 

higher than our observed emissions and even outside the large model uncertainty of 2.3 kg N2O-N ha-1 a-1. Hence, future 

research should particularly investigate the reason for this overestimation of peaks, either by revising the model structure or 

identification of other sources of model uncertainty.  

Grassland N cycle: Grassland simulations consider an annual N input of 12.7 kg, with 7.6 kg coming from modeled biomass 15 

that is transferred into applied dung and urine through grazing sheep. Simulated N loss is substantially larger with 22.3 kg N ha-

1 a-1 gaseous losses (primarily N2), 1.5 kg N ha-1 a-1 occurring as nitrate leaching and 29.8 kg N ha-1 a-1 by biomass removal 

through grazing sheep and harvest (hay making). Comparing inputs and outputs, we simulated a mean nitrogen gap of 41 kg 

N ha-1 a-1. Decreasing soil organic N stocks in model simulations indicate that the model is currently mimicking an additional 

N source, which is not included in the current modelling approach. We assume uptake of additional N in form of nitrate by the 20 

shallow groundwater as a potential dominating process that is not included in the current LandscapeDNDC version we used. 

Liebermann et al. (2017) used a revised LandscapeDNDC set up for hypothesis testing to identify potential additional N sources 

in groundwater-dominated grasslands and showed, that groundwater N uptake is a likely contributor. 

Taking a closer look at the modeled N2O emissions, one can see that the model did not reproduce high as well as negative 

(N2O uptake) emissions. Currently, LandscapeDNDC does not consider any N2O uptake, accordingly negative fluxes cannot 25 

be simulated by the model. The peaky dynamics of simulated N2O emissions, especially from August 2014 to January 2015 

are not confirmed by the measurements, indicating possible measurement errors in this time. One has also to consider the 

temporal mismatch of our weekly N2O measurements and the hourly simulations, making a full match of observations versus 

simulations difficult.  

There is no clear effect of grazing on the N2O emissions on the grassland site in both measurements and modeled results (Fig. 30 

4). Mean modeled annual emissions overestimate the observations by 0.4 kg N2O-N ha-1 a-1, and even the simulated uncertainty 

bounds of 0.27 kg N2O-N ha-1 a-1 do not capture the measured dynamics.  

Forest N cylce: N input is given for the forest model only by atmospheric deposition with an annual amount of 5.1 kg N ha-1 a-1. 

Gaseous losses amount to 1.8 kg N ha-1 a-1. Leaching contributes 0.6% of the N output. The rest (3.3 kg N ha-1 a-1) is allocated 
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into biomass and soil. By taking a closer look on the N2O emissions (Fig. 2), we see the model failing to reproduce the observed 

emission dynamics. Observed N2O emissions have high error bars and not all transects are driven by frost-thaw cycles or N2O 

uptake at the same time (Table 2). Parameterizing and simulating the forest transects independent from each other, would 

improve the simulations. One limiting factor is that both N2O uptake and frost-thaw cycles are not included in the current 

LandscapeDNDC version. We therefore recommend to particularly include frost-thaw cycles into the model (De Bruijn et al., 5 

2009) as this process can have a major influence on N2O inventories, e.g. up to 73% of the annual N2O loss of a forest site in 

Högelwald, Germany (Papen and Butterbach‐Bahl, 1999) was occurring during such cycles. The mean modeled annual 

emissions (0.33 kg N ha-1 a-1) overestimate the observed emissions, but capture the mean observed annual emissions with their 

uncertainty bands of 0.15 kg N2O-N ha-1 a-1. 

 10 

Figure 2: Measured and modeled N2O emissions from different land use. Measurements are given as grey error bars showing the 

variance between the replicated transects and the mean value as a black dot. Posterior model uncertainty is given in light color for 

the 5 and 95 percentile and dark color for the 25 and 75 percentile. Vertical lines indicate management events. In the uppermost 

panel, blue colored vertical bars indicate fertilizer application, while brown color indicate manure application. 
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Figure 3: Observed and modeled N2O emissions for spring (21.03 20.06.), summer (21.06. 20.09.), autumn (21.09. 20.12.), and winter 

(21.12. 20.03.). 

 

Figure 4: Management effects on N2O emissions. Measured and modeled emissions where selected in a time window of 2 weeks 5 
before and 2 weeks after a management. 
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Table 4: Simulated nitrogen fluxes given by posterior model runs and their uncertainty on different land use in [kg N ha-1 a-1]. 

N manure on grassland includes urine and dung input by sheep. Biomass output on grasslands combines harvest export and biomass 

leaving the system through sheep. Arable model assumes 20% return of stubble to field. 

