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Reply to anonymous Referee#1 

We thank referee#1 for reviewing the paper and we address in detail the reviewer's concerns. As suggested, the manuscript 

was revised in order to improve clarity and readability, and to correct English grammar 

1. “By focusing on VIs make the novelty of the work questionable. There are loads of similar paper.” 

Answer:  5 

We agree with the referee that numerous studies have already been published on the use of spectral vegetation indices (VIs) 

for GPP estimation and frequently they have shown a limited applicability. Some of these studies are reported in the 

introduction of our manuscript. However, our study intends to explore the use of spectral information beyond the use of 

known VIs. We also assessed the potential of reflectance values in the 350-2500nm range of the spectra to estimate GPP, 

grouped in intervals of contiguous highly correlated reflectance (named “bands”). Our results (see Table 5) compare the best 10 

models, considering VIs, bands and the combination of both. Moreover, we apply statistical tests to determine if there are 

significant differences between models. As far as we know, this provides a new understanding of the potential use and 

limitations of VIs to model GPP, and explains at which extent VIs can be replaced or complemented by bands.  

2. “The methodology used to choose relevant variables for model construction seems not optimal. There is a 

dimensionality reduction done at 3 different levels while that could be done in one step by choosing a more 15 

appropriated method” 

Answer: 

 In fact, the reduction of dimensionality was achieved in progressive steps.  Firstly, we determine groups of wavelengths (we 

call them “bands”) that satisfy a clear criteria: they are the smallest set such that correlation between observations is always 

larger than 90% within each band. This allows us to preserve the spectral continuity of the signal, since we aggregate 20 

contiguous individual 1 nm intervals of wavelength into broader wavelength bands.  Secondly, we select the bands and/or 

VIs that best explain GPP. In both cases, we apply methods which are optimal for the criteria we consider. For selecting the 

best subset of variables in Multiple Linear Regression (MLR) models and further reduce the dimensionality of the data, we 

rely on the leaps and bounds technique (LEAPS), which is suitable for large number of predictor variables (up to 

approximately 50). We haven’t used Principal Component Analysis (PCA), which has been suggested by the referee for 25 

dimensionality reduction, since PCA replaces the original variables by linear combinations. Given that the goal of the 

analysis is to determine the set of VIs and /or bands that best model GPP, we believe that we need to apply a method that 

identifies the best subset of single variables for a straightforward interpretation of results. Unlike alternative heuristic 

approaches (Cadima et al., 2004), LEAPS returns the optimal subset of predictors according to a given criteria (we used the 

adjusted R
2
 as the criteria in our study). The referee also suggests using Machine Learning (ML) algorithms. Although the 30 

expressiveness of those models (ML) is stronger than MLR, we believe that linear models are better at making explicit the 

relation between predictors and GPP, while offering enough flexibility by including variables in a high dimension 

representation space. Moreover, linear models allow us to derive confidence intervals for our results, apply statistical tests to 
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compare models at a given significance level, and prevent overfitting. Finally, the analysis of residuals for MLR doesn´t 

contradict the assumptions of the linear model, which confirms that MLR is an adequate approach for the problem at hand.   

After the best MLR model (with the highest adjusted R
2
) is determined, we do simplify it by exhaustive backwards stepwise 

selection of predictors at a 5% significance level. We agree with the reviewer that it would be more elegant to incorporate 

this directly into the variable selection procedure. This could have been done if we had used a heuristic stepwise selection 5 

method, which would not guarantee however the optimality of the solution. Here, we chose instead to use LEAPS to find the 

optimal model (the one that maximizes the adjusted R
2
), and then we identify all its sub models that do not differ in quality 

at the 5% significance level and choose the best and most parsimonious one.  

The following text was inserted in section 2.5 (Data analysis): 

Given that the goal of the analysis is to determine the set of VIs and /or bands that best model GPP, we identify the best 10 

subset of explanatory variables to model the response variable (GPP) by multiple linear regression (MLR).  We preferred 

MLR to other methods, (e.g. Principal Component Analysis, PCA) where dimensionality reduction is achieved through 

replacing variables by their linear combinations.  MLR was also preferred to non-linear models (e.g. in the field of machine 

learning) because it provides a clearer interpretation of the relation between predictors and GPP, while offering enough 

flexibility by including variables in a high dimension representation space. Moreover, MLR allows us to derive confidence 15 

intervals for our results, apply statistical tests to compare models at a given significance level, and it is less prone to 

overfitting than complex non-linear models.  

 

3- “There is nothing in the discussion about the influence of the fertilization treatment on PAI and GPP” – “Fertilization has 

an effect on PAI(gr) but not on GPP - PAIgr continues to increase with P treatment until May20 (and not with NPK 20 

treatment) Indication that P fertilization enables to keep photosynthetic active leaves for a longer period?” 

Answer: 

 We appreciate the comments of the referee on the subject. As suggested, we added a discussion point on the impact of 

fertilization treatment on green biomass, duration of the growth cycle and NEE. The text added to the discussion is : 

4.1 The impact of fertilization treatment  25 

The fertilization treatment influenced the growth rate and the composition of the herbaceous plots more than carbon 

sequestration. In line with a five year and ongoing study at the same grassland site, the fertilization treatment resulted in 

differences in aboveground biomass and functional groups proportion for NPK and P treatments, while the single addition of 

N had no effect. An earlier growth response was also observed in the NPK treatment (larger PAIgr at the first measurement 

day). Higher percentage of graminoid species with on average higher growth rates as compared to most forb species 30 

(Ansquer et al., 2009; Craine et al., 2001; Westoby et al., 2002) could explain early differences in PAI and PAIgr. As leaf 

area is usually positively related to GPP (e.g. Aires et al., 2008; Xu and Baldocchi, 2004), it would be expected that higher 

PAIgr in NPK treatments would induce in increased GPP. However, confounding factors such as increased water demand 
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associated with higher growth rates in NPK might have downscaled differences between treatments (e.g. Weisser et al., 

2017). 

While the fertilization treatment had no impact on NEP or GPP a higher R rate was observed at the 4th experimental day 

(June, 3) in the NPK and P treatments. Differences can be ascribed to the higher PAI, and precipitation at the end of May, 

which must have stimulated soil respiration (Jarvis et al., 2007; Reichstein et al., 2003). 5 

 

4-“I do not really get why it is interesting to calculate different VI values for different treatments? (fig. 5)” 

Answer: Indeed, no significant differences were observed in GPP among treatments. However, since the discussion was 

extended focusing on the impact of the treatments on vegetation growth, greenness and carbon sequestration, we consider 

more interesting and easier for the reader to keep differences among treatments and dates in figure 5. The legend was 10 

corrected into:. 

Fig 5. Average values of several vegetation indices retrieved from reflectance measurements of herbaceous plots undergoing 

different fertilization treatments. Vertical bars represent standard errors. Different letters indicate significant differences among 

treatments within the same date (p<0.05).  

 15 

Detailed comments: 

Page 1 line 20. Define LEAPS. Ok. 

Page1 line 21-23. Rephrased.  

Page 1 line 24. Corrected. 

Page1 line 28. It is not clear what the referee meant with the comment: “what about the simulated hyperspectral sensors?”. In 20 

this study, we did not simulate hyperspectral sensors. The hyperspectral measurements were collected in the field by using a 

Field Spec 3 portable equipment.  

Page 2 line 9. Corrected. 

Page 2 line 22. Corrected 

Page 2 line 31. We thank the referee for the observation. Indeed, one of the references about the vegetation index PRI 25 

mentioned in the introduction relates to a leaf level study (Peñuelas et al., 1995). The sentence was rephrased and references 

were changed accordingly. Many studies applied PRI at the canopy scale as shown by the useful review from Galbursky et al 

(2011) on the use of PRI in different biomes and scale (leaf/canopy/ecosystem) which is now cited in the text. In that review, 

authors shows that the relationship between PRI and Light Use-Efficiency holds across spatial and temporal scales, in spite 

of a variable strength of relationship. 30 

Page 3 line 26. Thanks for pointing out this incorrect statement. We have replaced the previous sentence by “The recently 

launched S2 covers the regions of the visible and near-infrared and the SWIR in 13 bands with at least five days revisiting 

time for the combination of S-2A and S-2B platforms (Drusch et al., 2012)” 

 

Page 3 line 29. Changed  35 

Page3 line 31. Done 
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Page 4 line 5. Done. 

Page 5 line 8. Rephrased 

Page 5 line 27. The theoretical link between NEE and GPP is explained at the bottom of the paragraph, page 6 line 6.  

Page 6 line 4 and 5. The necessity for a standardized time window is explained in Perez-Priego (2015), cited in the 

manuscript. In addition the linear trend during the measurement period was also visually verified at each measurement.  5 

Page 6 line 6. Field spectroradiometric measurements need to be collected close to the sun zenith and under clear sky 

conditions. Gas exchange measurements were performed as close as possible to Fieldspec measurements to increase the 

representativeness of spectral data.  

Page 6 line 10. The paragraph title was rephrased and PAI defined. The equipment used for indirect measurement of leaf 

area, the ceptometer , estimates LAI through the indirect measurement of the interception of light by all vegetation structures 10 

above ground (leaves, stalks, and eventually flowers, fruits and seeds). Therefore,  the term Plant Area Index (PAI) was 

preferred to LAI (Bréda, 2003).  

Page 6 line 15. The fPAR is defined as the fraction of PAR intercepted by the canopy at line 12.  

Page 6 line 21-22. As explained in the text (2.4.2), the light extinction coefficient, K depends on both the canopy structure 

and the zenith angle, which is the angle of the sun with a vertical line at the local where measurements are being taken. In 15 

this study, while the zenith angle is calculated with basis on the geographical coordinates of the local and date and the time 

of measurements, the canopy structure was considered constant and equal for all plots, assuming a “spherical leaf 

distribution”. This concept  is defined by Jones ( 1992) as the leaf canopy distribution in which leaves have equal probability 

of any orientation in such a way that could be envisioned as rearranged on the surface of a sphere. A reference was added to 

the text. 20 

Page 7 line 6 and 7. In this paragraph (2.4.3) the equipment used for the collection of hyperspectral measurements 

(FieldSpec3, ASD) is described, as well as technical specifications, data collection and processing. (see also Cerasoli et al., 

2016; Jongen et al., 2013) .The paragraph was rephrased for clarity. The new text in this section is: 

2.4.3 Hyperspectral measurements of vegetation reflectance 

At each field campaign, hyperspectral observations of all plots were also acquired with a FieldSpec3 spectroradiometer 25 

(ASD Inc., Boulder, USA), which provides reflectance of vegetation in the range of 350-2300 nm. The spectral resolution 

(Full-Width-Half-Maximum) is 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The sampling interval is 1.4 nm for the 

spectral region of 350-1000 nm (visible and near infrared) and 2 nm for the spectral region of 1000-2500 nm (short-wave 

infrared). A white reference of known reflectance (Spectralon panel, Labsphere, Inc., North Sutton, USA) was used to 

normalize for variations in atmospheric conditions and to convert the measurements into absolute reflectance. Spectra were 30 

collected using a bare fibre optical cable (with an instantaneous field of view of 25
o
) inserted into a pistol grip at 

approximately 90 cm above the canopy and a nadir view. 
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 Five spectra were recorded for each plot, each one representing the average of 25 observed spectra, All measurements were 

conducted immediately after grassland gas exchange measurements, within two hours around solar noon, to minimize the 

effects of shadowing and solar zenith changes.   

