

1 **Bryophyte-dominated biological soil crusts mitigate soil erosion**
2 **in an early successional Chinese subtropical forest**

3
4 Steffen Seitz¹, Martin Nebel^{2,3}, Philipp Goebes¹, Kathrin Käppeler¹, Karsten Schmidt¹, Xuezheng
5 Shi⁴, Zhengshan Song^{1,4}, Carla L. Webber⁵, Bettina Weber⁶, Thomas Scholten¹

6
7 ¹ Soil Science and Geomorphology, Department of Geosciences, University of Tübingen, Tübingen, 72070,
8 Germany

9 ² State Museum of Natural History, Stuttgart, 70191, Germany

10 ³ Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, 53115, Germany

11 ⁴ State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences,
12 Nanjing, 210008, PR China

13 ⁵ Department of Geosciences, Federal University of Rio Grande do Sul, Porto Alegre, 90040-060, Brazil

14 ⁶ Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, 55128, Germany

15

16 *Correspondence to:* Steffen Seitz (steffen.seitz@uni-tuebingen.de)

17

18

19

20

21

22

23

24

25

26

27

28 **Abstract.** This study investigated the development of biological soil crusts (biocrusts) in an early successional
29 subtropical forest plantation and their impact on soil erosion. Within a biodiversity and ecosystem functioning
30 experiment in Southeast China (BEF China), the effect of these biocrusts on sediment delivery and runoff was assessed
31 within micro-scale runoff plots under natural rainfall and biocrust cover was surveyed over a five-year period.

32 Results showed that biocrusts occurred widely in the experimental forest ecosystem and developed from initial light
33 cyanobacteria- and algae-dominated crusts to later-stage bryophyte-dominated crusts within only three years. Biocrust
34 cover was still increasing after six years of tree growth. Within later stage crusts, 25 bryophyte species were
35 determined. Surrounding vegetation cover and terrain attributes significantly influenced the development of biocrusts.
36 Besides high crown cover and leaf area index, the development of biocrusts was favoured by low slope gradients,
37 slope orientations towards the incident sunlight and the altitude of the research plots. Measurements showed that
38 bryophyte-dominated biocrusts strongly decreased soil erosion being more effective than abiotic soil surface cover.
39 Hence, their significant role to mitigate sediment delivery and runoff generation in mesic forest environments and
40 their ability to quickly colonize soil surfaces after forest disturbance are of particular interest for soil erosion control
41 in early stage forest plantations.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 **1 Introduction**

57 Biological soil crusts (hereinafter referred to as biocrusts) are a living soil cover, which plays significant functional
58 roles in many environments (Weber et al., 2016). In initial ecosystems, communities of cyanobacteria, algae, fungi,
59 lichens, bryophytes and bacteria in varying combinations are the first to colonize the substrate (Evans and Johansen,
60 1999). Biocrusts are often dominated by one organism group, with cyanobacterial crusts being indicators for early
61 stage crusts and drier conditions (Malam Issa et al., 1999; Malam Issa et al., 2007) and bryophyte-dominated crusts
62 being indicators for later stage crusts and moister conditions (Colesie et al., 2016; Seppelt et al., 2016). Those highly
63 specialized communities form a biological crust immediately on top or within the first millimetres of the soil surface
64 (Büdel, 2005). Biocrusts preferably occur under harsh conditions of temperature or light, where vascular vegetation
65 tends to be rare (Allen, 2010). Therefore, biocrusts are generally widespread under dryland conditions (Berkeley et
66 al., 2005; Belnap, 2006; Büdel et al., 2009), whereas under mesic conditions they mostly occur as a successional stage
67 after disturbance or in environments under regularly disturbed regimes (Büdel et al., 2014).

68 In direct competition with phanerogamic plants, biocrusts are generally in an inferior position and thus their
69 development is limited under closed plant canopies or when leaf litter layers occur (Belnap et al., 2003a). This
70 limitation is due to the competition for light (Malam Issa et al., 1999) and nutrients (Harper and Belnap, 2001).
71 Disturbance of the phanerogamic vegetation layers, however, changes this competitive situation. Such disturbances
72 can occur in forest ecosystems by natural treefall or human induced clear-cutting (Barnes and Spurr, 1998). Complete
73 removal of a forest causes a harsh shift in vegetation development and creates a starting point for new vascular plant
74 as well as biocrust communities (Bormann et al., 1968; Keenan and Kimmins, 1993; Beck et al., 2008). Biocrusts are
75 able to quickly colonize natural clearances in tree layers (Belnap et al., 2003a) as well as gaps appearing after human
76 disturbance (Dojani et al., 2011; Chiquoine et al., 2016). Generally, it can be stated that current knowledge on the
77 relation between the development of biocrust cover and vascular plant cover leaves room for further research (Kleiner
78 and Harper, 1977; Belnap et al., 2003b; Zhang et al., 2016). In particular, there are only few studies on the development
79 of biocrusts in early successional forest ecosystems (Su et al., 2007; Zhang et al., 2016). Furthermore, descriptions of
80 different biocrust types in mesic vegetation zones and investigations in southeast Asia are rare (Büdel, 2003; Bowker
81 et al., 2016). We assume that biocrusts are also able to coexist in mesic subtropical forest environments shortly after
82 deforestation, but their cover decreases with ongoing tree canopy closure and decreasing light intensity.

83 Functional roles of biocrusts have been investigated for decades, but less attention has been paid to their spatial
84 distribution and characteristics (Allen, 2010). Biocrust cover varies across spatial scales (from centimetres to
85 kilometres) and it could be shown that it depends not only on the surrounding vascular vegetation cover, but also on
86 soils, geomorphology and (micro-)topography or terrain (Evans and Johansen, 1999; Ullmann and Büdel, 2003;
87 Kidron et al., 2009; Bowker et al., 2016) in arid, semi-arid, temperate and boreal environments. Different biocrust
88 distributions have been related to elevation and terrain-influenced microclimatic gradients (Kutiel et al., 1998),
89 different geomorphic zones (Eldridge, 1999), varying aspects (George et al., 2000) and soil types (Bu et al., 2016). To
90 our knowledge, investigations on the influence of small-scale (centimetres to metres) topographic variations on
91 biocrust development are rare and further studies will help to understand the role of these small-scale factors (Garcia-

92 Pichel and Belnap, 2003; Bu et al., 2016; Bowker et al., 2016). Furthermore, as the development of biocrusts is
93 characterized by a high complexity and spatial heterogeneity with many micro-climatic and micro-environmental
94 factors, it is of great significance to conduct comparative studies on the spatial distribution of biocrusts (Bu et al.,
95 2013). We assume that soil attributes as well as terrain attributes have major influences on the development of
96 biocrusts in mesic subtropical forest environments and this is particularly true for initial ecosystems.

97 Biocrusts were recognized to have a major influence on terrestrial ecosystems (Buscot and Varma, 2005; Belnap,
98 2006) as they protect soil surfaces against erosive forces by both wind and water (Bowker et al., 2008; Zhao et al.,
99 2014). They can absorb the kinetic energy of rain drops (splash effect), decrease shear forces and stabilize soil particles
100 with protonemal mats and fine rhizoids and thus decrease particle detachment and enhance soil stability (Malam Issa
101 et al., 2001; Warren, 2003; Belnap and Lange, 2003). Those effects differ with regard to soil texture, surface
102 roughness, water repellency and finally different crust species and developmental stages (Warren, 2003; Belnap and
103 Büdel, 2016). However, studies that directly relate different types of biocrust cover to rates of soil erosion are few
104 (Allen, 2010). Furthermore, the influence of biocrusts on sediment delivery and runoff has mostly been investigated
105 in arid and semi-arid climates and humid climates have been largely disregarded (Belnap and Lange, 2003; Weber et
106 al., 2016). We assume that biocrusts are effectively counteracting soil losses in early successional subtropical forest
107 plantations and thus may play a major functional role for soil erosion control in mesic areas under anthropogenic
108 influence.

109 This study aims to investigate the development of biocrust cover in an early successional subtropical forest ecosystem
110 after human disturbance and the impact of those biocrusts on soil erosion. Therefore, interrill erosion was measured
111 with runoff plots and the occurrence, distribution and development of biocrusts was recorded. The study was
112 conducted in an experimental forest plantation (BEF China), which aims to study biodiversity and ecosystem
113 functioning relationships in southeast China (Yang et al., 2013; Bruelheide et al., 2014). During the study, the
114 following hypotheses were addressed:

115 (1) Biocrusts are able to coexist in mesic early successional subtropical forest ecosystems, but crust cover decreases
116 with ongoing canopy closure and decreasing light intensity.

117 (2) The development of biocrusts in mesic subtropical forests is not only influenced by the surrounding vegetation
118 cover, but also by major soil attributes which influence biocrust growth and terrain attributes which affect
119 microclimatic conditions.

120 (3) Biocrusts mitigate interrill soil erosion in early successional subtropical forest plantations.

121

122 **2 Material and methods**

123 2.1 Study site and experimental design

124 The study was carried out within the BEF China experiment (Bruelheide et al., 2014) in Xingangshan, Jiangxi
125 Province, PR China (29°06.450' N and 117°55.450' E). The experimental area is located in a mountainous landscape
126 at an elevation of 100 m a.s.l. to 265 m a.s.l. with slopes from 15° to 41° (Scholten et al., 2017). The bedrock is non-
127 calcareous sandstones, siltstones and slates weathered to saprolite and predominant soil types are Cambisols with
128 Anthrosols in downslope positions and Gleysols in valleys (Scholten et al., 2017). The particle size distribution was
129 quite homogenous throughout the experimental area having loam as the main texture class (Scholten et al., 2017). The
130 mean annual temperature is 17.4 °C and the annual precipitation is 1635 mm with about 50 % falling during May to
131 August (Goebes et al., 2015). The climate is typical for summer monsoon subtropical regions. The potential natural
132 vegetation of this region is a subtropical broadleaved forest with dominating evergreen species. It has been widely
133 replaced by tree plantations of mostly *Cunninghamia lanceolata* for the purpose of commercial forestry in the 1980's
134 (Bruelheide et al., 2014). The experimental area (approx. 38 ha) is structured in 566 research plots (25.8 m × 25.8 m
135 each) at two sites (A and B) and was clear-cut and replanted with 400 tree saplings per plot in different tree species
136 mixtures in 2009 and 2010 (Yang et al., 2013). A selection of 34 research plots was used for this study (Seitz et al.,
137 2016). Shrubs and coppices were weeded once a year from 2010 to 2012 to help the tree saplings grow, following
138 common practice in forest plantations of this area.

