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Abstract: Observations show that soil microorganisms can survive periods of aridity and recover 27 
rapidly after wetting events. This behavior can be explained by a moisture-dependent adaptation 28 
(i.e. the ability to transition between a dormant state in dry conditions and an active state in wet 29 
conditions). Though this dynamic behavior has been previously incorporated into modeling 30 
frameworks, a direct comparison between a model application of this active-dormant transition 31 
mechanism and a more simplified first-order model has yet to be made. Here, we developed two 32 
models, one using simplified first-order kinetics and the other featuring a process-based rate 33 
expression incorporating the transition between active and dormant biomass. The two approaches 34 
are contrasted through a benchmarking exercise using a set of time series soil incubation datasets. 35 
We evaluated the two models using an Akaike Information Criterion (AIC). Combining the AIC 36 
evaluation and model-data comparison, we conclude that the dormancy-incorporated model 37 
performs better for shallow soils (above 108 cm), despite the added parameters required. In 38 
addition, this model is uniquely capable of reproducing transient CO2 flux rates associated with 39 
dynamic microbial response to changing soil moisture. In contrast, the first-order model achieves 40 
better AIC scores when simulating the incubation data obtained from our deepest soils (112-165 41 
cm). However, deep soils constitute a minor contribution to the overall CO2 flux of an intact soil 42 
column. Thus, the dormancy-incorporated model may better simulate respiration of the whole 43 
soil.  44 
 45 
1. Introduction 46 
Soils are one of the largest reservoirs of terrestrial carbon at the Earth’s surface and thus 47 
represent a significant potential source of CO2 to the atmosphere via heterotrophic and 48 
autotrophic respiration (Batjes, 1996; Bellamy et al., 2005). Previous studies have shown a wide 49 
variety of parameters can influence the rate of soil carbon respiration, for instance, temperature 50 
(e.g. Lloyd and Taylor, 1994; Kirschbaum, 1995; Rey et al., 2005; Vanhala et al., 2008; 51 
Niklińska and Klimek, 2007; Lellei-Kovács et al., 2016), microbial community composition (e.g., 52 
Monson et al., 2006; Cleveland et al., 2007; Li et al., 2006; Vanhala et al., 2005; Kant et al., 53 
2011), pH (e.g., Bååth and Anderson, 2003; Vanhala, 2002), soil organic carbon composition 54 
(e.g., Cross and Sohi, 2011; Sanaullah et al., 2012), soil texture (e.g., Li et al., 2015), and soil 55 
moisture (e.g., Orchard and Cook, 1983; Howard and Howard, 1993; Wagle and Kakani, 2014; 56 
Jia et al., 2007).  57 
Among these factors, the pronounced influence of water availability (soil moisture) on the rate at 58 
which CO2 is produced within soil profiles is of particular interest, as this relationship indicates a 59 
direct feedback between the hydrologic cycle and the carbon cycle. Quantifying this relationship 60 
is vital to the prediction of carbon cycle dynamics in a changing climate (Luo et al., 2016). Many 61 
studies across a wide range of settings have demonstrated a positive correlation between soil 62 
respiration rate and moisture in arid and semi-arid systems, and a negative correlation in soils 63 
approaching saturation, with a peak in between (Davidson et al., 1998; Einola et al., 2007; 64 
Elberling, 2003; Euskirchen et al., 2003; Falk et al., 2005; Grant and Rochette, 1994; 65 
Grundmann et al., 1995; Hao et al., 2016; Harmon, 2009; Harmon et al., 2011; Howard and 66 
Howard, 1993; Husen et al., 2014; Jin et al., 2008; Kang et al., 2003; Mielnick and Dugas, 2000; 67 
Moncrieff and Fang, 1999; Pumpanen et al., 2003; Reichstein et al., 2003; Rey et al., 2005; Tian 68 
et al., 2010; Verburg et al., 2005; Wang et al., 2010). When soils approach full water saturation, 69 
pore wet-up and blockage combine to constrain the availability of oxygen by limiting the 70 
diffusion rate (Cook and Knight, 2003; Grant and Rochette, 1994; Skopp et al., 1990), resulting 71 
in diminished respiration across intact soil cores (Gabriel and Kellman, 2014). The factors 72 
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contributing to reduced respiration rates at low soil moisture contents are less clear. Two 73 
processes have been suggested to describe this response. First, the availability of accessible bio-74 
available carbon indirectly affects microbial activity as a result of decreased water connectivity 75 
as soil pores dry, which hinders the transport of dissolved organic matter and other nutrients 76 
(Blazewicz et al., 2014; Davidson et al., 2014; Schjønning et al., 2003; Skopp et al., 1990). 77 
Relatedly, some studies have suggested that the soil moisture-respiration relationship could stem 78 
from decreased organic carbon addition to soils via root exudates in drier conditions (Canarini 79 
and Dijkstra, 2015; Gorissen et al., 2004; Persson et al., 1995). The second process involves a 80 
direct limitation on respiration rate as a result of dormancy triggered by a decrease in soil 81 
moisture as a survival mechanism. Such a reduction of active microbial biomass capable of 82 
respiration thus results in an overall slower metabolism and reduced soil carbon respiration rates 83 
(Brockett et al., 2012; Lennon and Jones, 2011; Manzoni et al., 2014; Stevenson, 1977; Wang et 84 
al., 2015).  85 
The response of soil respiration rates to wetting events is also a transient feature. When soils are 86 
rewet after a prolonged period of dry conditions, it is common to observe a large pulse of CO2 87 
followed by a decrease to lower, steady state values (Borken and Matzner, 2009; Inglima et al., 88 
2009; Kim et al., 2010; Wu and Lee, 2011). This observation is commonly referred to as the 89 
Birch effect (Birch, 1958, 1960, 1964). The validity of the Birch effect has been suggested in 90 
both controlled incubation (Göransson et al., 2013; Kieft et al., 1987; Shi and Marschner, 2014; 91 
Unger et al., 2010) and field-scale systems (Cable et al., 2008; Xu et al., 2004; Yan et al., 2014). 92 
A recent study by Fan et al. (2015) demonstrated that this initial pulse can represent a major 93 
component of the total carbon respiration flux from soils, however, few models have the 94 
availability to capture this behavior.  95 
A wide variety of explanations for the Birch effect have been proposed. Among these, several 96 
studies have suggested extra-cellular enzymes (exoenzymes) produced by microbes for the 97 
purpose of solubilizing complex carbon to readily metabolized compounds remain active even in 98 
dry conditions (Blankinship et al., 2014). As a result, low molecular weight carbon accumulates 99 
during dry periods, leading to an initially high concentration when soil moisture rises again 100 
(Iovieno and Bååth, 2008; Lawrence et al., 2009; Manzoni et al., 2014; Meisner et al., 2015; 101 
Miller et al., 2005) and furthermore, a longer period of dry conditions results in the accumulation 102 
of soluble carbon. Here, we implemented this mechanism in the modeling frameworks described 103 
in Sect. 3 to capture dynamic behavior associated with the Birch effect. 104 
In addition, different microbial communities exhibit unique optimal effective saturation ranges 105 
(Barnard et al., 2013, 2015; Evans and Wallenstein, 2014; Lauber et al., 2013). This observation 106 
implies, for example, that a microbial population which is active at a low soil moisture may be 107 
dormant at higher moisture, leading to distinct activated microbial communities in the same soil 108 
sample. Moreover, the rate of activation following a change in effective saturation is unique to 109 
each microbial population (Blagodatskaya and Kuzyakov, 2013; Martiny et al., 2013; Placella et 110 
al., 2012; Schimel and Schaeffer, 2015). This variation in response times derives from the 111 
distinction between r- and K-strategies within the microbial community population (Andrews 112 
and Harris, 1986; Dorodnikov et al., 2009), where the former have evolved to take advantage of 113 
short term favorable conditions through rapid, energy inefficient population growth and the latter 114 
subsist under less optimal conditions through slower productivity and increased efficiency.  115 
In total, these studies illustrate a suite of complex and highly coupled relationships between the 116 
hydrology, microbiology and carbon dynamics of soils. As a result, a wide variety of models 117 
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have been developed for soil respiration as a function of soil moisture (Abramoff et al., 2017; 118 
Chen et al., 2011; Hashimoto and Komatsu, 2006; Lawrence et al., 2009; Manzoni et al., 2012; 119 
Moyano et al., 2012, 2013; Paul et al., 2003; Tian et al., 2010; Welsch and Hornberger, 2004). 120 
These approaches have involved a broad diversity of structures in the effort to achieve a more 121 
robust approach appropriate to a variety of soil types and locations. In particular, first-order 122 
kinetic rate expressions featuring simplified parameterizations for soil carbon mineralization are 123 
widely used in Earth system models, and have been successfully applied to simulate soil 124 
respiration in some natural settings (Todd-Brown et al., 2013). Though the simplified parameter 125 
set necessary for these functional forms is easily constrained by experimental datasets, and is 126 
particularly necessary in cases where available data are limited, recent studies have shown that 127 
such a simple model is not always able to explicitly demonstrate the transient changes 128 
accompanied by variations in soil moisture (Lawrence et al., 2009). Recently, process-based 129 
models relating respiration to moisture-dependent microbial functionality have been proposed 130 
(Manzoni et al., 2014, 2016). These process-based modeling frameworks can dynamically 131 
simulate soil respiration rate in changing moisture conditions, offering a promising approach for 132 
extending model applications reliably across a range of conditions. Thus, in dynamic systems 133 
where transient pulses in CO2 comprise a significant portion of the respiration flux (e.g. Fan et 134 
al., 2015; Meisner et al., 2015), use of a more complex, process-based model for respiration rate 135 
may be advantageous despite the cost of increased parameterization.  136 
Therefore, we evaluated the performance of a process-based approach featuring a dormancy 137 
model adapted from Manzoni et al. (2014), including the capacity to calculate the transition rates 138 
between active and dormant microbial states as a function of soil moisture, in comparison to a 139 
simpler first-order respiration model. Both models were calibrated using CO2 respiration rates 140 
obtained from a set of incubation experiments, using the shallow depth of a soil column collected 141 
from the East River watershed located near Gothic, Colorado, USA. The calibrated models with 142 
optimal parameter sets were then applied to each depth of the same soil profile, followed by a 143 
quantitative evaluation of their relative fidelity using an Akaike Information Criterion (AIC) 144 
method. 145 
 146 
2. Materials and methods 147 