 Modeled N flux Arable Grassland Forest 

N deposition 5.11  5.11  5.11  

N manure 57.55  7.57  0  

N fertilizer 135.37  0  0  

Total input 
198.03  12.68  5.11  

NO emis. 0.57 ±0.16 0.46 ±0.21 0.45 ±0.33 

N2 emis. 62.55 ±26.83 18.69 ±10.91 1 ±1.5 

N2O emis. 7.33 ±2.3 0.69 ±0.27 0.33 ±0.15 

NH3 emis. 38.15 ±20.8 2.45 ±1.89 >0.01 ±>0.01 

Total gaseous output 
108.6 ±50.09 22.29 ±13.28 1.78 ±1.98 

DON leaching 0.01 ±>0.01 0.01 ±>0.01 0.01 ±>0.01 

NO3 leaching 30.01 ±29.9 1.46 ±3.19 0.03 ±0.04 

Total leaching output 
30.02 ±29.9 1.47 ±3.19 0.04 ±0.04 

N grain export 63.92 ±5.17 0  0  

N straw export 35.75 ±2.67 29.77 ±9.44 0  

Total biomass output  99.67 ±7.84 29.77 ±9.44 0  

Balance -40.26 ±87.83 -40.85 ±25.91 3.29 ±2.02 

 

3.4 Modeled C fluxes 5 

Modeled CO2 emissions are shown for the different land uses over time (Fig. 5), separated into different seasons (Fig. 6) and 

before/after management-events occur (Fig. 7). The complete modeled C cycle is given in Table 5.  

Arable C cycle: LandscapeDNDC simulations for the arable system predict a mean annual gross carbon uptake of 25.7 ± 1.3 t 

C-CO2 ha-1 a-1. 20.5 t C-CO2 ha-1 a-1 leave the system through respiration, from which maintenance respiration contributes the 

largest proportion (65%). This is perfect in line with annual measured losses (Table 3). Harvest output is with 4.7 t C ha-1 a-1 10 

in good agreement with the observed yields (Fig. A4). However, the temporal dynamic of the modeled TER on the arable 

study site underestimates the emissions in the summer season (Fig. 6) and mean modeled fluxes are substantially lower than 

measured ones (Fig. 7).  

Tillage and harvest events fall into the summer season. While the observed emissions drop after harvest by 25%, the modeled 

emissions drop by even 50%. The reason for this is either an underestimation of the emissions through LandscapeDNDC (after 15 

harvest events until tillage occurs), or the uncertainty in the upscaling method of the measured CO2 emissions (discussed in 

chapter 3.1.2). As microbial processes can oxidize more soil carbon after harvest (resulting in higher heterotrophic respiration), 
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we assume that the discrepancy is rather stemming from the model simulations. There are also studies, e.g. Buyanovsky et al. 

(1986), who report highest soil respiration rates after harvest. Modelled and measured soil CO2 emissions agree well after 

tillage.  

Grassland C cycle: LandscapeDNDC simulations for the grassland system predict a mean annual gross carbon uptake of 

16.9 ± 1.7 t C-CO2 ha-1 a-1 and an annual loss of 13.2 t C-CO2 ha-1 a-1 through respiration. Further minor outputs are related to 5 

grazing (0.2 t C-CO2 ha-1 a-1), harvest (2.0 t C-CO2 ha-1 a-1) and allocation in the soil (1.4 t C-CO2 ha-1 a-1). Mean annual as 

well as temporal dynamics of modeled emissions are well in line with measured emissions. Effect of grazing has a minor 

influence on the total ecosystem respiration (Fig. 7), resulting in a wider range of both measured and modeled emissions. 

Grazing, i.e. reduction of root biomass, results in two contrary processes: reduction of maintenance respiration and increasing 

autotrophic respiration (Raich and Tufekciogul, 2000). 10 

Forest C cycle: The forest model predicts an annual C input of 8.9 ± 0.6 t C-CO2 ha-1 a-1 which is quite low compared to 

estimations for old-growth beech forests in Europe with reported rates from 14.4 to 18.3 t C-CO2 ha-1 a-1 (Molina-Herrera et 

al., 2015). However, C uptake rates vary in magnitude with values presented from 3 to 34 t C-CO2 ha-1 a-1 for different forests 

in different growing stages (Waring et al., 1998). As our study site is a mixture of young and old beech trees, we assume 40-

50% less biomass compared to an old beech forest. Of the modeled C input, 6.6 t C-CO2 ha-1 a-1 leave the system as gaseous 15 

