1	Geochemistry of the dissolved loads during high-flow season of rivers in
2	Southeast Coastal Region, China: Anthropogenic impact on chemical weathering
3	and carbon sequestration
4	Wenjing Liu ^{1,2,3} , Zhifang Xu ^{1,2,3*} , Huiguo Sun ^{1,3} , Tong Zhao ^{1,3} , Chao Shi ³ , Taoze Liu ⁴
5	¹ Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics,
6	Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
7	² CAS Center for Excellence in Life and Paleoenvironment, Beijing, 100044, China
8	³ University of Chinese Academy of Sciences, Beijing 100049, China
9	⁴ State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese
10	Academy of Sciences, Guiyang, Guizhou 550002, China
11	* Corresponding author. zfxu@mail.iggcas.ac.cn (Zhifang Xu, Tel: +86 10 82998289)

12 Abstract:

Southeast coastal region is one of the most developed and populated area in China. 13 14 Meanwhile, it has been a severe acid rain impacted region for many years. The chemical compositions and carbon isotope composition ratio of dissolved inorganic carbon 15 $(\delta^{13}C_{DIC})$ of river waters in high flow season were investigated to evaluate the chemical 16 weathering and associated atmospheric CO₂ consumption rates. Mass balance 17 calculation indicated that the dissolved loads of major rivers in the Southeast Coastal 18 Rivers Basin (SECRB) were contributed by atmospheric (14.3%, 6.6-23.4%), 19 anthropogenic (15.7%, 0-41.1%), silicate weathering (39.5%, 17.8-74.0%) and 20 carbonate weathering inputs (30.6%, 3.9-62.0%). The silicate and carbonate chemical 21 weathering rates for these river watersheds were 14.2-35.8 t km⁻² a⁻¹ and 1.8-52.1 t km⁻ 22 2 a⁻¹, respectively. The associated mean CO₂ consumption rate by silicate weathering 23 for the whole SECRB were 191×10^3 mol km⁻² a⁻¹. The chemical and $\delta^{13}C_{DIC}$ evidences 24 indicated that sulfuric and nitric acid (mainly from acid deposition) was significantly 25 involved in chemical weathering of rocks. The calculation showed an overestimation 26 of CO₂ consumption at 0.19×10^{12} g C a⁻¹ if sulfuric and nitric acid was ignored, which 27 accounted for about 33.6% of the total CO₂ consumption by silicate weathering in the 28 SECRB. This study quantitatively highlights that the role of acid deposition in chemical 29 weathering, suggesting that anthropogenic impact should be seriously considered in 30 estimation of chemical weathering and associated CO₂ consumption. 31

32

33 **1. Introduction**

34	Chemical weathering of rocks is the key process that links geochemical cycling of
35	solid earth to the atmosphere and ocean. It provides nutrients to terrestrial and marine
36	ecosystems and regulates the level of atmospheric CO2. As a net sink of atmospheric
37	CO ₂ on geologic timescales, estimation of silicate chemical weathering rates and the
38	controlling factors are important issues related to long-term global climate change (e.g.
39	Raymo and Ruddiman, 1992; Négrel et al. 1993; Berner and Caldeira, 1997; Gaillardet
40	et al., 1999; Kump et al., 2000; Amiotte-Suchet et al., 2003; Oliva et al., 2003;
41	Hartmann et al., 2009; Moon et al., 2014). As an important component in the Earth's
42	Critical Zone (U.S. Nat. Res. Council Comm., 2001), river serves as an integrator of
43	various natural and anthropogenic processes and products in a basin, and a carrier
44	transporting the weathering products from continent to ocean. Therefore, the chemical
45	compositions of river waters are widely used to evaluate chemical weathering and
46	associated CO ₂ consumption rates at catchment and/or continental scale, and examine
47	their controlling factors (e.g., Edmond et al., 1995; Gislason et al., 1996; Galy and
48	France-Lanord, 1999; Huh, 2003; Millot et al., 2002, 2003; Oliva et al., 2003; West et
49	al., 2005; Moon et al., 2007; Noh et al., 2009; Shin et al., 2011; Calmels et al., 2011;
50	Li, S., et al. 2014).

51 With the intensification of human activities, human perturbations to river basins 52 have increased in frequency and magnitude (Raymond et al., 2008; Regnier et al., 2013; 53 Li and Bush, 2015). It is important to understand how such perturbations function on 54 the current weathering systems and to predict how they will affect the Critical Zone of 55 the future (Brantley and Lebedeva, 2011). In addition to CO₂, other sources of acidity

56	(such as sulfuric, nitric and organic acids) can also produce protons. These protons react
57	with carbonate and silicate minerals, thus enhance rock chemical weathering rate and
58	flux compared with only considering protons deriving from CO ₂ dissolution (Calmels
59	et al., 2007; Xu and Liu, 2010). The effect of other sourced proton (especially H^+
60	induced by SO_2 and NO_X coming from anthropogenic activities) on chemical
61	weathering is documented to be an important mechanism modifying atmospheric CO ₂
62	consumption by rock weathering (Galy and France-Lanord, 1999; Semhi, et al., 2000;
63	Spence and Telmer, 2005; Xu and Liu, 2007; Perrin et al., 2008; Gandois et al., 2011).
64	Anthropogenic emissions of SO ₂ was projected to provide 3 to 5 times greater H ₂ SO ₄
65	to the continental surface than the pyrite oxidation originated H ₂ SO ₄ (Lerman et al.,
66	2007). Therefore, increasing acid precipitation due to intense human activities
67	nowadays could make this mechanism more prominently.

The role of acid precipitation plays on the chemical weathering and CO₂ 68 consumption has been investigated in some river catchments (Amiotte-Suchet et al., 69 1995; Probst et al., 2000; Vries et al., 2003; Lerman et al., 2007; Xu and Liu, 2010). It 70 has been documented that silicate rocks were more easily disturbed by acid 71 precipitation during their weathering and soil leaching processes, because of their low 72 buffeting capacity (Reuss et al., 1987; Amiotte-Suchet et al., 1995). The disturbance 73 could be intensive and cause a decrease of CO₂ consumption by weathering at about 74 73% due to acid precipitation in the Strengbach catchment (Vosges Mountains, France), 75 where is dominated by crystalline rocks (Amiotte-Suchet et al., 1995). This highlights 76 the importance of exploring anthropogenic impact on chemical weathering and CO₂ 77

consumption under different background (e.g. lithology, climate, human activity
intensity, and basin scale) for better constraining and estimation of acid precipitation
effect on rock weathering. Asia, especially East Asia, is one of the world's major sulfur
and nitrogen emission areas. However, the effect of acid precipitation on silicate
weathering and associated CO₂ consumption has not been well evaluated in this area,
especially lack of quantitative studies.

Acid precipitation affected about 30% of the territory of China (Fig. 1), and the 84 seriously polluted areas are mainly located in the east, the south and the center of China, 85 86 where over 70% of the cities were suffering from acid rain (Zhang et al., 2007a; State Environmental Protection Administration of China, 2009). Southeast coastal region of 87 China is one of the most developed and populated areas of this country, dominated by 88 89 Mesozoic magmatic rocks (mainly granite and volcanic rocks) in lithology. Meanwhile, the southeast coastal area has become one of the three major acid rain areas in China 90 since the beginning of 1990s (Larssen et al., 1999). It is seriously impacted by acid rain, 91 92 with a volume-weighted mean value of pH lower than 4.5 for many years (Wang et al., 2000; Larssen and Carmichael, 2000; Zhao, 2004; Han et al., 2006; Larssen et al., 2006; 93 Zhang et al., 2007a; Huang et al., 2008; Xu et al., 2011). Therefore, it is an ideal area 94 for evaluating silicate weathering and the associated acid rain effects. In the previous 95 work, we have recognized and discussed the importance of sulfuric acid on the rock 96 weathering and associated CO₂ consumption in the Qiantang river basin in this area 97 (Liu et al., 2016). However, it is difficult to infer the anthropogenic impact on chemical 98 weathering and CO₂ consumption in the whole southeast coastal area from the case 99

study of a single river basin, because of the variations on lithology, basin scale, runoff and anthropogenic condition in the large acid deposition affected area. In this study, the chemical and carbon isotope composition of river waters in this area were first systematically investigated, in order to: (i) decipher the different sources of solutes and to quantify their contributions to the dissolved loads; (ii) calculate silicate weathering and associated CO_2 consumption rates; (iii) evaluate the effects of acid deposition on rock weathering and CO_2 consumption flux in the whole southeast coastal river basins.

107

2. Natural setting of study area

108 Southeast coastal region of China, where the landscape is dominated by mountainous and hilly terrain, lacks the conditions for developing large rivers. The 109 rivers in this region are dominantly small and medium-size drainage due to the 110 topographic limitation. Only 5 rivers in this region have length over 200 km and the 111 drainage area over 10,000 km², and they are: the Qiantangjiang (Qiantang) and the 112 Oujiang (Ou) in Zhejiang province, the Minjiang (Min) and the Jiulongjiang (Jiulong) 113 114 in Fujian province and the Hanjiang (Han) in Guangdong province from north to south (Fig. 1). Rivers in this region generally flow eastward or southward and finally inject 115 into the East China Sea or the South China Sea (Fig. 1), and they are collectively named 116 as 'Southeast Coastal Rivers' (SECRs). 117

The Southeast Coastal Rivers Basin (SECRB) belongs to the warm and humid subtropical oceanic monsoon climate. The mean annual temperature and precipitation are 17-21°C and 1400-2000 mm, respectively. The precipitation mainly happens during May to September, and the lowest and highest temperature often occurs in January and July. This area is one of the most developed areas in China, with a population more than 123 190 million (mean density of ~470 individuals/km²), but the population mainly 124 concentrated in the coastal urban areas. The vegetation coverage of these river basins 125 is higher than 60%, mainly subtropical evergreen-deciduous broadleaf forest and 126 mostly distributing in mountains area. Cultivated land, and industries and cities are 127 mainly located in the plain areas and lower reach of these rivers.

Geologically, three regional-scale fault zones are distributed across the SECRB 128 region (Fig. 1). They are the sub-EW-trending Shaoxing-Jiangshan fault zone, the NE-129 130 trending Zhenghe-Dapu fault zone, and the NE-trending Changle-Nanao fault zone (Shu et al., 2009). These fault zones dominate the direction of the mountains ridgelines 131 and drainages, as well as the formation of the basins and bay. The Zhenghe-Dapu fault 132 133 zone is a boundary line of Caledonian uplift belt and Hercynian-Indosinian depression zone. Mesozoic magmatic rocks are widespread in the southeast coastal region with a 134 total outcrop area at about 240,000 km². Over 90% of the Mesozoic magmatic rocks 135 are granitoids (granites and rhyolites) and their volcanic counterpart with minor 136 existence of basalts (Zhou et al., 2000, 2006; Bai et al., 2014). These crust-derived 137 granitic rocks are mainly formed in the Yanshanian stage, and may have been related to 138 multiple collision events between Cathaysia and Yangtze blocks and Pacific plate (Zhou 139 and Li, 2000; Xu et al., 2016). Among the major river basins, the proportions of 140 magmatic rocks outcrop are about 36% in the Qiantang catchment, over 80% in the Ou, 141 the Jiaoxi and the Jin catchments, and around 60% in the Min, the Jiulong, the Han and 142 the Rong catchments (Shi, 2014). The overlying Quaternary sediment in this area is 143

composed of brown-yellow siltstones but is rarely developed. The oldest basement
complex is composed of metamorphic rocks of greenschist and amphibolite facies.
Sedimentary rocks categories into two types, one is mainly composed by red clastic
rocks which cover more than 40,000 km² in the area; the other occurs as interlayers
within volcanic formations, including varicolored mudstones and sandstones. They are
mainly distributed on the west of Zhenghe-Dapu fault zone (FJBGRM, 1985; ZJBGMR,
1989; Shu et al., 2009).