139 2.2 Field methods

140 Biocrust cover was determined photogrammetrically in 70 selected micro-scale runoff plots (ROPs, 0.4 m × 0.4 m;
141 Seitz et al., 2015) at five timesteps (November 2011, May 2012, May 2013, May 2014 and May 2015). Biocrust
142 species were first described in the field based on appearance and functional groups. Biocrust types were then
143 determined based on the dominating autotrophic component (highest share of total biocrust cover per ROP). During
144 the rainy season in summer 2013, an extended survey together with soil erosion measurements (see below) was
145 conducted in five ROPs on 34 research plots each (170 ROPs in total, Table 1). At each ROP, perpendicular images
146 were taken with a single lens reflex camera system (Canon 350D, Tokio, Japan) and processed with the grid quadrat
147 method in GIMP 2.8 using a digital grid overlay with 100 subdivisions (cf. Belnap et al., 2001). Stone cover and
148 biocrust cover were separated by hue distinction. A continuous leaf litter cover, which may impede analyses, was not
149 present during measurements. Biocrusts were collected in 2013 and samples were dried at 40 °C (Dörrex drying unit,
150 Netstal, Switzerland). The identification of those sampled species was carried out by morphological characteristics
151 using a stereomicroscope (Leitz TS, Wetzlar, Germany), a transmitted-light microscope (Leitz Laborlux S, Wetzlar,
152 Germany) and ultraviolet light. Bryophytes (dominating taxa in 2013) were determined to the species level, wherever
153 possible and separated into mosses (Bischler-Causse, 1989; Moos flora of China: Gao et al., 1999; 2001; 2002; 2003;
154 2005; 2007; 2008; 2011) and liverworts (Zhu, 2006; Söderström et al., 2016 and Alfons Schäfer-Verwimp, personal
155 communication). Comparisons were conducted with specimen hosted in the herbarium of the State Museum of Natural
156 History in Stuttgart, Germany (Herbarium STU).

157 Sediment delivery and surface runoff were measured within 170 ROPs in summer 2013 together with an extended
158 biocrust survey (see above and Table 1), when tree saplings did not exceed three years of age and leaf litter fall was

159 still low. After four timesteps, 334 valid ROP measurements entered the analysis (for detailed information see Seitz
160 et al., 2016). Sediment delivery was sampled, dried at 40 °C and weighed, whereas surface runoff and rainfall amount
161 were measured in situ. At every ROP, crown cover and leaf area index (LAI) were measured with a fish-eye camera
162 system (Nikon D100 with Nikon AF G DX 180°, Tokio, Japan) and calculated with HemiView V.8 (Delta-T devices,
163 Cambridge, UK). Measurements of tree height and crown width were provided by Li et al. (2014) at research plot
164 scale (n=34). Tree species richness and tree composition resulted from the experimental setup of BEF China
165 (Bruelheide et al., 2014).

166 Soil attributes (Table 1) were determined for every research plot (n=34, sampling in 2013) using pooled samples from
167 nine point measurements each (sampling depth 0-5 cm). Soil pH was measured in KCl (WTW pH-meter with Sentix
168 electrodes, Weilheim, Germany), bulk soil density was determined by the mass-per-volume method and total organic
169 carbon (TOC) was measured using heat combustion (Elementar Vario EL III, Hanau, Germany). Soil organic matter
170 (SOM) was calculated by multiplying TOC with the factor 2 (Pribyl, 2010).

171 2.3 Digital terrain analysis

172 Terrain attributes (Table 1) were derived from a digital elevation model (DEM, 5 m × 5 m, Scholten et al., 2017) at
173 research plot scale (n=34). Attributes were the terrain ruggedness index (TRI, Riley et al., 1999) to describe the
174 heterogeneity of the terrain, the Monte-Carlo based flow accumulation (MCCA, Behrens et al., 2008) to diagnose
175 terrain driven water availability, altitude above sea level to address elevation effects and the eastness and the northness
176 (Roberts, 1986) to describe plant related climatic conditions. Those terrain attributes cover major landscape features
177 of the experimental area and were not correlated. Slope was additionally measured with an inclinometer at every ROP
178 (n=170, see Seitz et al., 2016).

179

180 [Table 1]

181

182 2.4 Statistical methods

183 The temporal development of biocrust cover (1) from 2011 to 2015 was assessed at five timesteps within 70 ROPs
184 (see above) by an analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test (n=350).

185 The influences of vegetation, soil and topographic attributes on biocrust cover (2) in 170 ROPs (see above) were
186 assessed by linear mixed effects (LME) models (n=334). Crown cover, bulk soil density, SOM, pH, altitude, slope,
187 MCCA, TRI, eastness, northness and tree species richness were fitted as fixed effects and biocrust cover as response
188 variable. The attributes were tested with Pearson's correlation coefficient before fitting. LAI was fitted individually
189 in exchange to crown cover due to multi-collinearity. Experimental site and research plot were fitted as random effects
190 and hypotheses were tested with an ANOVA type 1 with Satterthwaite approximation for degrees of freedom.

191 The influences on soil erosion (3) were assessed by LME models with restricted maximum likelihood (n=334) and
192 sediment delivery and surface runoff as response variables, respectively. Crown cover, slope, surface cover, SOM,
193 rainfall amount and tree species richness were fitted as fixed effects. Surface cover was then split into surface cover
194 by biocrusts and by stones, which entered the analysis as fixed conjoined factors. Precipitation events nested in plot,
195 tree species composition, experimental site and ROP nested in plot were fitted as random effects. Attributes were not
196 correlated. The hypothesis was tested with an ANOVA type 1 with Satterthwaite approximation for degrees of
197 freedom. Moreover, the Wilcoxon rank sum test was applied to test for differences between biocrust cover and stone
198 cover on sediment delivery and surface runoff. Therefore, the dataset was split into data points where biocrust cover
199 exceeded stone cover (n=281) and data points where stone cover exceeded biocrust cover (n=53).

200 All response variables were log-transformed before modelling. The dataset was tested for multi-collinearity and met
201 all prerequisites to carry out ANOVAs. All analyses were performed with R 3.1.2 (R Core Team, 2014). LME
202 modelling was conducted with “lmerTest” (Kuznetsova et al., 2014) and rank sum tests with “exactRankTests”
203 (Hothorn and Hornik, 2015). Figures were designed with “ggplot2” (Wickham, 2009).

204

205 **3 Results**

206 3.1 Temporal development of biocrust cover

207 Biocrusts occurred in 94 % of all ROPs and their cover within ROPs ranged between 1 % and 88 % over the course
208 of five years. The mean biocrust cover of all ROPs more than tripled from their installation in 2011 to the last
209 measurement in 2015 (Fig. 1). The increases were significant from 2011 to 2015 and from 2012 to 2013, 2013 to 2014
210 and 2014 to 2015 (p<0.001).

211

212 [Figure 1]

213

214 Whereas a clear bryophyte-dominance of biocrusts was evident at the time of sampling in 2013 (average ROP surface
215 cover 24 %), different successional stages were identified in the field and on ROP photos from 2011 to 2015 (Fig. 2).
216 In 2011, a smooth, light cyanobacteria- and algae-dominated crust with few lichens and bryophytes indicated an earlier
217 stage of biocrust development (Colesie et al., 2016). In 2013, 25 moss and liverwort species were classified (Table 2)
218 and formed a bryophyte-dominated crust with some cyanobacteria, algae, lichens and micro-fungi still observed within
219 ROPs. The same was true in 2015, but first evidence of vascular plants (*Selaginella* and *Poaceae*) indicated a further
220 change in the vegetation cover of the soil surface.

221

222 [**Figure 2**]

223

224 [**Table 2**]

225

226 3.2 The influence of vegetation, soil and terrain on biocrust cover

227 The development of biocrust cover in 2013 was positively influenced by crown cover and LAI as attributes of the
228 surrounding vegetation (Table 3). Furthermore, it was negatively affected by slope and northness and slightly
229 positively affected by the altitude of the research plots as terrain attributes (Table 3). Further terrain attributes or any
230 soil attributes did not affect the development of biocrust cover.

231

232 [**Table 3**]

233

234 3.3 The impact of biocrust cover on soil erosion

235 The results indicate that biocrusts strongly affect soil erosion. ROPs with biocrust cover below 10 % showed a mean
236 sediment delivery of 302 g m^{-2} and a mean runoff volume of 39 L m^{-2} , whereas ROPs with biocrust cover above 50 %
237 showed a mean sediment delivery of 74 g m^{-2} and a mean runoff volume of 29 L m^{-2} . Both biocrust and stone cover,
238 as well as total soil surface cover (comprising both biocrust and stone cover, $p < 0.001$) negatively affected sediment
239 delivery (Table 4). In addition, soil surface cover negatively affected surface runoff ($p = 0.003$). However, only biocrust
240 but not stone cover mediated the effect of runoff. Furthermore, crown cover, SOM and rainfall amount affected
241 sediment delivery, whereas runoff was affected by crown cover and rainfall amount. ROPs with increased stone cover
242 showed higher sediment delivery and surface runoff compared to those with increased biocrust cover (Fig. 3).