 

The term absolute reflectance refers to the reflectance measurements after correction by multiplying by the spectrum of the 5 

calibration panel (Spectralon) measured under similar conditions. (details are available in the Field Spec3 user manual).  

Page 7, line 15. As explained in the referred literature a linear mixed effects model is a linear model that incorporates both 

fixed and random effects (Bates et al., 2014). We believe that the term is self-explanatory for most readers. Additional 

details can be found in the cited literature. Random and fixed effects considered are also reported in the text (Page7, line 16). 

Page 7, line17. Corrected 10 

Page7, line 24. We have replaced “dimensionality” by “the number of predictors”. 

Page7. Line 25. The output of the spectroradiometer are reflectance values at 1nm interval. No further post-processing was 

adopted before the statistical analysis reported in section 2.5. The sentence referring to a cubic spline interpolation was 

deleted.  

Page 7, line 27-Page8, line 3. We have simplified the text and clarified the mathematical procedures described in this 15 

section. 

The new text is: 

The full spectra of vegetation reflectance retrieved from the Fieldspec was used to model GPP, after excluding noisy values 

in the range 1350-1400 nm and 1800-1950 nm. Our P=1748 original explanatory variables are x350,...,x2299 where xλ 

represents the reflectance in the narrow band [λ, λ +1] (nm) and our response variable is the GPP (mol m
-2 

s
-1

). A total 20 

number of 96 observations were available (4 treatments X 2 replicates X 3 blocks X 4 dates). Since we have 1748 

explanatory variables and just 96 observations, hence a high level of redundancy in our data, the number of predictors was 

first reduced by grouping variables that belong to intervals of wavelengths where all variables are highly correlated. A 

hierarchical cluster analysis was performed to reduce the number of predictors from P=1748 to P=25 groups of contiguous 

variables named “bands”. The basic idea is to aggregate contiguous and highly correlated individual 1 nm intervals of 25 

wavelength into broader wavelength bands. Two original predictors xλa, xλb are clustered together if their correlation 

coefficient r(xλa, xλb) is larger than 0.90. Bands correspond to the largest contiguous intervals where all pairs of original 

predictors satisfy that condition. If a band groups all original predictors between λ1 and λ2 , then it is represented by a new 

variable x[λ1, λ2], which is the arithmetic mean of the original variables xλ1,…,xλ2. The procedure is repeated to obtain bands 

that partition the full x350,...,x2299  spectrum.  30 

 

Page 8, line 4-10. The referee suggests moving the paragraph to the introduction. The purpose of this paragraph was only to 

provide the reader with a list of the vegetation indices selected for this study. To avoid any overlap with the introduction, the 
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paragraph was summarized and the reader is invited to read table 2 where the name, equation, reference and biophysical 

property represented are reported for each vegetation index.  

Page 8, Line 15. The referee questioned the utility of a multiple linear regression adopted to establish mathematical 

relationships between the explanatory variables (bands and VIs) and the response variable (GPP) suggesting the adoption of 

machine learning algorithms.  5 

Please see the comments at the beginning of this reply, which addresses the questions raised by the referee. 

Page 8 line 15. The referee asked for more information about the LEAPS algorithm. The text was edited to clarify that 

LEAPS performs an exhaustive search for the best subset of predictor variables x of y in linear regression, hence it is useful 

to reduce the dimensionality of predictors while keeping the original variables. Further details can be found in the cited 

literature.  10 

Page 8 line 22. The referee criticizes the procedure adopted for determining the most parsimonious sub model. Please see the 

comments at the beginning of this reply, which address the criticism. 

Page8 line 32. Corrected. 

Page 9 line 8. The year was added. 

Page 11 line 3. The sentence was deleted.  15 

Page 13 line 3. Corrected. 

Page 28 Fig.2. The figure was changed as suggested and equal y-axis was adopted for the two plots. The new figure is shown 

below: 

 

Page 29 Fig.2. In this study we adopted the atmospheric sign convention where the Net flux is considered negative when 20 

detracting CO2 from the atmosphere (Baldocchi, 2008). In order to improve the readability of the figure, we changed to the 

NEP (Net Ecosystem Productivity) which is considered positive. The figure and text were changed accordingly. The new 

figure is shown below: 
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Page 31 Fig. 5. The legend was corrected. The VI for each picture is indicated on y-axis and the fertilization treatment is 

indicated below the figure. The designation of the VI, the biophysical property represented and reference are listed in table 2. 

Please see comments above. 5 

The English grammar was accurately reviewed.  
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Reply to anonymous Referee#2 

We thank the reviewer for the comments/suggestions that much improved the manuscript. We reply to referee#2 comments 

point by point. 

Comment1: 

“The study design introduces nutrient treatments which influence species composition GPP to some degree but the 5 

successive analyses discard this structure when testing the skill of reflectance metrics as predictors of GPP. GPP varies over 

time, across replicates and across treatments but all of this variability is pooled when testing the reflectance metrics. The 

paper might provide more insights by structuring the analysis to test treatment and temporal variability separately. Perhaps a 

repeated measures ANOVA could help, for example, by testing for significant effects of date, treatment, and one reflectance 

metric on variability in GPP. This would be akin to the linear mixed effect analysis of GPP and PAIgr”. 10 

 
Answer: The ability of reflectance metrics in predicting GPP were analyzed altogether without considering different 

treatments and dates because the objective of the study was to test the skill of spectral information to represent GPP across 

treatments and time. However no statistical differences were found in GPP among treatments (see section 3.3).  

Comment2: 15 

“GPP and PAIgr both vary over time and PAIgr varies across treatments (GPP appears to as well but apparently the 

statistical testing does not support this). These patterns are displayed well with Figs 2 and 3 but what is missing is display of 

a scatter of GPP versus PAIgr, and also of GPP versus (selected) reflectance metrics. These relationships should be shown, 

with symbols that differentiate the treatments and display individual replicates. The relationship that emerges (slope) would 

offer insights about the effective light use efficiency per unit green leaf area. The term ‘effective’ here refers to the 20 

combination of a maximal LUE with any limitations by water, light, or nutrients. This is the sort of parameterization that 

would be needed in a functional model. In fact, it would be interesting to test if any of the reflectance metrics have skill in 

predicting variability in GPP / PAIgr, thus capturing patterns in LUE rather than just green plant area.” 

 
Answer: We thank the referee for this valuable comment that improved our insight on the relationship between green plant 25 

area and GPP. The scatter plot produced is shown below.  
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Figure caption: Relationship between GPP and fPARgr observed in grassland subjected to different fertilization treatment (C, N, NPK 

and P). Measurements performed during the vegetation growth  are indicated as circles (corresponding to measurement days 1 and 2 ) 

while those realized during the senescence period are indicated as triangles (measurement days 3 and 4). Linear regression lines were fitted 

separately to the two periods (GPP= 14.48 fPARgr + 18.44, R2=0.39, P<0.001 and GPP= 30.08 fPARgr + 6.39, R2=0.65, P<0.001, 

respectively for the growth and the senescence period).  5 
The GPP-fPARgr relationship showed to be different during the vegetation growth (circles in the figure) and the senescence 

phase (triangles in the figure).  

The differences observed in the slope of the regression lines reveal the occurrence of marked changes in the “effective LUE” 

along the growth life cycle and confirms previous results (Nestola et al., 2016; Perez-Priego et al., 2015).  

The figure will be integrated in the manuscript and the text modified accordingly.  10 

 

In addition, we also verified the correlation between LUE and selected vegetation indices calculated (GNDVI, MTCI,NDWI, 

PSRI) (See table below). For all vegetation indices correlations are weak.  

 

Table: Correlation coefficient (R) between LUE and selected vegetation indices observed in herbaceous plots undergoing 15 

different fertilization treatments.  

 

VI R 

GNDVI -0.145 

MTCI -0.076 

NDWI -0.214 

PSRI -0.022 

 

Altogether these results further confirm the need for an empirical approach, instead of a classic LUE model, to assess the 

ability of spectral retrievals for GPP estimation.  20 

We agree that the approach has limited applicability as compared to a full functional model. On the other hand it allows 

testing different spectral metrics, independently of their ability to represent green plant area or LUE.  

 

Comment3: 

“Table 5 shows the skill of various multivariate linear models that include a suite of reflectance metrics selected to represent 25 

those available from different observing system types. This is a highly empirical approach to analysis and does not seem 

particularly useful in my opinion. The results are likely to be very heavily tuned to the specific dataset on hand and is not 

likely to be generalizable beyond the current study. For example, the Hyp-B step one selection includes a simple, linear 

model involving 13 unique bands. Biophysical or ecological functional models tend to use one or two metrics to represent 

structural (PAIgr) and functional (LUE) attributes of an ecosystem’s capacity for primary production. This paper’s approach 30 

throws every possible indicator and combination at the variability in the data and thus lends little practical insight into the 

theory with very limited capacity for transferability. A more thoughtful approach grounded in theory and practice would be 

more useful.” 

 

Answer: We agree with the referee that our results are tuned to our data set and results cannot be generalized. However, our 35 

dataset concerns herbaceous communities with a wide range of species composition and growth rates, resulting from the 

fertilization treatments. Hence, our empirical results can be considered valid for Mediterranean grasslands in a wide variety 

of situations. Also, the theoretical approach based on the LUE model already showed, in several studies (examples are 

reported also in the manuscript introduction), a limited capacity in expressing dynamic GPP changes in grasslands. This is 

also confirmed by the GPP-fPARgr relationships and the low correlation between LUE and VIs observed (see answer to 40 

comment 2).  
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We agree with the reviewer that considering reflectance bands, obtained by grouping highly correlated reflectance can be 

impractical but, in our opinion, it presents the advantage of indicating areas of the spectra of potential interest for GPP 

estimates in grasslands. For example, our results show a large influence of bands in the SWIR region in both step one and 

two (see Table 5). These results provide basis for further studies in the area. 

Comment4: 5 

“The study’s test of linear models includes VIs and bands, but not band ratios. Given that the approach is highly empirical in 

nature, there does not seem to be a good reason to omit band ratios or other simple mathematical combinations of bands (e.g. 

unique normalized difference ratios). Testing a wider range of combinations could be warranted to see if any other indicators 

happen to rise to the top in terms of predictive skill.” 

 10 
Answer: As explained in the manuscript, we considered VIs that are widely used. We didn’t want to expand even more the 

set of explanatory variables, which was already large, to be able to interpret our results in terms of simple bands and well-

known indices, while considering a large pool of predictors. Moreover, there is in general a 1 to 1 relation between VIs and 

band ratios. For instance, NIR/RED=k implies that NDVI=(k-1)/(k+1). Therefore, band ratios are implicitly incorporated 

into the model (although this is not equivalent to incorporating them as additional explanatory variables). 15 

Comment5: 

“The paper’s interpretations and conclusions suggest that bands are better than VIs as predictors of GPP but this is not 

reasonably supported by the quantitative results. Table 5 shows a small, marginal, and questionable increase in adjusted R2 

for Hyp-B compared to Hyp-VIs, and a decrease in adjusted R2 for S2-B compared to S2-VIs. In any case, the differences in 

explanatory power over all of these cases is less than 0.0247 R2, or 2.5% of the variability in GPP, indicating that all are 20 

equally good at predicting GPP. For L8, a case might be made, however the band metric has many more variables thrown at 

the problem (6 bands compared to just NDVI) and when these other bands are included in a step two selection, the NDVI 

model with bands had high skill. Surely bands and VIs are equally skillful for the other observing system types. 