151 **3. Sampling and analytical method**

A total of 121 water samples were collected from mainstream and tributaries of 152 the major rivers in the SECRB in July of 2010 in the high-flow period (sample number 153 and locations are shown in Fig. 1). For the river low reach samples, the sampling sites 154 155 were selected as far as possible from the tidal impacted area and the sampling were conducted during low tide period (based daily tidal on the time, 156 http://ocean.cnss.com.cn/) in the sampling day. Besides, the salinity of the waters were 157 checked by salinometer (WS202, China) before sampling in the field. In addition, water 158 chemistry data were double checked to make sure that the river samples were not 159 contaminated by seawater. 2-L water samples were collected in the middle channel of 160 the rivers from bridges or ferries, or directly from the center of some shallow streams. 161 The lower reach sampling sites were selected distant away from the estuary to avoid 162 the influence of seawater. Temperature (T), pH and electrical conductivity (EC) were 163 measured in the field with a portable EC/pH meter (YSI-6920, USA). All of the water 164 samples for chemical analysis were filtered in field through 0.22 µm Millipore 165

166 membrane filter, and the first portion of the filtration was discarded to wash the 167 membrane and filter. One portion filtrate were stored directly in HDPE bottles for anion 168 analysis and another were acidified to pH < 2 with 6 M double sub-boiling distilled 169 HNO₃ for cation analysis. All containers were previously washed with high-purity HCl 170 and rinsed with Milli-Q 18.2 M Ω water.

Alkalinity was determined by phenolphthalein and methyl orange end point titration with 171 dilute HCl within 12 h after sampling. The HCl consumption volumes for phenolphthalein 172 and methyl orange end point titration were used to calculate the HCO_3^- . Cations (Na⁺, K⁺, 173 Ca²⁺ and Mg²⁺) were determined using Inductively Coupled Plasma Atomic Emission 174 Spectrometer (ICP-AES) (IRIS Intrepid II XSP, USA). Anions (Cl⁻, F⁻, NO₃⁻ and SO₄²⁻) 175 were analyzed by ionic chromatography (IC) (Dionex Corporation, USA). Dissolved 176 177 silica was determined by spectrophotometry with the molybdate blue method. Reagent and procedural blanks were measured in parallel to the sample treatment, and 178 calibration curve was evaluated by quality control standards before, during and after 179 180 the analyses of each batch of samples. Measurement reproducibility was determined by duplicated sample and standards, which showed $\pm 3\%$ precision for the cations and $\pm 5\%$ 181 for the anions. 182

183 River water samples for carbon isotopic ratio (δ^{13} C) of dissolved inorganic carbon 184 (DIC) measurements were collected in 150 ml glass bottles with air-tight caps and 185 preserved with HgCl₂ to prevent biological activity. The samples were kept refrigerated 186 until analysis. For the δ^{13} C measurements, the filtered samples were injected into glass 187 bottles with phosphoric acid. The CO₂ was then extracted and cryogenically purified using a high vacuum line. δ^{13} C isotopic ratios were analyzed on Finnigen MAT-252 stable isotope mass spectrometer at the State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences. The results are expressed with reference to VPDB, as follows:

$$\delta^{13}C = \left[\left(\left({^{13}C}/{^{12}C} \right)_{\text{sample}} / \left({^{13}C}/{^{12}C} \right)_{\text{standard}} \right) - 1 \right] \times 1000 \tag{1}$$

193 The δ^{13} C measurement has an precision of 0.1‰. A number of duplicate samples 194 were measured and the results show that the differences were less than the range of 195 measurement accuracy.

196 **4. Results**

The major parameter and ion concentrations of samples are given in Table 1. The 197 pH values of water samples ranged from 6.50 to 8.24, with an average of 7.23. Total 198 dissolved solids (TDS) of water samples varied from 35.3 to 205 mg l⁻¹, with an average 199 of 75.2 mg l⁻¹. Compared with the major rivers in China, the average TDS was 200 significantly lower than the Changjiang (224 mg l⁻¹, Chetelat et al., 2008), the Huanghe 201 (557 mg l^{-1} , Fan et al., 2014) and the Zhujiang (190 mg l^{-1} , Zhang et al., 2007b). 202 However, the average TDS was comparable to the rivers draining silicate rock 203 dominated areas, e.g. the upper Ganjiang in Ganzhou, south China (63 mg l⁻¹, Ji and 204 Jiang, 2012), the Amur in north China (70 mg l⁻¹, Moon et al., 2009), the Xishui in 205 Hubei, central China (101 mg l⁻¹, Wu et al., 2013), and north Han river in South Korea 206 (75.5 mg l⁻¹, Ryu et al., 2008). Among the major rivers in the SECRB, the Qiantang had 207 the highest TDS value (averaging at 121 mg l⁻¹), and the Ou had the lowest TDS value 208 (averaging at $48.8 \text{ mg } l^{-1}$). 209

210	Major ion compositions are shown in the cation and anion ternary diagrams (Fig.
211	2a and b). In comparison with rivers (e.g. the Wujiang and Xijiang) draining carbonate
212	rocks dominated area (Han and Liu, 2004; Xu and Liu, 2010), these rivers in the SECRB
213	had distinctly higher proportions of Na ⁺ , K ⁺ , and dissolved SiO ₂ . As shown in the Fig.
214	2, most samples had high Na^+ and K^+ proportions, with an average more than 50% (in
215	μ mol l ⁻¹) of the total cations, except for samples from the Qiantang. The concentrations
216	of Na ⁺ and K ⁺ ranged from 43.5 to 555 μ mol l ⁻¹ and 42.9 to 233 μ mol l ⁻¹ , with average
217	values of 152 and 98 μ mol l ⁻¹ , respectively. The concentrations of dissolved SiO ₂ ranged
218	from 98.5 to 370 μ mol l ⁻¹ , with an average of 212 μ mol l ⁻¹ . Ca ²⁺ and Mg ²⁺ accounted
219	for about 38% and 11.6% of the total cation concentrations. HCO_3^- was the dominant
220	anion with concentrations ranging from 139 to 1822 µmol l ⁻¹ . On average, it comprised
221	60.6% (36-84.6%) of total anions on a molar unit basis, followed by SO ₄ ²⁻ (14.6%), Cl ⁻
222	(13.1%) and NO_3^- (11.8%). The major ionic compositions indicate that water chemistry
223	of these rivers in the SECRB is controlled by silicate weathering. Meanwhile, it is also
224	influenced by carbonate weathering, especially for the Qiantang catchment.
225	The δ^{13} C of dissolved inorganic carbon in the rivers of the SECRB are also given

in Table 1. The δ^{13} C of the water samples showed a wide range, from -11.0% to -24.3%

227 (average -19.4‰), and with a majority of samples falling into the range of -15 to -23‰.

The values are comparable to rivers draining Deccan Traps (Das et al., 2005).

229 **5. Discussion**

The dissolved solids in river water are commonly from atmospheric andanthropogenic inputs and weathering of rocks within the drainage basin. It is necessary

to quantify the contribution of different sources to the dissolved loads before deriving
 chemical weathering rates and associated CO₂ consumption.

234 *5.1 Atmospheric and anthropogenic inputs*

To evaluate atmospheric inputs to river waters, chloride is the most common used 235 reference. Generally, water samples that have the lowest Cl⁻ concentrations are 236 employed to correct the proportion of atmospheric inputs in a river system (Négrel et 237 al., 1993; Gaillardet et al., 1997; Viers et al., 2001; Xu and Liu, 2007). In pristine areas, 238 the concentration of Cl⁻ in river water is assumed to be entirely derived from the 239 240 atmosphere, provided that the contribution of evaporites is negligible (e.g. Stallard and Edmond, 1981; Négrel et al., 1993). In the SECRB, the lowest Cl⁻ concentration was 241 mainly found in the headwater of each river. According to the geologic setting, no salt-242 243 bearing rocks was found in these headwater area (FJBGRM, 1985; ZJBGMR, 1989). In addition, these areas are mainly mountainous and sparsely populated. Therefore, we 244 assumed that the lowest Cl⁻ concentration of samples from the headwater of each major 245 246 river came entirely from atmosphere.

The proportion of atmosphere-derived ions in the river waters can then be calculated by using the element/Cl ratios of the rain. Chemical compositions of rain in the studied area have been reported at different sites, including Hangzhou, Jinhua, Nanping, Fuzhou and Xiamen (Zhao, 2004; Zhang et al., 2007a; Huang et al., 2008; Cheng et al., 2011; Xu et al., 2011) (Fig. 1). The volume-weighted mean concentration of ions and Cl-normalized molar ratios are compiled in Table 2. According to this procedure, 6.6-23.4% (averaging 14.3%) of total dissolved cations in the major rivers of the SECRB originated from rain. Among the anions, SO_4^{2-} and NO_3^{-} in the rivers are mainly from the atmospheric input, averaging at 73.2% for SO_4^{2-} and 75.8% for NO_3^{-} , respectively.

As one of the most developed and populated areas in China, the chemistry of river 257 waters in the SECRB could be significantly impacted by anthropogenic inputs. Cl-, 258 NO_3^- and SO_4^{2-} are commonly associated with anthropogenic sources and have been 259 used as tracers of anthropogenic inputs in watershed. High concentrations of Cl⁻, NO₃⁻ 260 and SO_4^{2-} can be found at the lower reaches of rivers in the SECRB, and there is an 261 obvious increase after flowing through plain areas and cities. This tendency indicates 262 that river water chemistry is affected by anthropogenic inputs while passing through 263 the catchments. After correcting for the atmospheric contribution to river waters, the 264 265 following assumption is needed to quantitatively estimate the contributions of anthropogenic inputs, which is that Cl⁻ originates from only atmospheric and 266 anthropogenic inputs, and the excess of atmospheric Cl⁻ is regarded to present 267 anthropogenic inputs and balanced by Na⁺. 268

269 *5.2 Chemical weathering inputs*

Water samples were plotted on a plot of Na-normalized molar ratios (Fig. 3). The values of the world's large rivers (Gaillardet et al., 1999) are also shown in the figure. A best correlations between elemental ratios were observed for Ca^{2+}/Na^{+} vs. Mg^{2+}/Na^{+} ($R^{2} = 0.95$, n = 120) and Ca^{2+}/Na^{+} vs. HCO_{3}^{-}/Na^{+} ($R^{2} = 0.98$, n = 120). The samples cluster on a mixing line mainly between silicate and carbonate end-members, closer to the silicate end-member, and with little evaporite contribution. This corresponds with the rock type distributions in the SECRB. In addition, all water samples have equivalent ratios of $(Na^++K^+)/Cl^-$ larger than one, indicating silicate weathering as the source of Na⁺ and K⁺ rather than chloride evaporites dissolution.

The geochemical characteristics of the silicate and carbonate end-members can be 279 deduced from the correlations between elemental ratios and referred to literature data 280 for catchments with well-constrained lithology. After correction for atmospheric inputs, 281 the Ca²⁺/Na⁺, Mg²⁺/Na⁺ and HCO₃⁻/Na⁺ of the river samples ranged from 0.31 to 30, 282 0.16 to 6.7, and 1.1 to 64.2, respectively. According to the geological setting (Fig. 1), 283 284 there are some small rivers draining purely silicate areas in the SECRs drainage basins. Based on the elemental ratios of these rivers, we assigned the silicate end-member for 285 this study as $Ca^{2+}/Na^{+}=0.41\pm0.10$, $Mg^{2+}/Na^{+}=0.20\pm0.03$ and $HCO_{3-}/Na^{+}=1.7\pm0.6$. The 286 ratio of $(Ca^{2+}+Mg^{2+})/Na^{+}$ for silicate end-member was 0.61±0.13, which is close to the 287 silicate end-member of world rivers (($Ca^{2+}+Mg^{2+}$)/ $Na^{+} = 0.59\pm0.17$, Gaillardet et al., 288 1999). Moreover, previous researches have documented the chemical composition of 289 290 rivers, such as the Amur and the Songhuajiang in North China, the Xishui in the lower reaches of the Changjiang, and major rivers in South Korea (Moon et al., 2009; Liu et 291 al., 2013; Wu et al., 2013; Ryu et al., 2008; Shin et al., 2011). These river basins has 292 similar lithological setting with the study area, we could further validate the 293 composition of silicate end-member with their results. Ca²⁺/Na⁺ and Mg²⁺/Na⁺ ratios of 294 silicate end-member were reported for the Amur (0.36 and 0.22), the Songhuajiang 295 (0.44±0.23 and 0.16), the Xishui (0.6±0.4 and 0.32±0.18), the Han (0.55 and 0.21) and 296 six major rivers in South Korea (0.48 and 0.20) in the studies above, well bracketing 297

298 our estimation for silicate end-member.