243

244 [**Table 4**]

245

246 [**Figure 3**]

247

248 **4 Discussion**

249 4.1 Temporal development of biocrust cover

250 Biocrusts were detected widely within the experiment and occupied a considerable area in the interspaces of the
251 growing tree community. Thus, the first part of hypothesis 1, stating that biocrusts are able to coexist in mesic early
252 successional subtropical forests, can be confirmed, as they successfully colonized the newly created habitats
253 originating from the disturbance by forest clear-cutting and weeding (Bruelheide et al., 2014). Although biocrusts
254 have been mainly defined to occur in dryland regions (Weber et al., 2016), they can also appear as a transient feature
255 in mesic environments after major singular or repeated disturbance events (Büdel et al., 2014, Fischer et al., 2014). In
256 the current study, deforestation provided a local arid microenvironment, which initiated early biocrust development.
257 At this young stage of forest development, biocrusts were able to coexist with upcoming tree saplings and formed a
258 pioneer vegetation on the soil surface (Langhans et al., 2009), which provides the basis for the growth of other plants
259 by the input of carbon and nitrogen (West, 1990; Evans and Johansen, 1999). Biocrusts are known to facilitate the
260 succession of vascular plants to more advanced stages (Bowker, 2007), but tree growth and thus crown cover can also
261 lead to an advancement in biocrust development, e.g. due to the protection from direct sunlight (Zhao et al., 2010;
262 Tinya and Ódor, 2016). The bryophyte-dominance of biocrusts in 2013 documented this development into a later and
263 somewhat moister successional stage. Later-stage bryophytes have received comparatively little attention in forest
264 understorey (Gilliam, 2007) and biocrust studies (Weber et al., 2016) and in Asia only 23 different species have been
265 reported within biocrusts up to now (Seppelt et al., 2016). Thus, this study with 25 recorded moss and liverwort
266 species, most of them being new records within Asian biocrusts (Burkhard Büdel, personal communication)
267 substantially increases the knowledge on biocrusts of this region.

268 The extent of biocrusts was strongly increasing since 2012 i.e. three years after tree replantation and still gaining
269 coverage in the sixth year after the experimental setup. Thus, the second part of hypothesis 1, stating that crust cover
270 decreases with ongoing canopy closure, has to be rejected. Even if single trees were already up to 7.4 m high (Li et
271 al., 2014) and LAI was up to 5.35 in 2013, biocrusts still remained coexisting within the early stage forest ecosystem.
272 Furthermore, increasing crown cover and LAI seemed to foster the development of bryophyte-dominated biocrusts at
273 this ecological stage. By the end of this study in summer 2016 (LAI up to 6.18), there were indications that biocrust
274 cover may start to be pushed back, as first vascular plants appeared in between. This is in line with existing literature,
275 demonstrating that continuing tree growth will cause biocrust communities to adapt with an altered composition of
276 moss and liverwort species (Eldridge and Tozer, 1997; Fenton and Frego, 2005; Goffinet and Shaw, 2009). It has been
277 shown, that bryophytes switch from species favouring sunny habitats to more shade-tolerant species (Zhao et al., 2010;
278 Müller et al., 2016). In addition, there might also be a reduction in bryophyte diversity due to shady conditions, where
279 only a smaller number of species could prevail. In later stages, biocrust cover will be replaced by vascular vegetation
280 (in light forests) or buried under persisting leaf litter (under darker conditions). In this context, the ecological roles of
281 biocrusts in succession models and plant restoration are of interest (Hawkes, 2004; Bowker, 2007). In particular,
282 biocrust succession in temperate climates has received limited scientific attention (Read et al., 2016). Furthermore,
283 there are several projects under way to establish successful restoration techniques in arid and semi-arid environments
284 (Rosentreter et al., 2003; Bowker, 2007; Chiquoine et al., 2016; Condon and Pyke, 2016), which could be adapted to
285 mesic environments. Nevertheless, it has to be stated that biocrust restoration might be dispensable in some mesic
286 systems, as natural reestablishment appeared to be very fast in this study.

287 4.2 The influence of vegetation, soil and terrain on biocrust cover

288 In the current study, the development of biocrusts was influenced by vegetation and terrain, but not by the three soil
289 attributes investigated in this study. Thus, hypothesis 2, stating that the biocrust development is not only influenced
290 by surrounding vegetation, but also by soil and terrain, can only partly be confirmed for this ecosystem. As
291 demonstrated above, high crown cover and LAI positively affected the development of biocrust cover in 2013. This
292 increase in biocrust cover is likely caused by successional alteration of biocrusts towards bryophyte-dominance.
293 Mosses and liverworts profit from humid conditions and a higher protection from light compared to cyanobacteria- or
294 lichen-dominated crusts (Ponzetti and McCune, 2001; Marsh et al., 2006; Williams et al., 2013). The successional
295 development of biocrusts within the BEF China experiment was faster than reported by Zhao et al. (2010) for Chinese
296 grasslands (Loess Plateau), who claimed biocrusts from a 3-year old site as early successional and dominated by
297 cyanobacteria. The recovery rate was also faster than described by Eldridge (1998) and Read et al. (2011) for semi-
298 arid Australia, each one of the very few studies on biocrust recovery under woodland. In the study presented here, the
299 rapid change in biocrust community composition is mainly linked to the growth rates of surrounding trees in this
300 subtropical forest. As functions of biocrusts, such as erosion reduction, are species-dependent, the rapid change in
301 species composition might also lead to considerable variations in functional responses. Further studies are required to
302 investigate species changeover times in different environments and particularly in disturbed mesic ecosystems.

303 Furthermore, several terrain attributes affected biocrust cover. Slope was the most prominent of those factors, causing
304 a considerable decline in biocrust cover with increasing slope. This finding was explained by their decreasing ability
305 to fix themselves on the soil surface at high slope angles and thus their tendency to erode from the soil surface, when
306 large surface water flows occur during rainfall events (Chamizo et al., 2013; Bu et al., 2016). Thus, the surface-
307 protecting effect of biocrusts decreases at steep plantation sites and during heavy monsoon rainfall events, which
308 frequently occur in the broader research area in Jiangxi Province, China (Yang et al., 2013; Goebes et al., 2015).
309 Moreover, microclimatic factors played a role in the development of biocrusts. Northness showed a positive impact
310 on biocrust cover and indicated that slope orientations towards the incident sunlight directly influence the biocrust
311 development. This was also observed in other studies in arid and semi-arid areas (Bowker et al., 2002; Zaady et al.,
312 2007). Furthermore, biocrust development depended on the altitude, which is probably also by affecting microclimatic
313 conditions (Kutiel et al., 1998; Chamizo et al., 2016; Bu et al., 2016). Those microclimatic factors are additionally
314 altered by the growing tree vegetation itself.

315 Interestingly, SOM and pH did not affect biocrust cover in this study, whereas generally, underlying substrates are a
316 main factor for bryophyte development (Spitale, 2017) and soil attributes are known to strongly influence biocrust
317 cover (Bowker et al., 2016). At the experimental area, increased organic matter contents and acidic conditions have
318 been determined (Scholten et al., 2017), which favour the development of bryophyte-dominated biocrusts (Eldridge
319 and Tozer, 1997; Seppelt et al., 2016). Nevertheless, the variation between the research plots was small and apparently
320 not large enough to cause prominent differences in biocrust development. Comparisons between forest plantations on
321 different substrates would help to clarify the influence of soil attributes on biocrust development in those environments

322 and to assess their effect in a broader environmental context (Spitale, 2017). Furthermore, a broader range of soil
323 parameters should be included in future studies.

324 4.3 The impact of biocrust cover on soil erosion

325 Biocrust cover clearly mitigated interrill soil erosion in this early stage ecosystem and thus hypothesis 3 was
326 confirmed. Sediment delivery was strongly reduced with increasing biocrust cover. For arid environments, e.g. Cantón
327 et al. (2011) and Maestre et al. (2011) showed that sediment delivery from soil surfaces covered with biocrusts
328 decreases compared to bare soil surfaces with physical crusting (from 20 g m⁻² to <1 g m⁻² and 40 g m⁻² to <5 g m⁻²,
329 respectively), both studies using micro-scale runoff plots (0.25 m²). Bu et al. (2015) and Zhao and Xu (2013) found
330 similar erosion-reducing patterns for the sub-arid temperate Chinese Loess Plateau. The study presented here shows,
331 that biocrusts fulfil this key ecosystem service also within a particular mesic habitat, even if their biomass and soil
332 penetration depth is low compared to trees. This functional role is due to the fact that biocrusts attenuate the impact
333 of raindrops on the soil surface and greatly improve its resistance against sediment detachment (Eldridge and Greene,
334 1994; Goebes et al., 2014; Zhao et al., 2014). Moreover, they have the ability to glue loose soil particles by
335 polysaccharides extruded by cyanobacteria and green algae (Buscot and Varma, 2005). In the current study,
336 protonemata and rhizoids of mosses and liverworts were observed to be most effective by weaving and thus fixing the
337 first millimetres of the top soil, as also described by Bowker et al. (2008). *Pogonatum inflexum* and *Atrichum*
338 *subserratum* are well known to have a positive effect on erosion control due to their sustained protonema system
339 (personal observation). Furthermore, bryophytes increase the formation of humus, which in turn assists to bind primary
340 particles into aggregates (Scheffer et al., 2010; Zhang et al., 2016).