2.1 Sample collection 148 
Soil samples were collected in the upper East River watershed within the Gunnison River basin, 149 
located near Crested Butte, Colorado, USA (Fig. 1). The upper East River is a high elevation 150 
watershed with an average elevation of 3350 m. Stream flow is dominated by snowmelt in spring 151 
and summer with the amount approximately equal to the total water demand (Markstrom and 152 
Hay, 2009). 153 
The sampling site for the current study is underlain by the calcareous shale from the Cretaceous 154 
Mancos Shale Formation, with colluvial sediments at the surface, ~3.5 km north-west of Rocky 155 
Mountain Biological Laboratory (RMBL). The predominant vegetation in this section of the 156 
catchment is sub-alpine meadow. The sampling site has a seasonal drainage environment with 157 
little or no slope, with an average annual temperature of 1 ºC and an average precipitation of 1.23 158 
± 0.26 m/year driven by both an annual monsoon season (~20 % of total precipitation) and as 159 
snowfall (Winnick et al., 2017). Though precipitation predominantly occurs in the winter and 160 
spring months, local soil moisture is significantly affected by summer rainfall (Harte et al., 1995).  161 
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Soil samples were collected in November, 2015 along Bradley Creek, a tributary of the East 162 
River. Soil cores were taken at ~50 cm intervals from a hand-augered hole to a maximum depth 163 
of 165 cm. After collection, samples were sealed in plastic bags and kept under cool, dark 164 
conditions until processing could be completed. Prior to incubations, all soils were air-dried for 165 
two weeks at ambient temperature (22 ºC) before crushed and sieved to 2 mm to remove the 166 
coarse fraction, consisting of large stones and biological material.  167 

2.2 Effective Saturation 168 
Water holding capacity was determined by wetting three subsamples of air-dried soils gradually 169 
until they became fully saturated. Samples were weighed before and after water addition to 170 
quantify the mass needed for the soils to fully saturate for all three subsamples. The average of 171 
the three numbers was used as the final saturated value with a standard deviation smaller than 5 % 172 
of the water mass, where the air-dried samples are considered 0 % (𝑆𝑎𝑡$%&'()*+), and 100 % 173 
represents full saturation (𝑆𝑎𝑡&*,). These values are subsequently reported as effective saturation 174 
(Se, defined as (𝑆𝑎𝑡&*./+% − 𝑆𝑎𝑡$%&'()*+)/(𝑆𝑎𝑡&*, − 𝑆𝑎𝑡$%&'()*+)) for the remainder of the paper. 175 

