Response to reviewers' comments

Anonymous Referee #2

Comments: The authors investigated the combined effects of ocean acidification and nutrient limitation on physiological performances, including growth, photosynthetic oxygen evolution, PSII fluorescence parameters, nitrogen assimilation, in a green tide alga, and found that ocean acidification did not affect growth and photosynthesis under the nutrient replete condition but reduced them when nutrient was limited. Nitrogen assimilation was stimulated by ocean acidification when nutrient was replete. The experiments were reasonably performed and the results were clearly presented. This study is of interest, indicating the interactive effects of global and local stressors on a green tide alga. But there are still some points to be revised before it could be published in Biogeosciences.

Response: We appreciate these comments very much and revised the manuscript based on the reviewer's comments.

Special revisions

1. Why were different cultivation periods used for sporeling and adult thalli? Are these periods enough for algal acclimation to ocean acidification?

Response: The cultures had been finished before the thalli became reproductive as the aim of this study focused on the growth and photosynthesis. Different cultivation periods were used because the periods were different for sporeling and adult to become reproductive. These cultivation periods are enough for *Ulva linza*'s acclimation to ocean acidification (Eggert, 2012; Gao et al., 2016). This information has been added to lines 147-151.

Eggert A. Seaweed responses to temperature. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin: Springer; 2012. pp.47-66.

Gao G, Liu Y, Li X, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PloS one, 2016, 11(12): e0169040.

2. Please clarify the culture density used in this study and to what extent pH fluctuated during the culture period. How to maintain a stable pH in the cultures?

Response: The culture density was less than 0.1 g L^{-1} and the pH fluctuation was less than 0.03 units. Low culture density and aeration with ambient and CO₂-enriched air contributed to the stable pH in the cultures. This information has been added to lines 142-145.

3. Why was the light density of 300 photons m-2 s-1 used for the cultures since lower levels were used for the previous studies as mentioned in the text. Is the one used in this study close to ambient sunlight?

Response: The samples were collected in March 2017 and the light density of 300 photons $m^{-2} s^{-1}$ used for the cultures was close to the ambient light level at the sample collecting site. This information has been added to lines 134-136.

Minor revisions
Line 113 change µmol to µmol photons m-2 s-1 Response: Corrected.
Line 123 add a space after 106.1 Response: Corrected.
Line 156 change weight to mass Response: Corrected.
Line 329 delete activity and be consistent for using NRA or NR activity throughout the text. Response: Corrected.
Figure 3 change FW to FM in Y axes legend

Response: Corrected.

Figure 7 I doubt there is a significant difference between HC and LC for the treatment of HNLP

Response: No, there is no significant difference between HC and LC for the treatment of HNLP. We apologize for this mistake and it has been corrected.

Anonymous Referee #3

This paper reports results from an interesting study aiming to test the effects of ocean acidification and nutrients limitation on Ulva. The study is pretty straightforward: adult and juvenile algae were exposed to different conditions of CO2 and nutrients and their physiological response was investigated. While this study is rather "classical", the originality comes from the use of nutrient limitation, while most studies have used so far nutrients addition. The results are rather interesting and demonstrate that the interaction between pCO2 and nutrient limitations are not straightforward. I find the discussion a bit complex and hard to read given the quantity of physiological parameters discussed. It might be worth considering adding a figure that would summarize all the results. Maybe a schematic representing the physiological impact of nutrients and carbon could be added. I have listed below some specific comments.

Response: We appreciate these comments very much and a schematic figure (Fig. 8) has been added to summarize all the results.

Abstract: indicate the duration of the experiment

Response: it has been clarified to "We cultured *Ulva linza* for 9-16 days" at line 6.

L55: Wrong reference for Cornwall et al. 2017, they looked at coralline algae not phytoplankton.

Response: We are grateful for this comment and this reference has been removed. L63-64: reformulate this sentence

Response: It has been revised to "By analyzing the literatures, it is found that life stage can affect the effects of ocean acidification on growth of *Ulva* species" at lines 63-65.

L119: "LCHNHP" is a bit hard to read/understand but I guess it's not really used later on.

Response: It has been revised to "The treatment of lower pCO₂, higher nitrate and higher phosphate (LCHNHP) was set as the control." at lines 121-122. L130: How does this light level compare to in situ?

Response: The samples were collected in March 2017 and the light density of 300 photons $m^{-2} s^{-1}$ used for the cultures was close to the ambient light level in situ. This information has been added to lines 134-136.

L132: What was the size of the tanks? Did you use any pumps, etc , to create water motion? This is critical as it could affect the capacity of the organisms to uptake nutrients.

Response: The thalli were grown in 1-L balloon flasks containing 900 mL of media. The cultures were bubbled with ambient or CO_2 -enriched air at a rate of 300 mL min⁻¹ to make the thalli roll up and down. Please see lines 140-141. L133: Any reason to have chosen these durations? 9 days is rather short.

Response: The cultures had been finished before the thalli became reproductive as the aim of this study focused on the growth and photosynthesis. Different cultivation periods were used because the periods were different for sporeling and adult to become reproductive. These cultivation periods are enough for *Ulva linza*'s acclimation to ocean acidification (Eggert, 2012; Gao et al., 2016). This information has been added to lines 147-151.

L156: What were those fragments? Just a piece of algae? I always have problem with this method, as I highly doubt it represents the response of the entire organism. When where the incubations done, at the end of the experiment? How many replicates were used?

Response: The text has been specified to "Algal individuals were cut into 1-cm-long segments with a scissor. Approximately 0.02 g segments were randomly selected and transferred to the oxygen electrode cuvette with 8 ml of media from the culture flask." at lines 175-178 and " The following parameters were measured at the end of the culture periods for each flask under each treatment." at lines 151-152. L176: This was also done at the end of the 9 d?

Response: Yes.

Results: I would favour indicating the actual p-values rather than < 0.05 or >0.05

Response: We have used the actual P-values for most cases, with P < 0.001 for those where actual P-values were less than 0.001. Meanwhile, we hope we can keep P < 0.05 or > 0.05 for some cases where there are too many comparisons in one sentence.

L-314-315: Any reason why the algae would do that? If they have more carbon available why would they reduce their photosynthesis? It doesn't make much sense from an organismal point of view.

Response: We appreciate these comments. The explanation has been specified to "Meanwhile, the saved energy due to down-regulation of CCMs in thalli grown under HC combined with higher light density used in this study may depress PSII activity and thus reduce net photosynthetic rate (Gao et al., 2012)." at lines 341-344. L 331-332: Could this be due to pH rather than carbon?

Response: Yes, there is possibility that the change of NRA was due to pH. The following information has been added to the text "Meanwhile, the change of NRA under different pCO_2 levels might be also caused by varying pH as pH could affect NRA in seaweeds (Lopes et al., 1997)" at lines 369-370.

Lopes P F, Oliveira M C, Colepicolo P. Diurnal fluctuation of nitrate reductase activity in the marine red alga *Gracilaria tenuistipitata* (Rhodophyta). Journal of Phycology, 1997, 33: 225-231.

L344-345: CCM activity has often been linked to the light level. Could it explain some of these results?

Response: Yes, there are connections among CCM activity, CO_2 and light. The related discussion has been added to the text and it reads " The potential reason is that the saved energy from down-regulated CCMs under higher CO_2 levels could be used for growth at lower light levels but could inhibit PSII activity and thus growth at higher light levels" at lines 388-391.

As explained before, I think that an additional figure to summarize all of those results (and mostly the link between each other) would be highly valuable.

Response: It has been done. Please see section 4.4 for details.

L392-393: Could the seaweed culture also be affected by those limitations? Response: The text has been revised to "This may hinder the occurrence of green tides and *Ulva* cultivation in future ocean." at lines 436-437.

Anonymous Referee #4

This manuscript details the results of a classical pCO2 x Nutrients experiment with seaweeds. In that respect its novelty relays in the distinction between N and P limitation, while most of the phenomena concerning pCO2 x N has been described before in Ulva sp. (eg. Gordillo et al. 2001 Planta and Gordillo et al. 2003 Planta).

Response: We agree with these comments. Gordillo et al (2001, 2003) did excellent work on the interaction of CO_2 and N. Another novel point of our study is that we used diluted natural seawater as nutrient limiting condition rather than natural seawater to mimic the situation in seaweed cultivation areas. Main comments

A major concern is about net photosynthesis. As it is measured (O2 evolution), changes can derive either from photosynthesis or from respiration. Since respiration of seaweeds is commonly affected by pCO2 (Iñiguez et al. 2015 Polar Biol.; Iñiguez et al. 2016 Mar Biol) even in Ulva (e.g. Gordillo et al. 2003 Planta) and also by nutrients, authors must show respiration rates along with the net or gross photosynthesis. Otherwise, not much can be said about the effect of pCO2 and nutrients on photosynthetic O2 evolution.

Response: We totally agree with these comments. We measured dark respiration rate, but did not represent it as neither pCO_2 nor nutrient affected it, indicating that changes of O_2 evolution derived from photosynthesis rather than respiration. The data of dark respiration have been added to the text and also been discussed. Please see lines 259-260 and 354-360.

Line 304. The 'pigment economy' phenomenon occurring in algae at high pCO2 was

first described in Gordillo et al. (1999 J appl. Phycol) and described for Ulva using exactly the same name by Gordillo et al. 2003 (Planta), so credit must be given to those authors.

