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Abstract. This study investigated the development of biological soil crusts (biocrusts) in an early successional 28 

subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning 29 

experiment in Southeast China (BEF China), the effect of these biocrusts on sediment delivery and runoff was assessed 30 

within micro-scale runoff plots under natural rainfall and biocrust cover was surveyed over a five-year period. 31 

Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light 32 

cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only three years. Biocrust 33 

cover was still increasing after six years of tree growth. Within later stage crusts, 25 bryophyte species were 34 

determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts. 35 

Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients, 36 

slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that 37 

bryophyte-dominated biocrusts strongly decreased soil erosion being more effective than abiotic soil surface cover. 38 

Hence, their significant role to mitigate sediment delivery and runoff generation in mesic forest environments and 39 

their ability to quickly colonize soil surfaces after forest disturbance are of particular interest for soil erosion control 40 

in early stage forest plantations. 41 

 42 
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1 Introduction 56 

Biological soil crusts (hereinafter referred to as biocrusts) are a living soil cover, which plays significant functional 57 

roles in many environments (Weber et al., 2016). In initial ecosystems, communities of cyanobacteria, algae, fungi, 58 

lichens, bryophytes and bacteria in varying combinations are the first to colonize the substrate (Evans and Johansen, 59 

1999). Biocrusts are often dominated by one organism group, with cyanobacterial crusts being indicators for early 60 

stage crusts and drier conditions (Malam Issa et al., 1999; Malam Issa et al., 2007) and bryophyte-dominated crusts 61 

being indicators for later stage crusts and moister conditions (Colesie et al., 2016; Seppelt et al., 2016). Those highly 62 

specialized communities form a biological crust immediately on top or within the first millimetres of the soil surface 63 

(Büdel, 2005). Biocrusts preferably occur under harsh conditions of temperature or light, where vascular vegetation 64 

tends to be rare (Allen, 2010). Therefore, biocrusts are generally widespread under dryland conditions (Berkeley et 65 

al., 2005; Belnap, 2006; Büdel et al., 2009), whereas under mesic conditions they mostly occur as a successional stage 66 

after disturbance or in environments under regularly disturbed regimes (Büdel et al., 2014). 67 

In direct competition with phanerogamic plants, biocrusts are generally in an inferior position and thus their 68 

development is limited under closed plant canopies or when leaf litter layers occur (Belnap et al., 2003a). This 69 

limitation is due to the competition for light (Malam Issa et al., 1999) and nutrients (Harper and Belnap, 2001). 70 

Disturbance of the phanerogamic vegetation layers, however, changes this competitive situation. Such disturbances 71 

can occur in forest ecosystems by natural treefall or human induced clear-cutting (Barnes and Spurr, 1998). Complete 72 

removal of a forest causes a harsh shift in vegetation development and creates a starting point for new vascular plant 73 

as well as biocrust communities (Bormann et al., 1968; Keenan and Kimmins, 1993; Beck et al., 2008). Biocrusts are 74 

able to quickly colonize natural clearances in tree layers (Belnap et al., 2003a) as well as gaps appearing after human 75 

disturbance (Dojani et al., 2011; Chiquoine et al., 2016). Generally, it can be stated that current knowledge on the 76 

relation between the development of biocrust cover and vascular plant cover leaves room for further research (Kleiner 77 

and Harper, 1977; Belnap et al., 2003b; Zhang et al., 2016). In particular, there are only few studies on the development 78 

of biocrusts in early successional forest ecosystems (Su et al., 2007; Zhang et al., 2016). Furthermore, descriptions of 79 

different biocrust types in mesic vegetation zones and investigations in southeast Asia are rare (Büdel, 2003; Bowker 80 

et al., 2016). We assume that biocrusts are also able to coexist in mesic subtropical forest environments shortly after 81 

deforestation, but their cover decreases with ongoing tree canopy closure and decreasing light intensity. 82 

Functional roles of biocrusts have been investigated for decades, but less attention has been paid to their spatial 83 

distribution and characteristics (Allen, 2010). Biocrust cover varies across spatial scales (from centimetres to 84 

kilometres) and it could be shown that it depends not only on the surrounding vascular vegetation cover, but also on 85 

soils, geomorphology and (micro-)topography or terrain (Evans and Johansen, 1999; Ullmann and Büdel, 2003; 86 

Kidron et al., 2009; Bowker et al., 2016) in arid, semi-arid, temperate and boreal environments. Different biocrust 87 

distributions have been related to elevation and terrain-influenced microclimatic gradients (Kutiel et al., 1998), 88 

different geomorphic zones (Eldridge, 1999), varying aspects (George et al., 2000) and soil types (Bu et al., 2016). To 89 

our knowledge, investigations on the influence of small-scale (centimetres to metres) topographic variations on 90 

biocrust development are rare and further studies will help to understand the role of these small-scale factors (Garcia-91 
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Pichel and Belnap, 2003; Bu et al., 2016; Bowker et al., 2016). Furthermore, as the development of biocrusts is 92 

characterized by a high complexity and spatial heterogeneity with many micro-climatic and micro-environmental 93 

factors, it is of great significance to conduct comparative studies on the spatial distribution of biocrusts (Bu et al., 94 