341 Whereas a partial stone cover did not decrease surface runoff in this study, bryophyte-dominated biocrusts positively
342 influenced the hydrological processes in the top soil layer regarding erosion control. Thus, they actively mitigated
343 initial soil erosion compared to abiotic components such as stones and pebbles. Biocrusts have been frequently shown
344 to influence hydrological processes such as surface runoff and infiltration rates (Cantón et al., 2011; Chamizo et al.,
345 2012; Rodríguez-Caballero et al., 2013). Recently, Chamizo et al. (2016) showed that biocrusts decrease runoff
346 generation at larger scale (>2 m²), but converse behaviour has also been found (Cantón et al., 2002; Maestre et al.,
347 2011). Reducing effects on runoff are related to biocrusts species composition (Belnap and Lange, 2003) and later
348 developmental biocrust stages with higher biomass levels provide more resistance to soil loss (Belnap and Büdel,
349 2016). Especially bryophyte-dominated crusts have shown to enhance infiltration and reduce runoff due to their
350 rhizome system, causing soil erosion rates to stay low (Warren, 2003; Yair et al., 2011). Also other field studies
351 revealed that later stage biocrusts, containing both lichens and bryophytes, offer more protection against soil erosion
352 than cyanobacterial crusts (Belnap and Gillette, 1997), as they provide higher infiltration potential (Kidron, 1995). On
353 the other hand, Drahorad et al. (2013) found an increase in water repellency and a decrease in water sorptivity with
354 ongoing biocrust succession on a temperate forest glade, which could also strongly affect runoff and sediment transport
355 on subtropical forest soil surfaces. Moreover, biocrusts dominated by bryophytes increase surface roughness and thus
356 slow down runoff (Kidron et al., 1999; Rodríguez-Caballero et al., 2012). Finally, they also absorb water and provide
357 comparably high water storage capacity (Warren, 2003; Belnap, 2006). For example, *Leucobryum juniperoides*,

358 which has been widely found in this study, is known for its water absorbing capacity (Martin Nebel, personal
359 observation). Thus, the observed rapid change in biocrust composition from cyanobacteria to bryophyte dominance
360 improved soil erosion control in this forest environment. This effect should be considered for the replantation of forests
361 in regions endangered by soil erosion.

362

363

364

365 **5 Conclusion**

366 This study investigated the development and distribution of biocrusts in an early stage subtropical forest plantation as
367 well as their impact on interrill soil erosion after human disturbance. The following conclusions were obtained:

368 (1) Biocrusts occurred widely in this mesic early successional forest ecosystem in subtropical China and were already
369 dominated by bryophytes after three years of tree growth (25 bryophyte species classified). After six years of
370 continuing canopy closure, biocrust cover was still increasing. Further monitoring under closing tree canopy is of
371 importance to detect changes in biocrust cover and species composition. As this study discusses a very particular
372 subtropical forest environment, where trees were replanted after clear-cutting, results have to be viewed with this
373 particular setup in mind. Further studies on biocrust development in different disturbed forest ecosystems appear to
374 be of high interest.

375 (2) The surrounding vegetation and underlying terrain affected biocrust development, whereas soil attributes did not
376 have an effect at this small experimental scale. Besides high crown cover and LAI, the development of biocrusts was
377 favoured by low slope gradient, slope orientations towards the incident sunlight and altitude. Further research appears
378 to be necessary to explain effects of terrain attributes such as aspect or elevation and effects of underlying soil and
379 substrates.

380 (3) Soil surface cover of biocrusts largely affected soil erosion control in this early stage of the forest plantation.
381 Bryophyte-dominated crusts showed erosion-reducing characteristics with regard to both sediment delivery and
382 surface runoff. Furthermore, they were more effectively decreasing soil losses than abiotic soil surface covers. The
383 erosion-reducing influence of bryophyte-dominated biocrusts and their rapid development from cyanobacteria-
384 dominated crusts should be considered in management practices in early stage forest plantations. Further research is
385 required on functional mechanisms of different biocrust and bryophyte species and their impact on soil erosion
386 processes.

387

388

389 **Data availability**

390 Data are publicly accessible and archived at the BEF China data portal (<http://china.befdata.biow.uni-leipzig.de>).

391 **Author contribution**

392 Steffen Seitz and Thomas Scholten designed the experiment and Steffen Seitz, Zhengshan Song, Kathrin Käppeler
393 and Carla L. Webber carried it out. Martin Nebel and Kathrin Käppeler classified biocrust types and determined
394 bryophyte species. Steffen Seitz, Philipp Goebes and Karsten Schmidt performed the statistical models. Steffen Seitz,
395 Xuezheng Shi and Bettina Weber prepared the manuscript with contributions from all co-authors. The authors declare
396 that they have no conflict of interest.

397 **Acknowledgements**

398 We are grateful to the BEF China research group and especially to our students Mario Ahner, Milan Daus, Marlena
399 Hall, Madeleine Janker, Paula Kersten, Vera Müller and Andrea Wadenstorfer for assistance in fieldwork. We also
400 thank Alfons Schäfer-Verwimp for assistance in determination of bryophytes, Karl Forchhammer for giving us first
401 insights into the world of cyanobacteria and the participants of BioCrust3 for helpful comments on the results.

402 This work was funded by the German Research Foundation (DFG FOR 891/2 and 891/3). We also benefitted from
403 travel grants by the Sino-German Centre for Research Promotion (GZ 699 and GZ 785) and from funding of the Max
404 Planck Society. We acknowledge support by the Open Access Publishing Fund of the University of Tübingen.

405

406 **References**

407 Allen, C. D.: Biogeomorphology and biological soil crusts: a symbiotic research relationship,
408 *geomorphologie*, 16, 347–358, doi:10.4000/geomorphologie.8071, 2010.

409 Barnes, B. V. and Spurr, S. H.: Forest ecology, 4th ed., Wiley, New York, 774 pp., 1998.

410 Beck, E., Hartig, K., Roos, K., Preußig, M., and Nebel, M.: Permanent Removal of the Forest: Construction
411 of Roads and Power Supply Lines, in: Gradients in a tropical mountain ecosystem of Ecuador, Beck, E.
412 (Ed.), *Ecological studies*, 198, Springer, Berlin, 361–370, 2008.

413 Behrens, T., Schmidt, K., and Scholten, T.: An approach to removing uncertainties in nominal
414 environmental covariates and soil class maps, in: *Digital soil mapping with limited data*, Hartemink,

415 A. E., McBratney, A. B., Mendonça-Santos, Maria de Lourdes (Eds.), Springer, Dordrecht, London,
416 213–224, 2008.

417 Belnap, J.: The potential roles of biological soil crusts in dryland hydrologic cycles, *Hydrol. Process.*, 20,
418 3159–3178, doi:10.1002/hyp.6325, 2006.

419 Belnap, J. and Büdel, B.: Biological Soil Crusts as Soil Stabilizers, in: *Biological soil crusts: An organizing*
420 *principle in drylands*, Weber, B., Büdel, B., Belnap, J. (Eds.), *Ecological studies, analysis and synthesis*,
421 226, Springer, Switzerland, 305–320, 2016.

422 Belnap, J., Büdel, B., and Lange, O. L.: Biological Soil Crusts: Characteristics and Distribution, in: *Biological*
423 *soil crusts: Structure, function and management*, 1st ed., rev. 2nd printing., Belnap, J., Lange, O. L.
424 (Eds.), Springer, Berlin, 3–30, 2003a.

425 Belnap, J. and Gillette, D. A.: Disturbance of biological soil crusts: impacts on potential wind erodibility of
426 sandy desert soils in southeastern Utah, *Land Degrad. Dev.*, 8, 355–362, doi:10.1002/(SICI)1099-
427 145X(199712)8:4<355:AID-LDR266>3.0.CO;2-H, 1997.

428 Belnap, J., Kaltenecker, J. H., Rosentreter, R., Williams, J., Leonard, S., and Eldridge, D. J.: *Biological Soil*
429 *Crusts: Ecology and Management*, Technical Reference, 1730-2, United States Department of the
430 Interior - Bureau of Land Management, 2001.

431 Belnap, J. and Lange, O. L. (Eds.): *Biological soil crusts: Structure, function and management*, 1st ed., rev.
432 2nd printing., Springer, Berlin, IX, 503, 2003.

433 Belnap, J., Prasse, R., and Harper, K. T.: Influence of Biological Soil Crusts on Soil Environments and
434 Vascular Plants, in: *Biological soil crusts: Structure, function and management*, 1st ed., rev. 2nd
435 printing., Belnap, J., Lange, O. L. (Eds.), Springer, Berlin, 281–300, 2003b.

436 Berkeley, A., Thomas, A. D., and Dougill, A. J.: Cyanobacterial soil crusts and woody shrub canopies in
437 Kalahari rangelands, *African J Ecol.*, 43, 137–145, doi:10.1111/j.1365-2028.2005.00560.x, 2005.

438 Bischler-Causse, H.: *Marchantia* L.: The asiatic and oceanic taxa, J. Cramer, Berlin [etc.], 317 pp., 1989.

439 Bormann, F. H., Likens, G. E., Fisher, D. W., and Pierce, R. S.: Nutrient loss accelerated by clear-cutting of
440 a forest ecosystem, *Science*, 159, 882–884, doi:10.1126/science.159.3817.882, 1968.

441 Bowker, M. A.: Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited
442 Opportunity, *Restor Ecology*, 15, 13–23, doi:10.1111/j.1526-100X.2006.00185.x, 2007.

443 Bowker, M. A., Belnap, J., Bala Chaudhary, V., and Johnson, N. C.: Revisiting classic water erosion models
444 in drylands: The strong impact of biological soil crusts, *Soil Biology and Biochemistry*, 40, 2309–2316,
445 doi:10.1016/j.soilbio.2008.05.008, 2008.

446 Bowker, M. A., Belnap, J., Büdel, B., Sannier, C., Pietrasik, N., Eldridge, D. J., and Rivera-Aguilar, V.:
447 Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales, in: Biological soil
448 crusts: An organizing principle in drylands, Weber, B., Büdel, B., Belnap, J. (Eds.), *Ecological studies*,
449 analysis and synthesis, 226, Springer, Switzerland, 173–197, 2016.

450 Bowker, M. A., Reed, S. C., Belnap, J., and Phillips, S. L.: Temporal variation in community composition,
451 pigmentation, and F(v)/F(m) of desert cyanobacterial soil crusts, *Microbial ecology*, 43, 13–25,
452 doi:10.1007/s00248-001-1013-9, 2002.