Response: We agree with these comments and the text has been corrected to "This phenomenon of `pigment economy' has also been found in the previous studies regarding *Ulva* species (Gordillo et al., 2003; Gao et al., 2016)." at lines 330-332. Minor comments Methods Incubation setup needs more detail. What type of recipient was used for adult thalli? At what density? Was the bubbling enough to make them move or were they settling on the bottom? Incubation light need more detail. What source of light was used (fluorescent tubes of daylight type?). Also how was the irradiance measured? (type of sensor, air or underwater?, lambda range?PAR?)

Response: We appreciate these comments. The thalli were grown in 1-L balloon flasks containing 900 mL of media with the density less than 0.1 g L⁻¹. The cultures were bubbled with ambient or CO₂-enriched air at a rate of 300 mL min⁻¹ to make the thalli roll up and down. Daylight fluorescent tubes (21W, Philips) were used and light density was measured by a Quantum Scalar Laboratory (QSL) radiometer (QSL-2100, Biospherical Instruments, Inc., USA) that detects photosynthetically active radiation (400-700 nm). Please see section 2.1.

53. 'also' instead of 'only'

Response: Corrected.

148-150. Sentence is nonsensical, please rephrase.

Response: It has been corrected to "The measuring light was 0.01 µmol photons $m^{-2} s^{-1}$ and actinic light was set as the same as the growth light (300 µmol photons $m^{-2} s^{-1}$)" at lines 167-169.

164. Units needed (nm)

Response: Corrected.

Tables 4 to 7 can be combined and look like table 2, so the information is not scattered.

Response: Tables 4 to 7 has been combined into a table, termed table 4. Fig.2. The horizontal bar means significant differences between LC and HC, but that is hard to believe for some of the treatment at least like LNHP in (a), and HNHP and LNHP in (b). Please check your post-hoc comparisons. It is also highly convenient you mention the number of replicates (n) in the figure legends.

Response: The real indication of horizontal bars is that longer bars represent insignificant differences and shorter bars represent significant differences. We have realized that it is a little confusing. We have removed the longer horizontal bars to make it clear.

Comments from Dinghui Zou

The authors investigated the combined effects of ocean acidification and nutrient limitation on physiological performances, including growth, photosynthetic oxygen evolution, PSII fluorescence parameters, nitrogen assimilation, in a green tide alga, and found that ocean acidification did not affect growth and photosynthesis under the nutrient replete condition but reduced them when nutrient was limited. Nitrogen assimilation was stimulated by ocean acidification when nutrient was replete. The experiments were reasonably performed and the results were clearly presented. This study is of interest, indicating the interactive effects of global and local stressors on a green tide alga. But there are still some points to be revised before it could be published in Biogeosciences.

Response: We appreciate these comments very much and revised the manuscript based on the reviewer's comments.

Special revisions

1. Why were different cultivation periods used for sporeling and adult thalli? Are these periods enough for algal acclimation to ocean acidification?

Response: The cultures had been finished before the thalli became reproductive as the aim of this study focused on the growth and photosynthesis. Different cultivation periods were used because the periods were different for sporeling and adult to become reproductive. These cultivation periods are enough for *Ulva linza*'s acclimation to ocean acidification (Eggert, 2012; Gao et al., 2016). This information has been added to lines 147-151.

Eggert A. Seaweed responses to temperature. In: Wiencke C, Bischof K, editors. Seaweed biology. Berlin: Springer; 2012. pp.47-66.

Gao G, Liu Y, Li X, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress. PloS one, 2016, 11(12): e0169040.

2. Please clarify the culture density used in this study and to what extent

pH fluctuated during the culture period. How to maintain a stable pH in the cultures? Response: The culture density was less than 0.1 g L⁻¹ and the pH fluctuation was less than 0.03 units. Low culture density and aeration with ambient and CO₂-enriched air contributed to the stable pH in the cultures. This information has been added to lines 142-145.

3. Why was the light density of 300 photons m-2 s-1 used for the cultures since lower levels were used for the previous studies as mentioned in the text. Is the one used in this study close to ambient sunlight?

Response: The samples were collected in March 2017 and the light density of 300 photons $m^{-2} s^{-1}$ used for the cultures was close to the ambient light level at the sample collecting site. This information has been added to lines 134-136.

Minor revisions

Line 113 change µmol to µmol photons m-2 s-1

Response: Corrected.

Line 123 add a space after 106.1 Response: Corrected.

Line 156 change weight to mass

Response: Corrected.

Line 329 delete activity and be consistent for using NRA or NR activity throughout the text.

Response: Corrected.

Figure 3 change FW to FM in Y axes legend

Response: Corrected.

Figure 7 I doubt there is a significant difference between HC and LC for the treatment of HNLP

Response: No, there is no significant difference between HC and LC for the treatment of HNLP. We apologize for this mistake and it has been corrected.

Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga *Ulva linza*

Guang Gao^{a,c}, John Beardall^d, Menglin Bao^a, Can Wang^a, Wangwang Ren^b, Juntian Xu^{a,b*}

^aJiangsu Key Laboratory for Coastal Resources and Eco-environment, Huaihai Institute of Technology, Lianyungang, 222005, China

^bCo-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang

222005, China

^cState Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China

^dSchool of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia

*Corresponding author, xjtlsx@126.com, Phone/Fax: +86 (0)518 8558 5003

1	Abstract. Large-scale green tides have been invading the coastal zones of the western
2	Yellow Sea annually since 2008. Meanwhile, oceans are becoming more acid due to
3	continuous absorption of anthropogenic carbon dioxide and intensive seaweed
4	cultivation in Chinese coastal areas is leading to severe regional nutrient limitation.
5	However, little is known the combined effects of global and local stressors on the
6	eco-physiology of bloom-forming algae. We cultured Ulva linza for 9-16 days under
7	two levels of pCO_2 (400 and 1000 µatm) and four treatments of nutrient (nutrient
8	repletion, N limitation, P limitation, and N & P limitation) to investigate the
9	physiological responses of this green tide alga to the combination of ocean
10	acidification and nutrient limitation. For both sporelings and adult plants, elevated
11	pCO ₂ did not affect the growth rate when cultured under nutrient replete conditions
12	but reduced it under P limitation; N or P limitation by themselves reduced growth rate
13	P limitation resulted in a larger inhibition in growth for sporelings compared to adult
14	plants. Sporelings under P limitation did not reach the mature stage after 16 days of
15	culture while those under P repletion became mature by day 11. Elevated pCO ₂
16	reduced net photosynthetic rate for all nutrient treatments but increased nitrate
17	reductase activity and soluble protein content under P replete conditions. N or P
18	limitation reduced nitrate reductase activity and soluble protein content. These
19	findings indicate that ocean acidification and nutrient limitation would synergistically
20	reduce the growth of Ulva species and may thus hinder the occurrence of green tides
21	in a future ocean environment.

22 Keywords: green tide, growth, nitrate reductase, nutrient limitation, ocean

23 acidification, photosynthesis

24 1 Introduction

Seaweeds are a group of organisms that play a vital role in the function of coastal 25 26 ecosystems. They provide diverse habitats and breeding areas for a large number of 27 organisms including crustaceans, other invertebrates and fishes. In addition, in spite of only occupying a small part of the world's oceans, seaweeds account for 28 approximately 10% of the total oceanic primary productivity due to their high 29 30 densities (Wiencke and Bischof, 2012). Consequently, they are of importance in global carbon cycle and modulating climate change. In addition to high ecological 31 32 significance, seaweeds are also economically important. They have been widely used in the industry for food, chemical products, pharmaceuticals, cosmetics, etc. (Wang et 33 al., 2017). The increasing demand has resulted in the fast development of seaweed 34 35 cultivation and successful cultivation has been carried out worldwide, particularly in Asian countries. Among the diverse range of seaweeds, Ulva, a cosmopolitan genus in 36 green seaweeds, is common from tropical to polar areas, from fresh water to fully 37 saline environments due to its robustness in acclimating to a variety of salinity and 38 water temperature conditions (Gao et al., 2017b). Thanks to their strong capacity for 39 40 nutrient uptake and quick growth, Ulva is the only genus that causes green tides due 41 to massive growth (Smetacek and Zingone, 2013; Gao et al., 2017d). Green tides have 42 received increasing concerns globally due to their ecological and economic impacts. Firstly, they can hinder shore-based activities by preventing small boats, swimmers 43 and tourists from accessing the sea due to their sheer physical mass. Furthermore, 44

45	nutrients could be re-released to the seawaters and toxic hydrogen sulphide $\left(H_2S\right)$
46	could be produced when thalli decompose, leading to highly eutrophic, anoxic
47	conditions and the spread of coastal dead zones (Smetacek and Zingone, 2013).
48	Atmospheric carbon dioxide (CO ₂) has continuously increased from 278 to 407
49	parts per million since the industrial revolution (NOAA 2017). The global ocean has
50	absorbed around 30% of anthropogenic CO ₂ emissions since 1750, leading to the
51	decrease of seawater pH termed ocean acidification (Gattuso et al., 2015). Ocean
52	acidification is not only changing the fundamental chemistry and physics in the
53	oceans but alsoonly imposing significant impacts on marine organisms (Mostofa,
54	2016). In terms of marine algae, extensive studies have been conducted on
55	phytoplankton species (Mccarthy et al., 2012; Li et al., 2015; Cornwall-Gao et al.,
56	2017a2018; Yuan et al., 2018) or communities (Gao et al., 2012; Eberlein et al., 2017;
57	Gao et al., 2017c). Depending on experimental conditions or species, the effects of
58	ocean acidification on growth and photosynthesis of phytoplankton could be positive
59	(Mccarthy et al., 2012), neutral (Boelen et al., 2011) or negative (Gao et al., 2012).
60	Compared to phytoplankton, studies regarding seaweeds are relatively few. Recently,
61	however, there have been increasing concerns about the responses of seaweeds,
62	particularly Ulva species, to ocean acidification (Xu and Gao, 2012; Rautenberger et
63	al., 2015; Gao et al., 2016; Gao et al., 2017a). By analyzing the literatures, it is found
64	that the life stage can affect the effects of ocean acidification on growth of Ulva
65	species-at different life stages are different. Ocean acidification generally increases
66	growth of Ulva species at early life stages (Xu and Gao, 2012; Gao et al., 2016) but