2013). We assume that soil attributes as well as terrain attributes have major influences on the development of 95 

biocrusts in mesic subtropical forest environments and this is particularly true for initial ecosystems.  96 

Biocrusts were recognized to have a major influence on terrestrial ecosystems (Buscot and Varma, 2005; Belnap, 97 

2006) as they protect soil surfaces against erosive forces by both wind and water (Bowker et al., 2008; Zhao et al., 98 

2014). They can absorb the kinetic energy of rain drops (splash effect), decrease shear forces and stabilize soil particles 99 

with protonemal mats and fine rhizoids and thus decrease particle detachment and enhance soil stability (Malam Issa 100 

et al., 2001; Warren, 2003; Belnap and Lange, 2003). Those effects differ with regard to soil texture, surface 101 

roughness, water repellency and finally different crust species and developmental stages (Warren, 2003; Belnap and 102 

Büdel, 2016). However, studies that directly relate different types of biocrust cover to rates of soil erosion are few 103 

(Allen, 2010). Furthermore,  the influence of biocrusts on sediment delivery and runoff has mostly been investigated 104 

in arid and semi-arid climates and humid climates have been largely disregarded (Belnap and Lange, 2003; Weber et 105 

al., 2016). We assume that biocrusts are effectively counteracting soil losses in early successional subtropical forest 106 

plantations and thus may play a major functional role for soil erosion control in mesic areas under anthropogenic 107 

influence.  108 

This study aims to investigate the development of biocrust cover in an early successional subtropical forest ecosystem 109 

after human disturbance and the impact of those biocrusts on soil erosion. Therefore, interrill erosion was measured 110 

with runoff plots and the occurrence, distribution and development of biocrusts was recorded. The study was 111 

conducted in an experimental forest plantation (BEF China), which aims to study biodiversity and ecosystem 112 

functioning relationships in southeast China (Yang et al., 2013; Bruelheide et al., 2014). During the study, the 113 

following hypotheses were addressed:  114 

(1) Biocrusts are able to coexist in mesic early successional subtropical forest ecosystems, but crust cover decreases 115 

with ongoing canopy closure and decreasing light intensity. 116 

(2) The development of biocrusts in mesic subtropical forests is not only influenced by the surrounding vegetation 117 

cover, but also by major soil attributes which influence biocrust growth and terrain attributes which affect 118 

microclimatic conditions. 119 

(3) Biocrusts mitigate interrill soil erosion in early successional subtropical forest plantations. 120 

 121 

2 Material and methods 122 

2.1 Study site and experimental design 123 
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The study was carried out within the BEF China experiment (Bruelheide et al., 2014) in Xingangshan, Jiangxi 124 

Province, PR China (29°06.450′ N and 117°55.450′ E). The experimental area is located in a mountainous landscape 125 

at an elevation of 100 m a.s.l. to 265 m a.s.l. with slopes from 15° to 41° (Scholten et al., 2017). The bedrock is non-126 

calcareous sandstones, siltstones and slates weathered to saprolite and predominant soil types are Cambisols with 127 

Anthrosols in downslope positions and Gleysols in valleys (Scholten et al., 2017). The particle size distribution was 128 

quite homogenous throughout the experimental area having loam as the main texture class (Scholten et al., 2017). The 129 

mean annual temperature is 17.4 °C and the annual precipitation is 1635 mm with about 50 % falling during May to 130 

August (Goebes et al., 2015). The climate is typical for summer monsoon subtropical regions. The potential natural 131 

vegetation of this region is a subtropical broadleaved forest with dominating evergreen species. It has been widely 132 

replaced by tree plantations of mostly Cunninghamia lanceolata for the purpose of commercial forestry in the 1980’s 133 

(Bruelheide et al., 2014). The experimental area (approx. 38 ha) is structured in 566 research plots (25.8 m × 25.8 m 134 

each) at two sites (A and B) and was clear-cut and replanted with 400 tree saplings per plot in different tree species 135 

mixtures in 2009 and 2010 (Yang et al., 2013). A selection of 34 research plots was used for this study (Seitz et al., 136 

2016). Shrubs and coppices were weeded once a year from 2010 to 2012 to help the tree saplings grow, following 137 

common practice in forest plantations of this area.  138 

2.2 Field methods  139 

Biocrust cover was determined photogrammetrically in 70 selected micro-scale runoff plots (ROPs, 0.4 m × 0.4 m; 140 

Seitz et al., 2015) at five timesteps (November 2011, May 2012, May 2013, May 2014 and May 2015). Biocrust 141 

species were first described in the field based on appearance and functional groups. Biocrust types were then 142 

determined based on the dominating autotrophic component (highest share of total biocrust cover per ROP). During 143 

the rainy season in summer 2013, an extended survey together with soil erosion measurements (see below) was 144 

conducted in five ROPs on 34 research plots each (170 ROPs in total,  Table 1). At each ROP, perpendicular images 145 

were taken with a single lens reflex camera system (Canon 350D, Tokio, Japan) and processed with the grid quadrat 146 

method in GIMP 2.8 using a digital grid overlay with 100 subdivisions (cf. Belnap et al., 2001). Stone cover and 147 

biocrust cover were separated by hue distinction. A continuous leaf litter cover, which may impede analyses, was not 148 

present during measurements. Biocrusts were collected in 2013 and samples were dried at 40 °C (Dörrex drying unit, 149 