453 Bruelheide, H., Nadrowski, K., Assmann, T., Bauhus, J., Both, S., Buscot, F., Chen, X.-Y., Ding, B., Durka,
454 W., Erfmeier, A., Gutknecht, Jessica L. M., Guo, D., Guo, L.-D., Härdtle, W., He, J.-S., Klein, A.-M.,
455 Kühn, P., Liang, Y., Liu, X., Michalski, S., Niklaus, P. A., Pei, K., Scherer-Lorenzen, M., Scholten, T.,
456 Schuldt, A., Seidler, G., Trogisch, S., Oheimb, G. von, Welk, E., Wirth, C., Wubet, T., Yang, X., Yu, M.,
457 Zhang, S., Zhou, H., Fischer, M., Ma, K., Schmid, B., and Muller-Landau, H.: Designing forest
458 biodiversity experiments: general considerations illustrated by a new large experiment in subtropical
459 China, *Methods Ecol Evol*, 5, 74–89, doi:10.1111/2041-210X.12126, 2014.

460 Bu, C., Wu, S., Han, F., Yang, Y., and Meng, J.: The combined effects of moss-dominated biocrusts and
461 vegetation on erosion and soil moisture and implications for disturbance on the Loess Plateau,
462 China, *PloS one*, 10, e0127394, doi:10.1371/journal.pone.0127394, 2015.

463 Bu, C., Wu, S., Zhang, K., Yang, Y., and Gao, G.: Biological soil crusts: An eco-adaptive biological
464 conservative mechanism and implications for ecological restoration, *Plant Biosystems - An*
465 *International Journal Dealing with all Aspects of Plant Biology*, 149, 364–373,
466 doi:10.1080/11263504.2013.819820, 2013.

467 Bu, C., Zhang, P., Wang, C., Yang, Y.-s., Shao, H.-b., and Wu, S.: Spatial distribution of biological soil crusts
468 on the slope of the Chinese Loess Plateau based on canonical correspondence analysis, *CATENA*,
469 137, 373–381, doi:10.1016/j.catena.2015.10.016, 2016.

470 Büdel, B.: Biological Soil Crusts of Asia Including the Don and Volga Region, in: *Biological soil crusts:*
471 *Structure, function and management*, 1st ed., rev. 2nd printing., Belnap, J., Lange, O. L. (Eds.),
472 Springer, Berlin, 87–94, 2003.

473 Büdel, B.: Microorganisms of Biological Crusts on Soil Surfaces, in: *Microorganisms in Soils: Roles in*
474 *Genesis and Functions*, Buscot, F., Varma, A. (Eds.), Springer, New York, 307–324, 2005.

475 Büdel, B., Colesie, C., Green, T. G. A., Grube, M., Lazaro Suau, R., Loewen-Schneider, K., Maier, S., Peer,
476 T., Pintado, A., Raggio, J., Ruprecht, U., Sancho, L. G., Schroeter, B., Turk, R., Weber, B., Wedin, M.,
477 Westberg, M., Williams, L., and Zheng, L.: Improved appreciation of the functioning and importance
478 of biological soil crusts in Europe: the Soil Crust International Project (SCIN), *Biodiversity and*
479 *conservation*, 23, 1639–1658, doi:10.1007/s10531-014-0645-2, 2014.

480 Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K. I., Salisch, M., Reisser, W., and
481 Weber, B.: Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being
482 restricted by rainfall frequency, *Microbial ecology*, 57, 229–247, doi:10.1007/s00248-008-9449-9,
483 2009.

484 Buscot, F. and Varma, A. (Eds.): *Microorganisms in Soils: Roles in Genesis and Functions*, Springer, New
485 York, 2005.

486 Cantón, Y., Domingo, F., Solé-Benet, A., and Puigdefábregas, J.: Influence of soil-surface types on the
487 overall runoff of the Tabernas badlands (south-east Spain): field data and model approaches, *Hydrol.*
488 *Process.*, 16, 2621–2643, doi:10.1002/hyp.1052, 2002.

489 Cantón, Y., Solé-Benet, A., Vente, J. de, Boix-Fayos, C., Calvo-Cases, A., Asensio, C., and Puigdefábregas,
490 J.: A review of runoff generation and soil erosion across scales in semiarid south-eastern Spain,
491 *Journal of Arid Environments*, 75, 1254–1261, doi:10.1016/j.jaridenv.2011.03.004, 2011.

492 Chamizo, S., Belnap, J., Eldridge, D. J., Cantón, Y., and Malam Issa, O.: The Role of Biocrusts in Arid Land
493 Hydrology, in: *Biological soil crusts: An organizing principle in drylands*, Weber, B., Büdel, B., Belnap,
494 J. (Eds.), *Ecological studies, analysis and synthesis*, 226, Springer, Switzerland, 321–346, 2016.

495 Chamizo, S., Cantón, Y., Domingo, F., and Belnap, J.: Evaporative losses from soils covered by physical
496 and different types of biological soil crusts, *Hydrol. Process.*, 27, 324–332, doi:10.1002/hyp.8421,
497 2013.

498 Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., Domingo, F., and Escudero, A.: Runoff at contrasting
499 scales in a semiarid ecosystem: A complex balance between biological soil crust features and rainfall
500 characteristics, *Journal of Hydrology*, 452-453, 130–138, doi:10.1016/j.jhydrol.2012.05.045, 2012.

501 Chiquoine, L. P., Abella, S. R., and Bowker, M. A.: Rapidly restoring biological soil crusts and ecosystem
502 functions in a severely disturbed desert ecosystem, *Ecological applications* a publication of the
503 Ecological Society of America, 26, 1260–1272, 2016.

504 Colesie, C., Felde, V. J.M., and Büdel, B.: Composition and Macrostructure of Biological Soil Crusts, in:
505 *Biological soil crusts: An organizing principle in drylands*, Weber, B., Büdel, B., Belnap, J. (Eds.),
506 *Ecological studies, analysis and synthesis*, 226, Springer, Switzerland, 159–172, 2016.

507 Condon, L. A. and Pyke, D. A.: Filling the interspace-restoring arid land mosses: Source populations,
508 organic matter, and overwintering govern success, *Ecol Evol*, 6, 7623–7632, doi:10.1002/ece3.2448,
509 2016.

510 Dojani, S., Büdel, B., Deutschewitz, K., and Weber, B.: Rapid succession of Biological Soil Crusts after
511 experimental disturbance in the Succulent Karoo, South Africa, *Applied Soil Ecology*, 48, 263–269,
512 doi:10.1016/j.apsoil.2011.04.013, 2011.

513 Drahorad, S., Steckenmesser, D., Felix-Henningsen, P., Lichner, L., and Rodný, M.: Ongoing succession of
514 biological soil crusts increases water repellency — a case study on Arenosols in Sekule, Slovakia,
515 *Biologia*, 68, 309, doi:10.2478/s11756-013-0247-6, 2013.

516 Eldridge, D. J.: Soil crust lichens and mosses on calcrete-dominant soils at Maralinga in arid South
517 Australia, *Journal of Adelaide Botanic Gardens*, 18, 9–24, 1998.

518 Eldridge, D. J.: Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned *Callitris*
519 *glaucophylla* woodland in eastern Australia, *Acta Oecologica*, 20, 159–170, doi:10.1016/S1146-
520 609X(99)80029-0, 1999.

521 Eldridge, D. J. and Greene, R.S.B.: Assessment of sediment yield by splash erosion on a semi-arid soil
522 with varying cryptogam cover, *Journal of Arid Environments*, 26, 221–232,
523 doi:10.1006/jare.1994.1025, 1994.

524 Eldridge, D. J. and Tozer, M. E.: Environmental Factors Relating to the Distribution of Terricolous
525 Bryophytes and Lichens in Semi-Arid Eastern Australia, *The Bryologist*, 100, 28,
526 doi:10.2307/3244384, 1997.

527 Evans, R. D. and Johansen, J. R.: Microbiotic Crusts and Ecosystem Processes, *Critical Reviews in Plant*
528 *Sciences*, 18, 183–225, doi:10.1080/07352689991309199, 1999.

529 Fenton, N. J. and Frego, K. A.: Bryophyte (moss and liverwort) conservation under remnant canopy in
530 managed forests, *Biological Conservation*, 122, 417–430, doi:10.1016/j.biocon.2004.09.003, 2005.

531 Fischer, T., Gypser, S., Subbotina, M., and Veste, M.: Synergic hydraulic and nutritional feedback
532 mechanisms control surface patchiness of biological soil crusts on tertiary sands at a post-mining
533 site, *Journal of Hydrology and Hydromechanics*, 62, doi:10.2478/johh-2014-0038, 2014.

534 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 01: Sphagnaceae - Leucobryaceae*,
535 English Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 273 pp., 1999.

536 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 02: Fissidentaceae - Phytomitriaceae*,
537 English Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 283 pp., 2001.

538 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 06: Hookeriaceae - Thuidiaceae*, English
539 Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 2002.

540 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 03: Grimmiaceae - Tetraphidaceae*,
541 English Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 141 pp., 2003.

542 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 08: Sematophyllaceae - Polytrichaceae*,
543 English Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 2005.

544 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 04: Bryaceae - Timmiaceae*, English
545 Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 211 pp., 2007.

546 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 07: Amblystegiaceae - Plagiotheciaceae*,
547 English Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 258 pp., 2008.

548 Gao, C., Crosby, M. R., and He, S.: *Moss flora of China: Volume 05: Erpodiaceae - Climaciaceae*, English
549 Version, Science Press and Missouri Botanical Garden, Beijing, St. Louis, 2011.

550 Garcia-Pichel, F. and Belnap, J.: *Small-Scale Environments and Distribution of Biological Soil Crusts*, in:
551 *Biological soil crusts: Structure, function and management*, 1st ed., rev. 2nd printing., Belnap, J.,
552 Lange, O. L. (Eds.), Springer, Berlin, 193–201, 2003.

