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Abstract. This study investigated the development of biological soil crusts (biocrusts) in an early successional 28 

subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning 29 

experiment in Southeast China (BEF China), the effect of these biocrusts on sediment delivery and runoff was assessed 30 

within micro-scale runoff plots under natural rainfall and biocrust cover was surveyed over a five-year period. 31 

Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light 32 

cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only three years. Biocrust 33 

cover was still increasing after six years of tree growth. Within later stage crusts, 25 bryophyte species were 34 

determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. 35 

Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, 36 

slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that 37 

bryophyte-dominated biocrusts strongly decreased soil erosion being more effective than abiotic soil surface cover. 38 

Hence, their significant role to mitigate sediment delivery and runoff generation in mesic forest environments and 39 

their ability to quickly colonize soil surfaces after forest disturbance are of particular interest for soil erosion control 40 

in early stage forest plantations. 41 

 42 
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1 Introduction 56 

Biological soil crusts (hereinafter referred to as biocrusts) are a living soil cover, which plays significant functional 57 

roles in many environments (Weber et al., 2016). In initial ecosystems, communities of cyanobacteria, algae, fungi, 58 

lichens, bryophytes and bacteria in varying combinations are the first to colonize the substrate (Evans and Johansen, 59 

1999). Biocrusts are often dominated by one organism group, with cyanobacterial crusts being indicators for early 60 

stage crusts and drier conditions (Malam Issa et al., 1999; Malam Issa et al., 2007) and bryophyte-dominated crusts 61 

being indicators for later stage crusts and moister conditions (Colesie et al., 2016; Seppelt et al., 2016). Those highly 62 

specialized communities form a biological crust immediately on top or within the first millimetres of the soil surface 63 

(Büdel, 2005). Biocrusts preferably occur under harsh conditions of temperature or light, where vascular vegetation 64 

tends to be rare (Allen, 2010). Therefore, biocrusts are generally widespread under dryland conditions (Berkeley et 65 

al., 2005; Belnap, 2006; Büdel et al., 2009), whereas under mesic conditions they mostly occur as a successional stage 66 

after disturbance or in environments under regularly disturbed regimes (Büdel et al., 2014). 67 

In direct competition with phanerogamic plants, biocrusts are generally in an inferior position and thus their 68 

development is limited under closed plant canopies or when leaf litter layers occur (Belnap et al., 2003a). This 69 

limitation is due to the competition for light (Malam Issa et al., 1999) and nutrients (Harper and Belnap, 2001). 70 

Disturbance of the phanerogamic vegetation layers, however, changes this competitive situation. Such disturbances 71 

can occur in forest ecosystems by natural treefall or human induced clear-cutting (Barnes and Spurr, 1998). Complete 72 

removal of a forest causes a harsh shift in vegetation development and creates a starting point for new vascular plant 73 

as well as biocrust communities (Bormann et al., 1968; Keenan and Kimmins, 1993; Beck et al., 2008). Biocrusts are 74 

able to quickly colonize natural clearances in tree layers (Belnap et al., 2003a) as well as gaps appearing after human 75 

disturbance (Dojani et al., 2011; Chiquoine et al., 2016). Generally, it can be stated that current knowledge on the 76 

relation between the development of biocrust cover and vascular plant cover leaves room for further research (Kleiner 77 

and Harper, 1977; Belnap et al., 2003b; Zhang et al., 2016). In particular, the development of biocrusts in early 78 

successional forest ecosystems has not been in focus of research so far and thus there are only few studies on this topic 79 

(Su et al., 2007; Zhang et al., 2016). Furthermore, descriptions of different biocrust types in mesic vegetation zones 80 

and investigations in southeast Asia are rare (Büdel, 2003; Bowker et al., 2016). We assume that biocrusts are also 81 

able to coexist in mesic subtropical forest environments shortly after deforestation, but their cover decreases with 82 

ongoing tree canopy closure and decreasing light intensity. 83 

Functional roles of biocrusts have been investigated for decades, but less attention has been paid to their spatial 84 

distribution and characteristics (Allen, 2010). Biocrust cover varies across spatial scales (from centimetres to 85 

kilometres) and it could be shown that it depends not only on the surrounding vascular vegetation cover, but also on 86 

soils, geomorphology and (micro-)topography or terrain (Evans and Johansen, 1999; Ullmann and Büdel, 2003; 87 

Kidron et al., 2009; Bowker et al., 2016) in arid, semi-arid, temperate and boreal environments. Different biocrust 88 

distributions have been related to elevation and terrain-influenced microclimatic gradients (Kutiel et al., 1998), 89 

different geomorphic zones (Eldridge, 1999), varying aspects (George et al., 2000) and soil types (Bu et al., 2016). 90 

We assume that this is also true for mesic subtropical forest environments. To our knowledge, investigations on the 91 
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influence of small-scale (centimetres to metres) topographic variations on biocrust development are rare and further 92 

studies will help to understand the role of these small-scale factors (Garcia-Pichel and Belnap, 2003; Bu et al., 2016; 93 