Netstal, Switzerland). The identification of those sampled species was carried out by morphological characteristics 150 

using a stereomicroscope (Leitz TS, Wetzlar, Germany), a transmitted-light microscope (Leitz Laborlux S, Wetzlar, 151 

Germany) and ultraviolet light. Bryophytes (dominating taxa in 2013) were determined to the species level, wherever 152 

possible and separated into mosses (Bischler-Causse, 1989; Moos flora of China: Gao et al., 1999; 2001; 2002; 2003; 153 

2005; 2007; 2008; 2011) and liverworts (Zhu, 2006; Söderström et al., 2016 and Alfons Schäfer-Verwimp, personal 154 

communication). Comparisons were conducted with specimen hosted in the herbarium of the State Museum of Natural 155 

History in Stuttgart, Germany (Herbarium STU). 156 

Sediment delivery and surface runoff were measured within 170 ROPs in summer 2013 together with an extended 157 

biocrust survey (see above and Table 1), when tree saplings did not exceed three years of age and leaf litter fall was 158 
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still low. After four timesteps, 334 valid ROP measurements entered the analysis (for detailed information see Seitz 159 

et al., 2016). Sediment delivery was sampled, dried at 40 °C and weighed, whereas surface runoff and rainfall amount 160 

were measured in situ. At every ROP, crown cover and leaf area index (LAI) were measured with a fish-eye camera 161 

system (Nikon D100 with Nikon AF G DX 180°, Tokio, Japan) and calculated with HemiView V.8 (Delta-T devices, 162 

Cambridge, UK). Measurements of tree height and crown width were provided by Li et al. (2014) at research plot 163 

scale (n=34). Tree species richness and tree composition resulted from the experimental setup of BEF China 164 

(Bruelheide et al., 2014). 165 

Soil attributes (Table 1) were determined for every research plot (n=34, sampling in 2013) using pooled samples from 166 

nine point measurements each (sampling depth 0-5 cm). Soil pH was measured in KCl (WTW pH-meter with Sentix 167 

electrodes, Weilheim, Germany), bulk soil density was determined by the mass-per-volume method and total organic 168 

carbon (TOC) was measured using heat combustion (Elementar Vario EL III, Hanau, Germany). Soil organic matter 169 

(SOM) was calculated by multiplying TOC with the factor 2 (Pribyl, 2010). 170 

2.3 Digital terrain analysis 171 

Terrain attributes (Table 1) were derived from a digital elevation model (DEM, 5 m × 5 m, Scholten et al., 2017) at 172 

research plot scale (n=34). Attributes were the terrain ruggedness index (TRI, Riley et al., 1999) to describe the 173 

heterogeneity of the terrain, the Monte-Carlo based flow accumulation (MCCA, Behrens et al., 2008) to diagnose 174 

terrain driven water availability, altitude above sea level to address elevation effects and the eastness and the northness 175 

(Roberts, 1986) to describe plant related climatic conditions. Those terrain attributes cover major landscape features 176 

of the experimental area and were not correlated. Slope was additionally measured with an inclinometer at every ROP 177 

(n=170, see Seitz et al., 2016). 178 

 179 

[ Table 1 ] 180 

 181 

2.4 Statistical methods 182 

The temporal development of biocrust cover (1) from 2011 to 2015 was assessed at five timesteps within 70 ROPs 183 

(see above) by an analysis of variance (ANOVA) and Tukey’s Honestly Significant Difference (HSD) test (n=350).  184 

The influences of vegetation, soil and topographic attributes on biocrust cover (2) in 170 ROPs (see above) were 185 

assessed by linear mixed effects (LME) models (n=334). Crown cover, bulk soil density, SOM, pH, altitude, slope, 186 

MCCA, TRI, eastness, northness and tree species richness were fitted as fixed effects and biocrust cover as response 187 

variable. The attributes were tested with Pearson’s correlation coefficient before fitting. LAI was fitted individually 188 

in exchange to crown cover due to multi-collinearity. Experimental site and research plot were fitted as random effects 189 

and hypotheses were tested with an ANOVA type 1 with Satterthwaite approximation for degrees of freedom.  190 
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The influences on soil erosion (3) were assessed by LME models with restricted maximum likelihood (n=334) and 191 

sediment delivery and surface runoff as response variables, respectively. Crown cover, slope, surface cover, SOM, 192 

rainfall amount and tree species richness were fitted as fixed effects. Surface cover was then split into surface cover 193 

by biocrusts and by stones, which entered the analysis as fixed conjoined factors. Precipitation events nested in plot, 194 

tree species composition, experimental site and ROP nested in plot were fitted as random effects. Attributes were not 195 

correlated. The hypothesis was tested with an ANOVA type 1 with Satterthwaite approximation for degrees of 196 

freedom. Moreover, the Wilcoxon rank sum test was applied to test for differences between biocrust cover and stone 197 

cover on sediment delivery and surface runoff. Therefore, the dataset was split into data points where biocrust cover 198 

exceeded stone cover (n=281) and data points where stone cover exceeded biocrust cover (n=53).  199 