2.3 Soil Carbon Content 176 
An elemental analyzer (EA) was used to determine the composition of carbon in the soils prior to 177 
incubations. All EA measurements were performed using the Carlo-Erba NA 1500 analyzer (CE 178 
Elantech, Inc., Lakewood, NJ, USA*) at the Environmental Measurements Facility (EM1) at 179 
Stanford University. To measure the total carbon (TC) of the samples, 20-30 mg of ground soil 180 
samples were weighed into tin capsules and loaded into the analyzer. A standard method was 181 
used to measure total inorganic carbon (TIC) and total organic carbon (TOC) (Loeppert and 182 
Suarez, 1996). Briefly, 400 mg of ground soil sample was added to a scintillation vial. Then 4 183 
mL of 3M HCl(aq) was slowly added to the vial via a pipette to remove inorganic carbonate, and 184 
the vial was capped loosely. The vial was swirled occasionally for 15 minutes and the cap was 185 
removed to displace accumulated CO2 until the weight of the vial stopped changing. The solution 186 
was centrifuged to remove the supernatant, and the soil pellet was air-dried and ground with 187 
agate mortar and pestle, then 20-30 mg of ground soil samples was weighed into tin capsules and 188 
injected into the analyzer to measure the remaining TOC. TIC is the difference between TC and 189 
TOC (Table 1). Three subsamples from each soil depth were measured for both TC and TOC to 190 
test the accuracy and precision of the measurement (standard deviation shown in Table 1).  191 
2.4 Soil incubations 192 
Incubation vessels were constructed by drilling two holes in the caps of 948-ml glass canning 193 
jars. Plastic bulkhead fittings (1/4-inch outer diameter) were installed in the holes with epoxy to 194 
prevent gas leakage. Crack-resistant polyethylene tubing (1/4-inch outer diameter and 1/8-inch 195 
inner diameter) was connected to both sides of the bulkheads and a plastic one-way value 196 
attached to the external portion of the tubing to seal the chambers. Respiration was then 197 
quantified by circulating the headspace in each jar into an LICOR-8100 Infrared Gas Analyzer 198 
(Licor Biosciences, Lincoln, NE, USA*) to measure CO2 concentration. During measurements, 199 
the upper tube (closest to the cap) was attached to the inlet of LICOR-8100, and the lower tube 200 
(close to the soil) was attached to the outlet to facilitate circulation. 201 
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Incubation experiments were conducted by adding 75 grams of air-dried soil from three soil 202 
depth intervals (0-52 cm, 63-108 cm, 112-165 cm) to the incubation vessels, subject to 4 distinct 203 
Se values of 0, 33 %, 66 %, and 100 % by adding deionized water. All samples were initially 204 
purged with CO2 free air (zero air, SJ smith*) for over 10 times the size of the headspace and 205 
kept under 22 degrees Celsius throughout the experiment. Incubations were run over a 10-day 206 
period with daily sampling. After every analysis, the vessels were purged again with CO2 free air 207 
to reset the O2 and CO2 concentrations in the headspace. As a result, oxygen limitation to the 208 
overall respiration rate is partially mitigated by the replenishment of the headspace, however 209 
high fluid saturation levels in some of the experiments still support oxygen limited rates. All 210 
respiration rates are calculated by measuring the CO2 accumulated over the prior 24-hour 211 
interval, and thus should be considered as the average respiration rate of the previous day (Table 212 
2). 213 
 214 
3. Results 215 
The concentrations of TOC in each depth of the soil profile are given in Table 1. The results 216 
show that TOC decreases with depth at all three sites, which is expected as organic inputs 217 
associated with biological activities are most abundant at the surface and decline with depth. In 218 
addition, the TIC also decreases with depth, suggesting that the highest carbonate concentration 219 
occurs at a depth shallower than 52 cm at this sampling site. The TIC concentration is not further 220 
discussed in the scope of this paper. 221 
Respiration rates for all three soil depths at different effective saturations (Se = 0, 33 %, 66 % 222 
and 100 %) for the first day of incubation show similar patterns across all depths (Fig. 2, Table 223 
2), where respiration rates are positively correlated with effective saturation in dry conditions 224 
and negatively correlated in wet conditions. The peak respiration rate for both the shallow and 225 
intermediate depths lies around 66 % Se while the deepest depth displays a slight shift in 226 
maximum value towards 33 % Se.  227 
Respiration rates evolve with time in all three sampled depth intervals. This evolution is 228 
illustrated for the shallow depth soil sample for the four effective saturation values (Fig. 3). All 229 
respiration rates increase to a maximum value before decreasing to an apparent steady state, as is 230 
typical of the Birch Effect. The time to reach peak respiration rate differs across the range of 231 
effective saturations tested. At lower effective saturation (0 % and 33 %), the peak values appear 232 
approximately 24 hours after initiation of the incubation, while at higher moisture content (66 % 233 
and 100 %), this occurs approximately 48 hours after rewetting.  234 
We note that no replicates were performed as a part of the incubation experiments due to sample 235 
limitations, and there is certainly error associated with the measured rates. However, we note that 236 
the respiration data adequately illustrate the expected trend as a function of both soil moisture 237 
and time, which is the key point of the current study. Thus, we utilize the reported dataset in 238 
order to calibrate the modeling approaches described below as a means of demonstrating their 239 
capacity to reproduce commonly observed behavior. 240 
 241 
4. Model development 242 
For both models, the initial condition is generated to minimize the deviation of the model outputs 243 
from incubation experiment measurements, and kept consistent while simulating different Se. 244 
The sensitivity of the models to these initial conditions is explored further in Sect. 5.1. 245 
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4.1 First-order model 246 
In the current and following sections, all flux rate and compartmental concentration units are in 247 
gC m-3 soil/hour and gC m-3 soil, respectively, as in Manzoni et al. (2014).  248 
In our ‘first-order’ model framework, organic carbon is categorized into three groups: substrate 249 
carbon, soluble carbon, and biomass (Fig. 4a). Substrate carbon represents a complex carbon 250 
form that cannot be directly accessed by microbial communities for respiration. Through a 251 
solubilization process, this complex carbon is converted to soluble carbon, which is considered 252 
bioavailable for respiration and production of CO2. The solubilization rate is linearly dependent 253 
on the amount of substrate carbon (Lawrence et al., 2009), 254 

𝑅&4+,'6 = 𝑘&4+,' × 𝐹;%,6 × 𝐶&)=,'                                                  (1) 255 

where 𝑅&4+,' is the concentration of soluble carbon (gC m-3), 𝑘&4+,' is the solubilization rate 256 
constant (hour-1), and 𝐶&)=,' is the concentration of the substrate carbon (gC m-3). 𝐹;%,'  is a non-257 
dimensional factor constraining the solubilization and respiration rates based on Se (Eq. (2)). The 258 
subscript i denotes a given subcategory of the total organic carbon (e.g. allowing consideration of 259 
a range of recalcitrance), assuming different forms of substrate carbon will form into consistently 260 
different forms of soluble carbon. Similarly, the subscript ‘j’ denotes different subcategories of 261 
microbial communities that contribute to the solubilization of such substrate carbon. 262 

The behavior of 𝐹;%,6 is such that a sharp linear increase occurs as a function of Se up to a 263 
threshold, 𝑆𝑒,?$%&,6 followed by a parabolic decrease in respiration for values of Se above the 264 
threshold until total saturation is reached (Gusman and Mariño, 1999; Cabon et al., 1991; 265 
Porporato et al., 2003): 266 

𝐹;%,6 = @
;%

;%ABCDE,F
, 0 ≤ 𝑆𝑒 < 𝑆𝑒,?$%&,6	

;%ABCDE,F
;%

, 𝑆𝑒,?$%&,6 ≤ 𝑆𝑒 ≤ 1
                                                 (2) 267 

The threshold effective saturation is defined as the value of Se at which the respiration rate 268 
reaches its maximum. Different 𝑆𝑒,?$%&,6 have been applied to uptake pathways simulating the 269 
distinct optimal Se for different microbial communities. An arbitrary choice of 𝑆𝑒,?$%&,6 = 60	% 270 
is presented as an illustrative example of the behavior of this factor (Fig. 5). 271 

Though this application of 𝐹;%,6  in the solubilization rate expression is consistent with prior 272 
studies (Lawrence et al., 2009; Parton et al., 1987), we note that this form of moisture constraint 273 
is normally used to describe an exoenzyme rate control (Schimel and Weintraub, 2003), which is 274 
not included in this modeling scheme. In addition, previous studies have shown that while the 275 
use of this exoenzyme-catalyzed solubilization rate may be beneficial under certain rewetting 276 
events, this approach often results in poor reproduction of constant moisture content behavior 277 
relative to a simpler first-order solubilization rate (Lawrence et al. 2009). In that case, a direct 278 
comparison of the two versions of the first-order model using different solubilization expressions 279 
(Eq. (1) or (3)) is necessary (Fig. 6a, Table 3.):  280 

𝑅&4+,' = 𝑘&4+,' × 𝐶&)=,'                                                         (3) 281 

The result explicitly shows that the respiration rate for the lower Se exceeds that for the high Se 282 
after approximately 85 hours with application of Eq. (3), which contradicts the data. In addition, 283 
we observe that the use of this expression does not influence the monotonic nature of the 284 
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respiration rate as a function of carbon availability. Thus, we conclude that Eq. (1) is superior for 285 
the first-order model, and is used throughout the remainder of the paper.  286 

The total microbial respiration rate (i.e. mineralization from soluble carbon to CO2),	𝑈OP, is 287 
treated as the sum of a series of simple pseudo-first-order kinetic rate expressions with respect to 288 
n subcategories of different soluble organic carbon classes: 289 