67	does not affect or even reduces growth of <i>Ulva</i> species at late life stages (Gao et al.,
68	2017a). A possible explanation for the differential effects of ocean acidification is that
69	higher CO_2 could induce more reproduction events for adult (Gao et al., 2017a).
70	Nutrients are crucial for growth and development of seaweeds. Nitrogen and
71	phosphorus, two key nutrient components for seaweeds, are commonly thought to be
72	limiting in natural seawater (Elser et al., 2007; Müller and Mitrovic, 2015).
73	Accordingly, enrichment of nitrogen and phosphorus generally stimulate growth of
74	seaweeds (Msuya and Neori, 2008; Luo et al., 2012; Xu et al., 2017). There are
75	studies indicating that N availability controls the biomass of seaweeds in temperate
76	coastal areas (Nixon and Pilson, 1983; Oviatt et al., 1995; Howarth et al., 2000) and P
77	limitation is the dominating factor for macroalgal growth in tropical latitudes
78	(Lapointe, 1997; Lapointe et al., 2010). However, phosphorus appears to play a more
79	important role in limiting the growth of Ulva sp. compared to nitrogen in a temperate
80	coastal area (Villares et al., 1999). In addition, Teichberg et al. (2010) investigated the
81	effects of nitrogen and phosphorus enrichment on growth of U. spp. at nine sites
82	across temperate and tropical areas. It was found that Ulva's growth was controlled by
83	dissolved inorganic nitrogen (DIN) when ambient DIN levels were low and by
84	phosphorus when DIN levels were higher, irrespective of geographic or latitudinal
85	differences (Teichberg et al., 2010).
86	In addition to independent effects, the combined effects of ocean acidification and
87	nutrient on seaweeds have also been studied. Baydend et al. (2010) documented that
88	both ocean acidification and elevated nutrient concentration reduced the growth of

89	coralline crusts and the combination of the factors led to a further decrease in growth.
90	However, Xu et al. (2017) reported that ocean acidification and P enrichment did not
91	enhance the growth of brown seaweed Sargasssum muticum further applied together,
92	although either alone had a positive effect. The studies above indicate that the
93	combined effects of ocean acidification and eutrophication might be species-specific.
94	Until now, most studies regarding the effect of ocean acidification on seaweeds
95	have been based on nutrient replete conditions. In the field, the nutrient levels could
96	be limiting and this is particularly true in the areas of intensive seaweed cultivation.
97	For instance, the nitrogen and phosphorus concentrations in Porphyra cultivation
98	areas could be half of those in non-cultivation areas (He et al., 2008; Wu et al., 2015).
99	Little is known that how seaweeds grown under nutrient limited conditions respond to
100	ocean acidification. In addition, the young and adult thalli may have differential
101	responses to ocean acidification and nutrient limitation (Gao et al., 2017a). Therefore,
102	here we investigated the effects of ocean acidification and nutrient limitation on the
103	ecologically and commercially important seaweed U. linza at different life stages to
104	understand how Ulva species respond to the combination of global climate change
105	and local stressors.

106 2 Materials and methods

107 **2.1 Sample preparation and culture conditions**

To investigate whether life stage affects algal response to ocean acidification and nutrient, both spores and adults of *U. linza* were used in this study. Fertile and vegetative thalli (~5 cm) were collected from the coastal water of Lianyungang (119.3 ¹¹¹ °E, 34.5 °N), Jiangsu province, China. The fronds were put into in a cooling box (4–6 ^oC) and taken to the laboratory within 1 h. They were then rinsed with filtered (0.2 μ m) ¹¹³ natural seawater to remove any sediment and small grazers. Spores, released from the ¹¹⁴ fertile thalli after being exposed to high light (600 μ mol <u>photons m⁻² s⁻¹</u>) for 12 h, ¹¹⁵ were allowed to settle and attach to glass slides in darkness for 12 h.

The settled spores were cultured in 1-L balloon flasks containing 900 mL of 116 media under four nutrient regimes (higher nitrate and higher phosphate (HNHP), 117 118 lower nitrate and higher phosphate (LNHP), higher nitrate and lower phosphate 119 (HNLP), lower nitrate and lower phosphate (LNLP)) and two pCO₂ (400 (LC) and 120 1000 (HC) µatm) to explore the interactive effects of ocean acidification and nutrient limitation. The treatment of lower pCO₂, higher nitrate and higher phosphate 121 (LCHNHP) was set as the control. Twenty volumes of natural seawater (30.7 μ mol L⁻¹ 122 N and 1.0 µmol L⁻¹P) were diluted with 80 volumes of artificial seawater without N 123 or P to make a LNLP medium (6.1 μ mol L⁻¹ N and 0.2 μ mol L⁻¹ P). The medium for P 124 limitation (HNLP, 106.1 μ mol L⁻¹ N and 0.2 μ mol L⁻¹ P) was made of LNLP medium 125 plus 100 µmol N. The medium for N limitation (LNHP, 6.1 µmol L⁻¹ N and 10.2 µmol 126 L^{-1} P) was made of LNLP medium plus 10 µmol P. The N&P replete medium (HNHP, 127 106.1 μ mol L⁻¹ N and 10.2 μ mol L⁻¹ P) was made of LNLP medium plus 100 μ mol N 128 and 10 µmol P. The 400 µatm pCO₂ level was maintained by bubbling ambient air, 129 and the 1000 μ atm pCO₂ level was achieved using a CO₂ plant chamber (HP1000 GD, 130 Wuhan Ruihua Instrument & Equipment Ltd, China) with the variation of CO₂ less 131 than 5% of the set values. The incubation light intensity was 300 μ mol photons m⁻² s⁻¹ 132

133	(daylight fluorescent tubes, 21W, Philips), with a 12: 12 (light: dark) light period, and
134	the incubation temperature was 20°C. The samples were collected in March 2017 and
135	the light density of 300 photons m ⁻² s ⁻¹ used for the cultures was close to the ambient
136	light level at the sample collecting site. Light density was measured by a Quantum
137	Scalar Laboratory (QSL) radiometer (QSL-2100, Biospherical Instruments, Inc., USA)
138	that detects photosynthetically active radiation (400-700 nm). Once the sporelings had
139	attained a length of 1 cm they were detached from the glass slides and dispersed
140	directly into the treatment flasks. The cultures were bubbled with ambient or
141	<u>CO₂-enriched air at a rate of 300 mL min⁻¹ to make the thalli roll up and down.</u>
142	The culture conditions for adult <i>Ulva</i> were the same as for the spores. <u>The culture</u>
143	density was less than 0.1 g L ⁻¹ and the pH fluctuation was less than 0.03 units. Low
144	culture density and aeration with ambient and CO2-enriched air contributed to the
145	stable pH in the cultures. The cultures were carried out in triplicates and lasted 16
146	days for spores and 9 days for adult thalli. The media were renewed every two days.
147	The cultures had been finished before the thalli became reproductive as the aim of this
148	study focused on the growth and photosynthesis. Different cultivation periods were
149	used because the periods were different for sporeling and adult to become
150	reproductive. These cultivation periods are enough for U. linza's acclimation to ocean
151	acidification (Eggert, 2012; Gao et al., 2016). The following parameters were
152	measured at the end of the culture periods for each flask under each treatment.

153 2.2 Measurement of growth

The variations in sporeling length and adult fresh mass (FM) were recorded every

155	two days. The length of sporelings was measured by a microscope (Leica DM500,
156	Germany) with a micro ruler. The fresh mass of adults was determined by weighing
157	using a balance (BS 124S, Sartorius, Germany) after removing surface water by
158	gently blotting the thalli with tissue paper. The specific growth rate (SGR) was
159	estimated as follows: SGR (%) = $(lnM_{t2} - lnM_{t1}) / t \times 100$, where M_{t1} is the initial
160	length for sporelings or initial fresh mass for adults; M_{t2} is the length or fresh mass
161	after t days (16 days for sporeling and 9 days for adult) culture. Due to the tiny mass
162	of sporelings, length rather than mass was used to determine SGR for sporelings and
163	only adult thalli were used for measurements of the following aspects of physiological
164	performance.
165	2.3 Chlorophyll fluorescence assessment

The relative electron transport rate (rETR) was measured using a pulse amplitude 166 modulation (PAM) fluorometer (PAM-2100, Walz, Germany). The measuring light 167 and actinic light was 0.01 μ mol photons m⁻² s⁻¹ and actinic light was set as the same as 168 the growth light (300 μ mol photons m⁻² s⁻¹), respectively. The saturating pulse was set 169 to 5, 000 μ mol photons m⁻² s⁻¹ (0.8 s). rETR (μ mol e⁻ m⁻² s⁻¹) = (F_m' - F_t) / F_m' × 0.5 × 170 PFD, where F_m ' is the maximal fluorescence levels from algae in the light. Ft is the 171 fluorescence at an excitation level. PFD is the actinic light density. 172

173

2.4 Determination of photosynthesis

- The net photosynthetic rate of thalli was measured by a Clark-type oxygen 174
- 175 electrode (YSI model 5300A). <u>Algal individuals were cut into 1-cm-long segments</u>
- with a scissor. Approximately 0.02 g segments were randomly selected and 176

178 <u>flaskApproximately 0.02 g of fresh weight algae with 8 ml of media from the culture</u>

179 flask was transferred to the oxygen electrode cuvette, being stirred. The conditions for

temperature and light were set the same as those for growth. The net photosynthetic

181 rate was determined by the increase in the oxygen content in the media over five

minutes. The unit for net photosynthetic rate (NPR) was μ mol O₂ g⁻¹ FM h⁻¹.