All response variables were log-transformed before modelling. The dataset was tested for multi-collinearity and met 200 

all prerequisites to carry out ANOVAs. All analyses were performed with R 3.1.2 (R Core Team, 2014). LME 201 

modelling was conducted with “lmerTest” (Kuznetsova et al., 2014) and rank sum tests with “exactRankTests” 202 

(Hothorn and Hornik, 2015). Figures were designed with “ggplot2” (Wickham, 2009).  203 

 204 

3 Results 205 

3.1 Temporal development of biocrust cover 206 

Biocrusts occurred in 94 % of all ROPs and their cover within ROPs ranged between 1 % and 88 % over the course 207 

of five years. The mean biocrust cover of all ROPs more than tripled from their installation in 2011 to the last 208 

measurement in 2015 (Fig. 1). The increases were significant from 2011 to 2015 and from 2012 to 2013, 2013 to 2014 209 

and 2014 to 2015 (p<0.001). 210 

 211 

[ Figure 1 ] 212 

 213 

Whereas a clear bryophyte-dominance of biocrusts was evident at the time of sampling in 2013 (average ROP surface 214 

cover 24 %), different successional stages were identified in the field and on ROP photos from 2011 to 2015 (Fig. 2). 215 

In 2011, a smooth, light cyanobacteria- and algae-dominated crust with few lichens and bryophytes indicated an earlier 216 

stage of biocrust development (Colesie et al., 2016). In 2013, 25 moss and liverwort species were classified (Table 2) 217 

and formed a bryophyte-dominated crust with some cyanobacteria, algae, lichens and micro-fungi still observed within 218 

ROPs. The same was true in 2015, but first evidence of vascular plants (Selaginella and Poaceae) indicated a further 219 

change in the vegetation cover of the soil surface.  220 

 221 



8 
 

[ Figure 2 ] 222 

 223 

[ Table 2 ] 224 

 225 

3.2 The influence of vegetation, soil and terrain on biocrust cover 226 

The development of biocrust cover in 2013 was positively influenced by crown cover and LAI as attributes of the 227 

surrounding vegetation (Table 3). Furthermore, it was negatively affected by slope and northness and slightly 228 

positively affected by the altitude of the research plots as terrain attributes (Table 3). Further terrain attributes or any 229 

soil attributes did not affect the development of biocrust cover. 230 

 231 

[ Table 3 ] 232 

 233 

3.3 The impact of biocrust cover on soil erosion 234 

The results indicate that biocrusts strongly affect soil erosion. ROPs with biocrust cover below 10 % showed a mean 235 

sediment delivery of 302 g m-2 and a mean runoff volume of 39 L m-2, whereas ROPs with biocrust cover above 50 % 236 

showed a mean sediment delivery of 74 g m-2 and a mean runoff volume of 29 L m-2. Both biocrust and stone cover, 237 

as well as total soil surface cover (comprising both biocrust and stone cover, p<0.001) negatively affected sediment 238 

delivery (Table 4). In addition, soil surface cover negatively affected surface runoff (p=0.003). However, only biocrust 239 

but not stone cover mediated the effect of runoff. Furthermore, crown cover, SOM and rainfall amount affected 240 

sediment delivery, whereas runoff was affected by crown cover and rainfall amount. ROPs with increased stone cover 241 

showed higher sediment delivery and surface runoff compared to those with increased biocrust cover (Fig. 3).  242 

 243 

[ Table 4 ] 244 

 245 

[ Figure 3 ] 246 

 247 

4 Discussion 248 

4.1 Temporal development of biocrust cover 249 
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Biocrusts were detected widely within the experiment and occupied a considerable area in the interspaces of the 250 

growing tree community. Thus, the first part of hypothesis 1, stating that biocrusts are able to coexist in mesic early 251 

successional subtropical forests, can be confirmed, as they successfully colonized the newly created habitats 252 

originating from the disturbance by forest clear-cutting and weeding (Bruelheide et al., 2014). Although biocrusts 253 

have been mainly defined to occur in dryland regions (Weber et al., 2016), they can also appear as a transient feature 254 

in mesic environments after major singular or repeated disturbance events (Büdel et al., 2014, Fischer et al., 2014). In 255 

the current study, deforestation provided a local arid microenvironment, which initiated early biocrust development. 256 

At this young stage of forest development, biocrusts were able to coexist with upcoming tree saplings and formed a 257 

pioneer vegetation on the soil surface (Langhans et al., 2009), which provides the basis for the growth of other plants 258 

by the input of carbon and nitrogen (West, 1990; Evans and Johansen, 1999). Biocrusts are known to facilitate the 259 

succession of vascular plants to more advanced stages (Bowker, 2007), but tree growth and thus crown cover can also 260 

lead to an advancement in biocrust development, e.g. due to the protection from direct sunlight (Zhao et al., 2010; 261 