Whereas, some samples show high concentrations of Ca^{2+} , Mg^{2+} and HCO_{3}^{-} , indicating the contribution of carbonate weathering. The samples collected in the upper reaches (Sample 12 and 13) of the Qiantang fall close to the carbonate end-member documented for world's large rivers (Gaillardet et al., 1999). In the present study, Ca^{2+}/Na^{+} ratio of 0.41 ± 0.10 and Mg^{2+}/Na^{+} ratio of 0.20 ± 0.03 for silicate end-member are used to calculate the contribution of Ca^{2+} and Mg^{2+} from silicate weathering. Finally, residual Ca^{2+} and Mg^{2+} are apportioned to carbonate weathering origin.

306 *5.3 Chemical weathering rate in the SECRBs*

Based on the above assumption, a forward model is employed to quantify the 307 relative contribution of the different sources to the rivers of the SECRB in this study. 308 309 (e.g. Galy and France-Lanord, 1999; Moon et al., 2007; Xu and Liu, 2007; 2010; Liu et al., 2013). The calculated contributions of different reservoir to the total cationic 310 loads for major rivers and their main tributaries in the SECRB are presented in Fig. 4. 311 On average, the dissolved cationic loads of the rivers in the study area originate 312 dominantly from silicate weathering, which accounts for 39.5% (17.8-74.0%) of the 313 total cationic loads in molar unit. Carbonate weathering and anthropogenic inputs 314 account for 30.6% (3.9-62.0%) and 15.7% (0-41.1%), respectively. Contributions from 315 silicate weathering are high in the Ou (55.6%), the Huotong (54.5%), the Ao (48.3%) 316 and the Min (48.3%) river catchments, which are dominated by granitic and volcanic 317 bedrocks. In contrast, high contribution from carbonate weathering is observed in the 318 Qiantang (54.0%), the Jin (52.2%) and the Jiulong (44.8%) river catchments. The 319

320 results manifest the lithology control on river solutes of drainage basin.

The chemical weathering rate of rocks is estimated by the mass budget, basin area and annual discharge (data from the Annual Hydrological Report P. R. China, 2010, Table 3), expressed in t km⁻² a⁻¹. The silicate weathering rate (SWR) is calculated using major cationic concentrations from silicate weathering and assuming that all dissolved SiO₂ is derived from silicate weathering (Xu and Liu, 2010), as the equation below:

326
$$SWR = ([Na]_{sil} + [K]_{sil} + [Ca]_{sil} + [Mg]_{sil} + [SiO_2]_{riv}) \times discharge/area$$
(2)

The assumption about Si could lead to overestimation of the silicate weathering rate, as part of silica may come from dissolution of biogenic materials rather than the weathering of silicate minerals (Millot et al., 2003; Shin et al., 2011). Thus, the cationic silicate weathering rates (Cat_{sil}) were also calculated.

The carbonate weathering rate (CWR) is calculated based on the sum of Ca^{2+} , Mg²⁺ and HCO₃⁻ from carbonate weathering, with half of the HCO₃⁻ coming from carbonate weathering being derived from the atmosphere CO₂, as the equation below:

334
$$CWR = ([Ca]_{carb} + [Mg]_{carb} + 1/2[HCO_3]_{carb}) \times discharge/area$$
(3)

The chemical weathering rate and flux are calculated for major rivers and their main tributaries in the SECRB, and the results are shown in Table 3. Silicate and carbonate weathering fluxes of these rivers (SWF and CWF) range from 0.02×10^6 t a⁻¹ to 1.80×10^6 t a⁻¹, and from 0.004×10^6 t a⁻¹ to 1.74×10^6 t a⁻¹, respectively. Among the rivers, the Min has the highest silicate weathering flux, and the Qiantang has the highest carbonate weathering flux. On the whole SECRB scale, 3.95×10^6 t a⁻¹ and 4.09×10^6 t a⁻¹ of dissolved solids originating from silicate and carbonate weathering, respectively, are transported into the East and South China Sea by rivers in this region. Compared with the largest three river basins (the Changjiang, the Huanghe and the Xijiang) in China, the flux of silicate weathering calculated for the SECRB is lower than the Changjiang $(9.5 \times 10^6 \text{ t a}^{-1})$, Gaillardet et al. 1999), but higher than the Huanghe $(1.52 \times 10^6 \text{ t a}^{-1})$, Fan et al., 2014) and the Xijiang $(2.62 \times 10^6 \text{ t a}^{-1})$, Xu and Liu, 2010).

The silicate and carbonate chemical weathering rates for these river watersheds 347 were 14.2-35.8 t km⁻² a⁻¹ and 1.8-52.1 t km⁻² a⁻¹, respectively. The total rock weathering 348 rate (TWR) for the whole SECRB is 48.1 t km⁻² a⁻¹, higher than the world average (24 349 t km⁻² a⁻¹, Gaillardet et al., 1999). The cationic silicate weathering rates (Cat_{sil}) ranges 350 from 4.7 to 12.0 t km⁻² a⁻¹ for the river watersheds in the SECRB, averaging at 7.8 t km⁻ 351 2 a⁻¹. Furthermore, a good linear correlation ($R^{2} = 0.77$, n = 28) is observed between the 352 353 Cat_{sil} and runoff (Fig. 5), indicating that silicate weathering rates is controlled by runoff as documented in previous researches (e.g., Bluth and Kump, 1994; Gaillardet et al., 354

1999; Millot et al., 2002; Oliva et al., 2003; Wu et al., 2013; Pepin et al., 2013).

356 5.4 CO₂ consumption and the role of sulfuric acid

To calculate atmospheric CO₂ consumption by silicate weathering (CSW) and by carbonate weathering (CCW), a charge-balanced state between rock chemical weathering-derived alkalinity and cations was assumed (Roy et al., 1999).

360
$$[CO_2]_{CSW} = [HCO_3]_{CSW} = [Na]_{sil} + [K]_{sil} + 2[Ca]_{sil} + 2[Mg]_{sil}$$
(4)

361
$$[CO_2]_{CCW} = [HCO_3]_{CCW} = [Ca]_{carb} + [Mg]_{carb}$$
 (5)

The calculated CO₂ consumption rates by chemical weathering for the rivers in SECRB are shown in Table 3. CO₂ consumption rates by carbonate and silicate

364	weathering are from 17.9 to 530×10^3 mol km ⁻² a ⁻¹ (averaging at 206×10^3 mol km ⁻² a ⁻¹)
365	and from 167 to 460×10^3 mol km ⁻² a ⁻¹ (averaging at 281×10^3 mol km ⁻² a ⁻¹) for major
366	river catchments in the SECRB. The CO ₂ consumption rates by silicate weathering in
367	the SECRB are higher than that of major rivers in the world and China, such as the
368	Amazon (174×10^3 mol km ⁻² a ⁻¹ , Mortatti and Probst, 2003), the Mississippi and the
369	Mackenzie (66.8 and 34.1×10^3 mol km ⁻² a ⁻¹ , Gaillardet et al., 1999), the Changjiang
370	$(112 \times 10^3 \text{ mol km}^{-2} \text{ a}^{-1}, \text{Chetelat et al., 2008})$, the Huanghe $(35 \times 10^3 \text{ mol km}^{-2} \text{ a}^{-1}, \text{Fan et al., 2008})$
371	al., 2014), the Xijiang (154×10^3 mol km ⁻² a ⁻¹ , Xu and Liu, 2010), the Longchuanjiang
372	$(173 \times 10^3 \text{ mol km}^{-2} \text{ a}^{-1}, \text{Li et al.}, 2011)$ and the Mekong $(191 \times 10^3 \text{ mol km}^{-2} \text{ a}^{-1}, \text{Li et al.}, 10^3 \text{ mol km}^{-2} \text{ a}^{-1})$
373	2014) and three large rivers in eastern Tibet ($103-121 \times 10^3$ mol km ⁻² a ⁻¹ , Noh et al.,
374	2009), the Hanjiang in central China (120×10^3 mol km ⁻² a ⁻¹ , Li et al., 2009) and the
375	Sonhuajiang in north China (66.6×10 ³ mol km ⁻² a ⁻¹ , Liu et al., 2013). The high CO_2
376	consumption rates by silicate weathering in the SECRB could be attributed to extensive
377	distribution of silicate rocks, high runoff, favorable climatic conditions. The regional
378	fluxes of CO ₂ consumption by silicate and carbonate weathering is about 47.9×10^9 mol
379	a^{-1} (0.57×10 ¹² g C a^{-1}) and 41.9×10 ⁹ mol a^{-1} (0.50×10 ¹² g C a^{-1}) in the whole SECRB.
380	However, in addition to CO ₂ , the anthropogenic sourced proton (e.g. H ₂ SO ₄ and
381	HNO ₃) is well documented as significant proton providers in rock weathering process
382	(Galy and France-Lanord, 1999; Karim and Veizer, 2000; Yoshimura et al., 2001; Han
383	and Liu, 2004; Spence and Telmer, 2005; Lerman and Wu, 2006; Xu and Liu 2007;
384	2010; Perrin et al., 2008; Gandois et al., 2011). Sulfuric acid can be generated by natural
385	oxidation of pyrite and anthropogenic emissions of SO ₂ from coal combustion and

subsequently dissolve carbonate and silicate minerals. The riverine nitrate in a 386 watershed can be derived from atmospheric deposition, synthetic fertilizers, microbial 387 388 nitrification, sewage and manure, etc. (e.g. Kendall 1998). Although it is difficult to determine the sources of nitrate in river waters, we can at least simply assume that 389 nitrate from acid deposition is one of the proton providers. The consumption of CO₂ by 390 rock weathering would be overestimated if H₂SO₄ and HNO₃ induced rock weathering 391 was ignored (Spence and Telmer, 2005; Xu and Liu, 2010; Shin et al., 2011; Gandois 392 et al., 2011). Thus, the role of the anthropogenic sourced protons plays on the chemical 393 weathering is crucial for an accurate estimation of CO₂ consumption by rock 394 weathering. 395

Rapid economic growth and increased energy needs have result in severe air 396 397 pollution problems in many areas of China, indicated by the high levels of mineral acids (predominately sulfuric) observed in precipitation (Lassen and Carmichael, 2000; Pan 398 et al., 2013; Liu et al., 2016). The national SO₂ emissions in 2010 reached to 30.8 399 Tg/year (Lu et al., 2011). Previous study documented that fossil fuel combustion 400 accounts for the dominant sulfur deposition (~77%) in China (Liu et al., 2016). The wet 401 deposition rate of nitrogen is the highest in peaked over the central and south China, 402 with mean value of 20.2, 18.2 and 25.8 kg N ha⁻¹ yr⁻¹ in Zhejiang, Fujian and 403 Guangdong province, respectively (Lu and Tian, 2007). Current sulfur and nitrogen 404 depositions in the southeast coastal region are still among the highest in China (Fang et 405 al., 2013; Cui et al., 2014; Liu et al., 2016). 406