183 **2.5 Measurement of photosynthetic pigments**

Approximately 20 mg of fresh mass thalli was extracted in 5 mL methanol at 4°C for 24 hours in darkness. Then the absorbance values of samples at 665 (A_{665}) and 652 (A_{652}) <u>nm</u> were read with a UV/Visible spectrophotometer (Ultrospect 3300 pro, Amersham Bioscience, Sweden). The content of Chl *a* and Chl *b* was determined as follows:

189 Chl $a \,(\text{mg gFM}^{-1}) = (16.29 \times A_{665} - 8.54 \times A_{652}) \times V / (M \times 1000)$

190 Chl b (mg gFM⁻¹) = $(30.66 \times A_{652} - 13.58 \times A_{665}) \times V / (M \times 1000),$

191 where V is the volume of methanol used and M is the mass of thalli used.

192 **2.6 Assessment of nitrate reductase activity**

Nitrate reductase activity (NRA) of thalli was estimated based on a modified method of Corzo and Niell (1991). The measurement was conducted during the local noon period (13:00) since the activity of nitrate reductase usually displays circadian periodicity with a maximum during the light period and a minimum in darkness (Velasco and Whitaker 1989; Deng et al. 1991). Approximately 0.3 g (FM) of thalli from each culture condition was incubated for 1 h at 20°C in darkness in the reaction solution (10 mL), which contained 0.1 M phosphate buffer, 0.1% propanol (v/v), 50 mM KNO₃, 0.01 mM glucose, and 0.5 mM EDTA, with a pH of 8.0. The mixture was flushed with pure N₂ gas (99.999%) for 2 minutes to obtain an anaerobic state before the incubation. The concentration of nitrite produced was determined colorimetrically at 540 nm (Xu et al., 2017). The NR<u>A</u> activity-was expressed as μ mol NO₂⁻g⁻¹ FM h⁻¹.

205

5 2.7 Estimation of soluble protein

Approximately 0.2 g of FM thalli under each treatment at the end of the culture period were ground in a mortar with extraction solution (0.1 mol L^{-1} phosphate buffer, pH 6.8) and then centrifuged for 10 minutes at 5, 000 g. Content of soluble protein was estimated from the supernatant using the Bradford (1976) assay, with bovine serum albumin as a standard.

211 **2.8 Statistical analysis**

212 The results in this study were expressed as means of replicates \pm standard deviation and the data were analyzed using the software SPSS v.22. The data under 213 every treatment conformed to a normal distribution (Shapiro-Wilk, P > 0.05) and the 214 215 variances could be considered equal (Levene's test, P > 0.05). Two-way multivariate analysis of variance (MANOVA) was conducted to assess the effects of pCO2 and 216 217 nutrient on seawater carbonate parameters. Repeated measures analysis of variance 218 (RM-ANOVA) was conducted to analyze the effects of culture time on length of young and adult thalli, with Bonferroni for post hoc investigation. Two-way analysis 219 of variance (ANOVA) was conducted to assess the effects of pCO₂ and nutrient on 220

specific growth rate, net photosynthesis rate, rETR, Chl *a*, Chl *b*, soluble protein and
nitrate reductase activity<u>NRA</u>. Tukey's honest significant difference (Tukey HSD)
was conducted for MNOVA and ANOVA *post hoc* investigation. Paired t-tests were
used to compare the differences in specific growth rate between young and adult thalli
under each treatment. A confidence interval of 95% was set for all tests.

226 **3 Results**

The carbonate system under each treatment was recorded (Table 1). Both pCO₂ and nutrient treatments had a significant effect on carbonate parameters (Table 2). Elevated pCO₂ reduced pH and CO₃⁻, increased DIC, CO₂ and HCO₃⁻ (P < 0.001 for all parameters above) but did not affect TA (Tukey HSD, P <= 0.74005). P limitation (LP) increased pCO₂ (P = 0.002) and CO₂_(P = 0.002), and reduced pH_(P = 0.001) and CO₃²⁻ (Tukey HSD, P <= 0.0465).

The length for both young and adult *U. linza* varied with culture time and the patterns under different pCO₂ and/ or nutrient conditions were inconsistent (Fig. 1 & Table 3). For example, the length gap between HP and LP increased with culture time (Bonferroni, P < 0.0501). It is worth noting that LP dramatically inhibited the development of sporelings as the length under HP was 6,88078,274-16,0290 µm while it was only 137–250 µm under LP at the end of 16 days of culture.

Based on the initial and final length (young thalli) or mass (adult thalli), specific growth rate was calculated (Fig. 2). Nutrient and pCO₂ interacted to affect the growth of both young and adult *U. linza* (Table 4). Specifically, *post hoc* Tukey HSD comparison (P = 0.05) showed that HC reduced growth at LP but did not affect it at

HP, suggesting an interactive effect between P and C. Nutrient supply had an effect on 243 growth but the patterns between young and adult thalli were different (Table 4). For 244 young thalli, *post hoc* Tukey HSD comparison (P = 0.05) showed that N limitation 245 246 did not reduce growth, P limitation dramatically reduced the growth and the combination of N and P limitation did not lead to a further decrease regardless of 247 pCO₂ conditions. For adult thalli, either N (P < 0.001) or P-(P < 0.001) limitation 248 reduced growth and the combination of these nutrient limitations resulted in a further 249 decrease (Tukey HSD, $P \leftarrow = 0.05011$). In addition, young thalli had higher growth 250 rates under each condition compared to adult plants (Paired t-test, P < 0.05001). 251 252 The effects of pCO₂ and nutrients on the net photosynthetic rate of adult thalli were also investigated (Fig. 3a). Both pCO_2 and nutrient had a significant effect on 253 net photosynthetic rate (Table 54) and HC reduced NPR under each nutrient condition 254 (Tukey HSD, P < 0.05). In terms of the effect of nutrients, LN (P = 0.006) or LP (P < 0.05). 255 0.001) alone decreased NPR and the combination of LN and LP led to a further 256 decrease under LC (Tukey HSD, P < 0.05001). Under HC, post hoc Tukey HSD 257 comparison (P = 0.05) showed that both LN and LP reduced NPR but the combination 258 259 of LN and LP did not decrease NPR further. In terms of dark respiration rate (Fig. 3b), neither pCO₂ nor nutrient had a significant effect on it (Table 4). 260

To understand the photosynthetic performance of *U. linza* under various pCO_2 and nutrient conditions, relative electron transport rate (rETR) in PSII at 300 µmol photons m⁻² s⁻¹ was measured (Fig. 4). pCO_2 had an interactive effect with nutrient and each factor had a main effect (Table 54). Specifically speaking, HC reduced rETR under LP but did not change it under HP. Regardless of pCO₂ levels, N limitation reduced rETR (Tukey HSD, $P \leftarrow = 0.05028$), P limitation had a larger negative effect (P < 0.001) and the combination of LN and LP resulted in the lowest rETR values (Tukey HSD, P < 0.05001).

Changes in photosynthetic pigments are shown in Fig. 5. Both pCO₂ and nutrient 269 had an effect on the content of Chl a and Chl b (Table 4) but slight differences 270 between Chl *a* and Chl *b* were found after post hoc Tukey HSD ($P \leftarrow = 0.05$) tests had 271 272 been conducted. Under LC, either N or P limitation reduced Chl a content, with P limitation having a larger effect. LNLP decreased Chl a content further. Under HC, 273 274 LN or LP reduced Chl a but the combination of limiting nutrients did not lead to a further decrease. As far as Chl b is concerned, either LN or LP decreased Chl b, with 275 LP having a larger effect under LC. The combination of LN and LP did not lead to a 276 277 further decrease compared with LP.

278 To investigate the effects of pCO₂ and nutrient on nitrogen acquisition, nitrate reductase activity (RNA) in adult U. linza grown under various conditions was 279 measured (Fig. 6). Both pCO_2 and nutrient affected NRA and they had an interactive 280 281 effect (Table 47). Under LC, *post hoc* Tukey HSD comparison (P = 0.05) showed that 282 either N or P limitation reduced NRA but the combination of them did not result in a 283 further decrease. Under HC, N limitation and P limitation reduced NRA by 22.8% and 37.7% respectively and the combination of them increased NRA by 45.6%. In 284 addition, HC did not affect NRA under LNLP (Tukey HSD, $P \ge 0.70005$) but 285 increased it when N (P = 0.018) or P (P < 0.018) was replete and nitrate reductase had 286

the highest activity (11.9 \pm 0.7 µmol NO₂ g⁻¹ FM h⁻¹) under HCHNHP condition (Tukey HSD, P < 0.05001).