Corresponding edits need to be made to section 4.2.” 

 25 
Answer: We thank the referee for this thoughtful comment on the discussion of results shown in table 5. The text was 

changed accordingly. The modified text is: 

4.2 Are spectral bands better GPP estimators than VIs? 

Our results suggest a marginal improvement in  GPP estimates obtained  adopting bands (Hyp-B, S2-B,  Table 5) instead of 

vegetation indices (Hyp-VIs, S2-VIs, Table 5). A larger impact was observed in the case of L8-VIs+B models when 30 

compared with the L8-VIs model which included only NDVI (L8-VIs, Table 5).  

Although normalized VIs are important in establishing strong relationships between biophysical and optical properties of 

vegetation, our results showed that the selection of the proper band is equally important to the mathematical formulation of 

the indices for the explanatory power of spectral retrievals as predictor variables. Previous studies comparing the explanatory 

power of VIs and bands in grasslands evidenced also the importance of the selection of the proper spectral range  (Balzarolo 35 

et al., 2015; Matthes et al., 2015). The approach adopted in our analysis assured a high correlation among responses within a 

band, which determined that spectral bands were representative.   

Comment6: 
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“One of the advantages of VIs is that they normalize for a wide range of background reflectance, sun-sensor geometry, and 

atmospheric effects in ways that direct bands do not. This point seems to be lost on the authors and is important for 

developing indicators that can be transferred to remote sensing (space or airplane) over large areas and across large gradients 

in surface and atmospheric conditions. Discussion about this should be included in the paper.” 

 5 
Answer: We thank the referee for this valuable comment. The following sentence was included in the text.  

 

However, VIs offer, in comparison with spectral bands, the advantage of providing spatial and temporal comparable 

representation of vegetation features, since differences resulting from background reflectance, sun-sensor geometry and 

atmospheric effects are minimized by normalization of spectral values.  10 

Comment7: 

“Akaike or Bayesian Information Criteria need to be adopted to evaluate the relative skill 

of the selected linear models, penalizing models that select more variables.” 

 

Answer: We agree that models should be compared with indicators that penalize complex models and prevent overfitting. 15 

This is why we used the adjusted R
2
 instead of the standard R

2
. The optimization techniques we considered (LEAPS in 

particular) can be applied using adjusted R
2
 (as we did), AIC, BIC or other similar criteria. It is easy to show that stepwise 

selection always chooses, at each step, the same variable to be excluded or included in the model regardless of the criteria 

(AIC, BIC or adjusted R
2
). In that restricted sense, they are equivalent among them but distinct from R

2
. Our preference for 

the adjusted R
2
 over BIC or AIC was determined by the fact that we applied bootstrap techniques (available for the adjusted 20 

R
2
) to derive confidence intervals for the goodness-of-fit of the models we fitted to the data.  

Comment8: 

“It is worth noting that soil moisture is essentially equal on all four reflectance observation dates, while temperature 

increased steadily from the first to the last observation date. Correspondingly, the statement on P12, L19 that suggests that 

the Hyp model represents changes in canopy water content might need to be revised. Canopy water content was not observed 25 

and soil water content did not differ over the four sampling dates. It is possible that canopy water content differed 

substantially from soil water content over this time series but that has not been established with quantitative, direct 

observations.” 

 

Answer: The aim of the mentioned test is not to establish a quantitative relationship between canopy water content and the 30 

vegetation indices NDWI and WBI but to underline the known ability of these vegetation indices as indicators of canopy 

water content. On the other side, differences observed between fPAR and fPARgr reveal a progressive increase of dry 

biomass, which is related with the senescence process that depends more on increased temperatures than soil water content. 

The sentence was changed into: 

 35 
The Hyp model also put in evidence the importance of changes in canopy water content, as both the NDWI (Gao, 1996) and 

the WBI (Penuelas et al., 1997) were included in the model. Considering changes observed in NDWI along the experiment 

and the good correlation observed between NDWI or WBI and GPP it is reasonable to assume that GPP is largely affected 

by the progressive senescence of vegetation,  (Balzarolo et al., 2015; Vescovo et al., 2012). In a previous study, Vicca (et al., 

2016) found that NDWI was able to estimate GPP in semiarid grasslands better than other indices, allowing to distinguish 40 

the effect of drought. 
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Comment9: 

“It is unfortunate that the study did not include an additional observation period in the 

mid to late June as PAIgr continued to decline.” 

 

Answer: After our last measurement PAIgr declined very fast, in mid June all plots were already dried. There was no time 5 

for a further round of measurements.  

Comment10: 

“The introduction is very well written and cited. One paper that might be useful to add to the framing and discussion is that 

of Asner et al. 2004 in PNAS (“Drought stress and carbon uptake in an Amazon forest :”)”. 

 10 
Answer: The following sentence was inserted in the introduction.  

A promising new technology is the use of spaceborne imaging spectroscopy. The hyperspectral resolution of these images 

allows to identify canopy properties with higher sensitivity than traditional vegetation indices. For example, the use of 

spaceborne imaging spectroscopy was able to detect changes in canopy leaf area and water stress in the humid tropical 

forest, while NDVI and other vegetation indices failed (Asner et al., 2004).   15 

Comment11: 

“Page 5, L12: “All nutrients were added at” seems to suggest N for nitrogen, or is N for nutrients here?” 

Answer: The referee is right; it should be “All nutrients were added at a rate of 10 g. m
-2

 yr
-1

…”. In the text N refers to 

nitrogen. The sentence was corrected. 

Comment12: 20 

“Measurement of soil moisture at only 10 cm depth may not be adequate to represent the soil water content being 

experienced by the grassland plants. It would be best to also measure a deeper profile of moisture.” 

 

Answer: We agree with the referee that the soil water measurements along a soil profile would have provided more detailed 

information. However our grassland is dominated by annual species with winter seasonality. In these systems mean rooting 25 

depth is approximately 20 cm (Schenk and Jackson, 2002) with most of the rooting zone at 10 cm depth as observed in a 

similar grassland in Portugal (Jongen et al., 2013). 

 

Comment13: 

“It is interesting that the nutrient treatments allegedly altered the functional composition of the grassland plots, however pre-30 

treatment data are not presented and this would be essential to demonstrate that the compositional shifts were due to the 

treatments themselves. Unless it can be established with data, the corresponding statement (P9, L23) should be corrected to 

omit suggestion that the treatments caused the compositional differences.” 

 

Answer: As mentioned in the manuscript, the grassland is part of the Nutrient Network experiment (www.nutnet.umn.edu) 35 

which is still on going. Since 2012 (pre-treatment), species composition is evaluated every year. In 2012 species composition 

showed a large dominance of forbs (73%), while graminoids (24%) and legumes (3%) were less represented. These results 

are only partially similar to the observed in the present study (Table 3) in which forbs were the dominant functional type 

http://www.nutnet.umn.edu/
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(56.85%), and grams and legumes have similar proportion (21.22% and 21.93% respectively). However, it must be also 

considered that species composition can change from year to year as a result of precipitation amount and distribution as 

observed also in previous studies (DeMalach et al., 2017). The sentence was rephrased into:  

Plant species composition has been measured every year since 2012 (pre-treatment) under an ongoing long-term nutrient 

addition experiment on this grassland site. In line with results from that study (Nogueira et al., personal communication), the 5 

fertilization treatments influenced the functional composition of grasslands (Table 3). In the NPK treatment the percentage 

of graminoids was higher than in any of the other treatments. P treatment showed a higher percentage of legumes and in the 

C and N treatments forbs were the dominant functional group.  

Comment14: 

“It is surprising that treatment effect was significant for respiration but not for GPP considering that both have similar 10 

spreads and error bars. Double check results here.” 

 

Answer: Results were double checked and they are correct.  

  



15 

 

On estimating Gross Primary Productivity of Mediterranean grasslands under different fertilization regimes using 

vegetation indices and hyperspectral reflectance 

 

Sofia Cerasoli
1
, Manuel Campagnolo

1
, Joana Faria

1
, Carla Nogueira

1
, Maria da Conceição Caldeira

1
 

1
CEF, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, PT. 5 

Correspondence to: Sofia Cerasoli (sofiac@isa.ulisboa.pt) 

Key-words: hyperspectral reflectance, remote sensing, carbon sequestration, pasture  

Running-title: GPP estimates in grasslands by optical sensors 

 

Abstract: We applied an empirical modelling approach for Gross Primary Productivity (GPP) estimation from 10 

hyperspectral reflectance of Mediterranean grasslands undergoing different fertilization treatments. The objective of the 

study was to identify combinations of vegetation indices and bands that besttter represent GPP changes between the annual-

peak of growth and senescence dry out in Mediterranean grasslands.  

In-situ hyperspectral reflectance measurements of vegetation and were collected at the same time as CO2 gas exchange 

measurements were measured concurrently performed in control (C) and fertilized plots with added nitrogen (N), phosphorus 15 

(P) or the combination of N, P and potassium (NPK) . Reflectance values were aggregated, according to their similarity 

(r>90%), in 26 continuous wavelength intervals (Hyp). In additionAlso, the same reflectance values were resampled 

reproducing the spectral bands of both Sentinel-2A Multispectral Instrument (S2) and Landsat 8 Operation Land Imager (L8) 

simulating the signal that would be captured in ideal conditions by either Sentinel-2A or Landsat 8.   

An optimal n procedure for selection of the best subset of predictor variables The (LEAPS) procedure was applied to 20 

select identify the best most effective set of the vegetation indices or spectral bands for GPP estimation using Hyp, S2 or L8. 

The LEAPS selected some vegetation indices putting in evidence their according to their explanatory power,  showing their 

importance as indicators of the dynamic changes occurring in community vegetation properties such as canopy water content 

(NDWI) or chlorophyll and carotenoids/chlorophyll ratio (MTCI, PSRI, GNDVI) and underlining their importanceusefulness 

for grasslands GPP estimates.  25 

For Hyp and S2, bands showed similar explanatory power were as performant asthan vegetation indices to estimate 

GPP. A two-step LEAPS procedure allowed us also To to identify spectral bands with potential for improving vegetation 

indices based GPP estimates we applied a two-step LEAPS procedure which. This procedure clearly indicates pointed to 

indicated the shortwave infrared region of the spectra as the most relevant promising for this purpose. AThe comparison 

betweenof S2 and L8 based models showed similar explanatory power for of the two simulated satellite sensors when both 30 

vegetation indices and bands were  included in the model. when spectral bands were adopted.  

Altogether, our results show describe the potential of sensors on board of Sentinel 2 and Landsat 8 satellites for 

monitoring grasslands phenology and improving GPP estimates in support of a sustainable agriculture management.  
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1. Introduction: 

Mediterranean grasslands are high biodiverse ecosystems, covering around 22% of the European Union land area, and 

providing important ecosystem services such as forage production (Bugalho and Abreu, 2008; Díaz-Villa et al., 2003). These 

ecosystems are subjected to large pressures under global change (Sala, 2000), namely by the increasing availability of 

nutrients (e.g., phosphorus (P) and nitrogen (N)) due to human use of fertilizers, and N deposition (Ceulemans et al., 2014; 5 

Galloway et al., 2004; Peñuelas et al., 2013) and by a decrease and shift in seasonal patterns of precipitation (Costa et al., 

2012; Kovats et al., 2014). The contemporary changes in water and nutrients supply can affect species composition, biomass 

and , phenology along the life cycle of annual grasslands (Harpole et al., 2007), compromising their productivity. In 

particular, the onset and duration extension of the senescence period, largely dependent on soil water availability, can be 

affected in Mediterranean grasslands with great impacts in their functioning and large consequences on Gross Primary 10 

Productivity (GPP) functioning (Aires et al., 2008a, 2008b; Jongen et al., 2013b; Xu and Baldocchi, 2004). This uncertainty 

scenario increases the need for frequent monitoring of GPP along the growing season.   