CO2. The rest is accumulated in the biomass and soil. Mean annual sum and dynamic of modeled emissions are in line with 

measured emissions. We expected to see rising emissions with litter fall in autumn (Raich and Tufekciogul, 2000), but cannot 

report this effect, neither with measurements, nor with model results (Fig. 6). 
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Figure 5: Modeled CO2 emissions and management. Measurements are given as grey error bars showing the variance between the 

replicated transects and the mean value as a black dot. Posterior model uncertainty is given in light color for the 5 and 95 percentile 

and dark color for the 25 and 75 percentile. Vertical lines indicate management events. Brown colored bars in the uppermost panel 

indicate manure application. 5 
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Figure 6: Observed and modeled CO2 emissions for spring (21.03 20.06.), summer (21.06. 20.09.), autumn (21.09. 20.12.), and winter 

(21.12. 20.03.). 

 

Figure 7: Management effects on CO2 emissions. Measured and modeled emissions where selected in a time window of 2 weeks 5 
before and 2 weeks after a management. 
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Table 5: Simulated carbon fluxes given by posterior model runs and their uncertainty on different land use in [t C ha-1 a-1]. C manure 

on grassland includes input by sheep’s dung. Arable model assumes 20% return of stubble to field. 

Modeled C flux Arable Grassland Forest 

CO2 uptake 24.65 ±1.32 16.8 ±1.72 8.94 ±0.56 

C manure 1.06  0.07  0  

Total input 25.71 ±1.32 16.87 ±1.72 8.94 ±0.56 

Growth respiration 2.53 ±0.2 0.81 ±0.27 1.44 ±0.05 

Heterotrophic respiration 4.69 ±0.53 2.27 ±0.9 2.04 ±0.1 

Maintenance respiration 13.31 ±1.06 10.16 ±1.13 3.11 ±0.39 

Total gaseous output 20.53 ±1.79 13.24 ±2.3 6.59 ±0.54 

DOC leaching >0.01 ±>0.01 >0.01 ±>0.01 >0.01 ±>0.01 

 Total leaching output >0.01  >0.01  >0.01  

C bud export 1.97 ±0.17 0  0  

C straw export 2.75 ±0.21 2.28 ±0.72 0  

Total biomass output  4.72 ±0.38 2.28 ±0.72 0  

Balance 0.46 ±3.49 1.35 ±4.74 2.35 ±1.1 

4 Conclusion 

We presented a two-year measurement campaign of trace gas emissions from adjacent land uses i.e. arable, grassland and 

forest ecosystems with concurrent model development and rigorous testing through model-data fusion.  5 

We found high emissions of N2O and CO2 on our arable sites, low emissions on grassland sites and lowest emissions on the 

forest sites. These observations enable us to investigate underlying effects of plant growth, temperature and WFPS, land use 

effects, seasonal patterns and management effects. Respiration amounts rise in less shaded (warmer) areas of the forest, while 

N2O emissions increase toward the foot of the hills of forest and arable sites due to nitrogen accumulation. Highly variable 

N2O emissions in forest resulted in large uncertainty of model verification data and was translated in large uncertainty of model 10 

results for forest. 

Detailed measured data of soil and management allowed fitting the biogeochemical model LandscapeDNDC to the measured 

soil moisture, yield and GHG emissions of CO2 and N2O. Overall, model performance is classified in Table 6. 

The model reproduced measured data reasonably well in time, separated into seasons and management events. Model 

performance was best in predicting management effects on N2O emissions and annual CO2 emissions for all land uses. With 15 

regard to land use, simulations for grassland sites work best, followed by those for arable land. Simulations for N2O emissions 

on arable land outperform those for CO2, and vice versa for grassland. Low emissions on forest sites were generally difficult 

to depict by our modeling approach.  

Biogeosciences Discuss., doi:10.5194/bg-2017-96, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 17 March 2017
c© Author(s) 2017. CC-BY 3.0 License.



19 

 

The model-data fusion approach allowed us to derive model structural deficiencies that would likely increase model 

performances if implemented in Landscape DNDC: (1) missing N2O uptake processes; (2) missing NO3
- (and potentially 

dissolved organic nitrogen) uptake through shallow groundwater; (3) missing lateral interaction at hillslopes due to 1D model 

set up. 

Table 6: Overall posterior model performance of LandscapeDNDC on different land use in reproducing GHG emission data. 5 
Classified into (1) good, (2) medium and (3) poor model performance in simulating reliable annual sums, seasonal patterns and 

magnitude of management events (e.g. fertilizer application). NA = not applicable, i.e. no forest management during modeled period 

from 2010-2016. 