289 The content of soluble protein was assayed to investigate nitrogen assimilation of 290 U. linza under various pCO₂ and nutrient conditions (Fig. 7). Both pCO₂ and nutrient levels affected the content of soluble protein and showed interactive effects (Table 74). 291 Post hoc Tukey HSD comparison (P = 0.05) showed that HC did not affect the 292 content of soluble protein under LP but increased it under HP. Under LC, separate N 293 294 or P limitation and their combination showed a similar negative effect on soluble 295 protein content. Under HC, P limitation had a larger inhibition effect on soluble 296 protein content compared to N limitation (Tukey HSD, P < 0.05001) and the combination of N and P limitation did not lead to a further decrease in soluble protein 297 content (P = 0.953). 298

299 4 Discussions

300 4.1 Differential response of young and adult Ulva

Compared to adult plants, young Ulva grew much faster regardless of culture 301 conditions. This trend was also found in U. rigida (Gao et al., 2017a). The noticeable 302 303 difference in growth rate between young and adult Ulva could be attributed to cell 304 differentiation. In the early life history of Ulva, cell division proceeds fast as all cells 305 are of the same type, developing from one single cell. Thereafter, cells differentiate 306 into two types: rhizoidal cells in the basal part and blade cells in the marginal part (Gao et al., 2017b). Differences in cell size and photosynthetic pigments between 307 these two cell types result in unequal growth in the thallus; the growth of rhizoidal 308

309 cells is much slower than in blade cells (Han et al., 2003; Lüning et al., 2008), which
310 slows down the total growth of the thallus as it ages.

311	Lower P levels strongly inhibited the growth of both young and adult plants in this
312	study and the inhibitory effect was particularly significant for young plants. Gao et al.
313	(2017b) has reported that U. rigida becomes mature when the thalli reach a length of
314	around 1.5 cm and we also found a similar phenomenon in U. linza. Young plants
315	grown under P limitation were far away the mature stage even after 16 days of culture
316	while the plants grown under P repletion reached a mature stage by day 11 and the
317	length could be up to 16 cm by day 16. This finding supports the significant role of P
318	in development of U. linza. Phosphorus (P) is an essential element for seaweeds, in
319	the form of nucleic acids, phospholipids, ATP and ADP, but little is known regarding
320	the effect of P on development of seaweed. Our findings indicate that P limitation
321	may terminate the development of young Ulva and cause it to remain in the immature
322	stage. The separate addition of N did not change the growth rate of young plants but
323	increased the growth rate of adult plants, suggesting that adult plants could be more
324	resilient to P limitation compared to young plants.
325	4.2 Photosynthetic response to OA and nutrients

HC was shown in the present study to decrease the Chl *a* and Chl *b* contents of *U*. *linza*. High CO₂ commonly down-regulates algal CO₂ concentrating mechanisms (CCMs), suggesting less energy is required to drive CCMs (Gao et al., 2012; Raven et al., 2012; Cornwall et al., 2017b; Raven et al., 2017). This may lead to decreased synthesis of pigment for energy capture. This phenomenon of `pigment economy' has

331	also been found in our the previous studies regarding Ulva species (Xu and Gao,
332	2012Gordillo et al., 2003; Gao et al., 2016). Deficiency in N or/and P supply also
333	reduced pigment content in this study. Nitrogen is a major component of Chl a.
334	Although P is a non-constituent element in Chl a, higher P supply may stimulate the
335	activity of Chl a synthesis-related enzymes (Xu et al., 2017). Accordingly, in this
336	study nutrient (N & P) enrichment enhanced the synthesis of Chl a. This is consistent
337	with other findings in Ulva species (Gordillo et al., 2001; Figueroa et al., 2009) and
338	other macroalgae (Xu et al., 2017).
339	HC decreased net photosynthetic rate in U. linza in the present study. This could be
340	due to the decrease of photosynthetic pigment in thalli grown under HC. Meanwhile,
341	the saved energy due to down-regulation of CCMs in thalli grown under HC-
342	combined with higher light density used in this study may depress PSII activity and
343	thus might have reduced the intracellular CO2 availability and have contributed to the
344	lower-reduce net photosynthetic rate (Gao et al., 2012). An ocean
345	acidification-induced decrease of net photosynthetic rate was also documented in U.
346	prolifera (Xu and Gao, 2012). In terms of the effects of nutrient, N limitation reduced
347	net photosynthetic rate in U. linza and P limitation resulted in a further decrease. The
348	negative effects of N and P limitation on algal photosynthetic rate have been
349	extensively reported (Longstaff et al., 2002; Kang and Chung, 2017; Xu et al., 2017),
350	indicating the important role of N and P in algal photosynthesis. In addition to the
351	separate effects of pCO_2 or nutrient, these factors also interplay on photosynthetic
352	performances of U. linza. For instance, HC reduced rETR under LP but did not affect

353	it under HP, suggesting that P enrichment could offset the negative effect of ocean	
354	acidification. In contrast to net photosynthetic rate, the dark respiration rate of thalli	
355	was insensitive to the change of pCO_2 or nutrient. The higher pCO_2 did not affect the	带格式的: 下标
356	dark respiration rate in U. prolifera either (Xu et al., 2012) but reduced it in U. rigida	(带格式的:字体:倾斜 (带格式的:字体:倾斜
357	(Gordillo et al., 2003). N enrichment did not affect the dark respiration rate under	
358	lower pCO ₂ but reduced it under higher pCO ₂ for <u>U. rigida</u> (Gordillo et al., 2003).	带格式的: 字体:倾斜
359	The present finding combined with the previous studies indicates that response of	
360	dark respiration in <u>Ulva may be species-dependent.</u>	一带格式的: 字体:倾斜 一带格式的: 英语(英国)
361	4.3 N assimilation under OA and nutrient limitation	
362	Contrary to C assimilation, HC did not affect the content of soluble protein under	
363	LP and even increased it when the P level was sufficient. The increased protein	
364	synthesis under HC could be put down to the stimulation of NRA-activity under HC.	
365	Gordillo et al. (2001) proposed that the positive effect of HC on N assimilation may	
366	be due to a direct action on synthesis of NR rather than the physiological	
367	consequences of C metabolism as occurs in higher plants. Our results support this	
368	hypothesis because HC increased NRA in thalli grown under HP in this study.	
369	Meanwhile, the change of NRA under different pCO ₂ levels might be also caused by	
370	varying pH as pH could affect NRA in seaweeds (Lopes et al., 1997). P is considered	
371	to be playing a critical role in enzyme synthesis and may interact with CO ₂ to promote	
372	the synthesis and activity of nitrate reductase.	
373	4.4 Interactive effects of OA and nutrient limitation on Growth	

HC did not affect the growth of thalli when P was replete in the medium. Since HC

375	reduced photosynthesis rate but increased NRA and protein synthesis, the lack of
376	effect of HC may be an integrated outcome of C and N assimilation (Fig. 8). This
377	finding is different from our previous studies in which HC increased the growth rate
378	of U. linza (Gao et al., 2016) and U. prolifera (Gao et al., 2017d). The possible reason
379	causing this divergence might be due to the different light intensities that were used in
380	the various studies. For the previous studies, a lower light intensity of 100 μ mol
381	photons $m^{-2} s^{-1}$ was used for algal culture while a higher light intensity of 300 μ mol
382	photons $m^{-2} s^{-1}$ was used in the present work. Ocean acidification could interact with
383	light intensity to affect algal growth. It has commonly been reported that ocean
384	acidification can increase algal photosynthesis/growth at lower light intensity and
385	inhibit photosynthesis/growth at higher light intensity (Gao et al., 2012; Xu and Gao,
386	2012; Gao et al., 2016), with inversion points of PAR around 160, 125 and 178 μmol
387	photons $m^{-2} s^{-1}$ for <i>Phaeodactylum tricornutum</i> , <i>Thalassiosira pseudonana</i> and
388	Skeletonema costatum respectively (Gao et al., 2012). The potential reason is that the
389	saved energy from down-regulated CCMs under higher CO ₂ levels could be used for
390	growth at lower light levels but could inhibit PSII activity and thus growth at higher
391	light levels (Gao et al., 2012; Gao et al., 2016). It seems that U. linza has a higher
392	inversion point compared to diatoms.
393	Furthermore, HC reduced growth of U. linza when P was limited. In addition to the
394	increased CO ₂ supply, ocean acidification also reduces the pH of seawater, which has

within cells and affecting algal photosynthetic performance (Flynn et al., 2012; Gao et

395

been deemed as a stressor disturbing the acid-base balance both at the cell surface and

397	al., $201/d$). Increased CO ₂ and decreased pH also reduced rE1R and net
398	photosynthetic rate of U. linza in the present study. Xu et al. (2017) proposed that
399	algae could synthesize HC transport-related proteins to combat that disturbance.
400	Under P limitation conditions, such protein synthesis could be limited, which may
401	lead to the decreased rETR and net photosynthetic rate and thus to decreased growth
402	observed in the present study. Until now, most studies of ocean acidification on
403	seaweed have been conducted under nutrient replete conditions. The present study
404	thus demonstrates the contrasting effect of ocean acidification under nutrient deplete
405	conditions.