Bowker et al., 2016). Furthermore, as the development of biocrusts is characterized by a high complexity and spatial 94 

heterogeneity with many micro-climatic and micro-environmental factors, it is of great significance to conduct 95 

comparative studies on the spatial distribution of biocrusts (Bu et al., 2013). This is particularly true for initial forest 96 

ecosystems (Weber et al., 2016).  97 

Biocrusts were recognized to have a major influence on terrestrial ecosystems (Buscot and Varma, 2005; Belnap, 98 

2006) as they protect soil surfaces against erosive forces by both wind and water (Bowker et al., 2008; Zhao et al., 99 

2014). They can absorb the kinetic energy of rain drops (splash effect), decrease shear forces and stabilize soil particles 100 

with protonemal mats and fine rhizoids and thus decrease particle detachment and enhance soil stability (Malam Issa 101 

et al., 2001; Warren, 2003; Belnap and Lange, 2003). Those effects differ with regard to soil texture, surface 102 

roughness, water repellency and finally different crust species and developmental stages (Warren, 2003; Belnap and 103 

Büdel, 2016). However, studies that directly relate different types of biocrust cover to rates of soil erosion are few 104 

(Allen, 2010). Furthermore,  the influence of biocrusts on sediment delivery and runoff has mostly been investigated 105 

in arid and semi-arid climates and humid climates have been largely disregarded (Belnap and Lange, 2003; Weber et 106 

al., 2016). We assume that biocrusts are effectively counteracting soil losses in early successional subtropical forest 107 

plantations and thus may play a major functional role in soil erosion control in mesic areas under anthropogenic 108 

influence.  109 

This study aims to investigate the development of biocrust cover in an early successional subtropical forest ecosystem 110 

after human disturbance and the impact of those biocrusts on soil erosion. Therefore, interrill erosion was measured 111 

with runoff plots and the occurrence, distribution and development of biocrusts was recorded. The study was 112 

conducted in an experimental forest plantation (BEF China), which aims to study biodiversity and ecosystem 113 

functioning relationships in southeast China (Yang et al., 2013; Bruelheide et al., 2014). During the study, the 114 

following hypotheses were addressed:  115 

(1) Biocrusts are able to coexist in mesic early successional subtropical forest ecosystems, but crust cover decreases 116 

with ongoing canopy closure and decreasing light intensity. 117 

 (2) The development of biocrusts in mesic subtropical forests is not only influenced by the surrounding vegetation 118 

cover, but also by soil attributes which influence biocrust growth and terrain attributes which affect microclimatic 119 

conditions. 120 

 (3) Biocrusts mitigate interrill soil erosion in early successional subtropical forest plantations. 121 

 122 

2 Material and methods 123 

2.1 Study site and experimental design 124 
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The study was carried out within the BEF China experiment (Bruelheide et al., 2014) in Xingangshan, Jiangxi 125 

Province, PR China (29°06.450′ N and 117°55.450′ E). The experimental area is located in a mountainous landscape 126 

at an elevation of 100 m a.s.l. to 265 m a.s.l. with slopes from 15° to 41° (Scholten et al., 2017). The bedrock is non-127 

calcareous slates weathered to saprolite and predominant soil types are Cambisols with Anthrosols in downslope 128 

positions and Gleysols in valleys (Scholten et al., 2017). The mean annual temperature is 17.4 °C and the annual 129 

precipitation is 1635 mm with about 50 % falling during May to August (Goebes et al., 2015). The climate is typical 130 

for summer monsoon subtropical regions. The potential natural vegetation of this region is a subtropical broadleaved 131 

forest with dominating evergreen species. It has been widely replaced by tree plantations of mostly Cunninghamia 132 

lanceolata for the purpose of commercial forestry in the 1980’s (Bruelheide et al., 2014). The experimental area 133 

(approx. 38 ha) is structured in 566 research plots (25.8 m × 25.8 m each) at two sites (A and B) and was clear-cut 134 

and replanted with 400 tree saplings per plot in different tree species mixtures in 2009 and 2010 (Yang et al., 2013). 135 

A selection of 34 research plots was used for this study (Seitz et al., 2016). Shrubs and coppices were weeded once a 136 

year from 2010 to 2012 to help the tree saplings grow, following common practice in forest plantations of this area.  137 

2.2 Field methods  138 

Biocrust cover was determined photogrammetrically in 70 selected micro-scale runoff plots (ROPs, 0.4 m × 0.4 m; 139 

Seitz et al., 2015) at five timesteps (November 2011, May 2012, May 2013, May 2014 and May 2015). Biocrusts were 140 

described in the field based on appearance, functional groups and species composition and biocrust types determined 141 

based on the dominating autotrophic component. During the rainy season in summer 2013, an extended survey linked 142 

to soil erosion measurements (see below) was conducted in five ROPs on 34 research plots each (170 ROPs in total,  143 