Modelled performance 

on each land use 

N2O emissions  CO2 emissions 

annual seasonal management annual seasonal management 

Arable (A1-3) 2 1 1 1 2 3 

Grassland (G1) 1 2 1 1 1 1 

Forest (W1-W3) 2 2 NA 1 2 NA 

 

Furthermore, posterior model runs allowed quantifying magnitude and uncertainty of not measured fluxes of the C and N 10 

cycle. Investigated forest site is in general acting as the largest sink for C and N, with annual sequestration rates of 2.4 t C ha-1 

and 3.3 kg N ha-1. The extensive grazed grassland is also acting as a sink for C with 1.4 t C ha-1 per year, while the N cycle of 

the grassland model cannot be closed with the given settings. Shrinking N soil pools indicate a missing input, which we assume 

from shallow groundwater with additional N supply of around 40 kg N ha-1 a-1. 

Current land use in this catchment is dominated by forests (37%) and arable land (35%), whereas grassland sites (11%) are 15 

mainly distributed along the stream. Under the viewpoint of climate smart landscapes, measured data suggests the benefit of 

forests in a landscape, having the least GHG emissions. Riparian zones can act as sinks of N, but only during the vegetation 

period and times when roots have access to groundwater. Arable land use produces high amounts of N2O, but not throughout 

the year, rather in spring after fertilizer application.  

Potential interactions of land use pattern cannot be quantified with the current one dimensional model approach. However, the 20 

dataset could be used in future studies to quantify nitrate uptake of riparian zones in more detail, e.g. by coupling 

LandscapeDNDC to a hydrological model as done by Klatt et al. (2017). Such a model setup would also allow an upscaling in 

space, e.g. for generation of GHG inventories or an analysis of more detailed management scenarios in time. 

Code availability 

The LandscapeDNDC framework is free available upon request from www.svn.imk-ifu.kit.edu 25 

The SPOTPY tool, used for model-data fusion, is free open source and available from www.pypi.python.org/pypi/spotpy 
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Data availability 

All measured data is free available upon request from www.fb09-pasig.umwelt.uni-giessen.de:8081 

Appendices 

 

Figure A1: Modeled WFPS on arable land in different depths. RMSEs ranging from 0.0774 to 0.1194% WFPS [0.2m], 0.0511 to 5 
0.0955% WFPS [0.4m] and 0.0921 to 0.1193% WFPS [0.6m].  

 

Figure A2: Modeled WFPS on grassland in different depths. RMSEs ranging from 0.043 to 0.1481% WFPS [0.1m] and 0.056 

0.1069% WFPS [0.25m]. 
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Figure A3: Modeled WFPS on forest in different depths. RMSEs ranging from 0.0817 to 0.1324% WFPS [0.15m] and 0.0812 to 

0.1606% WFPS [0.25m]. 

 

Figure A4: Modeled dry weight grain yield on arable land use. WIWH = Winter wheat, TRSE = Triticum secale. RMSEs ranging 5 
from 1125.7 to 2529.2 kg ha-1. 

 

Figure A5: Posterior parameter distribution of the LandscapeDNDC module MeTrx. Orange line = arable, light green line = 

grassland, dark green line = forest model set up. 
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Figure A6: Posterior parameter distribution of the LandscapeDNDC modules wcDNDC and physiology. Orange line = arable, 

light green line = grassland, dark green line = forest model set up. 

 5 
Table A1: Input parameters for all investigated LandscapeDNDC modules with uniform distribution for Latin Hypercube Sampling. 

FASY = Fagus sylvatica, PERG = Perennial grass. 

module parameter name Description min max 

wcDNDC sks_arable 
Value of soil layer for saturated hydraulic 

conductivity 
0.1 0.2 

wcDNDC sks_grassland 
Value of soil layer for saturated hydraulic 

conductivity 
0.1 0.15 

wcDNDC sks_forest 
Value of soil layer for saturated hydraulic 

conductivity 
0.1 0.1 

wcDNDC wcmin_arable Wilting point of soil layer 170 220 

wcDNDC wcmin_grassland Wilting point of soil layer 200 300 

wcDNDC wcmin_forest Wilting point of soil layer 40 200 

wcDNDC wcmax_arable Field capacity of uppermost soil layer 270 350 

wcDNDC wcmax_grassland Field capacity of soil layer 300 500 

wcDNDC wcmax_forest Field capacity of soil layer 270 350 

physiology DOC_RESP_RATIO_FASY 
Ratio of root exudates related to root growth 

respiration 
0.1 0.6 

physiology RESP_FASY Factor determining plant respiration 30 70 

physiology DOC_RESP_RATIO_PERG 
Ratio of root exudates related to root growth 

respiration 
0.2 0.8 

physiology MC_ROOT_PERG Maintenance respiration coefficient of roots 0.001 0.02 

physiology MAX_TDD_PERG Temperature degree days for full plant development 1200 2000 