𝑈OP = ∑ 𝑘)/,' × 𝐹;%,6 × 𝐶&4+)=+%,'
R,.
',6                                               (4) 290 

where 𝑘)/,' is the first-order maximum uptake rate constant (hour-1), and 𝐶&4+)=+%,' is the 291 
concentration of soluble carbon belonging to a given compositional subgroup (gC m-3).  292 
Net respired carbon is a result of two metabolic pathways: catabolic and anabolic. In the 293 
catabolic pathway, soluble carbon is converted into CO2 for energy production, while in the 294 
anabolic pathway, it is assimilated by the microbes as new biomass, resulting in biomass growth 295 
(Lawrence et al., 2009; Manzoni et al., 2014). In this first-order model, it is assumed that 90 % of 296 
respired carbon is converted to CO2, leaving the remaining 10 % for the anabolic growth 297 
pathway.  298 
Microbial turnover, including deceased and lysed microbial cells, are treated as a form of soluble 299 
carbon and are thus bioavailable (Manzoni et al., 2014). The total mortality rate is considered the 300 
sum of first-order functions of ‘m’ subcategories of living biomass (e.g. allowing consideration 301 
of a range of response rates and optimal Se values) for different microbial subcategories:  302 

𝑅𝑀 = ∑ 𝑘.4$ × 𝐵𝑖𝑜6.
6WX                                                            (5) 303 

where 𝑅𝑀 is the amount of biomass that dies in a given time increment (gC m-3 hour-1), 𝑘.4$ is 304 
the mortality rate constant (hour-1), and 𝐵𝑖𝑜6 is the biomass concentration (gC m-3). For 305 
simplicity, we assume the mortality rate constant is identical for all microbial populations. 306 
These series of equations were implemented in a commercial software package (Matlab Release 307 
2016a, The MathWorks Inc., Natick, MA, 2016*). Simple mass balance equations are 308 
implemented in combination with Eq. (1-2) and (4-5) to account for all inputs and outputs across 309 
each carbon pool (Fig. 4a). For example, the substrate carbon pool is calculated as  310 

𝐶&)=R%Y = 𝐶&)=4+( − 𝑅&4+ × ∆𝑡                                                     (6) 311 

where ∆𝑡 is the duration of each time step (hour). 312 
The performances of the first-order model with a single microbial community and category of 313 
organic carbon (m, n = 1, referred to as FO1), and two microbial communities along with two 314 
subcategories of organic carbon (m, n = 1, referred to as FO2) are further evaluated in Sect. 5.1 315 
and 5.2, respectively.  316 

4.2 Dormancy model 317 
The second model, which we refer to as the ‘dormancy’ model, is modified from the approach of 318 
Manzoni et al. (2014) to allow for changes in the biomass in response to changes in effective 319 
saturation. Within the dormancy model, the biomass pool is subdivided into two subcategories, 320 
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active biomass and dormant biomass, with the other two carbon pools remaining the same (Fig. 321 
4b), which avoids the uncertainty of an additional enzyme parameter (𝑆𝑒,?$%&,') and poor 322 
reproduction of constant moisture using Eq. (1) as noted by Lawrence et al. (2009). Thus we 323 
proceed with a first-order solubilization rate (Eq. (3)) for the dormancy model. In doing so, the 324 
solubilization process is assumed to be independent of shifts in the microbial biomass such that 325 
enzyme activity is not a function of Se. This approach distinguishes the solubilization rate of the 326 
dormancy model (Eq. (3)) from that of the first-order model (Eq. (1)) in that the former includes 327 
a non-dimensional moisture scalar. However, we state that the solubilization rate express chosen 328 
for each of the two models is optimal, ensuring the robustness of the comparison between the 329 
two models. 330 
Distinct from the first-order model described in Sect. 4.1, the total microbial respiration rate (UD) 331 
is treated here as a dual Monod rate law, which is a function of the amount of active biomass and 332 
the availability of both O2 and soluble carbon, allowing both soluble carbon and O2 to be the 333 
limiting factor in the reaction: 334 

𝑈[ = ∑ 𝑘)/,6 × 𝐵𝑖𝑜*\,']%,6 ×
^E_`ab`D,c

d^E_`ab`D,ce^Bf`g,ch
× Pi(fj)

dPi(fj)ekBf`gh
R,.
',6                          (7) 335 

where	𝑘)/,6 is the maximum uptake rate constant (hour-1), 𝐵𝑖𝑜*\,']%,6 is the concentration of 336 
(active) biomass (gC m-3),	𝐶&4+)=+%,' is the concentration of soluble carbon (gC m-3), and 𝐶?*+l,' is 337 
the amount of soluble carbon where the uptake rate is 0.5 of the maximum value (also known as 338 
the half saturation constant, gC m-3). The subscripts i and j denote different subcategories of 339 
soluble carbon and microbial communities respectively, similar to the first-order model, and the 340 
superscripts n and m denote the quantity of soluble carbon and microbial community 341 
subcategories respectively. The 𝑂n(*o) is dissolved oxygen concentration in water (gC m-3) in 342 
equilibrium with a specified partial pressure of O2 (bar), and 𝐾?*+l  is the half saturation constant 343 
of the dissolved oxygen concentration (gC m-3). Similar to the first-order model, 90 % of the 344 
total respired carbon is converted to CO2, leaving the remaining 10 % as anabolic growth. The 345 
use of a dual Monod rate expression for the microbial respiration process allows both soluble 346 
carbon and O2 to be the limiting factor in the reaction.  347 
We utilize a simplified version of the Manzoni et al. (2014) expressions for time-dependent rates 348 
of microbial activation and dormancy. The rates of biomass activation and dormancy are 349 
modeled as a function of Se with the following expressions: 350 

𝑅𝑎𝑡𝑒*→(,6 = 𝑘,$*R,6 × 1/(1 + (
;%Efst`D

;%Bf`g,F
)=) × 𝐵𝑖𝑜*\,']%,6                               (8) 351 

𝑅𝑎𝑡𝑒(→*,6 = 𝑘,$*R,6 × 1/(𝑎 × (
;%Bf`g,F
;%Efst`D

)= + 1) × 𝐵𝑖𝑜(4$.*R,,6                           (9) 352 

where 𝑆𝑒&*./+%  is effective saturation of the sample, and the variable 𝑘,$*R,6 is the maximum 353 
transition rate constant (hour-1), while 𝑆𝑒?*+l,6 is the saturation at which Eq. (8) is equal to 354 
0.5 × 𝑘,$*R,6. Different 𝑆𝑒?*+l,6 can be derived from the original form of Eq. (8) and (9), as in 355 
Manzoni et al. (2014), assuming a constant ratio between the two values. Parameter ‘a’ is used in 356 
Eq. (9) to simplify the functional form by using the same 𝑆𝑒?*+l,6  for both rates. The pore size 357 
distribution parameter ‘b’ is adjusted from the Brooks-Corey equation based on a water retention 358 
curve. In this study, the b value employed by Manzoni et al. (2014) is used (Table 4).  359 
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Eq. (8) and (9) enable a time-dependent response in the transition between active and dormant 360 
biomass to perturbations in effective saturation. The two competing rates represent different 361 
amounts of biomass converting unidirectionally from 𝐵𝑖𝑜*\,']%,6 to 𝐵𝑖𝑜(4$.*R,,6 (𝑅𝑎𝑡𝑒*→(,6) and 362 
from 𝐵𝑖𝑜(4$.*R,,6 to 𝐵𝑖𝑜*\,']%,6 (𝑅𝑎𝑡𝑒(→*,6), and this competition eventually stabilizes in a 363 
balance between the two rates such that a dynamic equilibrium describes the population of both 364 
active and dormant biomass. Microbial mortality is treated in the same manner utilized for the 365 
first order model (Eq. (4)), with distinct mortality rate constants assigned for active and dormant 366 
biomass (referred to as 𝑘.4$w* for active biomass, and 𝑘.4$w( for dormant biomass). 367 
An example of this behavior is provided in Fig. 7. This example illustrates the characteristic 368 
response to a wetting event, which replaces the static treatment used in Eq. (4), and the time 369 
scale over which equilibrium is reestablished for an assumed rate constant of 1 hour-1. All the 370 
parameters used in this simulation are reported in Table 4.  371 
As with the first order model described previously, the performance of the dormancy model with 372 
a single microbial community and category of organic carbon (m, n = 1, referred to as DM1), and 373 
two microbial communities along with two subcategories of organic carbon (m, n = 1, referred to 374 
as DM2) are further evaluated in Sect. 5.1 and 5.2, respectively.  375 
 376 