Table 1). At each ROP, perpendicular images were taken with a single lens reflex camera system (Canon 350D, Tokio, 144 

Japan) and processed with the grid quadrat method in GIMP 2.8 using a digital grid overlay with 100 subdivisions (cf. 145 

Belnap et al., 2001). Stone cover and biocrust cover were separated by hue distinction. A continuous leaf litter cover, 146 

which may impede analyses, was not present during measurements. Biocrusts were collected in 2013 and samples 147 

were dried at 40 °C (Dörrex drying unit, Netstal, Switzerland). The identification of species was carried out by 148 

morphological characteristics using a stereomicroscope (Leitz TS, Wetzlar, Germany), a transmitted-light microscope 149 

(Leitz Laborlux S, Wetzlar, Germany) and ultraviolet light. Bryophytes (dominating taxa in 2013) were determined 150 

to the species level, wherever possible and separated into mosses (Bischler-Causse, 1989; Moos flora of China: Gao 151 

et al., 1999; 2001; 2002; 2003; 2005; 2007; 2008; 2011) and liverworts (Zhu, 2006; Söderström et al., 2016 and Alfons 152 

Schäfer-Verwimp, personal communication). Comparisons were conducted with specimen hosted in the herbarium of 153 

the State Museum of Natural History in Stuttgart, Germany (Herbarium STU). 154 

Sediment delivery and surface runoff were measured within 170 ROPs in summer 2013 (see above and Table 1). After 155 

four timesteps, 334 valid ROP measurements entered the analysis (for detailed information see Seitz et al., 2016). 156 

Sediment delivery was sampled, dried at 40 °C and weighed, whereas surface runoff and rainfall amount were 157 

measured in situ. At every ROP, crown cover and leaf area index (LAI) were measured with a fish-eye camera system 158 

(Nikon D100 with Nikon AF G DX 180°, Tokio, Japan) and calculated with HemiView V.8 (Delta-T devices, 159 

Cambridge, UK). Measurements of tree height and crown width were provided by Li et al. (2014) at research plot 160 
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scale (n=34). Tree species richness and tree composition resulted from the experimental setup of BEF China 161 

(Bruelheide et al., 2014). 162 

Soil attributes (Table 1) were determined for every research plot (n=34) using pooled samples from nine point 163 

measurements each. Soil pH was measured in KCl (WTW pH-meter with Sentix electrodes, Weilheim, Germany), 164 

bulk soil density was determined by the mass-per-volume method and total organic carbon (TOC) was measured using 165 

heat combustion (Elementar Vario EL III, Hanau, Germany). Soil organic matter (SOM) was calculated by multiplying 166 

TOC with the factor 2 (Pribyl, 2010). 167 

2.3 Digital terrain analysis 168 

Terrain attributes (Table 1) were derived from a digital elevation model (DEM, Scholten et al., 2017) at research plot 169 

scale (n=34). Attributes were the terrain ruggedness index (TRI, Riley et al., 1999) to describe the heterogeneity of 170 

the terrain, the Monte-Carlo based flow accumulation (MCCA, Behrens et al., 2008) to diagnose terrain driven water 171 

availability, altitude above sea level to address elevation effects and the eastness and the northness (Roberts, 1986) to 172 

describe plant related climatic conditions. Those terrain attributes cover major landscape features of the experimental 173 

area and were not correlated. Slope was additionally measured with an inclinometer at every ROP (n=170, see Seitz 174 

et al., 2016). 175 

 176 

[ Table 1 ] 177 

 178 

2.4 Statistical methods 179 

The temporal development of biocrust cover (1) from 2011 to 2015 was assessed at five timesteps within 70 ROPs 180 

(see above) by an analysis of variance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) test (n=350).  181 

The influences of vegetation, soil and topographic attributes on biocrust cover (2) in 170 ROPs (see above) were 182 

assessed by linear mixed effects (LME) models (n=334). Crown cover, bulk soil density, SOM, pH, altitude, slope, 183 

MCCA, TRI, eastness, northness and tree species richness were fitted as fixed effects and biocrust cover as response 184 

variable. The attributes were tested with Pearson’s correlation coefficient before fitting. LAI was fitted individually 185 

in exchange to crown cover due to multi-collinearity. Experimental site and research plot were fitted as random effects 186 

and hypotheses were tested with an ANOVA type 1 with Satterthwaite approximation for degrees of freedom.  187 

The influences on soil erosion (3) were assessed by LME models with restricted maximum likelihood (n=334) and 188 

sediment delivery and surface runoff as response variables, respectively. Crown cover, slope, surface cover, SOM, 189 

rainfall amount and tree species richness were fitted as fixed effects. Surface cover was then split into surface cover 190 

by biocrusts and by stones, which entered the analysis as fixed conjoined factors. Precipitation events nested in plot, 191 

tree species composition, experimental site and ROP nested in plot were fitted as random effects. Attributes were not 192 
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correlated. The hypothesis was tested with an ANOVA type 1 with Satterthwaite approximation for degrees of 193 

freedom. Moreover, the Wilcoxon rank sum test was applied to test for differences between biocrust cover and stone 194 

cover on sediment delivery and surface runoff. Therefore, the dataset was split into data points where biocrust cover 195 

exceeded stone cover (n=281) and data points where stone cover exceeded biocrust cover (n=53).  196 