Tinya and Ódor, 2016). The bryophyte-dominance of biocrusts in 2013 documented this development into a later and 262 

somewhat moister successional stage. Later-stage bryophytes have received comparatively little attention in forest 263 

understorey (Gilliam, 2007) and biocrust studies (Weber et al., 2016) and in Asia only 23 different species have been 264 

reported within biocrusts up to now (Seppelt et al., 2016). Thus, this study with 25 recorded moss and liverwort 265 

species, most of them being new records within Asian biocrusts (Burkhard Büdel, personal communication) 266 

substantially increases the knowledge on biocrusts of this region. 267 

The extent of biocrusts was strongly increasing since 2012 i.e. three years after tree replantation and still gaining 268 

coverage in the sixth year after the experimental setup. Thus, the second part of hypothesis 1, stating that crust cover 269 

decreases with ongoing canopy closure, has to be rejected. Even if single trees were already up to 7.4 m high (Li et 270 

al., 2014) and LAI was up to 5.35 in 2013, biocrusts still remained coexisting within the early stage forest ecosystem. 271 

Furthermore, increasing crown cover and LAI seemed to foster the development of bryophyte-dominated biocrusts at 272 

this ecological stage. By the end of this study in summer 2016 (LAI up to 6.18), there were indications that biocrust 273 

cover may start to be pushed back, as first vascular plants appeared in between. This is in line with existing literature, 274 

demonstrating that continuing tree growth will cause biocrust communities to adapt with an altered composition of 275 

moss and liverwort species (Eldridge and Tozer, 1997; Fenton and Frego, 2005; Goffinet and Shaw, 2009). It has been 276 

shown, that bryophytes switch from species favouring sunny habitats to more shade-tolerant species (Zhao et al., 2010; 277 

Müller et al., 2016). In addition, there might also be a reduction in bryophyte diversity due to shady conditions, where 278 

only a smaller number of species could prevail. In later stages, biocrust cover will be replaced by vascular vegetation 279 

(in light forests) or buried under persisting leaf litter (under darker conditions). In this context, the ecological roles of 280 

biocrusts in succession models and plant restoration are of interest (Hawkes, 2004; Bowker, 2007). In particular, 281 

biocrust succession in temperate climates has received limited scientific attention (Read et al., 2016). Furthermore, 282 

there are several projects under way to establish successful restoration techniques in arid and semi-arid environments 283 

(Rosentreter et al., 2003; Bowker, 2007; Chiquoine et al., 2016; Condon and Pyke, 2016), which could be adapted to 284 

mesic environments. Nevertheless, it has to be stated that biocrust restoration might be dispensable in some mesic 285 

systems, as natural reestablishment appeared to be very fast in this study.  286 
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4.2 The influence of vegetation, soil and terrain on biocrust cover 287 

In the current study, the development of biocrusts was influenced by vegetation and terrain, but not by the three soil 288 

attributes investigated in this study. Thus, hypothesis 2, stating that the biocrust development is not only influenced 289 

by surrounding vegetation, but also by soil and terrain, can only partly be confirmed for this ecosystem. As 290 

demonstrated above, high crown cover and LAI positively affected the development of biocrust cover in 2013. This 291 

increase in biocrust cover is likely caused by successional alteration of biocrusts towards bryophyte-dominance. 292 

Mosses and liverworts profit from humid conditions and a higher protection from light compared to cyanobacteria- or 293 

lichen-dominated crusts (Ponzetti and McCune, 2001; Marsh et al., 2006; Williams et al., 2013).  The successional 294 

development of biocrusts within the BEF China experiment was faster than reported by Zhao et al. (2010) for Chinese 295 

grasslands (Loess Plateau), who claimed biocrusts from a 3-year old site as early successional and dominated by 296 

cyanobacteria. The recovery rate was also faster than described by Eldridge (1998) and Read et al. (2011) for semi-297 

arid Australia, each one of the very few studies on biocrust recovery under woodland. In the study presented here, the 298 

rapid change in biocrust community composition is mainly linked to the growth rates of surrounding trees in this 299 

subtropical forest. As functions of biocrusts, such as erosion reduction, are species-dependent, the rapid change in 300 

species composition might also lead to considerable variations in functional responses. Further studies are required to 301 

investigate species changeover times in different environments and particularly in disturbed mesic ecosystems. 302 

Furthermore, several terrain attributes affected biocrust cover. Slope was the most prominent of those factors, causing 303 

a considerable decline in biocrust cover with increasing slope. This finding was explained by their decreasing ability 304 

to fix themselves on the soil surface at high slope angles and thus their tendency to erode from the soil surface, when 305 

large surface water flows occur during rainfall events (Chamizo et al., 2013; Bu et al., 2016). Thus, the surface-306 

protecting effect of biocrusts decreases at steep plantation sites and during heavy monsoon rainfall events, which 307 

frequently occur in the broader research area in Jiangxi Province, China (Yang et al., 2013; Goebes et al., 2015). 308 

Moreover, microclimatic factors played a role in the development of biocrusts. Northness showed a positive impact 309 

on biocrust cover and indicated that slope orientations towards the incident sunlight directly influence the biocrust 310 

development. This was also observed in other studies in arid and semi-arid areas (Bowker et al., 2002; Zaady et al., 311 