5. Discussion 377 
5.1 FO1 and DM1 application to incubation data 378 
The FO1 model was applied to the incubation experimental results described in Sect. 3, where 379 
the time series data for 66 % and 33 % Se from the shallow soil depth were used as a base case 380 
(Fig. 6a). The results show reasonable agreement with the data, however, in this simplified 381 
approach, respiration rate is only capable of monotonic decrease (if the initial 𝑅&4+ < 𝑈OP), or 382 
increase (if the initial 𝑅&4+ > 𝑈OP) due to the first order dependence on carbon concentration. As 383 
a result, the model is not capable of accurately representing the transient increase in respiration 384 
rate initially observed following a rewetting event (i.e. the Birch effect).  385 
Similarly, DM1 was applied to the incubation results for 66 % Se as a base case. We observed a 386 
significant improvement in model representation of the transient changes in CO2 respiration rate 387 
accompanied by the rewetting event at early time (Fig. 8) with comparable parameter values 388 
(Table 4). The transition of the biomass from an initially fully dormant state to predominantly 389 
active was triggered by the instantaneous increase in Se from 0 to 66 % at the start of the 390 
simulation. A lagged response in respiration rate was presented following this instantaneous 391 
rewetting, which successfully simulated the experimental data. With further time, the initially 392 
rapid rate of CO2 production decreases as the excess soluble carbon initially available is depleted. 393 
Ultimately, the rate of soluble carbon consumption (Eq. (7)) decreases to a value which is 394 
balanced by the rate of substrate carbon solubilization (Eq. (3)) and the system approaches a 395 
steady state. Oxygen concentration was treated as a constant rather than a limiting factor in this 396 
model, assuming that the periodic replenishment of O2 implemented in our incubation 397 
experiments was sufficient to compensate for consumption due to aerobic respiration. It is not 398 
surprising that DM1 is capable of generating more accurate results than FO1 with the extra 399 
flexibility provided by the additional parameters. The extent to which improved accuracy is 400 
offset by the additional parameters is further considered in a subsequent section (Sect. 5.3).  401 
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The initial condition of a simulation obviously exerts a substantial impact on any transient model 402 
output. In the current approach, the starting concentrations of different carbon pools are poorly 403 
constrained and thus a model sensitivity analysis is provided. The simulations assume a 404 
reasonable assumption for the value of initial soluble carbon concentration (Tables 3 & 4), and 405 
include a ±20 % variation (80 % to 120 %) to illustrate sensitivity for all four models considered 406 
in this paper (FO1, FO2, DM1 and DM2). Although the predicted respiration rates are positively 407 
correlated with the initial soluble carbon concentration, this variation gradually fades away as 408 
respiration approaches steady state, where the rate of soluble carbon consumption through 409 
respiration is balanced by the dissolution of substrate carbon. 410 
To capture the dynamic response of soil respiration to variable Se, it is critical that the parameter 411 
values used in DM1 are generally applicable across the depth profile of the East River soils. 412 
Model fidelity is tested by applying the same parameter values calibrated based on the 66 % Se 413 
shallow soil sample datasets to the values obtained at 33 % Se (Fig. 8). The results clearly 414 
indicate that this parameterization is unable to reproduce comparable results across a range of 415 
saturations. Even though the modeled 33 % Se peak value generally agrees with incubation data, 416 
which is lower than that of 66 % Se due to the lower fraction of active biomass, the model results 417 
in a slower activation of dormant biomass which retards the time to peak respiration in 418 
comparison to the measured data. The two more complex models (FO2 and DM2) are further 419 
evaluated in the following section (Sect. 5.2).  420 
5.2 FO2 and DM2 application to incubation data 421 
To improve upon the base case scenario during the transient period following a rewetting event, 422 
FO2 and DM2 were tested in a manner similar to the procedure described for FO1 and DM1. 423 
Two distinct microbial populations (m = 2) were assumed to exist in the soil samples: an r-424 
selection population, capable of activating rapidly after rewetting, and a K-selection population 425 
subject to a longer transient activation period. In addition, the substrate and soluble organic 426 
carbon pools were also subcategorized into labile and recalcitrant subcomponents. The models 427 
were parameterized such that the r-selection microbial category is more adaptable to dynamic 428 
environments. This includes a faster activation rate at lower Se and a higher mineralization rate 429 
constant for labile organic carbon, however, these r-strategists were assumed to have negligible 430 
capacity to mineralize recalcitrant carbon. In contrast, the K-selection microbial subcategory is 431 
characterized by a slower response time with the capacity to utilize both labile and recalcitrant 432 
carbon. These differences in rate between the two microbial pools were achieved in the model by 433 
variations in 𝑘&4+,' (Eq. (1) and (3)), 𝑆𝑒,?$%&,6 (Eq. (2)), and 𝑘)/,' (Eq. (4), Table 3). Despite this 434 
additional complexity, the model performance for FO2 was not improved compared to FO1 (Fig. 435 
6b). Based on these results, we conclude that the monotonic trend in CO2 respiration rate 436 
produced by such a first-order approach is largely unaffected by both the extent to which the 437 
carbon pools are subdivided into a range of reactivity, and the extent to which the microbial 438 
communities are subdivided in terms of both carbon utilization efficiency and moisture-439 
dependent activation rate. Thus, FO1 is considered more efficient for the first-order approach, 440 
and is utilized throughout this paper as a comparison to the dormancy model. 441 
Because the principle disparity between the dormancy model and the observed trends is the clear 442 
difference in timing of peak CO2 production between the 33 % and 66 % Se experiments, a 443 
similar approach was taken in applying two microbial communities (m = 2) with distinct 444 
parameter values as in FO2. The sensitivity of DM1 to differences in 𝑆𝑒?*+l,6 and 𝑘)/,6 is 445 
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illustrated (Fig. 9a and 9b) for a range of values is first checked while holding all other 446 
parameters constant (Table 4, Sesample set to 0.7). A lower 𝑆𝑒?*+l,6  value results in faster 447 
activation of dormant biomass (Eq. (9)) and slower dormancy of active biomass (Eq. (8)), while 448 
a larger 𝑘)/,6 value induces more CO2 produced in one time step (higher peak value) leaving less 449 
available soluble carbon in the system. Accordingly, a lower 𝑆𝑒?*+l,6 and larger 𝑘)/,6 result in a 450 
more rapid increase in the respiration rate following rewetting, illustrated by an earlier time of 451 
peak CO2 production with a higher peak value, leaving less available soluble carbon in the 452 
system, and thus an earlier decrease to steady state rates. Though the model sensitivity to the 453 
𝑆𝑒?*+l,6 and 𝑘)/,6 parameters are comparable, we note that the 𝑆𝑒?*+l,6 parameter alters the point 454 
of dynamic equilibrium between the active and dormant biomass, while 𝑘)/,6 changes the rate of 455 
microbial uptake regardless of the balance between the two biomass forms.   456 
Though in principle we are expanding the dormancy model in the same manner as we did for the 457 
first-order simulation, in practice the complexity with which activation rates are treated in the 458 
dormancy-based approach requires further consideration of how multiple biomass sub-459 
communities should be implemented. Specifically, if optimal Se conditions support the rapid 460 
activation of a given microbial population, then it follows that unfavorable Se conditions can 461 
inhibit a given community (Barnard et al., 2013, 2015). This inhibition was not included in the 462 
first-order model with two microbial communities (m = 2) in that it is fundamentally a limiting 463 
factor of respiration rate, which cannot change the monotonic trend induced by the first-order 464 
kinetics. In contrast, such inhibition is vital in the dormancy kinetics and should significantly 465 
alter the peak height and position of the simulation. In order to impose this constraint on the 466 
rapidly activating portion of the biomass in the current model, an additional Se dependent 467 
inhibition factor is added to Eq. (7) specifically for the two types of microbial populations j, 468 
representing r- and K-strategists, and two types of organic carbon subcategories i, representing 469 
labile and recalcitrant components: 470 