All response variables were log-transformed before modelling. The dataset was tested for multi-collinearity and met 197 

all prerequisites to carry out ANOVAs. All analyses were performed with R 3.1.2 (R Core Team, 2014). LME 198 

modelling was conducted with “lmerTest” (Kuznetsova et al., 2014) and rank sum tests with “exactRankTests” 199 

(Hothorn and Hornik, 2015). Figures were designed with “ggplot2” (Wickham, 2009).  200 

 201 

3 Results 202 

3.1 Temporal development of biocrust cover 203 

Biocrusts occurred in 94 % of all ROPs and their cover within ROPs ranged between 1 % and 88 % over the course 204 

of five years. The mean biocrust cover of all ROPs more than tripled from their installation in 2011 to the last 205 

measurement in 2015 (Fig. 1). The increases were significant from 2011 to 2015 and from 2012 to 2013, 2013 to 2014 206 

and 2014 to 2015 (p<0.001). 207 

 208 

[ Figure 1 ] 209 

 210 

Whereas a clear bryophyte-dominance of biocrusts was evident at the time of sampling in 2013, different successional 211 

stages were identified in the field and on ROP photos from 2011 to 2015 (Fig. 2). In 2011, a smooth, light 212 

cyanobacteria- and algae-dominated crust with few lichens and bryophytes indicated an earlier stage of biocrust 213 

development (Colesie et al., 2016). In 2013, 25 moss and liverwort species were classified (Table 2) and formed a 214 

bryophyte-dominated crust with some cyanobacteria, algae, lichens and micro-fungi still observed within ROPs. The 215 

same was true in 2015, but first evidence of vascular plants (Selaginella and Poaceae) indicated a further change in 216 

the vegetation cover of the soil surface.  217 

 218 

[ Figure 2 ] 219 

 220 

[ Table 2 ] 221 

 222 
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3.2 The influence of vegetation, soil and terrain on biocrust cover 223 

The development of biocrust cover in 2013 was positively influenced by crown cover and LAI as attributes of the 224 

surrounding vegetation (Table 3). Furthermore, it was negatively affected by slope and northness and slightly 225 

positively affected by the altitude of the research plots as terrain attributes (Table 3). Further terrain attributes or any 226 

soil attributes did not affect the development of biocrust cover. 227 

 228 

[ Table 3 ] 229 

 230 

3.3 The impact of biocrust cover on soil erosion 231 

The results indicate that biocrusts strongly affect soil erosion. ROPs with biocrust cover below 10 % showed a mean 232 

sediment delivery of 302 g m-2 and a mean runoff volume of 39 L m-2, whereas ROPs with biocrust cover above 50 % 233 

showed a mean sediment delivery of 74 g m-2 and a mean runoff volume of 29 L m-2. Both biocrust and stone cover, 234 

as well as total soil surface cover (comprising both biocrust and stone cover, p<0.001) negatively affected sediment 235 

delivery (Table 4). In addition, soil surface cover negatively affected surface runoff (p=0.003). However, only biocrust 236 

but not stone cover mediated the effect of runoff. Furthermore, crown cover, SOM and rainfall amount affected 237 

sediment delivery, whereas runoff was affected by crown cover and rainfall amount. ROPs with increased stone cover 238 

showed higher sediment delivery and surface runoff compared to those with increased biocrust cover (Fig. 3).  239 

 240 

[ Table 4 ] 241 

 242 

[ Figure 3 ] 243 

 244 

4 Discussion 245 

4.1 Temporal development of biocrust cover 246 

Biocrusts were detected widely within the experiment and occupied a considerable area in the interspaces of the 247 

growing tree community. Thus, the first part of hypothesis 1, stating that biocrusts are able to coexist in mesic early 248 

successional subtropical forests, can be confirmed, as they successfully colonized the newly created habitats 249 

originating from the disturbance by forest clear-cutting and weeding (Bruelheide et al., 2014). Although biocrusts 250 

have been mainly defined to occur in dryland regions (Weber et al., 2016), they can also appear as a transient feature 251 
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in mesic environments after major singular or repeated disturbance events (Büdel et al., 2014, Fischer et al., 2014). In 252 

the current study, deforestation provided a local arid microenvironment, which initiated early biocrust development. 253 

At this young stage of forest development, biocrusts were able to coexist with upcoming tree saplings and formed a 254 

pioneer vegetation on the soil surface (Langhans et al., 2009), which provides the basis for the growth of other plants 255 

by the input of carbon and nitrogen (West, 1990; Evans and Johansen, 1999). Biocrusts are known to facilitate the 256 

succession of vascular plants to more advanced stages (Bowker, 2007), but tree growth and thus crown cover can also 257 

lead to an advancement in biocrust development, e.g. due to the protection from direct sunlight (Zhao et al., 2010; 258 