Using remote sensing based information to evaluate GPP brings important advantages both from a scientific and 

management point of view. Spectral retrievals collected from optical sensors on board of remote platforms may provide 

information on many biophysical properties of vegetation and can be usefully employed for monitoring and modelling 15 

ecosystems GPP in a cost and time-effective way (Schimel et al., 2015). Also, for land managers, the capability of making 

timely grassland management decisions may improve the use and sustainability of these ecosystems. 

GPP estimation models integrating remote sensed observations increased considerably in the last decades (Beer et al., 2010; 

Grimm et al., 2008). Such models are generally based on the Light Use-Efficiency (LUE) concept (Monteith, 1972, 1977), 

which defines GPP as a function of the fraction of radiation absorbed by vegetation (fPAR), which in turn depends on green 20 

leaf area and the efficiency by which light energy is used to fix carbon during photosynthesis (i.e. LUE) (Cheng et al., 2014; 

Yuan et al., 2014).  

Based on this approach large efforts have been put to derive vegetation indices able to represent the green leaf area and LUE. 

The Normalized Difference Vegetation Index (NDVI)  is widely used for its known linear relationship with the absorbed 

radaitionradiationfPAR (Fensholt et al., 2004; Joel et al., 1997; Myneni and Williams, 1994). However, some exceptions are 25 

reported in the literature. For example in highly productive environments, such as grasslands, NDVI becomes easily 

saturated, not responding to increased leaf area and LUE, and the regression observed is no more linear (Vescovo et al., 

2012; Viña and Gitelson, 2005)..  

In annual grasslands, such as the Mediterranean, control on ecosystem carbon balance is generally considered related mainly 

to the amount of green leaf area, while little LUE changes are expected (Gamon, 2015). Nonetheless, several studies reported 30 

a hysteresis in LUE in grasslands when the duration of the study encompasses the whole life cycle (Nestola et al., 2016; 

Pérez-Priego et al., 2015b). 
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The Photochemical Reflectance Index (PRI) is frequently adopted as a proxy of LUE (Gamon et al., 1997) at leaf and canopy 

scale ; Peñuelas et al., 1995)(Garbulsky et al., 2011). PRI in the short term representsmirrors the dynamic of the xanthophylls 

cycle ( Peñuelas et al., 1995) which is related to thylakoid energization and hence to light harvesting by photosynthesis. In 

the long term, PRI was found to be correlated with the ratio of carotenoids to chlorophyll (Filella et al., 2004; Porcar-Castell 

et al., 2012) and hence to plant senescence, since chlorophyll degradation and N export is a distinctive process of leaf ageing 5 

(Thomas, 2013). However, also PRI shows some drawbacks, since it is largely affected by species identity, leaf age or 

environmental conditions ( Peñuelas et al., 1995) and by sensors geometry and atmospheric factors (Moreno et al., 2012). 

Hence the performance of models integrating PRI is frequently below the expectedexpectation (Pérez-Priego et al., 2015b). 

As a result, other vegetation indices have been tested as alternatives to NDVI and PRI for GPP estimation. Rossini et al. 

(Rossini et al., 2012), in an subalpine grassland obtained the best model to estimate GPP adopting together the MERIS 10 

Terrestrial Chlorophyll Index (MTCI) (Dash and Curran, 2004), a proxy of chlorophyll, and PRI. In another study, in a 

subalpine grassland, Sakowska et al. (2014), found that the red-edge NDVI, a modified NDVI, where the infrared band is 

substituted with a red-edge band (Gitelson and Merzlyak, 1994) improved GPP estimates. In Mediterranean grasslands with 

different N and P fertilization level, PRI together with solar induced fluorescence improved GPP estimates (Pérez-Priego et 

al., 2015b). In a semi-arid grassland, Vicca et al. (2016) observed that several vegetation indices including NDVI and the 15 

Normalized Different Water Index (NDWI) (Gao, 1996), a proxy of vegetation water content, were able to capture the 

drought effect on GPP.  

Altogether these results clearly indicate that, inspitein spite of the usefulness of VIs to represent dynamic changes in 

biophysical properties of vegetation, the need for further studies are needed, aiming to identify the vegetation indices and the 

regions of the spectral regions that can be of potentially interesting for to estimate grassland GPP estimates of grasslands 20 

under different environmental constraints, such as nutrients availability.  

The adoption of a specific model  and vegetation index depends also frequently on the availability of remote sensed products 

at a suitable spatial and temporal scale. In the case of local scale monitoring of managed grasslands, sensors with high spatial 

resolution will produce better results than sensors with coarse spatial resolution. In this study we opted for simulating using 

data from Sentinel-2A MSI (Multi-Spectral Instrument), (hereafter named S2) and Landsat8 OLI (Operational Land Imager) 25 

(hereafter named L8), for their spatial resolution, (10-20m for S2 and 30m for L8) more suitable for representing grasslands 

spatial heterogeneity and hence better adapted to implement management options from a precision agriculture perspective. 

The L8 provides reflectance in 7 bands ranging from the visible to the short wave infrared region (SWIR) (Loveland and 

Irons, 2016), but its main drawback is the long revisiting time of 16 days. The recently launched S2 covers the regions of the 

visible and near-infrared and the SWIR in 13 bands with at least five days revisiting time when both S-2A and S-2B 30 

platforms will become operational The recently launched S2 covers the visible and near-infrared regions and also the SWIR 

in 13 bands with at worst five days revisiting time for the combination of S-2A and S-2B platforms (Drusch et al., 2012).  

Field collection of vegetation reflectance by hyperspectral sensors is less cost-effective and more time consuming than 

satellite remote sensed data but presents the advantage of providing reflectance in numerous, high resolution, wavelengths 
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(Porcar-Castell et al., 2015). Therefore, it can be usefully employed for identifying which wavelengths best reflect mirror 

biophysical properties and physiological status of vegetation  (Balzarolo et al., 2015; Matthes et al., 2015) and put in 

evidence point to regions of the spectra of potential interestpotentially interesting for GPP modelling which until now have 

not been actually not exploited by remote sensors. The high detail of spectral resolution (1 nm nominal) is a further 

advantage of hyperspectral measurements. In particular, it allows comparing the performance of similar vegetation indices 5 

available from different satellite platforms resampling hyperspectral information to match spectral bands of different remote 

sensors. 

A promising new technology is the use of spacebornespace borne imaging spectroscopy. The hyperspectral resolution of 

these images allows identifying canopy properties with higher sensitivity than traditional vegetation indices. For example, 

the use of sapace borne imaging spectroscopy was able to detect changes in canopy leaf area and water stress in athe humid 10 

tropical forest, whereas NDVI and other vegetation indices failed (Asner et al., 2004).   

The aim of this study was to identify combinations of vegetation indices and bands that better represent reflect GPP 

changes in the period comprised between the annual-peak of growth and senescence dry out in Mediterranean grasslands 

subjected to different fertilization treatments.  

To achieve this goal, in situ hyperspectral measurements of vegetation reflectance were employed used to estimate GPP 15 

in a Mediterranean grasslands north-east of Lisbon,in central Portugal, before and after the annual peak of growth was 

achieved, which generally occurs in May, with large inter-annual differences (Jongen et al., 2011). A set of vegetation 

indices proposed in the literature were calculated and the performance of models to estimate GPP based on linear 

combinations of vegetation indices and bands were compared.  

Whenever possible, vWhenever comparable spectral range is available for the S2 and L8, vegetation indices were also 20 

calculated simulating the respective S2 and L8 bands and the performance of GPP estimates based on remote platforms and 

in situ hyperspectral measurements compared. 

The specific objectives of the study were:  (i) Test the impact of different nutrient availability on GPP in Mediterranean 

grassland. (ii) Identify the a set of vegetation indices useful to optimize a GPP model in our experimental conditionsfor 

Mediterranean grasslands ; (iii) Compare the performance of GPP models employing only vegetation indices, spectral bands 25 

or a combination of both  only and in combination with spectral bands;  (ivii) Finally, compare GPP models using spectral 

information obtained from hyperspectral sensors with similar models obtained from S2 and L8 platforms.  
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2. Material and Methods 

2.1 The study site  

Our study was conducted in a semi-natural Mediterranean grassland at Companhia das Lezírias, an estate of approximately 

15 000 ha, located north-east of Lisbon, Portugal (38
o
49´45.13´´N, 8

o
47´28.61´´W). The grassland plant community is 

composed mainly of by annual C3 species. The climate is Mediterranean, with mild, wet winters and hot, dry summers. 5 

Long-term (1961–1990) mean annual rainfall is 709 mm. Mean annual temperature is 15.9 °C (INMG, 1991). Site 

topography is flat and the soil is a well-drained deep Haplic Arenosol (WRB, 2006). 

2.2 Experimental design 

The grassland studied is part of the Nutrient Network experiment (http://www.nutnet.umn.edu; Borer et al., 2017; 

Seabloom et al., 2013). Plots (5m x 5m) were established in 2012, in a randomized block design. Factorial combinations of 10 

nitrogen (N), phosphorus (P), and potassium plus micronutrients (K), a total of eight treatments per block, including the 

controls (C) with no added nutrients, were consideredestablished. All nutrients were added at a rate of 10 g. N. m
-2

 yr
-1

. N 

was added as slow-release urea (60-90 days), P was added as triple-super phosphate and K as potassium sulphate. 

Micronutrients (6% Ca, 3% Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 0.05% Mo, and 1% Zn) were added with K 

only once, at the start of the study to avoid possible micronutrient toxicity. In this study, only four fertilization treatments 15 

were considered: C, N, P and NPK. Each one of these treatments was repeated twice per block, a total of 24 plots were 

considered measured (2 replicates X 4 treatments X 3 blocks). 