𝑈'W+*=,6W$ = 𝑘)/,$ × 𝐵𝑖𝑜*\,']%,$ ×
^E_`,`fb

d^E_`,`fbe^Bf`g,`fbh
× Pi(fj)

dPi(fj)ekBf`gh
× xXw(n;%Efst`DwX)y/z

n
{     (10) 471 

and 472 

𝑈'W$%\,6Wk = 𝑘)/,k × 𝐵𝑖𝑜*\,']%,k ×
^E_`,CD|

d^E_`,CD|e^Bf`g,CD|h
× Pi(fj)
dPi(fj)ekBf`gh

× x(n;%Efst`DwX)y/z＋X
n

{   (11) 473 

𝑘)/,$ and 𝑘)/,k  are maximum uptake rate constants (hour-1) specific to the 𝐵𝑖𝑜*\,']%,$ and 474 
𝐵𝑖𝑜*\,']%,k  subpopulations, respectively (Table 4). Furthermore, the r-selection biomass is 475 
assigned an 𝑆𝑒?*+l = 0.25 so that it is capable of activation at lower Se with 𝑘,$*R = 1 (fast 476 
activation, Eq. (8) and (9), [time-1]), while the K-selection biomass is assigned an 𝑆𝑒?*+l = 0.55, 477 
thus restraining its activity under lower Se, with 𝑘,$*R,6 = 1/60 (slow activation, Eq. (8) and (9), 478 
[time-1]). 479 
This form of inhibition is chosen because the functions provide valid numbers across the full 480 
range of Se values. Moreover, this functional form returns a value of 1 when Se = 100 % and 0 481 
when Se = 0 for K-selection biomass, thus limiting the respiration rates at lower Se values for the 482 
K-selection biomass, with a gradient at intermediate values. Meanwhile, the opposite behavior is 483 
specified for the r-selection biomass, thus limiting their respiration capability at higher Se values 484 
(Fig. 10).  485 
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Employing this adjusted version of the model (DM2), we again tested the ability to reproduce the 486 
respiration datasets corresponding to multiple Se values for a common soil sample after 487 
calibration (Fig. 11a). Incubation results for 100 % Se were absent in this simulation since our 488 
modeling approach included a constant O2 concentration, which contradicts the experimental 489 
condition where O2 is limited in the pore space at 100 % Se. DM2 shows clear improvement in 490 
simulating soil respiration data with a single parameter set (Table 4) across a range of Se. Both 491 
shallow and intermediate depth soil sample results are accurately reproduced by the model (Fig. 492 
11b, 11c, Table 4), where the only difference in parameter values differentiating the two sets of 493 
simulations is the amount of starting substrate carbon based on the EA results (Table 1). The 494 
model somewhat over-predicts the respiration rate of deep soil samples. This may result from 495 
chronic oxygen limitation at these depths (112-165 cm) in the field, thus leading to a distinct 496 
microbial community more suited to suboxic conditions (Arora et al., 2016; Long et al., 2015).  497 

5.3 Model precision vs. cost 498 
Cubic interpolation was used to estimate the rate between incubation data points, allowing us to 499 
integrate both the model output and incubation data through time (Fig. 12a). The resulting 500 
cumulative CO2 as a function of time estimated by both FO1 and DM2 was then compared 501 
against incubation data (Fig. 12b) to quantitatively assess the accuracy of each simulation. Even 502 
though both models over-predicted the cumulative CO2 concentration, we observed that FO1 503 
showed a relatively large over-prediction of the amount of CO2 produced in response to a 504 
wetting event. This relatively large over-prediction by the first-order model was due to the 505 
disparity between the predicted high respiration rate resulting from the monotonic drop and the 506 
low respiration rate observed at early time. In comparison, DM2 showed much better agreement 507 
to the data for the first ~100 hours, illustrating a better performance with variable Se. The ratio of 508 
integrated CO2 concentration between the incubation data and outputs from the two models 509 
illustrate the relative performance of the two approaches (Fig. 12c). Since the interpolated rates 510 
from incubation experiments are consistently lower than outputs from both models (Fig. 12b), 511 
the ratio of incubation/model CO2 values fall between 0 and 1 (Fig. 12c), where lower values 512 
indicate poorer agreement with the experimental data, and 1 indicates an exact match. This 513 
exercise demonstrates that the ratio of FO1 is consistently lower than that of DM2 for all times 514 
less than 100 hours, indicating that the first-order model cannot accurately simulate the transient 515 
changes in respiration rate after soil is rewet (i.e. the Birch effect). After approximately 100 516 
hours, both models establish close agreement to the data (ratio of integrated CO2 ~0.9), meaning 517 
they are equally accurate at steady state respiration. Thus, in general, the dormancy modeling 518 
approach is necessary for accurate representation of dynamic responses to changing Se over short 519 
timescales, such as in our incubation experiments, with the implementation of a dynamic 520 
biomass activation process. 521 
However, we recognize that additional parameterization increases the accuracy of a model at the 522 
expense of both computational efficiency and parameter constraint. Thus, the Akaike 523 
Information Criterion (referred to as AIC, Akaike, 1998), which takes both the number of 524 
parameters and the goodness of fit into consideration, was applied to score the two models. The 525 
Residual Sum of Squares (RSS) was calculated between incubation data and model output for 526 
three depths of soil samples under 33 % and 66 % Se as follows, 527 

𝑅𝑆𝑆 = ∑ (𝑀𝑂~ − 𝐼𝑛~)n
/
~WX                                                   (12) 528 
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where 𝑀𝑂~ is the model output and 𝐼𝑛~ is the incubation data. The subscript ‘k’ denotes 529 
different data points in a given depth and Se, and the superscript ‘p’ represents the total quantity 530 
of data points.  531 
While RSS values illustrate the goodness of fit for the two models, the number of parameters is 532 
included in the AIC calculation as, 533 