406 4.5 Differential effects of N and P limitation

00171

1 00

In the present study, compared to N limitation, P limitation seems to have a larger 407 negative effect on physiological performances in U. linza. In other words, the addition 408 of P resulted in a larger stimulating effect compared to N addition. Which one (N or P) 409 410 is the nutrient most likely to limit marine primary productivity has been a controversial issue until now (Elser et al., 2007; Teichberg et al., 2010; Müller and 411 Mitrovic, 2015). It has been proposed that the occurrence of N or P limitation depends 412 413 on the difference in N:P ratio between in algal tissue and in seawater; when the ratio of N:P in algal tissue is higher than in seawater N limitation is indicated and the 414 opposite is considered as P limitation (Harrison and Hurd, 2001). The ratio of N:P in 415 tissue of U. linza grown in the field has not been documented and the mean value of 416 N:P throughout a year is 15.4 for U. prolifera and 22.3 for U. fenestrate (Wheeler and 417 418 Björns äter, 1992). The ratio of N:P in natural seawater where the samples were

420	reported Ulva species. This suggests the existence of P limitation for U. linza, which
421	could explain the larger stimulating effect with P addition.
422	In recent decades, P limitation has been suggested to commonly occur in coastal
423	waters due to more effective P removal from industrial and domestic wastewater
424	during de-eutrophication processes (Grizzetti et al., 2012). For instance, the ratio of
425	dissolved inorganic N:P could be as high as 375:1 in nearshore waters of the North
426	Sea, resulting in severe P limitation for algal growth (Burson et al., 2016).
427	5 Conclusions
428	With the continuous emission of CO ₂ , the trend of ocean acidification will
429	continue through this century (Gattuso et al., 2015). Meanwhile, nutrient limitation
430	would occur in coastal waters as a consequence of efforts on de-europhication.
431	Measures to reduce eutrophication have often led to a more effective decline of
432	phosphorus (P) than nitrogen (N) concentrations (Burson et al., 2016). In addition,
433	intensive seaweed culture in coastal areas can also lead to noticeable decreases in N
434	and P (He et al., 2008; Wu et al., 2015). Our study demonstrates that ocean
435	acidification and nutrient limitation would synergistically inhibit development and
436	growth of Ulva species. This may hinder the occurrence of green tides and Ulva
437	cultivation in future ocean. In addition, it has been reported that fast-growing species
438	require high nutrient inputs to sustain growth, while slow-growing species are better

collected in the present study is 30.7:1, which is higher than the N:P ratio in the

adapted to nutrient limiting conditions (Gordillo, 2012). The decrease in nutrient level

may result in a shift in seaweed community composition in the future ocean

439

440

environment. Studies on other seaweeds are needed to have a comprehensive 441 understanding in terms of the combined effects of global and local stressors on 442 seaweed communities. 443

Acknowledgements 444

445 This study was supported by the National Natural Science Foundation of China (No. 41476097), the Natural Science Foundation of Jiangsu Province (No. 446 BK20161295), the Science and Technology Bureau of Lianyungang (SH1606), the 447 448 Jiangsu Planned Projects for Postdoctoral Research Funds (1701003A), the Science Foundation of Huaihai Institute of Technology (Z2016007), and the Priority Academic 449 450 Program Development of Jiangsu Higher Education Institutions of China.

References 451

Boelen, P., Van De Poll, W. H., Van Der Strate, H. J., Neven, I. A., Beardall, J., and 452 453 Buma, A. G.: Neither elevated nor reduced CO₂ affects the photophysiological performance of the marine Antarctic diatom Chaetoceros brevis, J. Exp. Mar. 454 Biol. Ecol., 406, 38-45, 2011. 455

- Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram 456 quantities of protein utilizing the principle of protein-dye binding, Anal. 457 Biochem., 72, 248-254, 1976. 458
- Burson, A., Stomp, M., Akil, L., Brussaard, C. P., and Huisman, J.: Unbalanced 459 460 reduction of nutrient loads has created an offshore gradient from phosphorus to nitrogen limitation in the North Sea, Limnol. Oceanogr., 61, 869-888, 2016. 461

463

464

site of calcification under ocean acidification, Global Change Biol., 23,

465	Cornwall, C. E., Revill, A. T., Hall-Spencer, J. M., Milazzo, M., Raven, J. A., and
466	Hurd, C. L.: Inorganic carbon physiology underpins macroalgal responses to
467	elevated CO ₂ , Scientific Reports, 7, 46297, 2017b.

- Deng, M. D., Moureaux, T., Cherel, I., Boutin, J. P., and Caboche, M.: Effects of
 nitrogen metabolites on the regulation and circadian expression of tobacco
 nitrate reductase, Plant Physiol. Bioch., 29, 239-247, 1991.
- Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van de
 Waal, D. B.: Effects of ocean acidification on primary production in a coastal
 North Sea phytoplankton community, PloS One, 12, e0172594, 2017.
- 474 Eggert, A. Seaweed responses to temperature. In: Wiencke C, Bischof K, editors.
 475 Seaweed biology. Berlin: Springer; 2012. pp.47-66.
- Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand,
 H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J. E.: Global
 analysis of nitrogen and phosphorus limitation of primary producers in
 freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 1135-1142,
 2007.
- Figueroa, F. L., Israel, A., Neori, A., Mart nez, B., Malta, E. J., Ang Jr, P., Inken, S.,
 Marquardt, R., and Korbee, N.: Effects of nutrient supply on photosynthesis
 and pigmentation in *Ulva lactuca* (Chlorophyta): responses to short-term
 stress, Aquat. Biol., 7, 173-183, 2009.

485	Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,
486	Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the
487	exterior surface of plankton with ocean acidification, Nature Clim. Change,
488	2, 510-513, 2012.
489	Frithsen, J.: An ecosystem level experiment on nutrient limitation in temperate coastal
490	marine environments, Mar. Ecol. Prog. Ser., 116, 171-179, 1995.
491	Gao, G., Clare, A. S., Rose, C., and Caldwell, G. S.: Eutrophication and
492	warming-driven green tides (Ulva rigida) are predicted to increase under
493	future climate change scenarios, Mar. Pollut. Bull., 114, 439-447, 2017a.
494	Gao, G., Clare, A. S., Rose, C., and Caldwell, G. S.: Intrinsic and extrinsic control of
495	reproduction in the green tide-forming alga, Ulva rigida. Environ. Exp. Bot.,
496	139, 14-22, 2017b.
497	Gao, G., Jin, P., Liu, N., Li, F., Tong, S., Hutchins, D. A., and Gao, K.: The
498	acclimation process of phytoplankton biomass, carbon fixation and respiration
499	to the combined effects of elevated temperature and $p\text{CO}_2$ in the northern
500	South China Sea, Mar. Pollut. Bull., 118, 213-220, 2017c.
501	Gao, G., Liu, Y., Li, X., Feng, Z. and Xu J.: An ocean acidification acclimatised green
502	tide alga is robust to changes of seawater carbon chemistry but vulnerable to
503	light stress, PLoS One, 11, e0169040, 2016.
504	Gao, G., Liu, Y., Li, X., Feng, Z., Xu, Z., Wu, H., and Xu, J.: Expected CO ₂ -induced
505	ocean acidification modulates copper toxicity in the green tide alga Ulva
506	prolifera, Environ. Exp. Bot., 135, 63-72, 2017d.

31

507	Gao, G., Shi, Q., Xu, Z. Xu, J., Campbell D. A., Wu, H.: Global warming interacts	
508	with ocean acidification to alter PSII function and protection in the diatom	
509	Thalassiosira weissflogii. Environ. Exp. Bot., 147, 95-103, 2018.	带格式的: 字体:
510	Gao, K., Xu, J., Gao, G., Li, Y., Hutchins, D. A., Huang, B., Wang, W., Zheng, Y., Jin,	
511	P., CaI, X., Hader, D. P., Li, W., Xu, K., Liu, N., and Riebesell, U.: Rising CO ₂	
512	and increased light exposure synergistically reduce marine primary	
513	productivity, Nature Clim. Change, 2, 519-523, 2012.	
514	Gattuso, J. P., Magnan, A., Bill & R., Cheung, W. W., Howes, E. L., Joos, F., and	
515	Hoegh-Guldberg, O.: Contrasting futures for ocean and society from different	
516	anthropogenic CO ₂ emissions scenarios, Science. 349, 45-55, 2015.	
517	Gordillo, F. J. L.: Environment and Algal Nutrition, In:Seaweed biology: novel	
518	insights into ecophysiology, ecology and utilization, edited by: Wiencke, C.,	
519	and Bischof, K., Springer, 2012.	
520	Gordillo, F. J. L., Figueroa, F. L., Niell, F. X.: Photon-and carbon-use efficiency in	
521	<u>Ulva rigida at different CO₂ and N levels. Planta, 218, 315-322, 2003.</u>	带格式的: 字体: 带格式的: 下标
522	Gordillo, F. J., Niell, F. X., and Figueroa, F. L.: Non-photosynthetic enhancement of	
523	growth by high CO ₂ level in the nitrophilic seaweed Ulva rigida C. Agardh	
524	(Chlorophyta), Planta, 213, 64-70, 2001.	
525	Grizzetti, B., Bouraoui, F., and Aloe, A.: Changes of nitrogen and phosphorus loads to	
526	European seas, Global Change Biol., 18, 769-782, 2012.	
527	Han, T., Han, Y. S., Kain, J. M., and Häder, D. P.: Thallus differentiation of	
528	photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga	

倾斜

倾斜

529 *Ulva pertusa* (Chlorophyceae), J. Phycol., 39, 712-721, 2003.