2.3 Environmental measurements 

Temperature, PAR and relative humidity were measured in situ using a VP-3 humidity temperature and vapour pressure 

sensor and QSO-S PAR Photon Flux sensor (Decagon Devices, Pullman, USA) logged every 30 min (EM50 data logger, 20 

Decagon Devices, Pullman, USA). Precipitation was recorded using a tipping bucket rain gauge (RG2, Delta-T Devices, 

Cambridge, UK). Soil water content (SWC) was continuously measured, at a depth of 10 cm, which corresponds to the main 

rooting zone (Jongen et al., 2013a; Schenk and Jackson, 2002), using EC-5 soil moisture sensors (Decagon Devices, 

Pullman, USA). The rain gauge and soil sensors were connected to a CR1000 and AM16/32B multiplexer data logger 

(Campbell Scientific, Logan, USA).  25 

2.4 Field Measurements 

2.4.1 NEPE and R from a closed system IRGA  

Grassland net ecosystem productivityexchange (NEPE) was measured with a closed chamber (40 cm X 40 cm X 54 cm) of 

polymethylmethacrylate (3 mm thick) inserted into a permanent frame buried 5 cm into the soil. Radiation transmittance was 

http://www.nutnet.umn.edu/
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higher than 95%. The same chamber was covered with a reflective cloth for dark respiration ( R ) measurements. Air 

temperature inside the chamber was continuously monitored and PAR was measured at beginning and end of measurements 

with a ceptometer (AccuPAR-LP80, Decagon Devices, Inc. Pullman, WA, USA). Fans in the chamber ensured air 

circulation. The chamber was connected to an infrared gas analyser (LI-840, Li-Cor, Lincoln, NE, USA) measuring CO2 and 

water vapour. Each measurement was no longer than 3 min. Fluxes were calculated based on the rate of change of CO2 5 

inside the chamber, after an initial period of at least 10 seconds. Flux calculations and corrections for CO2 water vapour 

dilution followed Pérez-Priego et al. (2015a). GPP was obtained by detracting R from NEP at each measurement. All plots 

were measured between 11:00 and 13:00 on clear sky sunny days, as close as possible to field spectroradiometric 

measurements. Measurements were performed during the 2016 growing season. Two field campaigns were carried out 

during vegetation growth, day 1 (31
st
 March -to 1

st
 April) and day 2 (24

th
 -to 25

th
 April) and two during the senescence 10 

phase, day 3 (19
th

 – 20
th

 May) and day 4 (1
st
-3

rd
 June).  

2.4.2 Leaf area and biomass Green Plant Area Index and biomass 

The Plant Area Index (PAI), a measure of all aboveground plant structure,   was indirectly measured with a linear PAR 

ceptometer (AccuPAR LP-80 Decagon Devices Inc., Pullman, WA, USA). The ceptometer measures the fraction of PAR 

intercepted by the canopy (fPAR) according to equation (1):  15 

𝑓𝑃𝐴𝑅 =
1−𝑃𝐴𝑅𝑡

𝑃𝐴𝑅𝑖
                                                                                                                                                                          (1) 

Where 𝑃𝐴𝑅𝑖  is the incoming PAR measured above the canopy and 𝑃𝐴𝑅𝑡  is the PAR transmitted through the canopy, 

measured below it. 

The fPAR was considered approximately equal to absorbed radiation, as the amount of reflected radiation in the PAR range 

is usually low (Gower et al., 1999). For each plot, 6-8 measurements above (𝑃𝐴𝑅𝑖) and below (𝑃𝐴𝑅𝑡) the canopy were taken 20 

and averaged. 

The PAI is calculated by inversion of the Beer-Lambert law ( equation 2):  

𝑓𝑃𝐴𝑅 = 1 − 𝑒−𝐾∗𝑃𝐴𝐼                                                                                                                                                                 (2) 

where K is the light extinction coefficient, which depends on the leaf angle distribution of the canopy, in this study 

considered spherical distributed (Jones, 1992), and on the zenith angle of the probe, calculated by the ceptometer with basis 25 

on the geographic coordinates of the local and date and time of measurements. To avoid low solar zenith angles all 

measurements were performed around solar noon.  

As the growing season progressed some species started to senesce. In order to estimate the fraction of PAR absorbed only by 

photosynthesizing components of the canopy (“green” fPAR and PAI, fPAR and PAIgr respectively), fPAR and PAI waeres 

multiplied by a normalized (by scaling between 0 and 1) greenness index (GI, calculated as a ratio between the digital 30 

number values of green and the sum of red, green, and blue digital number values) derived from the analysis of digital 
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pictures of the plots taken at each measurements day around solar noon (Cyber-shot DSC-W530, SONY), using the 

Phenopix R package (Filippa et al., 2016). 

To determine aboveground productivity, A strip of vegetation (0.1 m x 1 m) within each plot was also collected close to the 

peak growth and biomass divided into functional types (legumes, forbs, graminoids) and dried in an oven until constant 

weight at 60ºC..  5 

2.4.3 Hyperspectral measurements of vegetation reflectance 

At each field campaign, hyperspectral observations of all plots were also acquiredperformed with a FieldSpec3 

spectroradiometer (ASD Inc., Boulder, USA), which provides reflectance of vegetation in the range of 350-2300 nm. The 

spectral resolution (Full-Width-Half-Maximum) is 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The sampling 

interval is 1.4 nm for the spectral region of 350-1000 nm (visible and near infrared) and 2 nm for the spectral region of 1000-10 

2500 nm (short-wave infrared).. A white reference of known reflectance (Spectralon panel, Labsphere, Inc., North Sutton, 

USA) was used to normalize for variations in atmospheric conditions and to convert the measurements into absolute 

reflectance (Ref.). Spectra were collected using a bare fibre optical cable (with an instantaneous field of view of 25
o
) inserted 

into a pistol grip at approximately 90 cm above the canopy and a nadir view. 

The spectral resolution (Full-Width-Half-Maximum) is 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The sampling 15 

interval is 1.4 nm for the spectral region of 350-1000 nm (visible and near infrared) and 2 nm for the spectral region of 1000-

2500 nm (short-wave infrared). Spectra at 1nm intervals are obtained from a cubic spline interpolation function. Five spectra 

were recordedcollected for each plot, each one representing the average of 25 observationsspectra, employing a bare fibre 

optic cable (with an instantaneous field of view of 25
o
) inserted into a pistol grip at approximately 90 cm above the canopy. 

A white reference of known reflectance (Spectralon panel, Labsphere, Inc., North Sutton, USA) was used to normalize for 20 

variations in atmospheric conditions and to convert the measurements into absolute reflectance (Ref.). All measurements 

were conducted immediately after grassland gas exchange measurements, within two hours around solar noon, to minimize 

the effects of shadowing and solar zenith changes.   

2.5 Data analysis 

All statistical analyses were performed using open-source R (R Core Team, 2016). We used the lme4 package (Bates et al., 25 

2014) to perform linear mixed effect analyses of the effect of the fertilization and control treatments on NEPE, R, GPP and 

PAIgr. Treatment and date were the fixed effects and the block was the random effect. Conditions of homoscedasticity and 

normality were always verified by visual inspection offor residuals. P-values were obtained by likelihood ratio tests of the 

full model with the effect in question against the model without the effect in question. A Tukey test was used for post-hoc 

comparison using the multcomp package (Hothorn et al., 2008). 30 

The full spectra of vegetation reflectance retrieved from the Fieldspec was used to model GPP, after excluding noisy values 

in the range 1350-1400 nm and 1800-1950 nm. Our PP=1748 original explanatory variables are x350,...,x2299 where xλ 
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represents the reflectance in the narrow band [λ, λ +1] (nm) and our response variable is the GPP (mol m
-2 

s
-1

). A total 

number of 96 observations were available (4 treatments ×X 2 replicates ×X 3 blocks ×X 4 dates). Since we have 1748 

explanatory variables and just 96 observations, hence a high level of redundancy in our data, the number of predictors 

dimensionality was first reduced by grouping variables that belong to intervals of wavelengths where all variables are highly 

correlated. A hierarchical cluster analysis was performed to reduce the number of predictors from P=1748 to pP=25 groups 5 

of contiguous variables named “bBands”. The basic idea is to aggregate contiguous and highly correlated individual 1 nm 

intervals of wavelength into broader wavelength bands. Two original predictors xλa, xλb are clustered together  The distance 

between two variables is the correlation coefficient and the distance admitted s within a band is given by the complete link 

criterion to guarantee that if their correlation coefficient r(xλa, xλb) is larger than >0.90. Bands correspond to the largest 

contiguous intervals where all pairs of original predictors satisfy that condition. If a band groups  for any pair of variables 10 

(xλa, xλb) within each group.all original predictors between λ1 and λ2 , then it is represented by a new variable x[λ1, λ2],  

Formally, wherever all pairs of variables xλa and xλb  -- such that  λ1 ≤ λa < λb ≤ λ2 – are highly correlated, i.e.  r(xλa, xλb)>0.9, 

then the  original variables xλ1,…,xλ2 in the interval [λ1, λ2] are replaced by a new variable x[λ1, λ2], which is the arithmetic 

mean of the original variables xλ1,…,xλ2. The procedure is repeated to obtain groups of highly correlated reflectances of 

contiguous wavelengths. all bands that partition the full x350,...,x2299  spectrum.  15 

 

Reflectance values were also resampled to simulate bands of Sentinel-2A MSI (S2) and Landsat8 OLI (L8). Since each band 

of S2 or L8 has a spectral response which is not perfectly uniform, we use the spectral response function of each sensor 

(Barsi et al., 2014; ESA, 2018) to weigh the contribution of each original predictor.  adopting the . As a result, fFor each 

sensor and band [λ1, λ2], we calculated  the reflectance response as a weighted mean of xλ1,…,xλ2,, in the interval of the 20 

corresponding band where the weights are given by the are the coefficients of the spectral response function of the sensor 

(Barsi et al., 2014; ESA, 2018). spectral response. The list of S2 and L8 bands used in this study is shown in table 1.  

Vegetation indices (VIs) (Table 2) were calculated from hyperspectral (Hyp), or simulated S2 and L8 sensors (Table 1). The 

VIs were selected were retrieved from the literature with basis based on their relation to biophysical properties of vegetation 

affecting GPP. The NDVI and the NDVIre, are considered a proxy of fPAR; the Green Normal Difference Vegetation Index 25 

(GNDVI) , the MERIS Terrestrial Chlorophyll Index (MTCI) and the chlorophyll index (CI) are representative of  

chlorophyll-a and N content, while the Photochemical Reflectance Index (PRI) and the Plant Senescence Reflectance Index 

(PSRI) are expected to mirror changes in the ratio of carotenoids to chlorophyll. Finally, the Normalized Difference Water 

Index (WBI) and the Normalized Difference Water Index (NDWI) are considered proxy of tissue water content.  

Given that the goal of the analysis is to determine the set of VIs and /or bands that best model GPP, we apply a data analysis 30 

method that identifies the best subset of single variables. This is distinct from Principal Component Analysis (PCA) where 

dimensionality reduction is achieved through replacing variables by their linear combinations, which still involve all the 

variables. We adopted linear regression (MLR) to model the relation between our explanatory variables (bands and VIs) and 

the response variable (GPP). Although the expressiveness of non-linear models (e.g. in the field of machine learning) is 
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stronger than MLR, we believe that linear models provide a clearer interpretation of the relation between predictors and 

GPP, while offering enough flexibility by including variables in a high dimension representation space. Moreover, and as 

discussed below, linear models allow us to derive confidence intervals for our results, apply statistical tests to compare 

models at a given significance level, and they are less prone to overfitting than complex non-linear models. 

 5 

A multiple linear regression (MLR) was adopted to model the relation between our explanatory variables (bands and VIs) 

and the response variable (GPP). Since the number of observations is only roughly twice as large as the number of new 

explanatory variables we performed a variable selection and excluded those variables that do not contribute significantly to 

the goodness-of-fit of our model. Although the dimensionality of the problem is very large, it can be solved efficiently by the 

LEAPS algorithm (Furnival and Wilson, 1974) available through the R package Llleaps (Lumley, 2009). Unlike alternative 10 

heuristic approaches (Cadima et al, 2004), LEAPS returns the optimal subset of predictors according to a given criteria. In 

our analysis, the criteria was the adjusted R
2
, so LEAPS returns the sub-model with the highest adjusted R

2
 among all 

possible 2
p
 sub-models, where p is the number of predictors. 