𝐴𝐼𝐶 = 𝑛 log(𝑅𝑆𝑆 𝑛⁄ ) + 2𝑙                                                 (13) 534 
where n and l represent the number of data points and the number of parameters respectively. 535 
The AIC value of the two models are listed in Table 5. 536 
The results of these model-data comparisons show that the dormancy model not only achieves 537 
higher accuracy while simulating the Birch effect, but obtains a lower AIC value with soils 538 
above the 108 cm depth interval, indicating that this improvement outweighs the extra cost and 539 
uncertainty accompanied by the increased model complexity. In contrast, the performance of the 540 
first-order model appears superior according to its AIC value in simulating the deepest soils at 541 
66 % Se.  542 
We note that the deep-soil component of this sample set corresponds to approximately 13 % of 543 
the total respiration taken over the shallow, middle and deep depths. Thus, in the scope of our 544 
study, we conclude that DM2 will serve as a better tool in predicting the CO2 flux of a whole soil 545 
profile in most circumstances. Moreover, recent studies have demonstrated that Birch effects of 546 
this nature can last over the duration of weeks to months and in some ecosystems they may 547 
produce over 50 % of the total respired CO2 (Fan et al., 2015). The inability to capture this Birch 548 
dynamic in the first-order framework may generate even larger errors under environmentally 549 
relevant conditions, indicating that application of DM2 is cost effective and necessary in 550 
simulating environments where Birch effects are essential, especially where long periodicity is 551 
expected. 552 
In addition, we note that though the deep soil organic carbon concentration is relatively small 553 
compared to shallow depths, and contributes less than 13 % of the total respiration, in total this 554 
deep soil storage constitutes a significant terrestrial organic carbon stock across a broad diversity 555 
of environments. This in turn represents a potentially significant source of atmospheric CO2 if 556 
such carbon were to become mobilized or otherwise biologically available (e.g. disturbances 557 
(Trumbore, 2009)). Previous studies have employed a diversity of methods, including 558 
radiocarbon dating (14C), near edge X-ray absorption fine structure (NEXAFS) spectrometry, and 559 
differential scanning calorimetry (DSC), to explore the chemical properties and stabilization 560 
pathways of deep-soil organic carbon (Kleber et al., 2011). However, detailed modeling 561 
approaches predicting the behavior of the deep-soil organic carbon are sparse. The results of this 562 
model comparison suggest that respiration of deep-soil carbon in our samples is appropriately 563 
modeled with a simplified first-order rate law rather than the dormancy rate law under conditions 564 
analogous to rapid surface exposure, though this is based on a limited dataset and requires further 565 
constraint. This difference may be related to more stable, high moisture in-situ conditions, 566 
resulting in a dominant microbial community insensitive to moisture variation.  567 

5.4 Future directions 568 
Another potentially significant factor is the timespan over which Se changes during a wetting or 569 
drying event. Shifts in the Se values in the current study were implemented as an instantaneous 570 
change from 0 to a certain value at the beginning of the incubation. Though this is valid for the 571 
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present experimental design, a gradual increase of Se from low to high is commonly observed in 572 
reality as the result of extended and compounding periods of precipitation and dry out (Borken et 573 
al., 2003). Based on the equations developed herein, we note that such a time-dependent change 574 
in Se can support a transient increase in respiration rate using the first-order model (i.e. the 575 
monotonic nature shown here would be alleviated). However, this would still omit the lagged 576 
respiration peak generated using the dormancy model. Such cases require further testing, as 577 
would be provided by a direct comparison of the performance of two models simulating one 578 
identical dataset from in situ measurements over multiple precipitation events. This will be 579 
addressed in subsequent studies using the East River Watershed datasets.  580 
Finally, before applying the two models to in situ measurements, we recognize that the effects of 581 
transport limitation are vital, and still missing from the current laboratory-based study, even 582 
though the dormancy modeling approach can in theory provide soil respiration predictions in 583 
dynamic hydrologic settings. In particular, a fixed O2 concentration is set throughout the 584 
simulations, assuming O2 is never a limiting factor, yet clearly some contribution from oxygen 585 
limitation at high Se values is demonstrated in the data. While this effect is minor in the current 586 
experimental conditions, in natural environments, respiration can be limited by low O2 587 
concentration resulting from low replenishment rates at high Se (Eq. (9) and (10)) in that gas 588 
diffusion is negatively correlated with Se (Pingintha et al., 2010). Under these conditions, our 589 
current model could potentially over-estimate the respiration rate. Thus, an important expansion 590 
of the process-based dormancy modeling approach (Eq. (6-10)) will be integration into a 591 
reactive-transport modeling framework capable of linking the reaction network to gas and fluid 592 
phase transport across intact soil columns. 593 

 594 
6. Conclusion  595 
Our incubation results show a positive correlation between CO2 respiration rate and Se under dry 596 
conditions and a negative correlation when soils approach saturation, similar to previous studies. 597 
Dynamic shifts of soil respiration rates accompanied by dry-wet cycles (i.e. the Birch effect) are 598 
also found in the incubation experiments with distinct peak heights and positions at different Se 599 
values. An adjusted form of the reaction network developed by Manzoni et al. (2014), referred to 600 
as the dormancy model, was built and compared against a widely-applied first-order model by 601 
evaluating their performances in simulating the experimental data. With an adjustment that 602 
allows the activation of unique microbial communities at distinct effective saturations, DM2 603 
displays a better representation of the data, particularly in simulating temporal patterns of the 604 
Birch effects. After evaluating both FO1 and DM2 with consideration of the quantity of 605 
parameters, we conclude that despite the better performance of FO1 while simulating the 606 
decomposition of deep soil organic carbon, the implementation of moisture-dependent activation 607 
and dormancy rates provides an improved means of quantifying and predicting soil carbon 608 
respiration of a soil column under dynamic hydrologic conditions.  609 
Because soil organic carbon is a significant potential source of CO2 to the atmosphere, this 610 
improved simulation accuracy provides a better estimation of the budget of soil respired CO2, 611 
which can potentially be further utilized to constrain terrestrial carbon fluxes. Finally, we note 612 
that the implementation of the current reaction network to a reactive-transport framework is 613 
necessary and holds the potential to provide notably improved performance in the simulation of 614 
soil carbon respiration across intact cores. 615 
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Sample 
Name 

Depth Carbon 
(wt. %) 

Carbon 
stdev 

Total 
Organic 
Carbon 
(wt. %) 

Total 
Organic 
Carbon 
stdev 

Total 
Inorganic 
carbon 
(wt. %) 

BCM.top.1 0-52 2.64 0.03 2 0.41 0.63 
BCM.top.2 0-52 2.54 0.05 2.07 0.32 0.46 
BCM.mid.1 63-108 1.71 0.01 1.44 0.08 0.27 
BCM.mid.2 63-108 1.67 0.06 1.43 0.02 0.23 
BCM.bot.1 112-165 1.04 0.12 0.9 0.02 0.14 
BCM.bot.2 112-165 0.96 0.01 0.89 0.03 0.07 

Table 1. Soil carbon content over a range of aggregated depths measured by EA.
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Incubation time (h) 

   

0 24 48.5 72.5 96 139.5 186.5 

 

Soil depth (cm) Moisture content (%) CO2 flux (μmol/g soil/day)  

BCM-top-0 0-52 0 0 0.151 0.080 0.064 0.038 0.026 0.028 
BCM-top-1 33 0 3.106 2.189 1.689 1.449 1.150 0.902 
BCM-top-2 66 0 4.808 5.307 3.222 2.310 1.697 1.317 
BCM-top-3 100 0 2.585 2.906 2.662 2.118 1.711 1.563 
BCM-mid-0 63-108 0 0 0.309 0.216 0.163 0.101 0.077 0.071 
BCM-mid-1 33 0 1.705 1.392 1.116 0.795 0.646 0.562 
BCM-mid-2 66 0 2.235 3.188 2.084 1.257 0.909 0.795 
BCM-mid-3 100 0 1.181 1.669 1.320 1.034 0.870 0.831 
BCM-bot-0 112-165 0 0 0.406 0.253 0.178 0.096 0.063 0.061 
BCM-bot-1 33 0 1.279 0.667 0.469 0.258 0.183 0.177 
BCM-bot-2 66 0 1.140 0.834 0.664 0.385 0.309 0.296 
BCM-bot-3 100 0 0.610 0.553 0.366 0.365 0.318 0.299 

Table 2. CO2 respiration data from incubation experiments. 
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Table 3. Parameter inputs for the first-order model.