407 The involvement of protons originating from H_2SO_4 and HNO_3 in the river waters

408	can be illustrated by the stoichiometry between cations and anions, shown in Fig. 6. In
409	the rivers of the SECRB, the sum cations released by silicate and carbonate weathering
410	could not be balanced by HCO_3^- only (Fig. 6a), but were almost balanced by the sum
411	of HCO_3^- and SO_4^{2-} and NO_3^- (Fig. 6b). This implies that H_2CO_3 and H_2SO_4 and HNO_3
412	are the potential erosion agents in chemical weathering in the SECRB. The δ^{13} C values
413	of the water samples showed a wide range, from -11.0% to -24.3%, with an average of
414	-19.4‰. The $\delta^{13}C$ from soil is governed by the relative contribution from C ₃ and C ₄
415	plant (Das et al., 2005). The studied areas have subtropical temperatures and humidity,
416	and thus C_3 processes are dominant. The $\delta^{13}C$ of soil CO_2 is derived primarily from
417	δ^{13} C of organic material which typically has a value of -24 to -34‰, with an average of
418	-28‰ (Faure, 1986). According to previous studies, the average value for C ₃ trees and
419	shrubs are from -24.4 to -30.5‰, and most of them are lower than -28‰ in south China
420	(Chen et al., 2005; Xiang, 2006; Dou et al., 2013). After accounting for the isotopic
421	effect from diffusion of CO ₂ from soil, the resulted $\delta^{13}C$ (from the terrestrial C ₃ plant
422	process) should be \sim -25‰ (Cerling et al., 1991). This mean DIC derived from silicate
423	weathering by carbonic acid (100% from soil CO ₂) would yield a δ^{13} C value of -25‰.
424	Carbonate rocks are generally derived from marine system and, typically, have $\delta^{13}C$
425	value close to zero (Das et al., 2005). Thus, the theoretical $\delta^{13}C$ value of DIC derived
426	from carbonate weathering by carbonic acid (50% from soil CO_2 and 50% from
427	carbonate rocks) is -12.5‰. DIC derived from carbonate weathering by sulfuric acid
428	are all from carbonate rocks, thus the δ^{13} C of the DIC would be 0‰. Based on the above
429	discussion, sources of riverine DIC from different end-members in the SECRB were

plotted in Fig. 7. Most water samples drift away from the three endmember mixing area
(carbonate and silicate weathering by carbonic acid and carbonate weathering by
sulfuric acid) and towards the silicate weathering by sulfuric and nitric acid area, clearly
illustrating the effect of the anthropogenic sourced protons on silicate weathering in the
SECRB.

Considering the H₂SO₄ and HNO₃ effect on chemical weathering, CO₂
consumption by silicate weathering can be determined from the equation below (Moon
et al., 2007; Ryu et al., 2008; Shin et al., 2011):

438
$$[CO_2]_{SSW} = [Na]_{sil} + [K]_{sil} + 2[Ca]_{sil} + 2[Mg]_{sil} - \gamma \times [2SO_4 + NO_3]_{atmos}$$
(6)

439 Where
$$\gamma$$
 is calculated by cation_{sil}/(cation_{sil} + cation_{carb}).

Based on the calculation in section 5.1, SO_4^{2-} and NO_3^{-} in river waters were mainly 440 derived from atmospheric input. Assuming SO_4^{2-} and NO_3^{-} in river waters derived from 441 atmospheric input (after correction for sea-salt contribution) are all from acid 442 precipitation, CO₂ consumption rates by silicate weathering (SSW) are estimated 443 between 55×10^3 mol km⁻² a⁻¹ and 286×10^3 mol km⁻² a⁻¹ for major river watersheds in 444 the SECRB. For the whole SECRB, the actual CO₂ consumption rates by silicate is 445 191×10^3 mol km⁻² a⁻¹ when the effect of H₂SO₄ and HNO₃ is considered. The flux of 446 CO₂ consumption is overestimated by 16.1×10^9 mol a⁻¹ (0.19×10^{12} g C a⁻¹) due to the 447 involvement of H₂SO₄ and HNO₃ from acid precipitation, accounting for approximately 448 33.6% of total CO₂ consumption flux by silicate weathering in the SECRB. It highlights 449 the fact that the drawdown of atmospheric CO₂ by silicate weathering can be 450 significantly overestimated if acid deposition is ignored in long-term perspectives. The 451

result quantitatively shows that anthropogenic activities can significantly affect rock
weathering and associated atmospheric CO₂ consumption. The quantification of this
effect needs to be well evaluated in Asian and globally within the current and future
human activity background.

It is noticeable that the chemical weathering and associated CO₂ consumption rates 456 for the study area were calculated by the river water geochemistry of high-flow season. 457 As a subtropical monsoon climate area, the river water of the southeast coastal rivers is 458 mainly recharged by rain, and the amount of precipitation in high-flow season accounts 459 460 for more than 70% of the annual precipitation in the area. The processes in low-flow season might be different for some extent. It is worth the further efforts to investigate 461 the hydrology and temperature effect on weathering rate and flux, as well as on the 462 463 anthropogenic impact evaluation in different climate regime and hydrology season.

464 **6.** Conclusions

River waters in the southeast coastal region of China are characterized by high 465 proportions of Na⁺, K⁺ and dissolved SiO₂, indicating the water chemistry of the rivers 466 in the SECRB is mainly controlled by silicate weathering. The dissolved cationic loads 467 of the rivers in the study area originate dominantly from silicate weathering, which 468 accounts for 39.5% (17.8-74.0%) of the total cationic loads. Carbonate weathering, 469 atmospheric and anthropogenic inputs account for 30.6%, 14.3% and 15.7%, 470 respectively. Meanwhile, more than 70% of SO₄²⁻ and NO₃⁻ in the river waters derived 471 from atmospheric input. The chemical weathering rate of silicates and carbonates for 472 the whole SECRB are estimated to be approximately 23.7 and 24.5 t km⁻² a⁻¹. About 473

 8.04×10^6 t a⁻¹ of dissolved solids originating from rock weathering are transported into 474 the East and South China Sea by these rivers in the SECRB. With the assumption that 475 all the protons involved in the weathering reaction are provided by carbonic acid, the 476 CO_2 consumption rates by silicate and carbonate weathering are 287 and 251×10^3 mol 477 km⁻² a⁻¹, respectively. However, both water chemistry and carbon isotope data provide 478 evidence that sulfuric and nitric acid from acid precipitation serves as significant agents 479 during chemical weathering. Considering the effect of sulfuric and nitric acid, the CO₂ 480 consumption rate by silicate weathering for the SECRB are 191×10^3 mol km⁻² a⁻¹. 481 Therefore, the CO₂ consumption flux would be overestimated by 16.1×10^9 mol a⁻¹ 482 $(0.19 \times 10^{12} \text{ g C a}^{-1})$ in the SECRB if the effect of sulfuric and nitric acid is ignored. This 483 work illustrates that anthropogenic disturbance by acid precipitation has profound 484 485 impact on CO₂ sequestration by rock weathering.

Acknowledgements. This work was financially supported by the Strategic Priority
Research Program of Chinese Academy of Sciences, Grant No. XDB (Grant No.
26000000), and Natural Science Foundation of China (Grant No. 41673020, 91747202,
41772380 and 41730857).

```
490 References:
```

```
Amiotte-Suchet, P., Probst, A. Probst, J.-L., Influence of acid rain on CO<sub>2</sub> consumption
by rock weathering: local and global scales. Water Air Soil Pollut. 85, 1563-1568,
1995.
```

Amiotte-Suchet, P., Probst, J.-L. Ludwig, W., Worldwide distribution of continental
 rock lithology: implications for the atmospheric/soil CO₂ uptake by continental

- 496 weathering and alkalinity river transport to the oceans. Global Biogeochem.
- 497 Cycles 17, 1038-1052, 2003.
- Bai, H., Song, L.S., Xia, W.P., Prospect analysis of hot dry rock (HDR) in Eastern part
- of Jiangxi province, Coal Geol. China 26, 41-44. (In Chinese), 2014.
- 500 Berner, R.A., Caldeira, K., The need for mass balance and feedback in the geochemical
- 501 carbon cycle. Geology 25, 955-956, 1997.
- Bluth, G.J.S., Kump, L.R., Lithological and climatological controls of river chemistry.
 Geochim. Cosmochim. Acta 58, 2341-2359, 1994.
- Brantley, S.L., Lebedeva, M., Learning to read the chemistry of regolith to understand
 the Critical Zone. Annual Review of Earth and Planetary Sciences, 39: 387-416,
 2011.
- 2011.
- Calmels, D., Gaillardet, J., Brenot, A., France-Lanord, C., Sustained sulfide oxidation
 by physical erosion processes in the Mackenzie River basin: climatic perspectives.
- 509 Geology 35, 1003-1006, 2007.
- 510 Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A.J., Chen, M.-C., Chapman, H.,
- 511 Contribution of deep groundwater to the weathering budget in a rapidly eroding
 512 mountain belt, Taiwan. Earth Planet. Sci. Lett. 303, 48-58, 2011.
- Cerling, T.E., Solomon, D.K., Quade, J., Bownman, J.R., On the isotopic composition
 of soil CO₂. Geochim. Cosmochim. Acta 55, 3403–3405, 1991.
- 515 Chen, Q., Shen, C., Sun, Y., Peng, S., Yi, W., Li Z., Jiang, M., Spatial and temporal
- distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere
- 517 Reserve, South China. Plant and Soil, 273: 115–128, 2005.

518	Cheng, Y., Liu, Y., Huo, M., Sun, Q., Wang, H., Chen, Z., Bai, Y., Chemical
519	characteristics of precipitation at Nanping Mangdang Mountain in eastern China
520	during spring. J. Environ. Sci. 23, 1350-1358, 2011.
521	Chetelat, B., Liu, C., Zhao, Z., Wang, Q., Li, S., Li, J., Wang, B., Geochemistry of the
522	dissolved load of the Changjiang Basin rivers: anthropogenic impacts and
523	chemical weathering. Geochim. Cosmochim. Acta 72, 4254-4277, 2008.
524	Cui, J., Zhou, J., Peng, Y., He, Y., Yang, H., Mao, J., Atmospheric wet deposition of
525	nitrogen and sulfur to a typical red soil agroecosystem in Southeast China during
526	the ten-year monsoon seasons (2003-2012). Atmos. Environ. 82, 121-129, 2014.
527	Das, A., Krishnaswami, S., Sarin, M.M., Pande, K., Chemical weathering in the Krishna
528	Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering
529	and their controls. Geochim. Cosmochim. Acta 69(8), 2067-2084, 2005.
530	Dou, X., Deng, Q., Li, M., Wang, W., Zhang, Q., Cheng, X., Reforestation of Pinus
531	massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in
532	south China. Ecological Engineering 52, 154-160, 2013.
533	Edmond, J.M., Palmer, M.R., Measures, C.I., Grant, B., Stallard, R.F., The fluvial
534	geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia,
535	and Brazil. Geochim. Cosmochim. Acta 59, 3301-3325, 1995.
536	Fan, B.L, Zhao, Z.Q., Tao, F.X., Liu, B.J., Tao, Z.H., Gao, S., He, M.Y., Characteristics
537	of carbonate, evaporite and silicate weathering in Huanghe River basin: A
538	comparison among the upstream, midstream and downstream. J. Asian Earth Sci.
539	96, 17-26, 2014.