A nested approach was adopted to formally test which model better explained GPP. A preliminary test showed that better 

results were obtained with exponential regressions and therefore lnGPP was adopted as the response variable in all analyses. 15 

The general model was ln 𝐺𝑃𝑃~∑ 𝑣𝑗𝑛
𝑗,1 , where 𝑣 are vegetation indices (VIs) or optical bands (B) from Hyp grouping 

procedure or from simulated S2 or L8 data. The subset of j  was selected by maximizing the adjusted R
2 
among all possible 

combination of predictors.  

The LEAPS procedure returns and optimal model named that we called L. However, L may include variables which 

contribute only marginally for the overall adjusted R
2
. To further reduce the dimensionality of the predictors, we test sub-20 

models of L (obtained by backwards stepwise selection of predictors) against the LEAPS optimal model L. When sub-

models of L were found not to be significantly worse than L, at a significance level alpha=0.05, then we considered the most 

parsimonious of those sub-models as the optimal solution. A F-test was used to perform those comparisons.  The analysis 

was repeated separately for all vegetation indices (VIs) and bands (B) from Hyp, S2 or L8 data, obtaining an optimal model 

for each sensor. We performed an analysis of residuals for each selected model, which showed no evidence of violation of 25 

the linear model assumptions. 

Besides determining the adjusted R
2
 for the optimal model from the full sample, we applied a bootstrap procedure (N=10000 

iterations) to estimate the distribution of the adjusted R
2 
  in the whole population (Ohtani, 2000). This allowed us to estimate 

quantiles (25%-75%) for adjusted R
2 

and also compare the adjusted R
2 

distributions among models. In particular, it permits 

to estimate the probability that thesome model A has a higher adjusted R
2 
than the an alternative model B. 30 

Two-sstep models were also used to investigate if optical bands had the potential to improve models based only on 

vegetation indices (VIs). Toward that end, bands (B) were added to the optimal models obtained by the procedure above 

described denoted by Hyp-VIs, S2-VIs and L8-VIs (step 1). Using step 1 as the base model, we applied LEAPS to determine 

the subset of bands that maximized the overall adjusted R
2
. As before, we applied a F-test (alpha=0.05) to possibly reduce 
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the number of bands in the optimal model. As a result, we defined the optimal two-sstep models: Hyp-VIs+B, S2-VIs+B and 

L8-VIs+B. Finally, for Hyp, S2 and L8, we performed a F-test to compare the one step optimal model with the 

correspondent two-ssteps optimal model. A low p-value for this F-test indicates that the two-step model is significantly 

better and means that bands, in addition to vegetation indices, contribute for an improved modelling of GPP. 

3. Results 5 

3.1 Conditions during the experimental period 

During the period of measurements, from March 31 to June 3, 2016, the average daily PAR and temperature increased 

progressively, ranging from 630 molm
-2

s
-1

 to 1000 molm
-2

s
-1

 and from 9.6 ˚C to 17˚C, respectively (Fig.1a). Soil water 

content (SWC) (Fig. 1b) showed fluctuations according to rainfall events, ranging from 0.05 to 0.2 m
3
m

-3
. During the 

experimental period, rainfall was concentrated in the first half of April and at the beginning of May. Along the experimental 10 

period rainfall recorded was 195 mm, corresponding to the 33% of the whole year.  

3.2 The effect of fertilization on leaf Plant Area Index  area and species compositionfunctional groups proportion  

From the beginning to the end of the study period, PAI increased on average 4 fold from 1 to 4 (Fig.2a). In all treatments, the 

increase in PAI was completed by May 20 and no further increase was observed in the last measurement (June 3). On the 

contrary, at the beginning of the experiment, PAIgr (Fig2b) showed an increasing tendency similar to PAI but from May 20 15 

onwards, the tendencytrend changed and a decreaseing trend was then observed corresponding to the onset of grassland 

senescence.  

The fertilization treatments influenced both the PAI (P<0.000) and the PAIgr (P<0.000) being both significantly higher for 

treatments NPK and P than for treatment C (P<0.001). No differences were observed between C and N treatments (P>0.05). 

In both PAI and PAIgr the treatment P showed similar values to NPK, with the exception of the first measurements day 20 

(April 1). The grassland communities fertilized with NPK had a higher and earlier leaf area growth when compared to the 

other treatments.  

Plant species composition has been measured every year since 2012 (pre-treatment) under an ongoing long-term nutrient 

addition experiment on this grassland site. In line with results from that study (Nogueira et al., personal 

communicatiosubmitted), tThe fertilization treatments also influenced the functional composition of grasslands (Table 3). In 25 

the NPK treatment the percentage of graminoids was higher than in any of the other treatments. P treatment showed a higher 

percentage of legumes and in the C and N treatments forbs were the dominant functional group.  

3.3 The effect of fertilization on GPP 

The ability of grasslands to sequester atmospheric carbon dioxide was not affected by fertilization treatments. The NEPE 

(Fig.3a) and the GPP (Fig.3c) did not reveal any statistical significant difference among treatments (P>0.05). On the 30 
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contrary, the rate of respiration (Fig.3b, R) was affected by the fertilization treatment (P<0.05), being on average higher for 

treatments NPK and P than C. CO2 gas exchanges were influenced by the grassland life cycle and marked trends were 

observed along the measurement period. NEPE showed an average drop of 74%, shifting from -14.47 molm
-2

s
-1

 to -3.67 

molm
-2

s
-1

, from April 01 (day 1) to June 03 (day 4) (P<0.000). This decrease in NEPE rate was particularly evident from 

the second to the third measurement day, after the annual peak of grassland growth was achieved (Fig. 3a). R also showed 5 

differences along the experimental period (P<0.000) but the trend observed was different. R increased from the first to the 

second measurement day, from 8.22 molm
-2

s
-1

 to 13.65 molm
-2

s
-1 

and then decreased toward the end of the experiment 

(Fig. 3b). GPP also changed significantly along the studied period (P<0.000), decreasing from 25.72 molm
-2

s
-1

 on April 25 

(day 2) to 12.12 molm
-2

s
-1

on June 3(day 4). A linear relationship was observed between GPP and fPARgr (Fig.4) , however 

the slope of the regression line changed along the experimental period and marked differences were observed between the 10 

vegetation growth (day 1 and 2 ) and the senescence phase (day 3 and 4) (Fig.4). 

3.4 Vegetation reflectance 

The reflectance of vegetation (Ref) varied on average between 0 and 0.4 (Figure Fig. 54a).The cCluster analysis created 25 

bands (Fig. 54b) based on Ref similarity of contiguous wavelengths (r>90%). Bands were narrower in the visible region ( 

350  nm to 750 nm) than in the NIR (750 nm to 1350 nm) and in the SWIR (1350 nm to 2300 nm) region. In particular, in 15 

the red-edge region, between 698 and 732nm 6 different bands were identified, corresponding to a steep increase in 

reflectance observed in this region of the spectra.  

3.5 Vegetation indices  

Adopting wave bands obtained by cluster analysis (Fig.4Fig.5b) several vegetation indices were calculated (Table 2). The 

average values of the indices GNDVI, NDWI, PSRI and MTCI are shown in figure 5. Other indices are omitted from the 20 

figure for showing very similar trends to the ones represented (NDVI, NDVIre, WBI, CI) or not being significantly 

correlated with the response variable (PRI). All of them showed larger changes during the study period, particularly after 

April 25 (day 2), when the annual peak of growth was achieved.  

The GNDVI (Fig. 65a) showed small changes among treatments and dates, with a significant drop of 20% observed from 

April 1 to June 3 (P<0.000), and significant differences in the NPK and P treatments (P<0.001) as compared to C but 25 

differences were not evident anymore on June 3 (day 4). The MTCI (Fig.65b) showed a large drop particularly evident after 

April 25 (day 2). At April 1 (day 1), the effect of fertilization was evident in treatments NPK and P as compared to C 

(P<0.001), however along the experimental period differences among treatments diminished and by June 3 (day 4) no 

differences among treatments were observed. The NDWI (Fig.65c) showed a similar temporal trend with a marked decrease 

from April 1 to June 3 (P<0.001). Also for MTCI, the NPK and P treatments showed always higher values than C (P<0.001), 30 

suggesting a positive impact of the higher nutrient availability on tissue water content. The PSRI had an opposite trend, 
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showing on average a threefold increase from April 1 to June 3 (P<0.000) and a tendency to lower values in fertilized 

treatments as compared to C (P<0.001) for NPK and P and P<0.01 for N).  

Significant regressions were established between GPP and all the vegetation indices considered (Table 4) with the exception 

of PRI. The NDWI was the index that explained the higher proportion of variability of GPP., which is the result of the 

progressive drying out of vegetation toward the end of the growing season. 5 

3.6 GPP estimates by multiple linear regression models 

The LEAPS procedure selected VIs or Bands as predictor variables retrieved from Hyperspectral data (Hyp) or simulating 

Sentinel-2 MSI (S2) and Landsat8 OLI (L8) sensors. We performed an analysis of residuals for each selected model, which 

showed no evidence of violation of the linear model assumptions.  

 10 

Models adopting only VIs as predictor variables (Hyp-VIs and S2-VIs) performed similarly with a considerable overlap of 

adjusted R
2 
(Table 5). On the contrary, the L8-VIs model showed a lower performance (lower adjusted R

2
) than Hyp-VIs and 

S2-VIs models (Table 5). Bootstrap results allowed us to conclude, at a confidence level of 90%, that Hyp-VIs has higher 

adjusted R
2
 than L8-VIs. 

The selection of VIs in the Hyp-VIs and S2-VIs models exhibited a similar spectral pattern. Both models included PSRI and 15 

GNDVI. On the contrary, NDVI, the most frequently adopted index as green leaf area proxy was not included in the Hyp-

VIs model but only in the S2-VIs. Two of the indices included in the Hyp model are related with water balance (WBI) and 

water tissue content (NDWI). The S2 model includes also MTCI, which represents chlorophyll-a and N.  

Models including only bands (-B) showed similar performance to respective models employing vegetation indices (-VIs). 

Only in the case of L8, where just one vegetation index (NDVI) was available, bands (L8-B) led to better modelling of GPP 20 

than vegetation indices (L8-VIs). Similar spectral patterns were also observed in the selection of bands for GPP estimate for 

all sensors (Hyp, S2, L8). A common pattern is the inclusion of bands in the SWIR region strongly represented in the Hyp-B 

(R1951-2299, R1209-1327, R1328-1349), S2-B (B11) and L8-B (B6 and B7) models. The red edge region of the spectra was also 

largely represented in the Hyp-B (R724-732, R706-710, R702-705, R698-701, R716-723) and S2-B (B5, B6 and B7) underlining the 

importance of this region for vegetation reflectance.  25 

The LEAPS two-step procedure allowed us to identify bands with potential to improve the VIs based models, identifying 

regions of the spectra generally not adopted in vegetation indices. For both S2Hyp and L8 the two-step model (VIs + B) 

increased significantly (P<0.010) the performance of the model, while for HYpS2 the difference between HypS2-VIs and 

HypS2-VIs+B model, in spite of still being significant, is less marked (P<0.05). The bootstrap procedure indicated that the 

probability of the Hyp-VIs+B being significantly better (alpha=0.05) is 83% when compared to S2-VIs+B and 81% when 30 

compared to L8-VIs+B. On the contrary, the S2-VIs+B and the L8-VIis+B models do not differ significantlyexhibit roughly 

the same explanatory power.  In all the VIs+B models, bands in the SWIR region were included. The second region of the 

spectra more represented in the Hyp-B and Hyp-VIs+B model was the red-edge.   
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4. Discussion 

4.1 The impact of fertilization treatment  

The fertilization treatment influenced the growth rate and the composition of the herbaceous plots more than carbon 

sequestration. In line with a five year and ongoing  study at the same grassland site, tThe fertilization treatment resulted in 

differences in aboveground biomass and species compositionfunctional groups proportion  for NPK and P treatments as 5 

compared to C, while the the solelysingle addition of N addhad no effect.   