Tinya and Ódor, 2016). The bryophyte-dominance of biocrusts in 2013 documented this development into a later and 259 

somewhat moister successional stage. Later-stage bryophytes have received comparatively little attention in forest 260 

understorey (Gilliam, 2007) and biocrust studies (Weber et al., 2016) and in Asia only 23 different species have been 261 

reported within biocrusts up to now (Seppelt et al., 2016). Thus, this study with 25 recorded moss and liverwort 262 

species, most of them being new records within Asian biocrusts (Burkhard Büdel, personal communication) 263 

substantially increases the knowledge on biocrusts of this region. 264 

The extent of biocrusts was strongly increasing since 2012 i.e. three years after tree replantation and still gaining 265 

coverage in the sixth year after the experimental setup. Thus, the second part of hypothesis 1, stating that crust cover 266 

decreases with ongoing canopy closure, has to be rejected. Even if single trees were already up to 7.4 m high (Li et 267 

al., 2014) and LAI was up to 5.35 in 2013, biocrusts still remained coexisting within the early stage forest ecosystem. 268 

Furthermore, increasing crown cover and LAI seemed to foster the development of bryophyte-dominated biocrusts at 269 

this ecological stage. By the end of this study, there were indications that biocrust cover may start to be pushed back, 270 

as first vascular plants appeared in between. This is in line with existing literature, demonstrating that continuing tree 271 

growth will cause biocrust communities to adapt with an altered composition of moss and liverwort species (Eldridge 272 

and Tozer, 1997; Fenton and Frego, 2005; Goffinet and Shaw, 2009). It has been shown, that bryophytes switch from 273 

species favouring sunny habitats to more shade-tolerant species (Zhao et al., 2010; Müller et al., 2016). In addition, 274 

there might also be a reduction in bryophyte diversity due to shady conditions, where only a smaller number of species 275 

could prevail. In later stages, biocrust cover will be replaced by vascular vegetation (in light forests) or buried under 276 

persisting leaf litter (under darker conditions). In this context, the ecological roles of biocrusts in succession models 277 

and plant restoration are of interest (Hawkes, 2004; Bowker, 2007). In particular, biocrust succession in temperate 278 

climates has received limited scientific attention (Read et al., 2016). Furthermore, there are several projects under way 279 

to establish successful restoration techniques in arid and semi-arid environments (Rosentreter et al., 2003; Bowker, 280 

2007; Chiquoine et al., 2016; Condon and Pyke, 2016), which could be adapted to mesic environments. Nevertheless, 281 

it has to be stated that biocrust restoration might be dispensable in some mesic systems, as natural reestablishment 282 

appeared to be very fast in this study.  283 

4.2 The influence of vegetation, soil and terrain on biocrust cover 284 

In the current study, the development of biocrusts was influenced by vegetation and terrain, but not by soil attributes. 285 

Thus, hypothesis 2, stating that the biocrust development is not only influenced by surrounding vegetation, but also 286 

by soil and terrain, can only partly be confirmed for this ecosystem. As demonstrated above, high crown cover and 287 
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LAI positively affected the development of biocrust cover in 2013. This increase in biocrust cover is likely caused by 288 

successional alteration of biocrusts towards bryophyte-dominance. Mosses and liverworts profit from humid 289 

conditions and a higher protection from light compared to cyanobacteria- or lichen-dominated crusts (Ponzetti and 290 

McCune, 2001; Marsh et al., 2006; Williams et al., 2013).  The successional development of biocrusts within the BEF 291 

China experiment was faster than reported by Zhao et al. (2010) for Chinese grasslands (Loess Plateau), who claimed 292 

biocrusts from a 3-year old site as early successional and dominated by cyanobacteria. The recovery rate was also 293 

faster than described by Eldridge (1998) and Read et al. (2011) for semi-arid Australia, each one of the very few 294 

studies on biocrust recovery under woodland. In the study presented here, the rapid change in biocrust community 295 

composition is mainly linked to the growth rates of surrounding trees in this subtropical forest. As functions of 296 

biocrusts, such as erosion reduction, are species-dependent, the rapid change in species composition might also lead 297 

to considerable variations in functional responses. Further studies are required to investigate species changeover times 298 

in different environments and particularly in disturbed mesic ecosystems. 299 

Furthermore, several terrain attributes affected biocrust cover. Slope was the most prominent of those factors, causing 300 

a considerable decline in biocrust cover with increasing slope. This finding was explained by their decreasing ability 301 

to fix themselves on the soil surface at high slope angles and thus their tendency to erode from the soil surface, when 302 

large surface water flows occur during rainfall events (Chamizo et al., 2013; Bu et al., 2016). Thus, the surface-303 

protecting effect of biocrusts decreases at steep plantation sites and during heavy monsoon rainfall events, which 304 

frequently occur in the broader research area in Jiangxi Province, China (Yang et al., 2013; Goebes et al., 2015). 305 