530	Harrison, P. J., and Hurd, C. L. Nutrient physiology of seaweeds: Application of
531	concepts to aquaculture, Cah. Biol. Mar., 42, 71-82, 2001.
532	He, P., Xu, S., Zhang, H., Wen, S., Dai, Y., Lin, S., and Yarish, C.: Bioremediation
533	efficiency in the removal of dissolved inorganic nutrients by the red seaweed,
534	Porphyra yezoensis, cultivated in the open sea, Water Res., 42, 1281-1289,
535	2008.
536	Kang, J. W., and Chung, I. K.: The effects of eutrophication and acidification on the
537	ecophysiology of Ulva pertusa Kjellman, J. Appl. Phycol., 29, 2675-2683,
538	2017.
539	Lapointe, B. E.: Nutrient thresholds for bottom-up control of macroalgal blooms on
540	coral reefs in Jamaica and southeast Florida, Limnol. Oceanogr., 42,
541	1119-1131, 1997.
542	Lapointe, B. E., and Bedford, B. J.: Ecology and nutrition of invasive Caulerpa
543	brachypus f. parvifolia blooms on coral reefs off southeast Florida, U.S.A.
544	Harmful Algae, 9, 1-12, 2010.
545	Li, W., Gao, K., and Beardall, J.: Nitrate limitation and ocean acidification interact

- with UV-B to reduce photosynthetic performance in the diatom *Phaeodactylum tricornutum*, Biogeosciences, 12, 2383-2393, 2015.
- 548 Longstaff, B. J., Kildea, T., Runcie, J. W., Cheshire, A., Dennison, W. C., Hurd, C.,
- 549 Kana, T., Raven, J. A., and Larkum, A. W.: An in situ study of photosynthetic
- 550 oxygen exchange and electron transport rate in the marine macroalga Ulva

lactuca (Chlorophyta), Photosynth. Res., 74, 281-293, 2002.

552	Lopes, P. F., Oliveira, M. C., Colepicolo, P.: Diurnal fluctuation of nitrate reductase	
553	activity in the marine red alga <i>Gracilaria tenuistipitat</i> a (Rhodophyta). J.	带格式的: 字体: 倾斜
554	<u>Phycol., 33, 225-231, 1997.</u>	
555	Lüning, K., Kadel, P., and Pang, S.: Control of reproduction rhythmicity by	
556	environmental and endogenous signals in Ulva pseudocurvata (Chlorophyta),	
557	J. Phycol., 44, 866-873, 2008.	
558	Luo, M. B., Liu, F., and Xu, Z. L.: Growth and nutrient uptake capacity of two	
559	co-occurring species, Ulva prolifera and Ulva linza, Aquat. Bot., 100, 18-24,	
560	2012.	
561	Mccarthy, A., S. P. Rogers, S. J. Duffy, and D. A. Campbell. Elevated carbon dioxide	
562	differentially alters the photophysiology of Thalassiosira pseudonana	
563	(Bacillariophyceae) and Emiliania huxleyi (Haptophyta), J. Phycol., 48,	
564	635-646, 2012.	
565	Mostofa, K. M.: Reviews and Syntheses: Ocean acidification and its potential impacts	
566	on marine ecosystems, Biogeosciences, 13: 1767-1786, 2016.	
567	Msuya, F. E., and Neori, A.: Effect of water aeration and nutrient load level on	
568	biomass yield, N uptake and protein content of the seaweed Ulva lactuca	
569	cultured in seawater tanks, J. Appl. Phycol., 20, 1021-1031, 2008.	

- 570 Müller, S., and Mitrovic, S. M.: Phytoplankton co-limitation by nitrogen and
- 571 phosphorus in a shallow reservoir: progressing from the phosphorus limitation
- 572 paradigm, Hydrobiologia, 744, 255-269, 2015.

- 573 Nixon, S. W., Pilson, M. E. Q.: Nitrogen in estuarine and coastal marine ecosystems,
- In: Nitrogen in the marine environment, Edied by: Carpenter, E. J., andCapone, D. G., Academic Press, 1983.
- 576 NOAA.: https://www.co2.earth/. 2017.
- 577 Rautenberger, R., Fernandez, P. A., Strittmatter, M., Heesch, S., Cornwall, C. E., Hurd,
- 578 C. L., and Roleda, M. Y.: Saturating light and not increased carbon dioxide 579 under ocean acidification drives photosynthesis and growth in *Ulva rigida*
- 580 (Chlorophyta), Ecol. Evol., 5, 874-888, 2015.
- Raven, J. A., Beardall, J., & S ánchez-Baracaldo, P.: The possible evolution, and future,
 of CO₂-concentrating mechanisms, J. Exp. Bot., 68, 3701-3716, 2017.
- Raven, J. A., Giordano, M., Beardall, J., and Maberly, S. C.: Algal evolution in
 relation to atmospheric CO₂: carboxylases, carbon-concentrating mechanisms
 and carbon oxidation cycles. Phil, Trans. R. Soc. B., 367, 493-507, 2012.
- Smetacek, V., and Zingone, A.: Green and golden seaweed tides on the rise, Nature
 504, 84-88, 2013.
- Teichberg, M., Fox, S. E., Olsen, Y. S., Valiela, I., Martinetto, P., Iribarne, O., ... and
 Paez Osuna, F. E. D. E. R. I. C. O.: Eutrophication and macroalgal blooms in
 temperate and tropical coastal waters: nutrient enrichment experiments with *Ulva* spp, Global Change Biol., 16, 2624-2637, 2010.
- 592 Velasco, P. J., Tischner, R., Huffaker, R. C., and Whitaker, J. R.: Synthesis and
- 593 degradation of nitrate reductase during the cell cycle of *Chlorella sorokiniana*,
- 594 Plant Physiol., 89, 220-224, 1989.

595	Villares, R., Puente, X., and Carballeira, A.: Nitrogen and phosphorus in Ulva sp. in	
596	the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence	
597	on growth, Boletin - Instituto Espanol de Oceanografia, 15, 1-4, 1999.	
598	Wang, H. M. D., Li, X. C., Lee, D. J., and Chang, J. S.: Potential biomedical	
599	applications of marine algae, Bioresour. Technol., 244, 1407-1415, 2017.	
600	Wheeler, P. A., and Björnsäter, B. R.: Seasonal fluctuations in tissue nitrogen,	
601	phosphorus, and n:p for five macroalgal species common to the pacific	
602	northwest coast, J. Phycol., 28, 1-6, 1992.	
603	Wiencke, C., and Bischof, K.: Seaweed biology: novel insights into ecophysiology,	
604	ecology and utilization, Springer, 2012.	
605	Wu, H., Huo, Y., Zhang, J., Liu, Y., Zhao, Y., and He, P.: Bioremediation efficiency of	
606	the largest scale artificial Porphyra yezoensis cultivation in the open sea in	
607	China, Mar. Pollut. Bull., 95, 289-296, 2015.	
608	Xu, J., and K. Gao. Future CO ₂ -induced ocean acidification mediates the	
609	physiological performance of a green tide alga, Plant Physiol., 160, 1762-1769,	
610	2012.	
611	Xu, Z., Gao, G., Xu, J., and Wu, H.: Physiological response of a golden tide alga	
612	(Sargassum muticum) to the interaction of ocean acidification and phosphorus	
613	enrichment, Biogeosciences, 14, 671-681, 2017.	
614	Yuan, W., Gao, G., Shi, Q., Xu, Z., Wu, H.: Combined effects of ocean acidification	
615	and warming on physiological response of the diatom, Thalassiosira	带格式的: 字体: 倾斜
616	pseudonana to light challenges. Mar. Environ. Res., 135, 63-69, 2018.	

Table 1. Parameters of the seawater carbonate system in different cultures. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. DIC = dissolved inorganic carbon, TA = total alkalinity. Data are the means \pm SD (n = 3).

			DIC	CO ₂	HCO ₃ -	CO ₃ ²⁻	TA
Treatment	pCO_2 (µatm)	рН	$(\mu mol kg^{-1})$	$(\mu mol kg^{-1})$	$(\mu mol kg^{-1})$	(µmol kg ⁻¹)	$(\mu mol kg^{-1})$
LCHNHP	373.8±6.3	8.21±0.01	1991.9±49.4	12.3±0.2	1805.3±43.3	174.2±6.1	2243.7±55.8
LCLNHP	381.3±2.9	8.20±0.01	2015.1±50.4	12.6±0.1	1827.4±42.0	175.1±8.5	2267.0±60.5
LCHNLP	400.4±9.0	8.19±0.01	2029.9±50.1	13.2±0.3	1846.4±43.1	170.2±7.7	2262.7±58.2
LCLNLP	397.4±8.4	8.18±0.01	1998.2±39.0	13.1±0.3	1818.7±35.1	166.3±4.3	2226.7±42.9
HCHNHP	929.1±24.8	7.86±0.01	2154.6±52.5	30.7±0.8	2034.9±49.5	89.1±2.6	2263.3±54.2
HCLNHP	958.8±5.2	7.85±0.01	2155.0±42.0	31.6±0.2	2036.8±38.5	86.5±3.6	2259.0±46.5
HCHNLP	976.1±10.9	7.84±0.01	2159.3±38.7	32.2±0.4	2041.7±36.1	85.4±2.5	2250.7±41.3
HCLNLP	1020.2±51.8	7.82±0.03	2117.9±31.0	33.7±1.7	2005.3±28.0	78.9±5.2	2199.3±37.4

Table 2. Two-way multivariate analysis of variance for the effects of of pCO₂ and nutrient on on pH, dissolved inorganic carbon (DIC), HCO_3^- , CO_3^{2-} , CO_2 , total alkalinity (TA) in the seawater. pCO₂*nutrient means the interactive effect of pCO₂ and nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means *p*-value.