553 George, D. B., Davidson, D. W., Schliep, K. C., and Patrell-Kim, L. J.: *Microtopography of microbiotic*
554 *crusts on the Colorado Plateau, and distribution of component organisms*, *Western North American*
555 *Naturalist*, 60, 343–354, 2000.

556 Gilliam, F. S.: *The Ecological Significance of the Herbaceous Layer in Temperate Forest Ecosystems*,
557 *BioScience*, 57, 845, doi:10.1641/B571007, 2007.

558 Goebes, P., Seitz, S., Geißler, C., Lassu, T., Peters, P., Seeger, M., Nadrowski, K., and Scholten, T.:
559 Momentum or kinetic energy – How do substrate properties influence the calculation of rainfall
560 erosivity?, *Journal of Hydrology*, 517, 310–316, doi:10.1016/j.jhydrol.2014.05.031, 2014.

561 Goebes, P., Seitz, S., Kühn, P., Li, Y., Niklaus, P. A., Oheimb, G. von, and Scholten, T.: Throughfall kinetic
562 energy in young subtropical forests: Investigation on tree species richness effects and spatial
563 variability, *Agricultural and Forest Meteorology*, 213, 148–159,
564 doi:10.1016/j.agrformet.2015.06.019, 2015.

565 Goffinet, B. and Shaw, A. J.: *Bryophyte biology*, 2nd ed., Cambridge University Press, Cambridge, xiv,
566 565, 2009.

567 Harper, K. T. and Belnap, J.: The influence of biological soil crusts on mineral uptake by associated
568 vascular plants, *Journal of Arid Environments*, 47, 347–357, doi:10.1006/jare.2000.0713, 2001.

569 Hawkes, C. V.: Effects of biological soil crusts on seed germination of four endangered herbs in a xeric
570 Florida shrubland during drought, *Plant Ecology*, 170, 121–134,
571 doi:10.1023/B:VEGE.0000019035.56245.91, 2004.

572 Hothorn, T. and Hornik, K.: *exactRankTests: Exact Distributions for Rank and Permutation Tests*, 2015.

573 Keenan, R. J. and Kimmens, J. P.: The ecological effects of clear-cutting, *Environ. Rev.*, 1, 121–144,
574 doi:10.1139/a93-010, 1993.

575 Kidron, G. J.: The impact of microbial crust upon rainfall-runoff-sediment yield relationships on
576 longitudinal dune slopes, Nizzana, western Negev Desert, Israel, PhD Thesis, Hebrew University of
577 Jerusalem, Jerusalem, 1995.

578 Kidron, G. J., Vonshak, A., and Abeliovich, A.: Microbiotic crusts as biomarkers for surface stability and
579 wetness duration in the Negev Desert, *Earth Surf. Process. Landforms*, 34, 1594–1604,
580 doi:10.1002/esp.1843, 2009.

581 Kidron, G. J., Yaalon, D. H., and Vonshak, A.: Two Causes for Runoff Initiation on Microbiotic Crusts:
582 Hydrophobicity and Pore Clogging, *Soil Science*, 164, 18–27, doi:10.1097/00010694-199901000-
583 00004, 1999.

584 Kleiner, E. F. and Harper, K. T.: Soil Properties in Relation to Cryptogamic Groundcover in Canyonlands
585 National Park, *Journal of Range Management Archives*, 30, 202–205, 1977.

586 Kutiel, P., Lavee, H., and Ackermann, O.: Spatial distribution of soil surface coverage on north and south
587 facing hillslopes along a Mediterranean to extreme arid climatic gradient, *Geomorphology*, 23, 245–
588 256, doi:10.1016/S0169-555X(98)00007-5, 1998.

589 Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H.: *lmerTest: Tests in Linear Mixed Effects Models*,
590 2014.

591 Langhans, T. M., Storm, C., and Schwabe, A.: Biological soil crusts and their microenvironment: Impact
592 on emergence, survival and establishment of seedlings, *Flora - Morphology, Distribution, Functional*
593 *Ecology of Plants*, 204, 157–168, doi:10.1016/j.flora.2008.01.001, 2009.

594 Li, Y., Härdtle, W., Brügelheide, H., Nadrowski, K., Scholten, T., Wehrden, H. von, and Oheimb, G. von: Site
595 and neighborhood effects on growth of tree saplings in subtropical plantations (China), *Forest*
596 *Ecology and Management*, 327, 118–127, doi:10.1016/j.foreco.2014.04.039, 2014.

597 Maestre, F. T., Bowker, M. A., Cantón, Y., Castillo-Monroy, A. P., Cortina, J., Escolar, C., Escudero, A.,
598 Lazaro Suau, R., and Martínez, I.: Ecology and functional roles of biological soil crusts in semi-arid
599 ecosystems of Spain, *Journal of Arid Environments*, 75, 1282–1291,
600 doi:10.1016/j.jaridenv.2010.12.008, 2011.

601 Malam Issa, O., Défarge, C., Le Bissonnais, Y., Marin, B., Duval, O., Bruand, A., D'Acqui, L. P., Nordenberg,
602 S., and Annerman, M.: Effects of the inoculation of cyanobacteria on the microstructure and the
603 structural stability of a tropical soil, *Plant Soil*, 290, 209–219, doi:10.1007/s11104-006-9153-9, 2007.

604 Malam Issa, O., Le Bissonnais, Y., Défarge, C., and Trichet, J.: Role of a cyanobacterial cover on structural
605 stability of sandy soils in the Sahelian part of western Niger, *Geoderma*, 101, 15–30,
606 doi:10.1016/S0016-7061(00)00093-8, 2001.

607 Malam Issa, O., Trichet, J., Défarge, C., Couté, A., and Valentin, C.: Morphology and microstructure of
608 microbiotic soil crusts on a tiger bush sequence (Niger, Sahel), *CATENA*, 37, 175–196,
609 doi:10.1016/S0341-8162(99)00052-1, 1999.

610 Marsh, J., Nouvet, S., Sanborn, P., and Coxson, D.: Composition and function of biological soil crust
611 communities along topographic gradients in grasslands of central interior British Columbia
612 (Chilcotin) and southwestern Yukon (Kluane), *Can. J. Bot.*, 84, 717–736, doi:10.1139/b06-026, 2006.

613 Müller, S. J., Gütle, D. D., Jacquot, J.-P., and Reski, R.: Can mosses serve as model organisms for forest
614 research?, *Annals of Forest Science*, 73, 135–146, doi:10.1007/s13595-015-0468-7, 2016.

615 Ponzetti, J. M. and McCune, B. P.: Biotic Soil Crusts of Oregon's Shrub Steppe: Community Composition
616 in Relation to Soil Chemistry, Climate, and Livestock Activity, *The Bryologist*, 104, 212–225,
617 doi:10.1639/0007-2745(2001)104[0212:BSOOOS]2.0.CO;2, 2001.

618 Pribyl, D. W.: A critical review of the conventional SOC to SOM conversion factor, *Geoderma*, 156, 75–
619 83, doi:10.1016/j.geoderma.2010.02.003, 2010.

620 R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical
621 Computing, Vienna, Austria, 2014.

622 Read, C. F., Duncan, D. H., Vesk, P. A., and Elith, J.: Surprisingly fast recovery of biological soil crusts
623 following livestock removal in southern Australia, *J Veg Sci*, 22, 905–916, doi:10.1111/j.1654-
624 1103.2011.01296.x, 2011.

625 Read, C. F., Elith, J., Vesk, P. A., and Pugnaire, F.: Testing a model of biological soil crust succession, *J Veg
626 Sci*, 27, 176–186, doi:10.1111/jvs.12332, 2016.

627 Riley, S. J., Degloria, S. D., and Elliot, R.: A Terrain Ruggedness Index that Quantifies Topographic
628 Heterogeneity, *Intermountain Journal of Sciences*, 5, 23–27, 1999.

629 Roberts, D. W.: Ordination on the Basis of Fuzzy Set Theory, *Vegetatio*, 66, 123–131, 1986.

630 Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Afana, A., and Solé-Benet, A.: Effects of biological soil
631 crusts on surface roughness and implications for runoff and erosion, *Geomorphology*, 145–146, 81–
632 89, doi:10.1016/j.geomorph.2011.12.042, 2012.

633 Rodríguez-Caballero, E., Cantón, Y., Chamizo, S., Lazaro Suau, R., and Escudero, A.: Soil Loss and Runoff
634 in Semiarid Ecosystems: A Complex Interaction Between Biological Soil Crusts, Micro-topography,
635 and Hydrological Drivers, *Ecosystems*, 16, 529–546, doi:10.1007/s10021-012-9626-z, 2013.

636 Rosentreter, R., Eldridge, D. J., and Kaltenecker, J. H.: Monitoring and Management of Biological Soil
637 Crusts, in: *Biological soil crusts: Structure, function and management*, 1st ed., rev. 2nd printing.,
638 Belnap, J., Lange, O. L. (Eds.), Springer, Berlin, 457–468, 2003.

639 Scheffer, F., Schachtschabel, P., and Blume, H.-P.: *Lehrbuch der Bodenkunde*, 16th ed., Spektrum Verlag,
640 Heidelberg, Berlin, 569 pp., 2010.

641 Scholten, T., Goebes, P., Kühn, P., Seitz, S., Assmann, T., Bauhus, J., Brügelheide, H., Buscot, F., Erfmeier,
642 A., Fischer, M., Härdtle, W., He, J.-S., Ma, K., Niklaus, P. A., Scherer-Lorenzen, M., Schmid, B., Shi, X.,
643 Song, Z., Oehimb, G. von, Wirth, C., Wubet, T., and Schmidt, K.: On the combined effect of soil
644 fertility and topography on tree growth in subtropical forest ecosystems - a study from SE China,
645 *Journal of Plant Ecology*, 10, 111–127, doi:10.1093/jpe/rtw065, 2017.

646 Seitz, S., Goebes, P., Song, Z., Brügelheide, H., Härdtle, W., Kühn, P., Li, Y., and Scholten, T.: Tree species
647 and functional traits but not species richness affect interrill erosion processes in young subtropical
648 forests, *SOIL*, 2, 49–61, doi:10.5194/soil-2-49-2016, 2016.