540	Fang, Y.,	Wang, X.,	Zhu, F., Y	Wu, Z., L	i, J., Zhong,	L., Chen,	D., Yoh, N	M., Three-	decade

- 541 changes in chemical composition of precipitation in Guangzhou city, southern
- 542 China: has precipitation recovered from acidification following sulphur dioxide
 543 emission control? Tellus B 65, 1-15, 2013.
- 544 Faure, G., Principles of Isotope Geology. Wiley, Toronto, pp. 492-493, 1986.
- FJBGMR: Fujian Bureau of Geology and Mineral Resources, Regional Geology of
 Fujian Province. Geol. Publ. House, Beijing, p. 671 (in Chinese with English
 abstract), 1985.
- Gaillardet, J., Dupré, B., Allègre, C.J., Négrel, P., Chemical and physical denudation in
 the Amazon River basin. Chem. Geol. 142, 141-173, 1997.
- Gaillardet, J., Dupré, B., Louvat, P., Allegre, C.J., Global silicate weathering and CO2
 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159,
 3-30, 1999.
- Galy, A., France-Lanord, C., Weathering processes in the Ganges-Brahmaputra basin
 and the riverine alkalinity budget. Chem. Geol. 159, 31-60, 1999.
- Gandois, L., Perrin, A.-S., Probst, A., Impact of nitrogenous fertilizer-induced proton
 release on cultivated soils with contrasting carbonate contents: A column
 experiment. Geochim. Cosmochim. Acta 75, 1185-1198, 2011.
- Gislason, S.R., Arnorsson, S., Armannsson, H., Chemical weathering of basalt in
 southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover.
 Am. J. Sci. 296, 837-907, 1996.
- Han, G., Liu, C.Q., Water geochemistry controlled by carbonate dissolution: a study of

562

563

the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 204, 1-21, 2004.

- Han, Z.W., Ueda, H., Sakurai, T., Model study on acidifying wet deposition in East Asia
 during wintertime. Atmos. Environ. 40, 2360-2373, 2006.
- 566 Hartmann, J., Jansen, N., Dürr, H.H., Kempe, S., Köhler, P., Global CO₂ consumption
- 567 by chemical weathering: what is the contribution of highly active weathering 568 regions? Global Planet. Change 69, 185-194, 2009.
- Huang, K., Zhuang, G., Xu, C., Wang Y., Tang A., The chemistry of the severe acidic

570 precipitation in Shanghai, China. Atmos. Res. 89, 149-160, 2008.

- 571 Huh, Y.S., Chemical weathering and climate a global experiment: a review. Geosci. J.
 572 7, 277-288, 2003.
- 573 Hydrological data of river basins in Zhejiang, Fujian province and Taiwan region,
 574 Annual Hydrological Report P. R. China, 2010, Vol (7) (in Chinese)
- Ji, H., Jiang, Y., Carbon flux and C, S isotopic characteristics of river waters from a
- karstic and a granitic terrain in the Yangtze River system. J. Asian Earth Sci. 57,
 38-53, 2012.
- Karim, A., Veizer, H.E., Weathering processes in the Indus River Basin: implication
 from riverine carbon, sulphur, oxygen and strontium isotopes. Chem. Geol. 170,
 153-177, 2000.
- 581 Kendall, C., Tracing nitrogen sources and cycling in catchments. In: Kendall, C., &
- McDonnell, J.J., (Eds) Isotope Tracers in Catchment Hydrology. Elsevier,
 Amsterdam, 1998.

584	Kump, L.R., Brantley, S.L., Arthur, M.A., Chemical weathering, atmospheric CO ₂ and
585	climate. Ann. Rev. Earth Planet. Sci. 28, 611-667, 2000.

- Larssen, T., Carmichael, G.R., Acid rain and acidification in China: the importance of
 base cation deposition. Environ. Poll. 110, 89-102, 2000.
- Larssen, T., Lydersen, E., Tang, D., He, Y., Gao, J., Liu, H., Duan, L., Seip, H.M., Acid
- rain in China. Environ. Sci. Technol. 40, 418-425, 2006.
- Lerman, A., Wu, L., CO₂ and sulfuric acid controls of weathering and river water
 composition. J. Geochem. Explor. 88, 427-430, 2006.
- Lerman, A., Wu, L., Mackenzie, F.T., CO₂ and H₂SO₄ consumption in weathering and
 material transport to the ocean, and their role in the global carbon balance. Mar.
- 594 Chem. 106, 326-350, 2007.
- Li, S., Bush, R.T., Changing fluxes of carbon and other solutes from the Mekong River.
- 596 Sci. Rep. 5, 16005, 2015.
- Li, S.Y., Lu, X.X., Bush, R.T., Chemical weathering and CO₂ consumption in the Lower
 Mekong River. Sci. Total Environ. 472, 162-177, 2014.
- 599 Li, S.Y., Lu, X.X., He, M., Zhou, Y., Bei, R., Li, L., Zieglera, A.D., Major element
- chemistry in the Upper Yangtze River: a case study of the Longchuanjiang River.Geomorphology129, 29-42, 2011.
- Li, S.Y., Xu, Z.F., Wang, H., Wang, J.H., Zhang, Q.F., Geochemistry of the upper Han
- River basin, China. 3: anthropogenic inputs and chemical weathering to thedissolved load. Chem. Geol. 264, 89-95, 2009.
- 605 Liu, B., Liu, C.-Q., Zhang, G., Zhao, Z.-Q., Li, S.-L., Hu, J., Ding, H., Lang, Y.-C., Li.,

- K.-D., Chemical weathering under mid- to cool temperate and monsooncontrolled climate: A study on water geochemistry of the Songhuajiang River
 system, northeast China. Appl. Geochem. 31, 265-278, 2013.
- Liu, L., Zhang, X., Wang, S., Zhang, W., Lu, X., Bulk sulfur (S) deposition in China.
 Atmos. Environ., 135, 41-49, 2016.
- Liu, W., Shi, C., Xu, Z., Zhao, T., Jiang, H., Liang, C., Zhang, X., Zhou, Li., Yu, C.,
- Water geochemistry of the Qiantangjiang River, East China: Chemical weathering
 and CO₂ consumption in a basin affected by severe acid deposition. J.Asian Earth
 Sci., 127, 246-256, 2016.
- Lu, C., Tian, H., Spatial and temporal patterns of nitrogen deposition in China:
 Synthesis of observational data. J. Geophys. Res. 112, D22S05, 2007.
- Lu, Z., Zhang, Q., Streets, D.G., Sulfur dioxide and primary carbonaceous aerosol
 emissions in China and India, 1996e2010. Atmos. Chem. Phys. 11, 9839-9864,
 2011.
- Millot, R., Gaillardet, J., Dupré, B., Allègre, C.J., Northern latitude chemical
 weathering rates: clues from the Mackenzie River Basin, Canada. Geochim.
 Cosmochim. Acta 67, 1305-1329, 2003.
- Millot, R., Gaillardet, J., Dupré, B., Allègre, C.J., The global control of silicate
 weathering rates and the coupling with physical erosion: new insights from rivers
 of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83-98, 2002.
- 626 Ministry of Environmental Protection of China, 2009. China Environmental Quality
- 627 Report 2008. China Environmental Sciences Press, Beijing. In Chinese.

628	Moon, S., Chamberlain, C.P., Hilley, G.E., New estimates of silicate weathering rates
629	and their uncertainties in global rivers. Geochim. Cosmochim. Acta 134, 257-274,
630	2014.

- Moon, S., Huh, Y., Qin, J., van Pho, N., Chemical weathering in the Hong (Red) River
 basin: Rates of silicate weathering and their controlling factors. Geochim.
 Cosmochim. Acta 71, 1411-1430, 2007.
- Moon, S., Huh, Y., Zaitsev, A., Hydrochemistry of the Amur River: Weathering in a
 Northern Temperate Basin. Aquat. Geochem., 15, 497-527, 2009.
- Mortatti, J., Probst, J.L., Silicate rock weathering and atmospheric/soil CO₂ uptake in
 the Amazon basin estimated from river water geochemistry: seasonal and spatial
 variations. Chem. Geol.197, 177-196, 2003.
- Négrel, P., Allègre, C.J., Dupré, B., Lewin, E., Erosion sources determined by inversion
 of major and trace element ratios and strontium isotopic ratios in river water: the
- 641 Congo Basin Case. Earth Planet. Sci. Lett. 120, 59-76, 1993.
- Noh, H., Huh, Y., Qin, J., Ellis, A., Chemical weathering in the Three Rivers region of
 Eastern Tibet. Geochim. Cosmochim. Acta 73, 1857-1877, 2009.
- 644 Oliva, P., Viers, J., Dupré B., Chemical weathering in granitic environments. Chem.
- 645 Geol. 202, 225-256, 2003.
- Pan, Y., Wang, Y., Tang, G., Wu, D., Spatial distribution and temporal variations of
 atmospheric sulfur deposition in Northern China: insights into the potential
 acidification risks. Atmos. Chem. Phys. 13, 1675-1688, 2013.
- 649 Pepin, E., Guyot, J.L., Armijos, E., Bazan, H., Fraizy, P., Moquet, J.S., Noriega, L.,

650	Lavado, W., Pombosa, R. Vauchel, P., Climatic control on eastern Andean
651	denudation rates (Central Cordillera from Ecuador to Bolivia). J. S. Am. Earth
652	Sci. 44, 85-93, 2013.
653	Perrin, AS., Probst, A., Probst, JL., Impact of nitrogenous fertilizers on carbonate
654	dissolution in small agricultural catchments: Implications for weathering CO2
655	uptake at regional and global scales. Geochim, Cosmochim. Acta 72, 3105-3123,
656	2008.
657	Probst, A., Gh'mari, A.El., Aubert, D., Fritz, B., McNutt, R., Strontium as a tracer of
658	weathering processes in a silicate catchment polluted by acid atmospheric inputs,
659	Strengbach, France. Chem. Geol. 170, 203-219, 2000.
660	Raymo, M.E., Ruddiman, W.F., Tectonic forcing of late Cenozoic climate. Nature 359,
661	117-122, 1992.
662	Raymond, P. A., Oh, N.H., Turner, R.E., Broussard, W., Anthropogenically enhanced
663	fluxes of water and carbon from the Mississippi River. Nature 451, 449-452, 2008.
664	Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T.,Thullner. M., Anthropogenic
665	perturbation of the carbon fluxes from land to ocean. Nature Geosci. 6, 597-607.
666	2013.
667	Reuss, J.O., Cosby, B.J., Wright, RF., Chemical processes governing soil and water
668	acidification. Nature 329, 27-32, 1987.
669	Roy, S., Gaillardet, J., Allègre, C.J., Geochemistry of dissolved and suspended loads of

670 the Seine river, France: anthropogenic impact, carbonate and silicate weathering.

671 Geochim. Cosmochim. Acta 63, 1277-1292, 1999.

672	Ryu, J.S., Lee, K.S., Chang, H.W., Shin, H.S., Chemical weathering of carbonates and
673	silicates in the Han River basin, South Korea. Chem. Geol. 247, 66-80, 2008.
674	Semhi, K., Amiotte Suchet, P., Clauer, N., Probst, JL., Impact of nitrogen fertilizers
675	on the natural weathering-erosion processes and fluvial transport in the Garonne
676	basin. Appl. Geochem. 15 (6), 865-874, 2000.
677	Shi, C., Chemical characteristics and weathering of rivers in the Coast of Southeast
678	China (PhD Thesis). Institute of Geology and Geophysics, Chinese academy of
679	sciences, Beijing, China. pp, 1-100 (in Chinese with English abstract), 2014.
680	Shin, WJ., Ryu, JS., Park, Y., Lee, KS., Chemical weathering and associated CO ₂
681	consumption in six major river basins, South Korea. Geomorphology 129, 334-
682	341, 2011.
683	Shu, L.S., Zhou, X.M., Deng, P., Wang, B., Jiang, S.Y., Yu, J.H., Zhao, X.X., Mesozoic
684	tectonic evolution of the Southeast China Block: New insights from basin
685	analysis. J. Asian Earth Sci. 34(3), 376-391, 2009.
686	Spence, J., Telmer, K., The role of sulfur in chemical weathering and atmospheric CO ₂
687	fluxes: Evidence from major ions, $\delta^{13}C_{DIC}$, and $\delta^{34}S_{SO4}$ in rivers of the Canadian
688	Cordillera. Geochim. Cosmochim. Acta 69, 5441-5458, 2005.
689	Stallard, R.F., Edmond, J.M., Geochemistry of the Amazon. Precipitation chemistry and
690	the marine contribution to the dissolved load at the time of peak discharge. J.
691	Geophys. Res., 86, 9844-9858, 1981.
692	U.S. Nat. Res. Council Comm., Basic Research Opportunities in Earth Science.
693	Washington, DC: Nat. Acad. 154 pp., 2001.