Moreover, microclimatic factors played a role in the development of biocrusts. Northness showed a positive impact 306 

on biocrust cover and indicated that slope orientations towards the incident sunlight directly influence the biocrust 307 

development. This was also observed in other studies in arid and semi-arid areas (Bowker et al., 2002; Zaady et al., 308 

2007). Furthermore, biocrust development depended on the altitude, which is probably also by affecting microclimatic 309 

conditions (Kutiel et al., 1998; Chamizo et al., 2016; Bu et al., 2016). Those microclimatic factors are additionally 310 

altered by the growing tree vegetation itself.  311 

Interestingly, SOM and pH did not affect biocrust cover in this study, whereas generally, underlying substrates are a 312 

main factor for bryophyte development (Spitale, 2017) and soil attributes are known to strongly influence biocrust 313 

cover (Bowker et al., 2016). At the experimental area, increased organic matter contents and acidic conditions have 314 

been determined (Scholten et al., 2017), which favour the development of bryophyte-dominated biocrusts (Eldridge 315 

and Tozer, 1997; Seppelt et al., 2016). Nevertheless, the variation between the research plots was small and apparently 316 

not large enough to cause prominent differences in biocrust development. Comparisons between forest plantations on 317 

different substrates would help to clarify the influence of soil attributes on biocrust development in those environments 318 

and to assess their effect in a broader environmental context (Spitale, 2017).  319 

4.3 The impact of biocrust cover on soil erosion 320 

Biocrust cover clearly mitigated interrill soil erosion in this early stage ecosystem and thus hypothesis 3 was 321 

confirmed. Sediment delivery was strongly reduced with increasing biocrust cover. For arid environments, e.g. Cantón 322 
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et al. (2011) and Maestre et al. (2011) showed that sediment delivery from soil surfaces covered with biocrusts 323 

decreases compared to bare soil surfaces with physical crusting (from 20 g m-2 to <1 g m-2 and 40 g m-2 to <5 g m-2, 324 

respectively), both studies using micro-scale runoff plots (0.25 m2). The study presented here shows, that biocrusts 325 

fulfil this key ecosystem service also within a particular mesic habitat, even if their biomass and soil penetration depth 326 

is low compared to trees. This functional role is due to the fact that biocrusts attenuate the impact of raindrops on the 327 

soil surface and greatly improve its resistance against sediment detachment (Eldridge and Greene, 1994; Goebes et 328 

al., 2014; Zhao et al., 2014). Moreover, they have the ability to glue loose soil particles by polysaccharides extruded 329 

by cyanobacteria and green algae (Buscot and Varma, 2005). In the current study, protonemata and rhizoids of mosses 330 

and liverworts were observed to be most effective by weaving and thus fixing the first millimetres of the top soil, as 331 

also described by Bowker et al. (2008). Pogonatum inflexum and Atrichum subserratum are well known to have a 332 

positive effect on erosion control due to their sustained protonema system (Martin Nebel, personal observation). 333 

Furthermore, bryophytes increase the formation of humus, which in turn assists to bind primary particles into 334 

aggregates (Scheffer et al., 2010; Zhang et al., 2016).  335 

Whereas a partial stone cover did not decrease surface runoff in this study, bryophyte-dominated biocrusts positively 336 

influenced the hydrological processes in the top soil layer regarding erosion control. Thus, they actively mitigated 337 

initial soil erosion compared to abiotic components such as stones and pebbles. Biocrusts have been frequently shown 338 

to influence hydrological processes such as surface runoff and infiltration rates (Cantón et al., 2011; Chamizo et al., 339 

2012; Rodríguez-Caballero et al., 2013). Recently, Chamizo et al. (2016) showed that biocrusts decrease runoff 340 

generation at larger scale (>2 m2), but converse behaviour has also been found (Cantón et al., 2002; Maestre et al., 341 

2011). Reducing effects on runoff are related to biocrusts species composition (Belnap and Lange, 2003) and later 342 

developmental biocrust stages with higher biomass levels provide more resistance to soil loss (Belnap and Büdel, 343 

2016). Especially bryophyte-dominated crusts have shown to enhance infiltration and reduce runoff due to their 344 

rhizome system, causing soil erosion rates to stay low (Warren, 2003; Yair et al., 2011). Also other field studies 345 

revealed that later stage biocrusts, containing both lichens and bryophytes, offer more protection against soil erosion 346 

than cyanobacterial crusts (Belnap and Gillette, 1997), as they provide higher infiltration potential (Kidron, 1995). 347 

Moreover, biocrusts dominated by bryophytes increase surface roughness and thus slow down runoff (Kidron et al., 348 