649 Seitz, S., Goebes, P., Zumstein, P., Assmann, T., Kühn, P., Niklaus, P. A., Schuldt, A., and Scholten, T.: The
650 influence of leaf litter diversity and soil fauna on initial soil erosion in subtropical forests, *Earth Surf.
651 Process. Landforms*, 40, 1439–1447, doi:10.1002/esp.3726, 2015.

652 Seppelt, R. D., Downing, A. J., Deane-Coe, K. K., Zhang, Y., and Zhang, J.: Bryophytes Within Biological
653 Soil Crusts, in: *Biological soil crusts: An organizing principle in drylands*, Weber, B., Büdel, B., Belnap,
654 J. (Eds.), *Ecological studies, analysis and synthesis*, 226, Springer, Switzerland, 101–120, 2016.

655 Söderström, L., Hagborg, A., Konrat, M. von, Bartholomew-Began, S., Bell, D., Briscoe, L., Brown, E.,
656 Cargill, D. C., Costa, D. P., Crandall-Stotler, B. J., Cooper, E. D., Dauphin, G., Engel, J. J., Feldberg, K.,
657 Glenny, D., Gradstein, S. R., He, X., Heinrichs, J., Hentschel, J., Ilkiu-Borges, A. L., Katagiri, T.,
658 Konstantinova, N. A., Larraín, J., Long, D. G., Nebel, M., Pócs, T., Puche, F., Reiner-Drehwald, E.,
659 Renner, Matt A M, Sass-Gyarmati, A., Schäfer-Verwimp, A., Moragues, José Gabriel Segarra, Stotler,
660 R. E., Sukkharak, P., Thiers, B. M., Uribe, J., Váňa, J., Villarreal, J. C., Wigginton, M., Zhang, L., and
661 Zhu, R.-L.: World checklist of hornworts and liverworts, *PhytoKeys*, 1–828,
662 doi:10.3897/phytokeys.59.6261, 2016.

663 Spitale, D.: Forest and substrate type drive bryophyte distribution in the Alps, *Journal of Bryology*, 39,
664 128–140, doi:10.1080/03736687.2016.1274090, 2017.

665 Su, Y.-G., Li, X.-R., Cheng, Y.-W., Tan, H.-J., and Jia, R.-L.: Effects of biological soil crusts on emergence of
666 desert vascular plants in North China, *Plant Ecology*, 191, 11–19, doi:10.1007/s11258-006-9210-8,
667 2007.

668 Tinya, F. and Ódor, P.: Congruence of the spatial pattern of light and understory vegetation in an old-
669 growth, temperate mixed forest, *Forest Ecology and Management*, 381, 84–92,
670 doi:10.1016/j.foreco.2016.09.027, 2016.

671 Ullmann, I. and Büdel, B.: Ecological Determinants of Species Composition of Biological Soil Crusts on a
672 Landscape Scale, in: Biological soil crusts: Structure, function and management, 1st ed., rev. 2nd
673 printing., Belnap, J., Lange, O. L. (Eds.), Springer, Berlin, 203–213, 2003.

674 Warren, S. D.: Synopsis: Influence of Biological Soil Crusts on Arid Land Hydrology and Soil Stability, in:
675 Biological soil crusts: Structure, function and management, 1st ed., rev. 2nd printing., Belnap, J.,
676 Lange, O. L. (Eds.), Springer, Berlin, 349–360, 2003.

677 Weber, B., Büdel, B., and Belnap, J. (Eds.): Biological soil crusts: An organizing principle in drylands,
678 Ecological studies, analysis and synthesis, 226, Springer, Switzerland, 1 online resource (ix, 603,
679 2016.

680 West, N. E.: Structure and Function of Microphytic Soil Crusts in Wildland Ecosystems of Arid to Semi-
681 arid Regions, *Advances in Ecological Research*, 20, 179–223, doi:10.1016/S0065-2504(08)60055-0,
682 1990.

683 Wickham, H.: Ggplot2: Elegant graphics for data analysis, Use R!, Springer, Dordrecht, New York, 1
684 online resource (viii, 212, 2009).

685 Williams, A. J., Buck, B. J., Soukup, D. A., and Merkler, D. J.: Geomorphic controls on biological soil crust
686 distribution: A conceptual model from the Mojave Desert (USA), *Geomorphology*, 195, 99–109,
687 doi:10.1016/j.geomorph.2013.04.031, 2013.

688 Yair, A., Almog, R., and Veste, M.: Differential hydrological response of biological topsoil crusts along a
689 rainfall gradient in a sandy arid area: Northern Negev desert, Israel, *CATENA*, 87, 326–333,
690 doi:10.1016/j.catena.2011.06.015, 2011.

691 Yang, X., Bauhus, J., Both, S., Fang, T., Härdtle, W., Kröber, W., Ma, K., Nadrowski, K., Pei, K., Scherer-
692 Lorenzen, M., Scholten, T., Seidler, G., Schmid, B., Oheimb, G. von, and Brügelheide, H.: Establishment
693 success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEEF-
694 China), *Eur J Forest Res*, 132, 593–606, doi:10.1007/s10342-013-0696-z, 2013.

695 Zaady, E., Karnieli, A., and Shachak, M.: Applying a field spectroscopy technique for assessing
696 successional trends of biological soil crusts in a semi-arid environment, *Journal of Arid
697 Environments*, 70, 463–477, doi:10.1016/j.jaridenv.2007.01.004, 2007.

698 Zhang, Y., Aradottir, A. L., Serpe, M., and Boeken, B.: Interactions of Biological Soil Crusts with Vascular
699 Plants, in: *Biological soil crusts: An organizing principle in drylands*, Weber, B., Büdel, B., Belnap, J.
700 (Eds.), *Ecological studies, analysis and synthesis*, 226, Springer, Switzerland, 385–406, 2016.

701 Zhao, Y., Qin, N., Weber, B., and Xu, M.: Response of biological soil crusts to raindrop erosivity and
702 underlying influences in the hilly Loess Plateau region, China, *Biodiversity and conservation*, 23,
703 1669–1686, doi:10.1007/s10531-014-0680-z, 2014.

704 Zhao, Y. and Xu, M.: Runoff and Soil Loss from Revegetated Grasslands in the Hilly Loess Plateau Region,
705 China: Influence of Biocrust Patches and Plant Canopies, *J. Hydrol. Eng.*, 18, 387–393,
706 doi:10.1061/(ASCE)HE.1943-5584.0000633, 2013.

707 Zhao, Y. G., Xu, M., and Belnap, J.: Response of biocrusts' photosynthesis to environmental factors: a
708 possible explanation of the spatial distribution of biocrusts in the Hilly Loess Plateau region of China,
709 *Acta Ecologica Sinica*, 30, 4668–4675, 2010.

710 Zhu, R.-L.: *New Checklist of Chinese liverworts, hornworts, and takakiophytes: 3rd version in January
711 2006*, East China Normal University, 2006.

712

713

714

715

716

717

718

719 **Tables**720 **Table 1: Erosion, soil, soil cover, vegetation and terrain attributes in 170 runoff plots (ROPs) and on 34 research plots**
721 **(with five ROPs each) in Xingangshan, Jiangxi Province, PR China in 2013.**

	Min	Mean	Max	Sd
<i>Runoff plots (ROPs, four measured rainfall events, n=334)</i>				
Sediment delivery [g m ⁻²]	21.6	195.5	989.0	165.8
Surface runoff [L m ⁻²]	3.1	40.3	111.8	21.7
Rainfall amount [mm]	25	94	178	28
<i>Runoff plots (ROPs in use, n=170)</i>				
Slope [°]	5	29	60	6
Soil cover [%]	0	19	62	14
- Biological soil crust cover [%]	0	24	62	14
- Stone cover [%]	0	4	42	6
Crown cover [%]	0.00	0.32	1.00	0.34
Leaf area index (LAI)	0.00	0.73	5.35	1.04
<i>Research plots (n=34)</i>				
Bulk soil density [g cm ⁻²]	0.83	0.98	1.12	0.06
Soil organic matter [%]	4.2	6.5	9.7	1.7
pH (KCl)	3.24	3.66	4.00	0.18
Altitude [m]	119	167	244	37
MCCA	0.98	2.07	3.81	0.83
TRI	0.72	2.39	3.86	0.59
Eastness	-0.86	0.09	0.99	0.56
Northness	-0.87	0.23	0.99	0.62

Tree height [m]	1.0	2.2	7.4	1.7
Crown width [m]	0.4	1.2	3.0	0.8

722 Soil cover: proportion of soil surface area covered by biocrusts or stones, crown cover: proportion of soil surface area
 723 covered by crowns of live trees, leaf area index: one-sided green leaf area per unit soil surface area, MCCA: Monte-Carlo
 724 based flow accumulation (Behrens), TRI: terrain ruggedness index (Riley), Eastness and Northness: state of being east or
 725 north (Roberts), tree height: distance from stem base to apical meristem, crown width: length of longest spread from edge
 726 to edge across the crown. Min: minimum, Max: maximum, Sd: standard deviation.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749 **Table 2: Liverwort and moss species sampled in the BEF China experiment in Xingangshan, Jiangxi Province, PR China**
 750 **in 2013.**