694	Viers, J., Dupré, B., Braun, J.J., Freydier, R., Greenberg, S., Ngoupayou, J.N.,
695	Nkamdjou, L.S., Evidence for non-conservative behavior of chlorine in humid
696	tropical environments. Aquat. Geochem. 7, 127-154, 2001.
697	Vries, W.D., Reinds, G.J. Vel E., Intensive monitoring of forest ecosystems in Europe.
698	2-Atmospheric deposition and its impacts on soil solution chemistry. For. Ecol.
699	Manage. 174, 97-115, 2003.
700	Wang, T.J., Jin, L.S., Li, Z.K., Lam K.S., A modeling study on acid rain and
701	recommended emission control strategies in China. Atmos. Environ. 34, 4467-
702	4477, 2000.
703	West, A.J., Galy, A., Bickle, M., Tectonic and climatic controls on silicate weathering.
704	Earth Planet. Sci. Lett. 235, 211-228, 2005.
705	Wu, W., Zheng, H., Yang, J., Luo, C., Zhou, B., Chemical weathering, atmospheric CO ₂
706	consumption, and the controlling factors in a subtropical metamorphic-hosted
707	watershed. Chem. Geol. 356, 141-150, 2013.
708	Xiang, L., Study on Coupling between Water and Carbon of Artificial Forests
709	Communities in Subtropical Southern China. Master Dissertation, Institute of
710	Geographical Sciences and Natural Sources, Chinese Academy of Sciences,
711	China (in Chinese), 2006.
712	Xu, H., Bi, X-H., Feng, Y-C., Lin, F-M., Jiao, L., Hong, S-M., Liu, W-G., Zhang, X
713	Y., Chemical composition of precipitation and its sources in Hangzhou, China.
714	Environ. Monit. Assess. 183:581-592, 2011.

715 Xu, Y., Wang C.Y., Zhao T., Using detrital zircons from river sands to constrain major

716

tectono-thermal events of the Cathaysia Block, SE China. J. Asian Earth Sci. 124,

717 1-13, 2016.

- Xu, Z., Liu, C.-Q., Chemical weathering in the upper reaches of Xijiang River draining
 the Yunnan-Guizhou Plateau, Southwest China. Chem. Geol. 239, 83-95, 2007.
- Xu, Z., Liu, C.-Q., Water geochemistry of the Xijiang basin rivers, South China:
- Chemical weathering and CO₂ consumption. Appl. Geochem. 25, 1603-1614,
 2010.
- Yoshimura, K., Nakao, S., Noto, M., Inokura, Y., Urata, K., Chen, M., Lin, P.W.,
 Geochemical and stable isotope studies on natural water in the Taroko Gorge karst
 area, Taiwan chemical weathering of carbonate rocks by deep source CO₂ and
- sulfuric acid. Chem. Geol. 177, 415–430, 2001.
- Zhang, M., Wang, S., Wu, F., Yuan, X., Zhang, Y., Chemical compositions of wet
 precipitation and anthropogenic influences at a developing urban site in
 southeastern China. Atmos. Res. 84, 311-322, 2007a.
- Zhang, S.R., Lu, X. X., Higgitt, D. L., Chen, C.T.A., Sun, H.-G., Han, J.T., Water
 chemistry of the Zhujiang (Pearl River): Natural processes and anthropogenic
 influences. J. Geophys. Res. 112, F01011, 2007b.
- Zhao, W., An analysis on the changing trend of acid rain and its causes in Fujian
 Province. Fujian Geogr. 19, 1-5 (in Chinese), 2004.
- 735 Zhou, X.M., Li, W.X., Origin of Late Mesozoic igneous rocks in Southeastern China:
- 736 Implications for lithosphere subduction and underplating of mafic magmas.
- 737 Tectonophysics 326(3-4), 269-287, 2000.

738	Zhou, X.M., Sun, T., Shen, W.Z., et al., Petrogenesis of Mesozoic granitoids and
739	volcanic rocks in South China: A response to tectonic evolution. Episodes 29(1),
740	26-33, 2006.
741	ZJBGMR: Zhejiang Bureau of Geology and Mineral Resources, Regional Geology of
742	Zhejiang Province. Geol. Publ. House, Beijing, p. 617 (in Chinese with English

743 abstract), 1989.

Rivers	Sample	Date	pН	Т	EC	Na^+	\mathbf{K}^+	Mg^{2+}	Ca^{2+}	F	Cl	NO ₃	SO_4^2	HCO ₃	SiO_2	$TZ^{\scriptscriptstyle +}$	ΤZ	NICB	$\delta^{13}C$	TDS
	number	(M/D/Y)		°C	µs cm ⁻¹	μΜ	μΜ	μΜ	μΜ	μΜ	μΜ	μΜ	μΜ	μΜ	μΜ	μEq	μEq	%	‰	mg l ⁻¹
Qiantang*	1	07-8-10	7.42	28.78	190	347	197	106	473	12.0	303	62.6	147	1130	148	1703	1789	-5.0	-19.0	144
	2	07-9-10	7.60	23.84	146	87.5	204	80.9	496	11.7	75.2	124	121	907	156	1446	1348	6.7	-19.8	119
	3	07-9-10	7.37	27.83	308	555	233	208	698	41.8	312	223	437	1170	170	2601	2579	0.9	-17.8	204
	4	07-10-10	7.27	26.28	177	176	135	116	544	15.7	151	142	170	985	175	1632	1618	0.8	-19.3	135
	5	07-10-10	7.05	24.15	123	130	101	66.2	349	17.7	94.3	124	157	529	169	1061	1061	0.0	-18.7	91.2
	6	07-10-10	7.24	23.75	140	97.6	69.7	81.0	451	20.0	62.1	109	204	703	164	1231	1282	-4.2	-21.3	106.6
	7	07-11-10	7.40	23.23	107	92.5	70.5	68.3	327	14.9	74.9	104	147	486	156	954	960	-0.6	-21.0	82.2
	8	07-11-10	7.16	27.61	281	361	87.5	128	469	26.8	245	191	239	810	179	1642	1724	-5.0	-12.9	137.5
	9	07-11-10	7.02	26.48	140	275	120	60.7	319	36.2	199	150	180	437	236	1155	1146	0.8	-13.9	100.2
	10	07-12-10	7.05	24.24	99	205	114	58.3	285	14.6	191	114	132	305	278	1005	874	13.1	-20.9	85.4
	11	07-12-10	7.05	27.01	102	123	133	49.8	284	18.6	86.5	123	144	377	183	924	874	5.4	-19.2	79.4
	12	07-12-10	7.99	24.18	260	50.0	85.4	212	993	-	66.8	153	235	1822	172	2546	2512	1.4	-17.6	205.2
	13	07-12-10	7.86	24.59	231	43.5	88.4	189	859	-	55.1	97.6	169	1763	170	2228	2253	-1.1	-18.7	185.4
	14	07-12-10	7.69	22.66	131	44.1	81.0	113	458	-	19.1	95.2	107	920	143	1266	1248	1.4	-18.1	106.8
	15	07-12-10	7.65	24.48	106	61.1	98.3	87.9	335	-	37.2	68.3	112	663	164	1005	992	1.4	-18.6	87.3
	16	07-12-10	7.46	23.68	125	64.3	108	117	406	-	25.9	75.0	174	687	164	1218	1136	6.7	-20.0	98.8
	17	07-13-10	7.33	24.08	139	59.8	116	136	429	-	29.6	80.4	209	752	162	1305	1281	1.9	-20.8	108.1
	18	07-10-10	7.27	25.74	141	163	114	69.6	396	27.3	126	148	161	597	153	1209	1195	1.1	-21.0	101.0
Cao'e	19	07-16-10	7.17	22.27	108	212	86.3	69.4	183	5.1	151	148	114	384	216	803	912	-13.5	-21.2	79.1
	20	07-16-10	7.06	26.57	182	401	77.6	145	275	18.3	269	185	245	534	215	1318	1478	-12.2	-20.5	116.9
	21	07-16-10	7.14	27.26	171	333	91.3	164	362	18.1	224	194	207	658	225	1475	1490	-1.0	-20.9	123.3
	22	07-16-10	7.08	27.17	173	346	94.4	168	364	18.8	247	200	211	656	222	1506	1526	-1.3	-13.0	125.2
Ling	23	07-15-10	7.07	24.14	52	164	42.9	34.9	140	4.9	40.7	61.5	68.3	277	190	558	516	7.6	-12.8	52.1
	24	07-15-10	7.02	26.04	74	169	92.0	34.2	150	6.4	87.0	77.3	92.8	272	196	629	622	1.1	-20.8	59.5
	25	07-16-10	7.34	25.03	92	159	80.1	47.3	235	19.3	78.0	71.4	105	455	187	804	815	-1.4	-22.5	73.9
	26	07-16-10	7.40	26.75	113	216	77.8	57.1	249	20.2	133	90.0	115	494	196	905	946	-4.5	-12.7	82.8
	27	07-16-10	7.39	26	89	174	86.4	56.4	209	9.0	99.3	78.4	99.9	420	199	792	798	-0.8	-14.0	72.7
	28	07-15-10	6.79	22.33	75	159	82.7	44.1	143	-	107	61.8	83.4	306	144	616	641	-4.1	-21.1	56.5
	29	07-15-10	8.24	27.15	129	228	92.1	83.1	317	17.2	177	90.5	120	641	194	1120	1148	-2.5	-19.2	97.8
Ou	30	07-13-10	8.08	28.45	48	95.2	107	38.4	92.1	15.2	31.8	43.3	47.4	291	221	463	461	0.4	-21.7	50.6
	31	07-13-10	6.71	22.97	32	60.7	106	12.6	65.0	10.8	28.9	45.0	48.9	158	169	322	329	-2.2	-23.8	36.9
	32	07-13-10	7.18	27.59	73	107	127	36.2	175	4.3	57.1	111	92.0	283	210	655	634	3.2	-23.4	62.9
	33	07-13-10	6.94	24.2	44	76.9	112	20.0	99.1	10.9	27.9	63.1	58.6	249	184	427	457	-7.0	-22.5	47.5
	34	07-14-10	7.16	27.45	90	187	127	41.2	199.5	17.0	85.6	102	116	367	251	796	787	1.1	-22.4	76.5
	35	07-14-10	6.97	24.56	54	105	50.9	29.2	122	12.2	46.1	67.8	73.1	218	193	460	478	-4.1	-22.5	47.9
	36	07-14-10	6.82	21.12	31	76.4	133	12.7	74.5	7.7	20.7	36.8	49.1	192	162	383	348	9.3	-	39.5
	37	07-14-10	6.82	23.69	45	89.5	105	19.0	97.8	10.6	39.6	52.8	59.1	231	185	428	441	-3.0	-22.9	46.2
	38	07-15-10	6.92	24.69	37	100	89.3	21.1	49.7	1.7	36.9	45.5	52.7	153	202	331	341	-2.9	-	38.9
	39	07-15-10	6.90	23.86	35	92.2	92.0	19.8	61.4	1.9	43.9	47.9	55.5	139	193	347	342	1.4	-22.3	38.5
	40	07-15-10	7.09	25.56	47	117	112	25.7	83.4	8.0	52.4	63.1	57.4	232	193	447	462	-3.3	-22.5	48.1
	41	07-14-10	6.97	24.25	53	102	107	27.6	119	13.4	43.5	59.4	73.2	277	183	502	526	-4.9	-13.7	52.3

Table 1 Chemical and carbon isotopic compositions of river waters in the Southeast Coastal Rivers Basin (SECRB) of China.