1999; Rodríguez-Caballero et al., 2012). Finally, they also absorb water and provide comparably high water storage 349 

capacity (Warren, 2003; Belnap, 2006). For example, Leucobryum juniperoideum, which has been widely found in 350 

this study, is known for its water absorbing capacity (Martin Nebel, personal observation). Thus, the observed rapid 351 

change in biocrust composition from cyanobacteria to bryophyte dominance improved soil erosion control in this 352 

forest environment. This effect should be considered for the replantation of forests in regions endangered by soil 353 

erosion.  354 

 355 

 356 

 357 
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5 Conclusion 358 

This study investigated the development and distribution of biocrusts in an early stage subtropical forest plantation as 359 

well as their impact on interrill soil erosion after human disturbance. The following conclusions were obtained: 360 

(1) Biocrusts occurred widely in this mesic early successional forest ecosystem in subtropical China and were already 361 

dominated by bryophytes after three years of tree growth (25 bryophyte species classified). After six years of 362 

continuing canopy closure, biocrust cover was still increasing. Further monitoring under closing tree canopy is of 363 

importance to detect changes in biocrust cover and species composition. As this study discusses a very particular 364 

subtropical forest environment, where trees were replanted after clear-cutting, results have to be viewed with this 365 

particular setup in mind. Further studies on biocrust development in different disturbed forest ecosystems appear to 366 

be of high interest.  367 

(2) The surrounding vegetation and underlying terrain affected biocrust development, whereas soil attributes did not 368 

have an effect at this small experimental scale. Besides high crown cover and LAI, the development of biocrusts was 369 

favoured by low slope gradient, slope orientations towards the incident sunlight and altitude. Further research appears 370 

to be necessary to explain effects of terrain attributes such as aspect or elevation and effects of underlying soil and 371 

substrates.  372 

(3) Soil surface cover of biocrusts largely affected soil erosion control in this early stage of the forest plantation. 373 

Bryophyte-dominated crusts showed erosion-reducing characteristics with regard to both sediment delivery and 374 

surface runoff. Furthermore, they were more effectively decreasing soil losses than abiotic soil surface covers. The 375 

erosion-reducing influence of bryophyte-dominated biocrusts and their rapid development from cyanobacteria-376 

dominated crusts should be considered in management practices in early stage forest plantations. Further research is 377 

required on functional mechanisms of different biocrust and bryophyte species and their impact on soil erosion 378 

processes. 379 
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Tables 696 

Table 1: Erosion, soil, soil cover, vegetation and terrain attributes in 170 runoff plots (ROPs) and on 34 research plots 697 
(with five ROPs each) in Xingangshan, Jiangxi Province, PR China in 2013. 698 

 Min Mean Max 

Runoff plots (ROPs, four measured rainfall events, n=334) 

Sediment delivery [g] 21.6 195.5 989.0 

Surface runoff [ml] 3.1 40.3 111.8 

Rainfall amount [ml] 25 94 178 

Runoff plots (ROPs in use, n=170)    

Slope [°] 5 29 60 

Soil cover [%] 0 19 62 

- Biological soil crust cover [%] 0 24 62 

- Stone cover [%] 0 4 42 

Crown cover [%] 0.00 0.32 1.00 

Leaf area index (LAI) 0.00 0.73 5.35 

Research plots (n=34)    

Bulk soil density [g cm-2] 0.83 0.98 1.12 

Soil organic matter [%] 4.2 6.5 9.7 

pH (KCl) 3.24 3.66 4.00 

Altitude [m] 119 167 244 

MCCA 0.98 2.07 3.81 

TRI 0.72 2.39 3.86 

Eastness -0.86 0.09 0.99 

Northness -0.87 0.23 0.99 



27 
 

Tree height [m] 1.0 2.2 7.4 

Crown width [m] 0.4 1.2 3.0 

Soil cover: proportion of soil surface area covered by biocrusts or stones, crown cover: proportion of soil surface area 699 
covered by crowns of live trees, leaf area index: one-sided green leaf area per unit soil surface area, MCCA: Monte-Carlo 700 
based flow accumulation (Behrens), TRI: terrain ruggedness index (Riley), Eastness and Northness: state of being east or 701 
north (Roberts), tree height: distance from stem base to apical meristem, crown width: length of longest spread from edge 702 
to edge across the crown 703 
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Table 2: Liverwort and moss species sampled in the BEF China experiment in Xingangshan, Jiangxi Province, PR China 726 
in 2013. 727 

Family Species 

 

Author 

Liverworts    

Calypogeiaceae Calypogeia fissa (L.) Raddi 

Conocephalaceaes Conocephallum salebrosum Szweyk., Buczk. et Odrzyk. 

Lophocoleaceae Heteroscyphus zollingeri (Gottsche) Schiffn. 

Marchantiacea Marchantia emarginata Reinw., Blume et Nees 

Acrobolbaceae Notoscyphus lutescens (Lehm. et Lindenb.) Mitt. 

Mosses    

Polytrichaceae Atrichum subserratum (Harv. et Hook. f.) Mitt. 

Pottiaceae Barbula unguiculata Hedw. 

Bryaceae Bryum argenteum Hedw. 

Leucobryaceae Campylopus atrovirens De Not. 

Dicranellaceae Dicranella heteromalla (Hedw.) Schimp. 