physiology OPTYIELD_PERG Optimum yield of crops and grasses 5000 9000 

physiology TLIMIT_PERG Temperature limit for plant growth 2 4 

physiology DOC_RESP_RATIO_arable 
Ratio of root exudates related to root growth 

respiration 
0.2 0.8 

physiology MAX_TDD_arable Temperature degree days for full plant development 1000 2000 

physiology RESP_arable Factor determining plant respiration 30 100 

physiology OPTYIELD_rape Optimum yield of Rape 7000 20000 

physiology OPTYIELD_WIWH Optimum yield of Winter Wheat 8000 20000 

physiology OPTYIELD_TRSE Optimum yield of Triticale 8000 20000 

physiology OPTYIELD_WBAR Optimum yield of Winter Barley 8000 20000 

METRX METRX_AMAX Maximum microbial death rate 0.5 3 

METRX METRX_AMAX_ALGAE Maximum decay rate of alga 0.01 0.1 

METRX METRX_BETA_LITTER_TYPE 
Exp. fac. of litter decomposition red. depend. on 

lignin conc 
1 3 

METRX METRX_CN_MIC_MAX Maximum allowed C:N ratio for microbes 10 20 
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METRX METRX_CN_MIC_MIN Minimum allowed C:N ratio for microbes 2 8 

METRX METRX_CO2_PROD_DECOMP 
Instantaneously production of CO2 during 

decomposition 
0.1 0.6 

METRX METRX_D_EFF_REDUCTION Reduction factor for gas diffusion 0.1 1 

METRX METRX_F_DECOMP_CLAY_2 Factor for clay dependency of decomposition 1 20 

METRX METRX_F_DECOMP_M_WEIBULL_1 
Factor for water filled pore space dependency of 

decomposition 
0.1 1 

METRX METRX_F_DECOMP_M_WEIBULL_2 

Factor for water filled pore space dependency of 

decomposition 5 15 

METRX METRX_F_DECOMP_T_EXP_1 Factor for temperature dependency of decomposition 0.5 5 

METRX METRX_F_DECOMP_T_EXP_2 Factor for temperature dependency of decomposition 25 45 

METRX METRX_F_DENIT_N2 
Factor determining amount denitrified nitrogen goes 

to N2 
0.1 0.9 

METRX METRX_F_NIT_N2O_T_EXP_1 
Factor for temp. depend. of N2O prod. during 

nitrification 
0.01 0.1 

METRX METRX_F_NIT_N2O_T_EXP_2 
Factor for temperature dependency of N2O 

production 
5 20 

METRX METRX_F_NIT_PH_ONEILL_1 Factor for pH dependency of nitrification 10 25 

METRX METRX_F_NIT_PH_ONEILL_3 Factor for pH dependency of nitrification 5 20 

METRX METRX_KF_NIT_N2O Maximum fraction of nitrified NH4 that goes to N2O 0.001 0.2 

METRX METRX_KMM_NH4_NIT 
Michaelis-Menten const. for NH4 depend. of 

nitrification 
0.00001 0.01 

METRX METRX_KR_DC_HUM_0 Decomposition constant of recalcitrant young humus 0.002 0.02 

METRX METRX_KR_DC_HUM_1 Decomposition constant of recalcitrant old humus 0.00005 0.002 

METRX METRX_KR_DC_HUM_2 Decomposition constant of recalcitrant old humus 0.000001 0.0001 

METRX METRX_KR_DC_LIG Decomposition constant of lignin 0.0005 0.05 

METRX METRX_KR_DC_RAW_LITTER Decomposition constant of raw litter 0.005 0.1 

METRX METRX_KR_HU_HUM_0 
Rate constant for humification of labile humus to 

recalcitrant young humus 
0.000001 0.001 

METRX METRX_KR_HU_HUM_1 
Rate constant for humification of recalcitrant young 

humus to recalcitrant old humus 
0.000001 0.0001 

METRX METRX_KR_HU_LIG Rate constant for humification of lignin 0.0001 0.1 

METRX METRX_KR_OX_FE Rate constant of iron oxidation 0.1 0.9 

METRX METRX_KR_REDUCTION_ANVF Decomposition reduction due anaerobicity 0.01 0.9 

METRX METRX_MIC_EFF Microbial carbon use efficiency 0.1 2 
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