2007). Furthermore, biocrust development depended on the altitude, which is probably also by affecting microclimatic 312 

conditions (Kutiel et al., 1998; Chamizo et al., 2016; Bu et al., 2016). Those microclimatic factors are additionally 313 

altered by the growing tree vegetation itself.  314 

Interestingly, SOM and pH did not affect biocrust cover in this study, whereas generally, underlying substrates are a 315 

main factor for bryophyte development (Spitale, 2017) and soil attributes are known to strongly influence biocrust 316 

cover (Bowker et al., 2016). At the experimental area, increased organic matter contents and acidic conditions have 317 

been determined (Scholten et al., 2017), which favour the development of bryophyte-dominated biocrusts (Eldridge 318 

and Tozer, 1997; Seppelt et al., 2016). Nevertheless, the variation between the research plots was small and apparently 319 

not large enough to cause prominent differences in biocrust development. Comparisons between forest plantations on 320 

different substrates would help to clarify the influence of soil attributes on biocrust development in those environments 321 
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and to assess their effect in a broader environmental context (Spitale, 2017). Furthermore, a broader range of soil 322 

parameters should be included in future studies.  323 

4.3 The impact of biocrust cover on soil erosion 324 

Biocrust cover clearly mitigated interrill soil erosion in this early stage ecosystem and thus hypothesis 3 was 325 

confirmed. Sediment delivery was strongly reduced with increasing biocrust cover. For arid environments, e.g. Cantón 326 

et al. (2011) and Maestre et al. (2011) showed that sediment delivery from soil surfaces covered with biocrusts 327 

decreases compared to bare soil surfaces with physical crusting (from 20 g m-2 to <1 g m-2 and 40 g m-2 to <5 g m-2, 328 

respectively), both studies using micro-scale runoff plots (0.25 m2). Bu et al. (2015) and Zhao and Xu (2013) found 329 

similar erosion-reducing patterns for the sub-arid temperate Chinese Loess Plateau. The study presented here shows, 330 

that biocrusts fulfil this key ecosystem service also within a particular mesic habitat, even if their biomass and soil 331 

penetration depth is low compared to trees. This functional role is due to the fact that biocrusts attenuate the impact 332 

of raindrops on the soil surface and greatly improve its resistance against sediment detachment (Eldridge and Greene, 333 

1994; Goebes et al., 2014; Zhao et al., 2014). Moreover, they have the ability to glue loose soil particles by 334 

polysaccharides extruded by cyanobacteria and green algae (Buscot and Varma, 2005). In the current study, 335 

protonemata and rhizoids of mosses and liverworts were observed to be most effective by weaving and thus fixing the 336 

first millimetres of the top soil, as also described by Bowker et al. (2008). Pogonatum inflexum and Atrichum 337 

subserratum are well known to have a positive effect on erosion control due to their sustained protonema system 338 

(personal observation). Furthermore, bryophytes increase the formation of humus, which in turn assists to bind primary 339 

particles into aggregates (Scheffer et al., 2010; Zhang et al., 2016).  340 

Whereas a partial stone cover did not decrease surface runoff in this study, bryophyte-dominated biocrusts positively 341 

influenced the hydrological processes in the top soil layer regarding erosion control. Thus, they actively mitigated 342 

initial soil erosion compared to abiotic components such as stones and pebbles. Biocrusts have been frequently shown 343 

to influence hydrological processes such as surface runoff and infiltration rates (Cantón et al., 2011; Chamizo et al., 344 

2012; Rodríguez-Caballero et al., 2013). Recently, Chamizo et al. (2016) showed that biocrusts decrease runoff 345 

generation at larger scale (>2 m2), but converse behaviour has also been found (Cantón et al., 2002; Maestre et al., 346 

2011). Reducing effects on runoff are related to biocrusts species composition (Belnap and Lange, 2003) and later 347 

developmental biocrust stages with higher biomass levels provide more resistance to soil loss (Belnap and Büdel, 348 

2016). Especially bryophyte-dominated crusts have shown to enhance infiltration and reduce runoff due to their 349 

rhizome system, causing soil erosion rates to stay low (Warren, 2003; Yair et al., 2011). Also other field studies 350 

revealed that later stage biocrusts, containing both lichens and bryophytes, offer more protection against soil erosion 351 

than cyanobacterial crusts (Belnap and Gillette, 1997), as they provide higher infiltration potential (Kidron, 1995). On 352 

the other hand, Drahorad et al. (2013) found an increase in water repellency and a decrease in water sorptivity with 353 

ongoing biocrust succession on a temperate forest glade, which could also strongly affect runoff and sediment transport 354 

on subtropical forest soil surfaces. Moreover, biocrusts dominated by bryophytes increase surface roughness and thus 355 

slow down runoff (Kidron et al., 1999; Rodríguez-Caballero et al., 2012). Finally, they also absorb water and provide 356 

comparably high water storage capacity (Warren, 2003; Belnap, 2006). For example, Leucobryum juniperoideum, 357 