Feiyun	42	07-17-10	7.28 25.19	38	94.0	81.7	24.0	75.6	11.4	59.9	45.7	51.9	149	151	375	358	4.5	-	37.2
	43	07-17-10	7.08 25.61	46	101	79.9	33.9	93.4	4.6	66.2	55.1	52.8	223	151	435	450	-3.3	-23.7	43.5
Jiaoxi	44	07-17-10	7.52 26.92	47	116	81.5	25.2	92.0	4.1	73.3	80.3	25.0	226	151	432	430	0.5	-23.4	43.0
	45	07-17-10	7.45 27.46	61	152	90.2	34.2	119	-	136	59.8	53.5	238	184	548	542	1.2	-23.1	51.8
	46	07-18-10	6.90 27.66	53	127	88.1	33.4	94.4	7.0	123	93.1	30.4	209	177	471	486	-3.3	-14.4	47.4
Huotong	47	07-18-10	7.34 24	43	116	78.8	26.1	58.4	5.4	68.7	49.7	20.1	197	190	364	355	2.3	-22.8	39.6
Ao	48	07-19-10	7.24 31.44	124	294	121	102	209	24.3	204	73.6	52.0	717	370	1036	1100	-6.1	-19.4	105.4
	49	07-19-10	7.13 27.82	46	109	96.3	30.0	73.8	-	72.0	51.3	22.5	234	236	413	402	2.6	-	46.2
	50	07-18-10	6.98 28.65	53	140	88.4	40.8	100	3.0	82.9	58.6	20.9	294	233	511	477	6.6	-22.3	52.2
Min	51	07-27-10	7.11 28.4	42	116	92.0	40.5	119	18.0	43.9	35.5	26.0	382	182	526	513	2.4	-19.4	52.7
	52	07-27-10	7.17 30	51	102	97.9	41.7	107	4.6	29.4	45.3	35.0	350	221	496	495	0.2	-	53.3
	53	07-27-10	7.08 29.4	99	214	92.7	46.4	126	18.4	50.1	39.8	118	327	154	651	654	-0.4	-20.8	74.0
	54	07-27-10	7.06 29.1	44	107	99.6	28.1	114	16.4	18.7	36.4	44.3	305	265	491	449	8.5	-17.6	53.6
	55	07-27-10	7.42 29.4	57	139	93.7	49.8	113	3.1	67.1	56.3	26.6	384	236	558	561	-0.5	-16.4	58.6
	56	07-27-10	7.12 27.8	51	103	91.0	50.8	106	4.7	82.8	35.1	63.5	249	225	507	494	2.5	-	51.3
	57	07-27-10	7.08 27.5	40	125	45.0	36.8	107	12.1	43.6	44.5	29.3	288	211	457	435	5.0	-21.1	47.4
	58	07-27-10	6.99 27.2	52	121	98.0	42.4	115	16.7	87.1	36.6	70.9	277	228	535	542	-1.4	-11.4	55.3
	59	07-27-10	6.87 29	59	154	91.4	59.4	124	16.5	77.8	36.7	88.3	272	222	612	563	8.0	-20.3	57.2
	60	07-27-10	7.31 27.1	78	109	92.1	59.1	181	21.2	123	37.5	78.4	355	202	682	672	1.4	-18.7	63.1
	61	07-27-10	7.22 27.8	37	122	83.3	52.8	142	17.4	111	37.3	80.4	288	221	596	597	-0.2	-22.3	58.1
	62	07-27-10	7.16 28.1	58	104	83.3	59.3	163	24.0	34.6	34.5	118	294	214	632	599	5.2	-13.4	59.5
	63	07-27-10	7.26 28.3	87	139	86.1	60.9	191	14.8	48.0	93.0	109	347	226	729	707	3.0	-21.4	68.6
	64	07-27-10	7.00 28.8	87	127	93.1	58.7	195	6.6	59.8	81.1	60.9	480	232	729	743	-2.0	-11.0	74.0
	65	07-28-10	6.97 27.9	37	163	82.1	52.2	140	20.2	53.1	60.0	106	306	221	630	632	-0.2	-	61.9
	66	07-13-10	7.07 27.96	59	91.9	110	40.0	127	24.8	62.0	79.3	62.3	249	228	535	515	3.8	-	54.8
	67	07-28-10	7.12 29.7	38	108	93.4	45.9	133	12.4	48.3	34.0	56.6	368	220	560	564	-0.7	-	57.7
	68	07-27-10	7.03 29.9	62	128	96.7	57.6	148	23.3	81.6	36.8	74.1	374	203	635	641	-0.9	-12.4	61.7
	69	07-27-10	7.01 28.8	60	102	89.1	73.6	138	9.6	50.6	74.1	32.7	417	233	615	607	1.3	-21.0	62.3
	70	07-27-10	7.06 26.5	37	93.5	93.1	34.7	87.3	-	26.6	34.8	37.1	312	222	431	448	-3.9	-13.1	49.1
	71	07-27-10	7.09 26.5	25	62.6	92.7	27.0	61.5	4.7	21.5	18.6	43.4	191	154	332	318	4.2	-16.0	35.3
	72	07-28-10	7.07 30.1	39	76.3	87.9	35.1	87.6	7.4	43.1	36.6	35.5	266	175	409	416	-1.7	-19.4	43.5
	73	07-27-10	7.01 28.7	47	84.9	95.4	56.7	106	12.7	51.8	49.2	57.2	315	211	506	531	-4.8	-	53.8
	74	07-27-10	6.85 28.7	50	93.6	85.9	52.4	107	14.1	62.8	57.5	57.0	252	217	498	487	2.2	-19.9	50.9
	75	07-27-10	7.11 29.7	69	117	85.2	73.4	159	7.6	63.7	75.2	47.4	418	230	666	652	2.2	-22.2	65.0
	76	07-28-10	6.93 28.9	59	112	88.0	61.8	122	6.0	57.4	89.3	42.0	349	224	568	580	-2.2	-22.0	58.8
	77	07-21-10	7.76 32.4	51.2	163	85.5	52.8	151	20.2	55.3	70.3	78.6	372	175	656	655	0.3	-12.5	61.8
	78	07-28-10	7.29 26.8	106	129	75.3	84.0	321	24.0	56.2	41.0	166	599	202	1013	1028	-1.4	-16.3	90.3
	79	07-21-10	7.09 26.96	56	112	87.6	37.1	129	4.5	51.5	44.9	61.9	327	276	531	547	-2.9	-22.2	59.1
	80	07-21-10	7.64 33.37	83	114	96.2	60.6	151	16.7	53.0	40.6	102	371	242	633	670	-5.8	-12.8	66.2
	81	07-21-10	7.83 31.27	65	131	102	52.7	141	16.1	45.3	49.7	91.8	324	239	620	603	2.8	-13.4	61.8
	82	07-21-10	6.84 28.35	66	132	101	52.5	141	5.8	63.8	54.1	91.6	304	243	621	606	2.5	-22.7	61.5
	83	07-21-10	7.42 30.7	98	217	113	59.2	210	18.4	98.7	63.5	84.7	496	320	868	827	4.6	-18.9	84.5
	84	07-27-10	7.26 26.3	46	104	102	29.7	121	3.6	55.2	51.9	55.5	294	193	507	512	-0.9	-21.6	51.9
	85	07-27-10	7.07 25.4	30	73.3	99.2	19.6	78.8	-	22.9	40.0	49.2	203	170	369	365	1.3	-21.1	39.8
	86	07-27-10	7.50 27.3	45	102	102	26.5	114	2.4	35.1	39.7	57.2	260	217	484	449	7.3	-15.7	49.6
	87	07-27-10	7.47 26.9	51	141	100	43.6	109	7.9	79.7	42.4	57.7	311	217	547	548	-0.3	-20.1	55.6

	88	07-19-10	7.99	31.74	63	167	96.5	33.5	115	8.0	105	35.5	38.1	331	218	561	548	2.3	-13.5	55.9
	89	07-21-10	6.77	28.19	65	132	93.6	56.0	145	15.6	60.6	78.8	75.4	333	243	627	624	0.5	-22.6	63.3
Jin	90	07-27-10	7.36	25.8	128	126	94.8	88.9	406	22.9	51.4	39.4	229	595	208	1211	1143	5.6	-20.7	100
	91	07-27-10	7.40	26.9	123	143	103	82.7	347	21.0	83.5	203	182	463	226	1105	1115	-0.9	-21.3	98.4
	92	07-27-10	7.00	27.4	88	170	98.8	56.8	205	7.2	137	117	106	327	205	793	792	0.1	-22.5	71.8
	93	07-27-10	7.32	28.7	73	201	116	87.1	318	20.0	93.5	41.5	189	508	267	1128	1020	9.6	-21.7	95.3
Jiulong	94	07-30-10	6.50	23.47	29	72.3	92.4	22.8	59.8	12.4	25.1	27.0	50.0	189	213	330	341	-3.4	-18.1	40.1
	95	07-30-10	7.06	29.35	120	136	96.9	106	339	5.1	67.7	66.3	249	469	202	1124	1100	2.1	-20.8	94.2
	96	07-30-10	7.45	27.6	104	79.5	97.5	106	363	14.4	70.7	50.0	99.9	729	184	1116	1049	6.0	-18.9	93.7
	97	07-31-10	7.36	26.59	139	140	100	142	432	15.5	79.6	78.3	274	573	196	1388	1278	8.0	-19.7	108.8
	98	07-31-10	7.72	26.18	88	77.6	96.2	69.0	313	19.9	39.7	34.6	63.8	731	251	938	933	0.5	-18.4	89.4
	99	07-30-10	7.43	26.96	119	200	93.8	100.2	298	19.9	122	80.5	225	387	202	1091	1040	4.7	-20.5	89.5
	100	07-28-10	7.41	26.66	112	173	97.9	94.4	286	46.1	118	152	201	364	207	1033	1036	-0.3	-20.9	92.2
	101	07-29-10	7.16	29.35	82	151	110	55.4	178	4.9	71.2	170	53.2	385	305	727	732	-0.7	-21.2	76.1
	102	07-29-10	7.10	28.9	100	222	98.3	49.4	249	3.6	126	157	52.7	532	303	917	920	-0.3	-21.7	90.0
	103	07-28-10	7.20	31.15	138	339	111	81.2	277	9.2	280	285	88.6	515	317	1165	1256	-7.8	-19.0	112
	104	07-28-10	7.16	27.09	101	261	95.8	81.7	235	40.3	173	80.1	174	291	136	990	892	9.9	-24.3	75.4
Zhang	105	07-28-10	8.08	30.6	93	195	96.1	61.1	167	16.8	157	193	55.2	281	288	748	741	0.9	-21.5	73.8
Dongxi	106	07-28-10	7.20	30.9	78	263	99.0	41.5	115	14.5	238	65.3	30.0	283	309	675	646	4.4	-20.8	66.7
Huangang	107	07-28-10	7.40	30.5	99	253	85.6	53.0	154	7.7	190	63.5	56.4	460	278	754	827	-9.6	-20.0	77.4
Han	108	07-31-10	7.31	27.1	68	136	61.5	45.2	195	16.1	37.7	45.3	93.7	345	218	678	615	9.2	-21.9	62.0
	109	07-30-10	7.38	26.94	88	116	103	63.6	265	6.4	53.4	72.2	84.9	584	244	876	879	-0.4	-20.4	83.7
	110	07-30-10	6.66	25.55	71	114	96.2	47.6	168	8.0	56.9	54.6	143	230	203	642	628	2.2	-17.9	59.7
	111	07-30-10	6.66	27.76	83	135	104	63.8	203	8.6	54.5	74.9	173	302	336	774	777	-0.4	-20.6	78.7
	112	07-30-10	7.31	30.81	56	168	74.0	39.1	118	13.5	62.9	44.4	81.4	237	245	556	507	8.8	-21.4	54.6
	113	07-31-10	7.28	28.73	98	137	99.3	85.6	270	9.2	88.8	59.1	118	565	233	948	949	-0.1	-19.7	86.6
	114	07-31-10	7.27	31.42	123	193	105	98.2	319	20.7	120	102	157	570	229	1132	1107	2.2	-19.7	98.2
	115	07-30-10	7.43	29.89	85	115	97.5	65.5	244	6.5	46.5	58.6	103	511	251	832	822	1.1	-20.8	79.3
	116	07-31-10	7.61	30.98	99	123	104	85.9	264	5.6	58.8	90.9	108	588	98	926	952	-2.9	-20.0	79.4
	117	07-31-10	7.31	29.96	93	151	103	78.1	250	15.4	68.0	99.1	173	379	233	909	891	1.9	-21.9	81.8
	118	07-31-10	7.35	28.4	2	233	84.2	101	323	12.8	84.0	101	203	460	229	1165	1051	9.8	-21.1	94.7
	119	07-31-10	7.67	30.38	93	136	87.8	73.6	231	16.4	64.6	94.4	184	382	226	834	909	-9.1	-20.8	80.5
Rong	120	07-30-10	7.57	31.83	68	193	79.1	50.3	146	16.4	192	84.0	31.5	344	309	664	683	-2.8	-20.3	65.8
	121	07-30-10	6.96	30.62	94	509	103	56.1	213	15.9	511	78.5	82.3	379	222	1150	1133	1.5	-20.0	94.4