An earlier growth response was also observed in the NPK treatment measurement. The Hhigher percentage of graminoid 

species with on average higher growth rates as compared to most forb species (Ansquer et al., 2009; Craine et al., 2001; 

Westoby et al., 2002) could explain early differences in PAI and PAIgr in this treatment.. As leaf area is usually positively 

related to GPP (e.g. Aires et al., 2008b; Xu and Baldocchi, 2004), it  A Awould be expected that higher PAIgr in NPK 10 

treatments would induce in increased GPP.  However, confounding factors such as increased water demand associated with 

higher growth rates in NPK might have downscaled differences between treatments (e.g. Weisser et al., 2017). 

The relationship GPP-fPARgr showed some differences along the experiment. The slope of the regression line was 

considerably lower during the vegetative growth than during the senescence period (Fig.4) revealing the occurrence of 

marked changes in the effective LUE along the growth life cycle and confirming previous results (Nestola et al., 2016; 15 

Pérez-Priego et al., 2015b). 

While the fertilization treatment had no impact on NEP or GPP a higher R rate was observed at the measurement day 4 

(June, 3) in the NPK and P treatments. Differences can be ascribed to the higher PAI,  and precipitation at the end of May, 

which must have stimulated soil respiration (Jarvis et al., 2007; Reichstein et al., 2003).  

4.21 Best VIs for GPP estimation 20 

The LEAPS procedure selected several indices as significant predictor variables for GPP in the Hyp-VIs and S2-VIs model 

(Tab. 5). The vegetation indices selected in the Hyp-VIs and S2-VIs models are known to represent different properties of 

vegetation, specifically: the green fraction of the leaf area (GNDVI and NDVI) , the chlorophyll-a and N concentration 

(MTCI), the ratio carotenoids/chlorophyll (PSRI) and the tissue water content (NDWI, WBI). Each of these traits has a 

major role in GPP.  25 

Among the vegetation indices selected in the multiple linear models, both the Hyp-VIs and the S2-VIs included the PSRI, 

(Merzlyak et al., 1999) which is generally applied to detect the occurrence of vegetation senescence. PSRI is able to capture 

changes in the carotenoids/chlorophyll ratio which occur during vegetation senescence since chlorophyll declines more 

rapidly than carotenoids (Merzlyak et al., 1999). In this study, PSRI increased in all treatments after April 25, whenre the 

maximum peak of growth (Fig.2,b) was achieved and close to the onset of canopy drying out. Another index known to be 30 

related with the carotenoids/chlorophyll ratio, the PRI (Filella et al., 2009), showed no correlation with GPP in our study. 

These results are in contrast with previous studies (Pérez-Priego et al., 2015b). However, a low performance of PRI in 
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representing the carotenoids/chlorophyll ratio has been already observed in semiarid grasslands (Vicca et al., 2016). In crops, 

a good agreement between PRI and pigment pools was observed at leaf  (Gitelson et al., 2017a) but not at stand level. 

(Gitelson et al., 2017b). Differences in the last two studies were ascribed to changes in canopy structure (e.g., changes in leaf 

inclination angle) over the growing season.  

The Hyp model also put in evidence the importance of changes in canopy water content, as both the NDWI (Gao, 1996) and 5 

the WBI (Penuelas et al., 1997) were included in the model. Considering Cchanges observed in NDWI along the experiment 

and the good correlation observed between NDWI or WBI and GPP it is reasonable to assume that GPP is largely affected 

by the progressive senescence of vegetation, is an evidence of the importance of the onset of drought for grassland 

vegetation as senescence marks the end of the growing season in Mediterranean grasslands (Balzarolo et al., 2015; Vescovo 

et al., 2012). In a previous study, Vicca et al. (2016) found that NDWI was able to estimate GPP in semiarid grasslands 10 

better than other indices, allowing to distinguish the effect of drought. 

Other indices, sensitive to changes in chlorophyll-a concentration, MTCI (Dash and Curran, 2004) and GNDVI (Gitelson 

and Merzlyak, 1998) were also included in the model. The fertilization treatment resulted in an increase in MTCI during the 

first stage of the experiment in the NPK and P treatments, followed by a decrease observed in all treatments as the season 

progressed toward the end of the annual growth cycle. A similar trend was observed in a study by (Pérez-Priego et al., 15 

2015b) in which Mediterranean grasslands were subjected to fertilization with N or NP. The primary role of chlorophyll in 

photosynthesis is well known and justifies the positive relationship observed between GPP and MTCI. However, in the 

present study, no differences were observed in GPP among fertilized and non-fertilized treatments suggesting that the 

expected increase in photosynthesis due to the increase in chlorophyll and nitrogen was constrained by other environmental 

and physiological factors.    20 

Notably NDVI, the most frequently applied index in GPP estimates by LUE models (Yuan et al., 2014) was not selected  in 

the Hyp-VIs model and showed a poorer coefficient of determination than other indices, (e.g. NDWI). ,  NDVI is expected to 

reflectmirror changes in green leaf area, being generally linearly related with the fraction of photosynthetically absorbed 

radiation fPAR (Myneni and Williams, 1994). However, previous studies reported a saturation of NDVI and consequent lack 

of linearity in the NDVI-fPAR regression in high productive vegetation communities (Gianelle et al., 2009; Vescovo et al., 25 

2012) such as grasslands and sometimes other indices showed a better performance. For example, in grasslands subjected to 

water and nutrient stress, the NDVI green index (GNDVI), which adopts a green band instead of the red band of NDVI and 

hence is more sensitive to chlorophyll-a concentration (Gitelson et al., 1996), showed a better performance than NDVI as 

fPAR proxy of leaf area (Cristiano et al., 2010; Gianelle et al., 2009). Also in this study, the GNDVI explained a larger 

proportion of GPP variance than   NDVI in the Hyp-VIs and S2-VIs models being selected in both and before NDVI in the 30 

S2-VIs model. 

The indices selected by the LEAPS (i.e. NDVI, GNDVI, NDWI, MTCI, PSRI and WBI) also showed high significant 

relationship with GPP (tab. 4) in simple regressions explaining 63% to 72% of the variability observed. The functional 

convergence (Ollinger, 2011) of different traits participating in the photosynthetic process may have hampered results 
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observed in the regression for each single vegetation index, showing a high degree of correlation for most of them (Table 4). 

However, the selection of several VIs, representatives of different structural and functional traits in the multiple linear 

models and the lower performance observed in the L8 model, including solely the NDVI index, clearly indicate the 

importance of considering  the contribution of different traits with different temporal dynamics to capture GPP temporal 

changes in models integrating vegetation indices.  5 

 

4.32 Are spectral bands better GPP estimators than VIs? 

Our results suggest a marginal improvement in that better GPP estimates can be obtained by adopting bands (Hyp-B, S2-B, 

L8-B, Table 5) instead of vegetation indices (Hyp-VIs, S2-VIs, L8-Vis, Table 5). However, aA larger impact was observed 

in the case of L8-VIs+B models when compared with the L8-VIs model which included only NDVI (Table 5).  10 

Although normalized VIs are important in establishing strong relationships between biophysical and optical properties of 

vegetation, our results showed that the selection of the proper band is equally important to more important than the 

mathematical formulation of the indices for the explanatory power of spectral retrievals as predictor variables. Previous 

studies comparing the explanatory power of VIs and bands in grasslands showed similar results (Balzarolo et al., 2015; 

Matthes et al., 2015).  15 

However, it cannot be disregarded that VIs offer, in comparison with spectral bands, the advantage to provideof in being 

more robust in representing spatial and temporal comparable representation of  vegetation features, since differences 

resulting from background reflectance, sun-sensor geometry and atmospheric effects are minimizedtigated by normalization 

of spectral values (Glenn et al., 2008). 

Our results also evidenced the importance of the SWIR region of the spectra, as bands in this region were selected in all one- 20 

and two-step models, which is rarely adopted in vegetation indices with few exceptions. The SWIR region is known to 

correlate with canopy water content (Casas et al., 2014).   

Studies investigating the potential of spectral bands to estimate canopy chlorophyll content and green fAPAR, found that the 

SWIR region was strongly positively correlated with them in grasslands (Sakowska et al., 2016) and also GPP in a semi-arid 

savanna (Tagesson et al., 2015). 25 

Bands in the red-edge region were also largely represented in the Hyp-B, S2-B  and in the Hyp-VIs+B models. The red-edge 

corresponds to the steep increase in reflectance at the boundary between the red region where chlorophyll is absorbed and the 

leaf scattering at the NIR region. Red-edge bands were successfully employed for estimating chlorophyll content in maize 

(Zhang and Zhou, 2017) and, LAI in crops (Kira et al., 2017). For these reasons they were integrated into numerous VIs, 

such as MTCI and PSRI, also applied in this study, which explain the reason for the lack of red-edge bands in the second 30 

step of the  S2 model (S2-VIs+B) while strongly represented in the S2-B.  
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4.34 Satellite sensors as estimators of GPP 

Differences in the selection of the vegetation indices among sensors had apparently no effect on the performance of the S2-

VIs and Hyp-VIs models (Table 5), while the limited number of available vegetation indices for the L8 resulted in a lower 

performance of the model.  

Our results show that an equal potential of S2 and L8 sensor spectral signatures are equally suitable for assessing GPP.   5 

GPP estimates obtained simulating S2 and L8 sensors showed a similar performance in the –B and –VIs+B models, while 

when only VIs were adopted, the S2 model had clearly a better performance than L8. These results suggest a need for testing 

new vegetation indices adopting L8 bands.  

In agreement with our results, other studies comparing linear additive models showed similar ability for estimating canopy 

cover and LAI adopting the S2 or L8  sensors (Korhonen et al., 2017). 10 

An important difference between the S2 and L8 availability of wavebands is the lack of reflectance values in the red-edge 

region for in the L8, which limited the possibility of computing VIs, such as MTCI and PSRI (Korhonen et al., 2017). 

However, the limitation imposed by the lack of bands in the red-edge region, had apparently more importance for the -VIs 

model, while differences in the performance of the model between S2 and L8 decreased for –B and VIs+B models.  

In this study, S2 and L8 data comparison was based only on the simulation of the respective bands not taking into 15 

consideration other factors possibly affecting sensors spectral response such as sun-sensor viewing geometry (Tagesson et 

al., 2015). Nonetheless, in a recent study (Korhonen et al., 2017) the comparisons of satellite data from the two platforms 

showed no differences  between S2 and L8 reflectance values in the NIR, SWIR1 and SWIR 2 bands. In other regions of the 

spectra, such as the green and blue bands reflectance values were considerably smaller in the S2 than in the L8 but still 

proportional, suggesting that comparisons between S2 and L8 simulated bands can largely be representative of the actual 20 

differences obtained by the two remote platforms.  