12 
 

which has been widely found in this study, is known for its water absorbing capacity (Martin Nebel, personal 358 

observation). Thus, the observed rapid change in biocrust composition from cyanobacteria to bryophyte dominance 359 

improved soil erosion control in this forest environment. This effect should be considered for the replantation of forests 360 

in regions endangered by soil erosion.  361 

 362 

 363 

 364 

5 Conclusion 365 

This study investigated the development and distribution of biocrusts in an early stage subtropical forest plantation as 366 

well as their impact on interrill soil erosion after human disturbance. The following conclusions were obtained: 367 

(1) Biocrusts occurred widely in this mesic early successional forest ecosystem in subtropical China and were already 368 

dominated by bryophytes after three years of tree growth (25 bryophyte species classified). After six years of 369 

continuing canopy closure, biocrust cover was still increasing. Further monitoring under closing tree canopy is of 370 

importance to detect changes in biocrust cover and species composition. As this study discusses a very particular 371 

subtropical forest environment, where trees were replanted after clear-cutting, results have to be viewed with this 372 

particular setup in mind. Further studies on biocrust development in different disturbed forest ecosystems appear to 373 

be of high interest.  374 

(2) The surrounding vegetation and underlying terrain affected biocrust development, whereas soil attributes did not 375 

have an effect at this small experimental scale. Besides high crown cover and LAI, the development of biocrusts was 376 

favoured by low slope gradient, slope orientations towards the incident sunlight and altitude. Further research appears 377 

to be necessary to explain effects of terrain attributes such as aspect or elevation and effects of underlying soil and 378 

substrates.  379 

(3) Soil surface cover of biocrusts largely affected soil erosion control in this early stage of the forest plantation. 380 

Bryophyte-dominated crusts showed erosion-reducing characteristics with regard to both sediment delivery and 381 

surface runoff. Furthermore, they were more effectively decreasing soil losses than abiotic soil surface covers. The 382 

erosion-reducing influence of bryophyte-dominated biocrusts and their rapid development from cyanobacteria-383 

dominated crusts should be considered in management practices in early stage forest plantations. Further research is 384 

required on functional mechanisms of different biocrust and bryophyte species and their impact on soil erosion 385 

processes. 386 

 387 

 388 
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Tables 719 

Table 1: Erosion, soil, soil cover, vegetation and terrain attributes in 170 runoff plots (ROPs) and on 34 research plots 720 
(with five ROPs each) in Xingangshan, Jiangxi Province, PR China in 2013. 721 

 Min Mean Max Sd 

Runoff plots (ROPs, four measured rainfall events, n=334)  

Sediment delivery [g m-2] 21.6 195.5 989.0 165.8 

Surface runoff [L m-2] 3.1 40.3 111.8 21.7 

Rainfall amount [mm] 25 94 178 28 

Runoff plots (ROPs in use, n=170)     

Slope [°] 5 29 60 6 

Soil cover [%] 0 19 62 14 

- Biological soil crust cover [%] 0 24 62 14 

- Stone cover [%] 0 4 42 6 

Crown cover [%] 0.00 0.32 1.00 0.34 

Leaf area index (LAI) 0.00 0.73 5.35 1.04 

Research plots (n=34)     

Bulk soil density [g cm-2] 0.83 0.98 1.12 0.06 

Soil organic matter [%] 4.2 6.5 9.7 1.7 

pH (KCl) 3.24 3.66 4.00 0.18 

Altitude [m] 119 167 244 37 

MCCA 0.98 2.07 3.81 0.83 

TRI 0.72 2.39 3.86 0.59 

Eastness -0.86 0.09 0.99 0.56 

Northness -0.87 0.23 0.99 0.62 
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Tree height [m] 1.0 2.2 7.4 1.7 

Crown width [m] 0.4 1.2 3.0 0.8 

Soil cover: proportion of soil surface area covered by biocrusts or stones, crown cover: proportion of soil surface area 722 
covered by crowns of live trees, leaf area index: one-sided green leaf area per unit soil surface area, MCCA: Monte-Carlo 723 
based flow accumulation (Behrens), TRI: terrain ruggedness index (Riley), Eastness and Northness: state of being east or 724 
north (Roberts), tree height: distance from stem base to apical meristem, crown width: length of longest spread from edge 725 
to edge across the crown. Min: minimum, Max: maximum, Sd: standard deviation. 726 
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Table 2: Liverwort and moss species sampled in the BEF China experiment in Xingangshan, Jiangxi Province, PR China 749 
in 2013. 750 

Family Species 

 

Author 

Liverworts    

Calypogeiaceae Calypogeia fissa (L.) Raddi 

Conocephalaceaes Conocephallum salebrosum Szweyk., Buczk. et Odrzyk. 

Lophocoleaceae Heteroscyphus zollingeri (Gottsche) Schiffn. 

Marchantiacea Marchantia emarginata Reinw., Blume et Nees 

Acrobolbaceae Notoscyphus lutescens (Lehm. et Lindenb.) Mitt. 

Mosses    

Polytrichaceae Atrichum subserratum (Harv. et Hook. f.) Mitt. 

Pottiaceae Barbula unguiculata Hedw. 

Bryaceae Bryum argenteum Hedw. 