 TZ^+ is the total cationic charge; TZ^- is the total anionic charge; NICB is the normalized inorganic charge balance and TDS is the total dissolved solid. *data of major ion composition are from Liu et al. (2016).

Table 2 Chemical compositions of precipitation at different sites located within the studied area (in μ mol l⁻¹ and molar ratio).

Province	Location	pН	F	Cl	NO ₃ -	SO ₄ ²⁻	$\mathrm{NH_4^+}$	\mathbf{K}^{+}	Na^+	Ca^{2+}	Mg ²⁺	NO ₃ /Cl	SO ₄ /Cl	K/Cl	Na/Cl	Ca/Cl	Mg/Cl	Reference
Zhejiang	Hangzhou	4.5	5.76	13.9	38.4	55	79.9	4.18	12.2	26	3.53	2.76	3.96	0.3	0.88	1.87	0.25	Xu et al., 2011
	Jinhua	4.54	9.05	8.51	31.2	47.6	81.1	4.73	6.27	24	1.73	3.67	5.59	0.56	0.74	2.81	0.2	Zhang et al., 2007
Fujian	Nanping	4.81	0.8	5.8	26.6	18.3	38	4.9	5.4	12.9	2.7	4.59	3.16	0.84	0.93	2.22	0.47	Cheng et al., 2011
	Fuzhou		5.26	21.4	24.9	48.5	78.1	4.1	2.61	32.7	1.25	1.16	2.26	0.19	0.12	1.53	0.06	Zhao, 2004
	Xiamen	4.57	15.3	23.7	22.1	31.3	37.7	3.58	36.1	21.5	4.94	0.93	1.32	0.15	1.52	0.91	0.21	Zhao, 2004
Average												2.62	3.26	0.41	0.84	1.87	0.24	

Table 3 Contribution of each reservoir, fluxes, chemical weathering and associated CO₂ consumption rates for the major rivers and their main tributaries in the SECRB.

Major river	Tributaries	s Location	Discharge	Area	Runoff	. Coi	ntribut (%)	tion		Fluxe (10 ⁶ t	s a ⁻¹)	Weath (t km ⁻¹	ering 1 ² a ⁻¹)	rate		$\frac{\text{CO}_2 \text{ consumption rate}}{(10^3 \text{ mol km}^{-2} \text{ a}^{-1})}$				
			$10^9 m^3 a^{-1}$	$10^3 \mathrm{km^2}$	mm a ⁻¹	Rain	Anth.	Sil.	Carb.	SWF	CWF	Cat _{sil} ^a	SWR ^b	CWR ^b	TWR ^b	CSW ^c	CCW	SSW	SSW ^e	
Qiantang		Fuyang	43.81	38.32	1143	9	14	23	54	0.66	1.74	6.8	17.3	45.3	62.6	223	459	195	184	
	Fenshui	Tonglu	2.726	3.100	879	7	14	18	62	0.05	0.16	5.5	14.7	52.1	66.8	167	530	152	146	
Cao'e		Huashan	2.610	3.043	858	7	23	26	44	0.06	0.11	6.8	18.2	35.4	53.5	269	369	240	229	
Ling		Linhai	5.400	6.613	817	9	22	24	45	0.09	0.17	4.7	14.2	26.1	40.3	167	267	143	133	
	Yonganxi	Baizhiao	3.184	2.475	1286	14	15	50	21	0.06	0.03	9.1	24.2	11.7	35.9	350	119	255	216	
	Shifengxi	Shaduan	1.731	1.482	1168	11	19	35	36	0.03	0.04	7.6	21.4	24.5	45.9	304	249	249	227	
Ou		Hecheng	20.65	13.45	1536	20	6	56	18	0.36	0.13	10.1	26.9	9.9	36.9	360	101	228	174	
	Haoxi	Huangdu	1.809	1.270	1447	16	8	46	30	0.04	0.02	9.9	27.9	19.0	46.9	336	192	246	210	
	Xiaoxi	Jupu	5.116	3.336	1534	23	0	74	4	0.09	0.01	11.4	26.4	1.8	28.2	391	18	202	125	
	Nanxi	Yongjiashi	1.799	1.273	1413	21	9	63	7	0.03	0.00	10.0	26.3	3.3	29.6	360	34	200	135	
Huotong		Yangzhong	3.470	2.082	1667	22	18	54	5	0.06	0.00	8.3	27.3	2.1	29.4	305	24	129	59	
Ao		Lianjiang	2.770	3.170	874	17	17	48	17	0.05	0.02	5.1	17.3	5.4	22.7	188	56	122	95	
Min		Zhuqi	84.59	54.50	1552	15	10	48	27	1.80	0.94	10.3	33.0	17.3	50.2	390	180	292	252	
	Futun	Yangkou	22.53	12.67	1778	15	14	49	22	0.45	0.21	12.0	35.8	16.2	52.0	460	171	336	286	
	Shaxi	Shaxian	12.87	9.922	1297	13	9	42	36	0.26	0.21	8.4	26.5	21.7	48.1	315	222	249	223	
	Jianxi	Qilijie	24.91	14.79	1685	16	10	45	29	0.48	0.26	9.6	32.2	17.4	49.6	350	185	250	210	
	Youxi	Youxi	5.237	4.450	1177	15	8	46	31	0.11	0.07	7.4	24.5	15.0	39.5	272	156	205	178	
	Dazhangxi	Yongtai	4.205	4.034	1042	15	21	47	17	0.08	0.03	6.6	20.2	7.1	27.4	242	73	163	131	
Jin	Xixi	Anxi	3.004	2.466	1218	9	10	29	52	0.06	0.10	7.9	24.4	42.2	66.6	284	430	247	232	
	Dongxi	Honglai	2.236	1.704	1312	12	22	28	38	0.04	0.04	6.8	22.9	25.6	48.5	226	263	178	158	
Jiulong		Punan	10.20	8.49	1201	13	14	28	45	0.19	0.29	7.3	22.2	34.0	56.2	263	351	209	188	
	Xi'xi	zhengdian	4.080	3.420	1193	10	32	25	33	0.10	0.11	8.0	30.7	30.9	61.6	288	317	227	203	
Zhang		Yunxiao	1.011	1.038	974	16	25	29	29	0.02	0.01	5.1	21.9	14.1	36.0	174	146	114	90	
Dongxi		Zhao'an	1.176	0.955	1231	16	41	26	17	0.03	0.01	5.8	28.7	10.2	38.9	187	107	93	55	
Huanggan	g	Raoping	1.637	1.621	1010	15	30	34	21	0.04	0.02	6.0	22.8	11.1	33.9	227	115	145	112	
Han		Chao'an	24.75	29.08	851	16	7	38	39	0.49	0.50	5.4	17.0	17.0	34.0	208	176	156	135	

Ding	Xikou	11.14	9.228	1207	17	6	46	32	0.31	0.18	9.0	33.3	19.1	52.4	341	196	249	212
Mei	Hengshan	10.29	12.95	794	12	13	31	44	0.21	0.32	5.7	16.6	24.5	41.1	212	252	173	157
Whole SECRB	2	207	167	1240					3.95	4.09	7.8	23.7	24.5	48.1	287	251	218	191

^a Cat_{sil} are calculated based on the sum of cations from silicate weathering.

^b SWR, CWR and TWR represent silicate weathering rates (assuming all dissolved silica is derived from silicate weathering), carbonate weathering rates and total weathering rates, respectively.

 $^{\rm c}$ CO_2 consumption rate with assumption that all the protons involved in the weathering reaction are provided by carbonic acid.

^d Estimated CO₂ consumption rate by silicate weathering when H₂SO₄ from acid precipitation is taken into account.

^e Estimated CO₂ consumption rate by silicate weathering when H₂SO₄ and HNO₃ from acid precipitation is taken into account.

Fig. 1. Sketch map showing the lithology, sampling locations, and sample number of the SECRs drainage basin, and regional rain water pH ranges are shown in the sketch map at the upper-left. (modified from Zhou and Li, 2000; Shu et al., 2009; Xu et al., 2016, rain water acidity distribution of China mainland is from State Environmental Protection Administration of China). (1)Shaoxing-Jiangshan fault zone; (2)Zhenghe-Dapu fault zone; (3)Changle-Nanao fault zone. The figure was created by CorelDraw software version 17.1.

Fig. 2. Ternary diagrams showing cations (a), anions and dissolved SiO_2 (b) compositions of river waters in the SECRB. Chemical compositions from case studies of rivers draining carbonate rocks (the Wujiang and the Xijiang) are also shown for comparison (data from Han and Liu 2004; Xu and Liu 2007, 2010)

Fig. 3. Mixing diagrams using Na-normalized molar ratios: $HCO_3^-/Na^+ vs. Ca^{2+}/Na^+$ (a) and $Mg^{2+}/Na^+ vs. Ca^{2+}/Na^+$ (b) for the SECRB. The samples mainly cluster on a mixing line between silicate and carbonate end-members. Data for world major rivers are also plotted (data from Gaillardet et al. 1999).

Fig. 4. Calculated contributions (in %) from the different reservoirs to the total cationic load for major rivers and their main tributaries in the SECRB. The cationic loads are the sum of Na^+ , K^+ , Ca^{2+} and Mg^{2+} from different reservoirs.

Fig. 5. Plots of the cationic-silicate weathering rate (Catsil) vs. runoff for the SECRB

Fig. 6. Plots of total cations derived from carbonate and silicate weathering vs. HCO_3^- (a) and $HCO_3^-+SO_4^{2-}+NO_3^-$ (b) for river waters in the SECRB.

Fig. 7. $\delta^{13}C_{DIC}$ vs. HCO₃^{-/}(Na⁺+K⁺+Ca²⁺+Mg²⁺)^{*} (a) and (SO₄²⁻+NO₃⁻)/(Na⁺+K⁺+Ca²⁺+Mg²⁺)^{*} equivalent ratio (b) in river waters draining the SECRB (* noted concentrations corrected for atmospheric and anthropogenic inputs). The plots show that most waters deviate from the three end-member mixing area (carbonate weathering by carbonic acid and sulfuric acid and silicate weathering by carbonic acid), illustrating the effects of sulfuric and nitric acid on silicate weathering.