OAt the same time, our results confirm the importance of performing hyperspectral measurements. Indeed, inferentialin this 

study, bootstrap results show that for the whole population, and with probability 80%, the the Hyp-VIs+B model is showed 

to be superior to to the corresponding S2 and L8 models with over than 80% of probabilities. The high detailed resolution 

and the wide range if wave bands makes hyperspectral sensors as unique in identifying regions of the spectra of high interest 25 

for representing different vegetation properties of vegetation (Porcar-Castell et al., 2015)  

 

5. Conclusions 

In agreement with previous studies (Pérez-Priego et al., 2015b; Rossini et al., 2012; Vicca et al., 2016), our results clearly 

indicate the need to integrate into GPP models spectral information representing both structural and functional  traits of 30 

vegetation  along the whole grasslands life cycle. Specifically, water content (NDWI), chlorophyll (MTCI, GNDVI) and the 

ratio of chlorophyll to carotenoids (PSRI) were indicated as best predictor variables for GPP estimates. Altogether these 
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vegetation indices describe the loss of photosynthetic pigments and efficiency and dry out of vegetation occurring and when 

considered together improved considerably GPP estimates in comparison with models adopting only NDVI.  

Our study also confirms the importance of hyperspectral in-situ measurements for exploratory analysis of the relationship 

between biophysical and optical properties of vegetation providing a wide spectral range and high resolution of spectral 

retrievals.  5 

The hyperspectral reflectance values, together with the two-step procedure adopted for the selection of predictor variables 

allowed also to identify critical region of the spectra, not included in the initial selection of vegetation indices but that 

revealed their usefulness in estimating GPP.  For example, the LEAPS two-step procedure evidenced which bands could 

improve significantly a model including only vegetation indices, identifying the red edge and SWIR regions of the spectra as 

of major importance for improving GPP estimates. This information can be critical in the development of new spectral 10 

indices and sensors. 

Our results also evidenced the potential of S2 and L8 sensor in assessing GPP, since models obtained by simulating bands 

from the two sensors showed similar performance. The possibility of using remote sensing information for monitoring and 

modelling vegetation at a suitable spatial resolution, such as in S2 and L8 sensor, allows for attempted vegetation monitoring 

and modelling in a cost-effective way, in support of sustainable agriculture management practice.  15 
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Table 1. Spectral bands range and spatial resolution of Sentinel-2A MSI and Landsat 8 OLI sensors simulated in this study. 

  Sentinel-2A 

MSI 

  Landsat 8 

OLI 

 

Band 
Spectral 

region 

Wavelength 

range (nm) 

Resolution 

(m) 

Spectral 

region 

Wavelength 

range (nm) 

Resolution 

(m) 

B1     Blue 435-451 30 

B2 Blue  458-523 10 Blue 452-512 30 

B3 Green peak 543-578 10 Green 533-590 30 

B4 red 650-680 10 Red 636-673 30 

B5 Red-edge 698-713 20 NIR 851-879 30 

B6 Red-edge 733-748 20 SWIR1 1566-1651 30 

B7 Red-edge 773-793 20 SWIR2 2107-2294 30 

B8 NIR 785-899 10    

B8A NIR narrow 855-875 20    

B11 SWIR 1565-1655 20    

B12 SWIR 2100-2280 20    
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Table 2. Selection of vegetation indices adopted in this study with their formulation using hyperspectral (Hyp) grouped bands, S2 or L8 simulated 

sensors, biophysical properties represented according to the literature and original bibliographic reference.  

Vegetation Index Hyp S2 L8 Biophysical property Reference 

NDVI  
Normalized Difference 

Vegetation Index 

𝑅800 − 𝑅670
𝑅800 + 𝑅670

 
𝐵8𝐴 − 𝐵4

𝐵8𝐴 + 𝐵4
 
𝐵5 − 𝐵4

𝐵5 + 𝐵4
 Green biomass and area 

(Rouse et al., 

1974) 

GNDVI   
Green Normalized Diff. 

Veg. Ind. 

𝑅750 − 𝑅550
𝑅750 + 𝑅550

 
𝐵7 − 𝐵3

𝐵7 + 𝐵3
 

𝐵5 − 𝐵3

𝐵5 + 𝐵3
 Green biomass and area 

(Gitelson and 

Merzlyak, 1998) 

NDVIre  
Red-edge Normalized 

Diff. Veg. Ind. 

𝑅750 − 𝑅720
𝑅720 + 𝑅750

   Green biomass 
(Gitelson and 

Merzlyak, 1994) 

CI  Chlorophyll index 
𝑅750 − 𝑅705
𝑅750 + 𝑅705

   Chlorophyll 

(Gitelson and 

Merzlyak, 1994) 

MTCI  

MERIS Terrestrial 

chlorophyll Index 

𝑅754 − 𝑅709
𝑅709 + 𝑅681

 
𝐵6 − 𝐵5

𝐵5 + 𝐵4
  Chlorophyll, nitrogen 

(Dash and 

Curran, 2004) 

PRI  
Photochemical 

Reflectance Index 

𝑅570 − 𝑅531
𝑅570 + 𝑅531

   
Radiation Use-Efficiency, 

Carotenoid/chlorophyll 

(Gamon et al., 

1992) 

PSRI  
Plant Senescence 

Reflectance Index 

𝑅680 − 𝑅500
𝑅750

 
𝐵4 − 𝐵3

𝐵6
  Carotenoid/chlorophyll 

(Merzlyak et al., 

1999) 

NDWI  
Normalized Difference 

Water Index 

𝑅860 − 𝑅1240
𝑅860 + 𝑅1240

   Tissue water content (Gao, 1996) 

WBI  Water Band Index 
𝑅970 − 𝑅900
𝑅970 + 𝑅900

   Tissue water content 
(Penuelas 

Peñuelas et al., 
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1993) 
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Tab.3 - Percentage of each plant functional type (Forbs, Graminoids and Legumes) in above ground biomass of grasslands 

under different fertilization treatments (C, N, NPK and P). Values represent means of 6 replicates; standard errors are shown 

in parenthesis. 

Treatment Forbs Grams Legumes 

C 56.85 

(5.10) 

21.22 

(3.62) 

21.93 

(4.20) 

N 65.00 

(1.89) 

25.04 

(2.53) 

9.95 

(1.45) 

NPK 34.07 

(3.43) 

52.55 

(3.29) 

13.37 

(1.03) 

P 25.60 

(3.06) 

31.43 

(4.47) 

42.96 

(3.82) 
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Table 4. Linear regressions established between lnGPP and vegetation indices (VI) selected for this study (see Table 2). Best 

regression is shown in bold. 

Vegetation 

Index 

R
2
 RMSE P 

NDVI 0.6853 0.2364 0.0000 

GNDVI 0.6360 0.2543 0.0000 

NDVIre 0.6872 0.2357 0.0000 

CI 0.7161 0.2246 0.0000 

MTCI 0.6303 0.2563 0.0000 

PRI 0.0209 0.4171 0.1715 

PSRI 0.6745 0.2405 0.0000 

NDWI 0.7205 0.2228 0.0000 

WBI 0.6491 0.2497 0.0000 
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Table 5. Best selection of linear models for GPP estimate according to the general equation:  𝑙𝑛𝐺𝑃𝑃𝑃~∑ 𝑣𝑗𝑛
𝑗,1 , where 𝑣 are vegetation indices (VIs) or optical bands (B). Bands 

and vegetation indices are obtained from Hyperspectral measurements grouped in clusters with 90% similarity (Hyp), or resampled for simulating Sentinel 2/MSI (S2) and 

Landsat8/OLI (L8) sensors. Vegetation indices formulation is shown in Table 2. The order of the variables (most important first) reflects their importance in the model. The 

Quantiles 25% and 75% of the adj R
2
 are obtained from a bootstrap with 10000 iterations. The two-stepstwo-step models add a selection of bands to the variables (VIs) selected at 

step one. A low p-value indicates that the model including VIs and bands (step 2) is significantly better than the model just with VIs (step 1).  

Model Step one Adj R
2
 

Adj R
2
 

Q-25% 

Adj R
2
 

Q-75% 
Step two Adj R

2
 

Adj R
2
 

Q 25% 

Adj R
2
 

Q75% 
p 

Hyp-VIs NDWI; PSRI; WBI; GNDVI 0.7659 0.7431 0.8047      

S2-VIs MTCI; PSRI; GNDVI; NDVI 0.7426 0.7225 0.7822      

L8-VIs NDVI 0.6792 0.6405 0.7194      

Hyp-B 

R1951-2299; R724-732; R1328-1349; R706-710;  

R449-466; R566-582; R519-532;  R350-397; R398-

411; R1209-1327; R702-705; R698-701; R716-723; 

0.7884 0.7906 0.8392      

S2-B B7; B11; B5; B2; B8; B6 0.7412 0.7222 0.7848      

L8-B B7; B5; B6; B4; B3; B1 0.7557 0.7367 0.7974      

Hyp-VIs+B NDWI; PSRI; WBI; GNDVI    

R698-701; R412-448; R716-723; R467-518; R706-

710; R449-466; R350-397; R1209-1327; R1412-1505;  

R1951-2299; R702-705; R724-732;  R1328-1349 

0.7986 0.8083 0.8550 0.0260 

S2-VIs+B MTCI; PSRI; GNDVI; NDVI    B11; B3; B12 0.7684 0.7542 0.8104 0.0081 

L8-VIs+B NDVI    B6; B3; B7 0.7686 0.7472 0.8047 0.0000 
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Figure 1: Daily average PAR, temperature (a), soil water content for different treatments and total rainfall (b) recorded on the site during 

the experimental period. Dates of field measurements are indicated by vertical dash-dotted lines. 
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Figure 2 Average green Plant Area index (PAI) and the green fraction of PAI (PAIgr) observed in grasslands subjected to different 

fertilization treatments (C, N, NPK or P). Each point is the average of 6 replicates. Vertical bars represent error bars.  
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Fig.3 Average Net Ecosystem ProductivityExchange (NEPE)(a), dark Respiration (R) (b) and Gross Primary Productivity (GPP) (c) 

measured in grasslands under different fertilization regimes (C, N, NPK and P). Each point is the average of 6 replicates. Vertical bars 

represent standard errors. 
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Figure 4: Relationship between GPP and fPARgr observed in grassland subjected to different fertilization treatment (C, N, NPK and P). 

Measurements performed during the vegetation growth are indicated as circles (corresponding to measurement days 1 and 2 ) while those realized 

during the senescence period are indicated as triangles (measurement days 3 and 4). Linear regression lines were fitted separately to the two periods 

(GPP= 14.48 fPARgr + 18.44, R2=0.39, P<0.001 and GPP= 30.08 fPARgr + 6.39, R2=0.65, P<0.001, respectively for the growth and the senescence 

period).  
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Fig.54 Average reflectance values and standard deviation (grey ribbon) observed in herbaceous plots undergoing different fertilization 

treatments (A). The bottom picture (B) shows the bands obtained by grouping Ref for similarity (>=90%) of contiguous hyperspectral 

measurements with 1nm resolution in the range 350-2300nm, bands are alternated black and white. Grey bars represent areas of the 

spectrum not considered for being noise.  
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Fig 65. Average values of several vegetation indices retrieved from reflectance measurements of herbaceous plots undergoing different 

fertilization treatments. Vertical bars represent standard errors. Different letters indicate significant differences among treatements withins 

the same date (p<0.05).  

 