Pottiaceae Didymodon constrictus (Mitt.) K. Saito 

Pottiaceae Didymodon ditrichoides (Broth.) X.J. Li et S. He 

Ditrichaceae Ditrichum pallidum (Hedw.) Hampe 

Entodontaceae Entodon spec. sterile 

Hypnacaea Hypnum cupressiforme Hedw. 

Hypnacaea Hypnum macrogynum Besch. 

Leucobryaceae Leucobryum juniperoideum (Brid.) Müll. Hal. 

Bartramiaceae Philonotis marchica (Hedw.) Brid. 

Bartramiaceae Philonotis mollis (Dozy et Molk.) Mitt. 

Bartramiaceae Philonotis roylei (Hook. f.) Mitt. 

Mniaceae Plagiomnium acutum (Lindb.) T.J. Kop. 

Polytrichaceae Pogonatum inflexum (Lindb.) Sande Lac. 

Thuidiaceae Thuidium glaucinoides Broth. 

Mniaceae Trachycystis microphylla (Dozy et Molk.) Lindb. 

Pottiaceae Trichostomum crispulum Bruch 
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Table 3: Results of the final linear mixed effects (LME) model for vegetation, soil and terrain attributes on biological soil 736 
crust cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p < 0:001; **: p < 0:01; *: p < 0:05; .: p < 0:1; ns: 737 
not significant; n=215). 738 

 Biological soil crust cover 

 denDF F Pr estim. 

Fixed effects     

Crown cover 136 12.9 ***     10.8 

Bulk soil density 37 0.03 ns     3.65 

SOM 39 1.11 ns (-)0.95 

pH (KCl) 38 2.47 ns (-)16.7 

Altitude 37 3.69 .     0.80 

Slope 191 7.53 ** (-)2.72 

MCCA 39 0.02 ns     0.33 

TRI 38 0.04 ns (-)0.40 

Eastness 37 2.73 ns (-)4.23 

Northness 37 9.14 **     5.99 

Tree species richness 38 1.22 ns (-)0.27 

     

Random effects SD Variance 

Site <0.01 <0.01 

Plot  <0.01 <0.01 

    

Vegetation attribute fitted in exchange to crown cover 

Leaf area index 107   42.8 ***     5.98 

SOM: soil organic matter; MCCA: monte carlo based flow accumulation; TRI: topographic roughness index; denDF: 739 
denominator degrees of freedom; F: F value; Pr: significance; estim.: estimates 740 
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Table 4: Results of the final linear mixed effects (LME) models for sediment delivery and surface runoff with surface 741 
cover split into biological soil crust cover and stone cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p < 742 
0:001; **: p < 0:01; *: p < 0:05; .: p < 0:1; ns: not significant; n=334). 743 

 Sediment delivery Surface runoff 

 den  

DF 

F   Pr estim.   den  

  DF 

F Pr estim. 

Fixed effects         

Crown cover 130 6.53   * (-)0.15   173 9.11 <** (-)0.14 

Slope 151 1.23   ns (-)0.06   168 2.25 <ns (-)0.06 

Surface cover         

- Biocrust 151 50.2   *** (-)0.38   159 8.11 <** (-)0.12 

- Stone 136 10.3 <** (-)0.19   188 1.66 <ns (-)0.06 

SOM 44 5.71   * (-)0.08   72 2.43 <ns     0.12 

Rainfall 95 5.46   * (-)0.08   302 13.2   ***     0.14 

Tree species 

richness 

22 0.46   ns (-)0.05   68 0.11 <ns (-)0.03 

        

Random effects SD Variance 

  

SD 

 

     

Variance 

 

Precip. event : plot 0.199 0.040  0.537      0.288  

Tree composition  0.292 0.085  0.000      0.000  

Site  0.466 0.217  0.443      0.196  

Plot : ROP  0.441 0.195  0.269      0.073  

SOM: soil organic matter; denDF: denominator degrees of freedom; F: F value; Pr: significance; estim.: estimates 744 

 745 

 746 
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Figures 747 

 748 

Figure 1: The development of biological soil crust cover in runoff plots of the BEF China experiment from 2011 to 2015 in 749 
Xingangshan, Jiangxi Province, PR China (n=350). Horizontal lines within boxplot represent medians and diamonds 750 
represent means with standard error bars. Points signify outliers and small letters significant differences (p<0.001).  751 
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 759 

Figure 2: Successional stages of biological soil crusts in two exemplary runoff plots (top row and bottom row, 0.4 m × 0.4 760 
m each) in 2011, 2013 and 2015 (from left to right) at the BEF China experiment in Xingangshan, Jiangxi Province, PR 761 
China.  762 
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 770 

Figure 3: The influence of runoff plots dominated by biological soil crust cover (n=281) and stone cover (n=53) on 771 
sediment delivery and surface runoff in Xingangshan, Jiangxi Province, PR China in 2013. Horizontal lines within box 772 
plots represent median and diamonds represent mean with standard error bars.  773 