Source		рН		DIC		HCO ₃ ⁻		CO ₃ ²⁻		CO ₂		ТА	
	df	F	Sig.	F	Sig.	F	Sig.	F	Sig.	F	Sig.	F	Sig.
pCO ₂	1	5237.765	< 0.001	57.132	< 0.001	158.536	< 0.001	1504.349	< 0.001	4486.773	< 0.001	0.114	0.740
Nutrient	3	9.765	0.001	0.747	0.540	0.741	0.543	3.336	0.046	7.999	0.002	1.225	0.333
pCO ₂ *Nutrient	3	1.294	0.311	0.256	0.856	0.332	0.802	0.162	0.921	2.683	0.082	0.228	0.876
Error	16												

Table 3. Repeated analysis of variance for the effects of culture time on length changes of young and adult *U. linza* grown under various pCO_2 and nutrient conditions. Time* pCO_2 means the interactive effect of Time and pCO_2 , Time* nutrient means the interactive effect of Time and nutrient, and Time* pCO_2 *nutrient means the interactive effect of Time, pCO_2 and nutrient. df means degree of freedom, F means the value of F statistic, and Sig. means *p*-value.

	Growth	of young U.	linza	Growth of adult U. linza				
Source	df	F	Sig.	df	F	Sig.		
Time	8	1153.328	< 0.001	4	571.769	< 0.001		
Time*pCO ₂	8	23.582	< 0.001	4	3.158	0.020		
Time*Nutrient	24	457.170	< 0.001	12	28.505	< 0.001		
Time*pCO ₂ *nutrient	24	10.585	< 0.001	12	0.689	0.756		
Error	128			64				

	<u>pCC</u>	<u>D</u> 2		<u>Nut</u>	<u>rient</u>		<u>pCO∕</u>	<u>*nutrient</u>		<u>Error</u>		
Source	<u>df</u>	<u>F</u>	<u>Sig.</u>	<u>df</u>	<u>F</u>	<u>Sig.</u>	<u>df</u>	<u>F</u>	<u>Sig.</u>	<u>df</u>	<u>F</u>	<u>Sig.</u>
Growth of sporeling	<u>1</u>	<u>115.297</u>	<u><0.001</u>	<u>3</u>	<u>12678.566</u>	<u><0.001</u>	<u>3</u>	22.905	<u><0.001</u>	<u>16</u>		
Growth of adult	<u>1</u>	<u>20.039</u>	<u><0.001</u>	<u>3</u>	<u>307.073</u>	<u><0.001</u>	<u>3</u>	<u>1.723</u>	<u>0.011</u>	<u>16</u>		
Net photosynthetic rate	<u>1</u>	<u>35.096</u>	<u><0.001</u>	<u>3</u>	<u>493.992</u>	<u><0.001</u>	<u>3</u>	<u>2.619</u>	<u>0.087</u>	<u>16</u>		
Dark respiration rate	<u>1</u>	<u>2.306</u>	<u>0.148</u>	<u>3</u>	<u>1.445</u>	<u>0.267</u>	<u>3</u>	<u>0.410</u>	<u>0.748</u>	<u>16</u>		
<u>rETR</u>	<u>1</u>	<u>14.592</u>	<u>0.002</u>	<u>3</u>	<u>135.690</u>	<u><0.001</u>	<u>3</u>	<u>5.023</u>	<u>0.012</u>	<u>16</u>		
<u>Chl a</u>	<u>1</u>	<u>85.900</u>	<u><0.001</u>	<u>3</u>	217.334	<u><0.001</u>	<u>3</u>	<u>2.440</u>	<u>0.102</u>	<u>16</u>		
<u>Chl b</u>	<u>1</u>	<u>71.600</u>	<u><0.001</u>	<u>3</u>	<u>104.483</u>	<u><0.001</u>	<u>3</u>	<u>2.005</u>	<u>0.154</u>	<u>16</u>		
Nitrate reductase activity	<u>1</u>	<u>38.271</u>	<u><0.001</u>	<u>3</u>	<u>100.487</u>	<u><0.001</u>	<u>3</u>	<u>6.246</u>	<u>0.005</u>	<u>16</u>		
Soluble protein	<u>1</u>	<u>30.212</u>	<u><0.001</u>	<u>3</u>	<u>106.523</u>	<u><0.001</u>	<u>3</u>	<u>11.295</u>	<u><0.001</u>	<u>16</u>		

interactive effect of pCO₂ and nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means p-value.

Table 4. Two-way analysis of variance for the effects of pCO₂ and nutrient on physiological parameters of U. linza. pCO₂*nutrient means the

Table 4. Two-way analysis of variance for the effects of pCO ₂ and nutrient on relative
growth rate of U. linza. pCO_2 *nutrient means the interactive effect of pCO_2 and
nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means
<i>p</i> -value.

	Growth of young U. linza			Growth of adult U. linza		
Source	đf	F	Sig.	df	Ŧ	Sig.
pCO ₂	4	115.297	<0.001	4	20.039	<0.001
Nutrient	3	12678.566	<0.001	3	307.073	<0.001
pCO2*nutrient	3	22.905	<0.001	3	1.723	0.011
Error	16			16		

Table 5. Two way analysis of variance for the effects of pCO_2 and nutrient on net photosynthetic rate and rETR of *U. linza.* pCO_2 *nutrient means the interactive effect of pCO_2 and nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means *p* value.

	Net photosynthetic rate			rETR		
Source	đf	F	Sig.	df	F	Sig.
pCO ₂	4	35.096	<0.001	4	14.592	0.002
Nutrient	3	493.992	<0.001	3	135.690	<0.001
pCO₂*nutrient	3	2.619	0.087	3	5.023	0.012
Error	16			16		

Table 6. Two-way analysis of variance for the effects of pCO_2 -and nutrient on content of Chl *a* and Chl *b* in *U. linza.* pCO_2 *nutrient means the interactive effect of pCO_2 and nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means *p*-value.

	Chl-a			Chl-b		
Source	đf	F	Sig.	df	F	Sig.
pCO ₂	4	85.900	<0.001	4	71.600	<0.001
Nutrient	3	217.334	<0.001	3	104.483	<0.001
pCO₂*nutrient	3	2.440	0.102	3	2.005	0.154
Error	16			16		

Table 7. Two-way analysis of variance for the effects of pCO_2 and nutrient on nitrate reductase activity and soluble protein of *U. linza*. pCO_2 *nutrient means the interactive effect of pCO_2 and nutrient, df means degree of freedom, F means the value of F statistic, and Sig. means *p*-value.

	Nitrate reductase activity			Soluble protein		
Source	đf	F	Sig.	df	F	Sig.
pCO ₂	4	38.271	<0.001	4	30.212	<0.001
Nutrient	3	100.487	<0.001	3	106.523	<0.001
pCO2*nutrient	3	6.246	0.005	3	11.295	<0.001
Error	16			16		

Figure legends

Fig. 1. Length changes of young (a) and adult (b) *U. linza* grown under various conditions during the culture periods. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L^{-1} ; LP, 0.2 µmol L^{-1} ; HN, 106.1 µmol L^{-1} ; HP, 10.2 µmol L^{-1} . The error bars indicate the standard deviations (n = 3).

Fig. 2. Specific growth rate (% d⁻¹) of young (a) and adult (b) *U. linza* grown under various conditions. The specific growth rate for young and adult thalli were calculated based on the initial and final length (for young thalli over a 16-day culture) or mass (for adult thalli over a 169-day). LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. The error bars indicate the standard deviations (n = 3). Different letters (low-case for LC and capital for HC) above the error bars represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment,

Fig. 3. Net photosynthetic (a) and dark respiration rates (b) of adult *U. linza* grown under various conditions. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. The error bars indicate the standard deviations (n = 3). Different letters (low-case for LC and capital for HC) above error bars represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment.

Fig. 4. Relative electron transport rate (rETR) of adult U. linza grown under various

带格式的

conditions. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. <u>The error bars indicate the standard deviations (n</u> = 3). Different letters above the error bars (low-case for LC and capital for HC) represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment.

Fig. 5. Content of Chl *a* (a) and Chl *b* (b) in adult *U. linza* grown under various conditions. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. The error bars indicate the standard deviations (n = 3). Different letters (low-case for LC and capital for HC) above the error bars represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment.

Fig. 6. Nitrate reductase activity (NRA) in adult *U. linza* grown under various conditions. LC, 400 µatm; HC, 1000 µatm; LN, 6.1 µmol L⁻¹; LP, 0.2 µmol L⁻¹; HN, 106.1 µmol L⁻¹; HP, 10.2 µmol L⁻¹. The error bars indicate the standard deviations (n = 3). Different letters (low-case for LC and capital for HC) above the error bars represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment.

Fig. 7. Content of soluble protein in adult *U. linza* grown under various conditions. LC, 400 μ atm; HC, 1000 μ atm; LN, 6.1 μ mol L⁻¹; LP, 0.2 μ mol L⁻¹; HN, 106.1 μ mol

带格式的

 L^{-1} ; HP, 10.2 µmol L^{-1} . The error bars indicate the standard deviations (n = 3).

Different letters (low-case for LC and capital for HC) above <u>the error</u> bars represent significant differences (P < 0.05) among nutrient treatments while horizontal bars represent significant differences (P < 0.05) between LC and HC within a nutrient treatment.

Fig. 8. Physiological responses of *U. linza* to the combination of ocean acidification^{*} and nutrient availability. The blue and the red symbols represent down- and up-regulated metabolic pathways respectively. PSI: Photosystem I; PSII: Photosystem II; OEC: oxygen- evolving complex; NPQ: non-photochemical quenching; CA: carbonic anhydrase; NR: nitrate reductase. **带格式的:**字体:加粗 带格式的:缩进:首行缩进:0 厘 米

Fig. 1

Fig. 2 49

Fig. 3

Fig.5

Fig. 6

Fig. 7