 
FO1 FO2 Description 

PARAMETER 
   ksol,1 (1/hour) N/A 5.00E-04 

 ksol,2 (1/hour) 5.00E-05 5.00E-05 Decomposition rate constant 
fs (unitless) 0.1 0.1 Porportion of carbon used for microbial growth 
fe (unitless) 0.9 0.9 Porportion of carbon used for microbial respiration 
kup,1 (1/hour) N/A 4.00E-02 Microbial uptake rate constant for fast-responding biomass 
kup,2 (1/hour) 2.00E-02 2.00E-02 Microbial uptake rate constant for slow-responding biomass 
kmor 4.17E-05 4.17E-05 Mortality rate constant for biomass 
Sethres,1 (unitless) N/A 0.25 Threshold effective saturation 
Sethres,2 (unitless) 0.6 0.55 Threshold effective saturation 
INIT. CONDITION 

   Se Variable Variable 
 C (mass fraction) 0.02 0.02 (upper), 0.014 

(middle), 0.009 (lower) 
Total carbon fraction 

Ctotal (gC/m3H2O)  C*1518720 C*1518720 Total carbon concentration (unit converted from C) 
Csub,1 (gC/m3H2O)  N/A 1/4*0.875*  Concentration for substration carbon 
Csub,2 (gC/m3H2O)  0.88*  3/4*0.88*  Concentration for substration carbon 
Csoluble,1 (gC/m3H2O)  N/A 1/4*0.025*        ± 20%  Concentration for soluble carbon 
Csoluble,2 (gC/m3H2O)  0.02*        ± 20%  3/4*0.02*        ± 20%  Concentration for soluble carbon 
Bio1 (gC/m3H2O)  N/A 1/4*0.1*  Concentration for fast-responding biomass 
Bio2 (gC/m3H2O)  0.1*  3/4*0.1*  Concentration for slow-responding biomass 

C  total

Ctotal

Ctotal

C  total

C  total
C  total

Ctotal

C  total
C  total
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 DM1 DM2 Description 
PARAMETER    a (unitless) 20 20 Transition coefficient 
ksol,1 (1/hour) N/A 9.38E-05 Decomposition rate constant 
ksol,2 (1/hour) 4.17E-05 1.39E-05 Decomposition rate constant 
fs (unitless) 0.1 0.1 Porportion of carbon used for microbial growth 
fe (unitless) 0.9 0.9 Porportion of carbon used for microbial respiration 
kup,1 (1/hour) N/A 1 Microbial uptake rate constant for fast-responding 

biomass 
kup,2 (1/hour) 8 4 Microbial uptake rate constant for slow-responding 

biomass 
Chalf,1 (gC/m3) N/A 15000 Half saturation for soluble carbon 
Chalf,2 (gC/m3) 45000 45000 Half saturation for soluble carbon 
Khalf N/A N/A Half saturation for O2 
ktran,1 (1/hour) N/A 1 Transition rate constant between active and dormant 

biomass for fast-responding biomass 
ktran,2 (1/hour) 0.017 0.017 Transition rate constant between active and dormant 

biomass for slow-responding biomass 
Sehalf,1 (unitless) N/A 0.25 Half saturation for effective saturation for fast-

responding biomass 
Sehalf,2 (unitless) 0.55 0.55 Half saturation for effective saturation for slow-

responding biomass 
b (unitless) 4.9 4.9 Pore size distribution parameter 
kmor-a 4.17E-05 4.17E-05 Mortality rate constant for active biomass 
kmor-d 4.17E-06 4.17E-06 Mortality rate constant for dormant biomass 
INIT. CONDITION    Se Variable Variable  C (mass fraction) 0.02 0.02 (upper), 0.014 

(middle), 0.009 (lower) Total carbon fraction 
Ctotal (gC/m3H2O) C*1518720/Se C*1518720/Se Total carbon concentration (unit converted from C) 
Csub,1 (gC/m3H2O) N/A 1/4*0.875*Ctotal Concentration for substration carbon 
Csub,2 (gC/m3H2O) 0.893*Ctotal 3/4*0.894*Ctotal Concentration for substration carbon 
Csoluble,1 (gC/m3H2O) N/A 1/4*0.025*Ctotal ± 20% Concentration for soluble carbon 
Csoluble,2 (gC/m3H2O) 0.007*Ctotal ± 20% 3/4*0.006*Ctotal ± 20% Concentration for soluble carbon 
Bioactive,1 (gC/m3H2O) N/A 0 Concentration for fast-responding active biomass 
Bioactive,2 (gC/m3H2O) 0 0 Concentration for slow-responding active biomass 
Biodormant,1 (gC/m3H2O -undiluted) N/A 1/4*0.1*Ctotal *Se Concentration for fast-responding dormant biomass 
Biodormant,2 (gC/m3H2O -undiluted) 0.1*Ctotal *Se 3/4*0.1*Ctotal *Se Concentration for slow-responding dormant biomass 

Table 4. Parameter inputs for the dormancy models.
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FO1 DM2
Shallow-66%Se 33.0269 21.8236
Shallow-33%Se 25.9891 10.4347
Intermediate-66%Se 28.1768 26.9186
Intermediate-33%Se 21.6725 9.0794
Deep-66%Se 22.8723 34.3137
Deep-33%Se 16.541 22.764

Table 5. AIC values of the two models.
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Fig 1. The East River watershed within the Gunnison River basin, Colo-
rado, USA (the drainage paths are shown in white line). The red star 
illustrates the location where the soil incubation samples were collected 
for the current study (38°59'8.42" N, 107°0'12.51" W).
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Fig 2. Respiration rate as a function of four values of Se (filled triangles) 
fitted with dashed lines to illustrate trends. Measurement uncertainties lie 
within symbols (<1.5 % of the measured concentration). Soil respiration 
rates are shown for the first 24 hours of incubation for all three soil depths 
(0-52 cm (blue), 63-108 cm (red) and 112-165 cm (black)) at different 
effective saturations (Se = 0, 33 %, 66 % and 100 %).
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Fig 3. Respiration rate for (a) shallow soil sample (0-52 cm); (b) intermediate soil samples (63-108 cm); (c) deep soil samples (112-165 cm), as a function of time for four values of Se 
(filled triangles) fitted with dashed lines (cubic interpolation) to illustrate trends. Measurement uncertainties lie within symbols (<1.5 % of the measured concentration).
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Fig 4. The conceptual models for both: (a) First-order, and (b) 
dormancy (adjusted from Manzoni et al. (2014)). Boxes indicate 
distinct carbon pools, and arrows indicate the reactive pathways 
of carbon between the pools.
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Fig 5. The non-dimensional factor FSe as a function of effective satura-
tion. FSe reaches 1 where Sethres is set (60 % in this study).
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Fig 7. Transition between active and dormant biomass as a func-

tion of Eq. (8) and (9). Starting active and dormant biomass con-

centrations are set to 0 and 6250 gC m-3, respectively. As the sim-

ulation begins, an initial Sesample of 40 % has been present for a 

sufficient period of time such that the active and dormant bio-

mass pools are in steady state. At a time t = 500 hours, the Sesample 
is increased to a new value of 70 %, leading to a shift in the dis-

tribution of active and dormant biomass.
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Fig 9. (a) Model sensitivity to a range of Sehalf values, with all other parameters held constant (Table 4). Different 
colors represent different Sehalf. (b) Model sensitivity to a range of kup values, with other conditions similar to (a).
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Fig 10. Inhibition factor for both fast- and slow-responding 
microbial populations as a function of Se (Eq. (10) & (11)). 
The red line represents the slow-responding population, 
while the black line represents fast-responders.
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Fig 12. (a) Model output from FO1 and DM2 plotted against incubation data in time series. Measurement uncertainties lie within symbols (<1.5 % 
of the measured concentration). Parameter values for two models are listed in Table 3 and 4; (b) Cumulative CO

2
 concentration integrated from 

model output and trend line shown in (a); (c) Ratio of integrated incubation data/model output shown in (b) for two models. The dormancy model 
is clearly a better simulation compared to first-order model within 100 hours (closer to 1).
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