Family	Species		Author
<u>Liverworts</u>			
<i>Calypogeiaceae</i>	<i>Calypogeia</i>	<i>fissa</i>	(L.) Raddi
<i>Conocephalaceae</i>	<i>Conocephallum</i>	<i>salebrosum</i>	Szweyk., Buczk. et Odrzyk.
<i>Lophocoleaceae</i>	<i>Heteroscyphus</i>	<i>zollingeri</i>	(Gottsche) Schiffn.
<i>Marchantiaceae</i>	<i>Marchantia</i>	<i>emarginata</i>	Reinw., Blume et Nees
<i>Acrobolbaceae</i>	<i>Notoscyphus</i>	<i>lutescens</i>	(Lehm. et Lindenb.) Mitt.
<u>Mosses</u>			
<i>Polytrichaceae</i>	<i>Atrichum</i>	<i>subserratum</i>	(Harv. et Hook. f.) Mitt.
<i>Pottiaceae</i>	<i>Barbula</i>	<i>unguiculata</i>	Hedw.
<i>Bryaceae</i>	<i>Bryum</i>	<i>argenteum</i>	Hedw.
<i>Leucobryaceae</i>	<i>Campylopus</i>	<i>atrovirens</i>	De Not.
<i>Dicranellaceae</i>	<i>Dicranella</i>	<i>heteromalla</i>	(Hedw.) Schimp.
<i>Pottiaceae</i>	<i>Didymodon</i>	<i>constrictus</i>	(Mitt.) K. Saito
<i>Pottiaceae</i>	<i>Didymodon</i>	<i>ditrichoides</i>	(Broth.) X.J. Li et S. He
<i>Ditrichaceae</i>	<i>Ditrichum</i>	<i>pallidum</i>	(Hedw.) Hampe
<i>Entodontaceae</i>	<i>Entodon</i>	spec.	sterile
<i>Hypnaceae</i>	<i>Hypnum</i>	<i>cupressiforme</i>	Hedw.
<i>Hypnaceae</i>	<i>Hypnum</i>	<i>macrogynum</i>	Besch.
<i>Leucobryaceae</i>	<i>Leucobryum</i>	<i>juniperoides</i>	(Brid.) Müll. Hal.
<i>Bartramiaceae</i>	<i>Philonotis</i>	<i>marchica</i>	(Hedw.) Brid.
<i>Bartramiaceae</i>	<i>Philonotis</i>	<i>mollis</i>	(Dozy et Molk.) Mitt.
<i>Bartramiaceae</i>	<i>Philonotis</i>	<i>roylei</i>	(Hook. f.) Mitt.
<i>Mniaceae</i>	<i>Plagiomnium</i>	<i>acutum</i>	(Lindb.) T.J. Kop.
<i>Polytrichaceae</i>	<i>Pogonatum</i>	<i>inflexum</i>	(Lindb.) Sande Lac.
<i>Thuidiaceae</i>	<i>Thuidium</i>	<i>glaucinoides</i>	Broth.
<i>Mniaceae</i>	<i>Trachycystis</i>	<i>microphylla</i>	(Dozy et Molk.) Lindb.
<i>Pottiaceae</i>	<i>Trichostomum</i>	<i>crispulum</i>	Bruch

751

752

753

754

755

756

757

758

759 **Table 3: Results of the final linear mixed effects (LME) model for vegetation, soil and terrain attributes on biological soil
760 crust cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p < 0.001, **: p < 0.01, *: p < 0.05, .: p < 0.1, ns:
761 not significant, n=215).**

Biological soil crust cover				
	denDF	F	Pr	estim.
<u>Fixed effects</u>				
Crown cover	136	12.9	***	10.8
Bulk soil density	37	0.03	ns	3.65
SOM	39	1.11	ns	(-)0.95
pH (KCl)	38	2.47	ns	(-)16.7
Altitude	37	3.69	.	0.80
Slope	191	7.53	**	(-)2.72
MCCA	39	0.02	ns	0.33
TRI	38	0.04	ns	(-)0.40
Eastness	37	2.73	ns	(-)4.23
Northness	37	9.14	**	5.99
Tree species richness	38	1.22	ns	(-)0.27
<u>Random effects</u>				
		Sd	Variance	
Site		<0.01	<0.01	
Plot		<0.01	<0.01	

Vegetation attribute fitted in exchange to crown cover

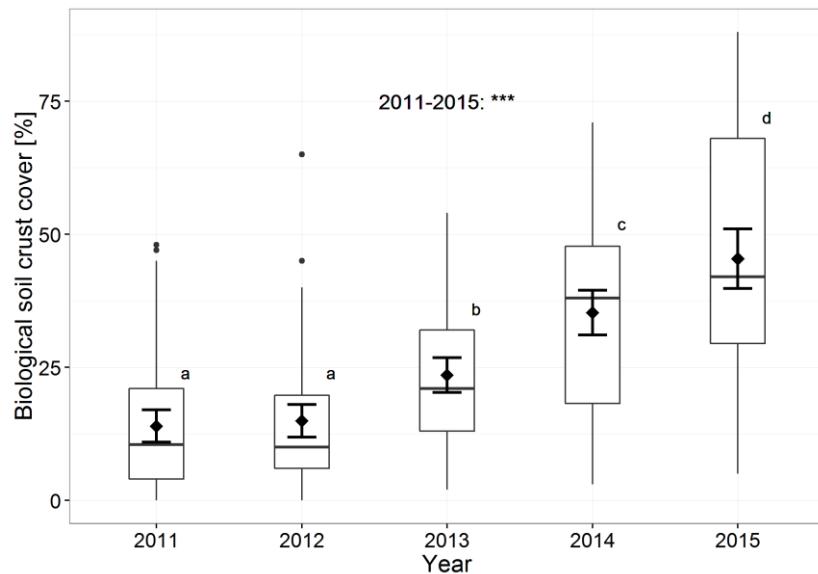
Leaf area index	107	42.8	***	5.98
-----------------	-----	------	-----	------

762 **SOM: soil organic matter, MCCA: monte carlo based flow accumulation, TRI: topographic roughness index, denDF:
763 denominator degrees of freedom, F: F value, Pr: significance, estim.: estimates, Sd: standard deviation**

764 **Table 4: Results of the final linear mixed effects (LME) models for sediment delivery and surface runoff with surface**
765 **cover split into biological soil crust cover and stone cover in Xingangshan, Jiangxi Province, PR China in 2013 (***: p <**
766 **0:001, **: p < 0:01, *: p < 0:05, .: p < 0:1, ns: not significant, n=334).**

Sediment delivery				Surface runoff				
den DF	F	Pr	estim.	den DF	F	Pr	estim.	
<u>Fixed effects</u>								
Crown cover	130	6.53	*	(-)0.15	173	9.11	**	(-)0.14
Slope	151	1.23	ns	0.06	168	2.25	ns	(-)0.06
Surface cover								
- Biocrust	151	50.2	***	(-)0.38	159	8.11	**	(-)0.12
- Stone	136	10.3	**	(-)0.19	188	1.66	ns	(-)0.06
SOM	44	5.71	*	(-)0.08	72	2.43	ns	0.12
Rainfall	95	5.46	*	(-)0.08	302	13.2	***	0.14
Tree species richness	22	0.46	ns	0.05	68	0.11	ns	(-)0.03
<u>Random effects</u>								
Precip. event : plot		0.199		0.040		0.537		0.288
Tree composition		0.292		0.085		0.000		0.000
Site		0.466		0.217		0.443		0.196
Plot : ROP		0.441		0.195		0.269		0.073

767 **SOM: soil organic matter, denDF: denominator degrees of freedom, F: F value, Pr: significance, estim.: estimates, Sd:**
768 **standard deviation, Var.: variance**


769

770

771

772

773 **Figures**

774

775 **Figure 1: The development of biological soil crust cover in runoff plots of the BEF China experiment from 2011 to 2015 in**
776 **Xingangshan, Jiangxi Province, PR China (n=350). Horizontal lines within boxplot represent medians and diamonds**
777 **represent means with standard error bars. Points signify outliers and small letters significant differences (p<0.001).**

778

779

780

781

782

783

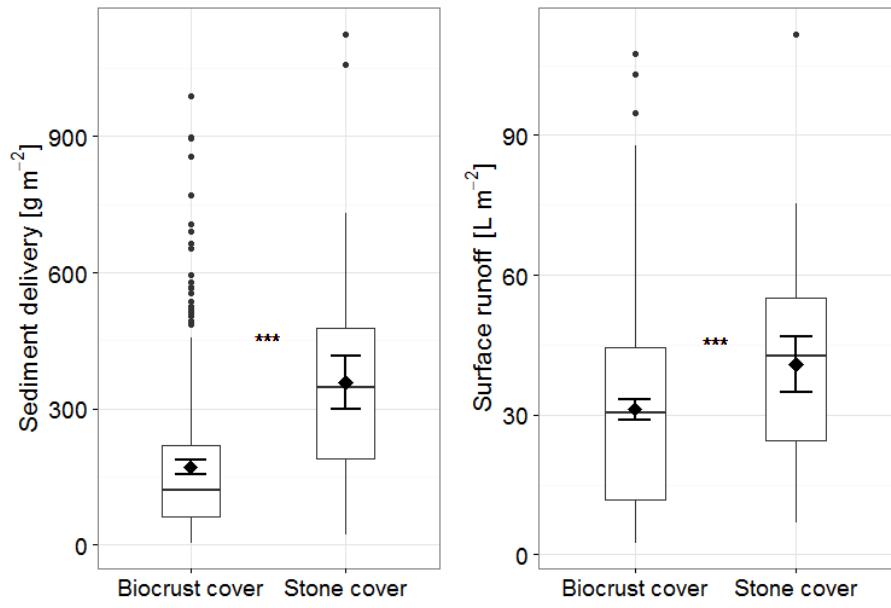
784

785

786 **Figure 2:** Successional stages of biological soil crusts in two exemplary runoff plots (top row and bottom row, 0.4 m \times 0.4
787 m each) in 2011, 2013 and 2015 (from left to right) at the BEF China experiment in Xingangshan, Jiangxi Province, PR
788 China.

789

790


791

792

793

794

795

796

797 **Figure 3: The influence of runoff plots dominated by biological soil crust cover (n=281) and stone cover (n=53) on**
 798 **sediment delivery and surface runoff in Xingangshan, Jiangxi Province, PR China in 2013. Horizontal lines within box**
 799 **plots represent median and diamonds represent mean with standard error bars.**