Leucobryaceae Campylopus atrovirens De Not. 

Dicranellaceae Dicranella heteromalla (Hedw.) Schimp. 

Pottiaceae Didymodon constrictus (Mitt.) K. Saito 

Pottiaceae Didymodon ditrichoides (Broth.) X.J. Li et S. He 

Ditrichaceae Ditrichum pallidum (Hedw.) Hampe 

Entodontaceae Entodon spec. sterile 

Hypnacaea Hypnum cupressiforme Hedw. 

Hypnacaea Hypnum macrogynum Besch. 

Leucobryaceae Leucobryum juniperoideum (Brid.) Müll. Hal. 

Bartramiaceae Philonotis marchica (Hedw.) Brid. 

Bartramiaceae Philonotis mollis (Dozy et Molk.) Mitt. 

Bartramiaceae Philonotis roylei (Hook. f.) Mitt. 

Mniaceae Plagiomnium acutum (Lindb.) T.J. Kop. 

Polytrichaceae Pogonatum inflexum (Lindb.) Sande Lac. 

Thuidiaceae Thuidium glaucinoides Broth. 

Mniaceae Trachycystis microphylla (Dozy et Molk.) Lindb. 

Pottiaceae Trichostomum crispulum Bruch 
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Table 3: Results of the final linear mixed effects (LME) model for vegetation, soil and terrain attributes on biological soil 759 
crust cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p < 0:001, **: p < 0:01, *: p < 0:05, .: p < 0:1, ns: 760 
not significant, n=215). 761 

 Biological soil crust cover 

 denDF F Pr estim. 

Fixed effects     

Crown cover 136 12.9 ***     10.8 

Bulk soil density 37 0.03 ns     3.65 

SOM 39 1.11 ns (-)0.95 

pH (KCl) 38 2.47 ns (-)16.7 

Altitude 37 3.69 .     0.80 

Slope 191 7.53 ** (-)2.72 

MCCA 39 0.02 ns     0.33 

TRI 38 0.04 ns (-)0.40 

Eastness 37 2.73 ns (-)4.23 

Northness 37 9.14 **     5.99 

Tree species richness 38 1.22 ns (-)0.27 

     

Random effects Sd Variance 

Site <0.01 <0.01 

Plot  <0.01 <0.01 

    

Vegetation attribute fitted in exchange to crown cover 

Leaf area index 107   42.8 ***     5.98 

SOM: soil organic matter, MCCA: monte carlo based flow accumulation, TRI: topographic roughness index, denDF: 762 
denominator degrees of freedom, F: F value, Pr: significance, estim.: estimates, Sd: standard deviation 763 
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Table 4: Results of the final linear mixed effects (LME) models for sediment delivery and surface runoff with surface 764 
cover split into biological soil crust cover and stone cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p < 765 
0:001, **: p < 0:01, *: p < 0:05, .: p < 0:1, ns: not significant, n=334). 766 

 Sediment delivery Surface runoff 

 den  

DF 

F   Pr estim.   den  

  DF 

F Pr estim. 

Fixed effects         

Crown cover 130 6.53   * (-)0.15   173 9.11 <** (-)0.14 

Slope 151 1.23   ns (-)0.06   168 2.25 <ns (-)0.06 

Surface cover         

- Biocrust 151 50.2   *** (-)0.38   159 8.11 <** (-)0.12 

- Stone 136 10.3 <** (-)0.19   188 1.66 <ns (-)0.06 

SOM 44 5.71   * (-)0.08   72 2.43 <ns     0.12 

Rainfall 95 5.46   * (-)0.08   302 13.2   ***     0.14 

Tree species 

richness 

22 0.46   ns (-)0.05   68 0.11 <ns (-)0.03 

        

Random effects Sd Var.  Sd     Var.  

Precip. event : plot 0.199 0.040  0.537      0.288  

Tree composition  0.292 0.085  0.000      0.000  

Site  0.466 0.217  0.443      0.196  

Plot : ROP  0.441 0.195  0.269      0.073  

SOM: soil organic matter, denDF: denominator degrees of freedom, F: F value, Pr: significance, estim.: estimates, Sd: 767 
standard deviation, Var.: variance 768 
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Figures 773 

 774 

Figure 1: The development of biological soil crust cover in runoff plots of the BEF China experiment from 2011 to 2015 in 775 
Xingangshan, Jiangxi Province, PR China (n=350). Horizontal lines within boxplot represent medians and diamonds 776 
represent means with standard error bars. Points signify outliers and small letters significant differences (p<0.001).  777 
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 785 

Figure 2: Successional stages of biological soil crusts in two exemplary runoff plots (top row and bottom row, 0.4 m × 0.4 786 
m each) in 2011, 2013 and 2015 (from left to right) at the BEF China experiment in Xingangshan, Jiangxi Province, PR 787 
China.  788 
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 796 

Figure 3: The influence of runoff plots dominated by biological soil crust cover (n=281) and stone cover (n=53) on 797 
sediment delivery and surface runoff in Xingangshan, Jiangxi Province, PR China in 2013. Horizontal lines within box 798 
plots represent median and diamonds represent mean with standard error bars.  799 


