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Abstract: We applied an empirical modelling approach for Gross Primary Productivity (GPP) estimation from 10 

hyperspectral reflectance of Mediterranean grasslands undergoing different fertilization treatments. The objective of the 

study was to identify combinations of vegetation indices and bands that best represent GPP changes between the annual-peak 

of growth and senescence dry out in Mediterranean grasslands.  

In-situ hyperspectral reflectance of vegetation and CO2 gas exchange measurements were measured concurrently in 

control (C) and fertilized plots with added nitrogen (N), phosphorus (P) or the combination of N, P and potassium (NPK). 15 

Reflectance values were aggregated, according to their similarity (r≥ 90%), in 26 continuous wavelength intervals (Hyp). In 

addition, the same reflectance values were resampled reproducing the spectral bands of both Sentinel-2A Multispectral 

Instrument (S2) and Landsat 8 Operation Land Imager (L8) simulating the signal that would be captured in ideal conditions 

by either Sentinel-2A or Landsat 8.   

An optimal procedure for selection of the best subset of predictor variables (LEAPS) was applied to identify the most 20 

effective set of vegetation indices or spectral bands for GPP estimation using Hyp, S2 or L8. LEAPS selected vegetation 

indices according to their explanatory power, showing their importance as indicators of the dynamic changes occurring in 

community vegetation properties such as, canopy water content (NDWI) or chlorophyll and carotenoids/chlorophyll ratio 

(MTCI, PSRI, GNDVI) and revealing their usefulness for grasslands GPP estimates.  

For Hyp and S2, bands were as performant as vegetation indices to estimate GPP. To identify spectral bands with 25 

potential for improving vegetation indices based GPP estimates we applied a two-step procedure which clearly indicated the 

shortwave infrared region of the spectra as the most relevant for this purpose. A comparison between S2 and L8 based 

models showed similar explanatory power for the two simulated satellite sensors when both vegetation indices and bands 

were included in the model. 

Altogether, our results describe the potential of sensors on board of Sentinel 2 and Landsat 8 satellites for monitoring 30 

grasslands phenology and improving GPP estimates in support of a sustainable agriculture management.  
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1. Introduction: 

Mediterranean grasslands are high biodiverse ecosystems, covering around 22% of the European Union land area, and 

providing important ecosystem services such as forage production (Bugalho and Abreu, 2008; Díaz-Villa et al., 2003). These 

ecosystems are subjected to large pressures under global change (Sala, 2000), namely by the increasing availability of 

nutrients (e.g., phosphorus (P) and nitrogen (N)) due to human use of fertilizers, and N deposition (Ceulemans et al., 2014; 5 

Galloway et al., 2004; Peñuelas et al., 2013) and by a decrease and shift in seasonal patterns of precipitation (Costa et al., 

2012; Kovats et al., 2014). The contemporary changes in water and nutrients supply can affect species composition, biomass 

and phenology along the life cycle of annual grasslands (Harpole et al., 2007), compromising their productivity. In 

particular, the onset and duration of the senescence period, largely dependent on soil water availability, can be affected in 

Mediterranean grasslands with great impact in their functioning and large consequences on Gross Primary Productivity 10 

(GPP)  (Aires et al., 2008a, 2008b; Jongen et al., 2013b; Xu and Baldocchi, 2004). This uncertainty scenario increases the 

need for frequent monitoring of GPP along the growing season.   

Using remote sensing based information to evaluate GPP brings important advantages both from a scientific and 

management point of view. Spectral retrievals collected from optical sensors on board of remote platforms may provide 

information on many biophysical properties of vegetation and can be usefully employed for monitoring and modelling 15 

ecosystems GPP in a cost and time-effective way (Schimel et al., 2015). Also, for land managers, the capability of making 

timely grassland management decisions may improve the use and sustainability of these ecosystems. 

GPP estimation models integrating remote sensed observations increased considerably in the last decades (Beer et al., 2010; 

Grimm et al., 2008). Such models are generally based on the Light Use-Efficiency (LUE) concept (Monteith, 1972, 1977), 

which defines GPP as a function of the fraction of radiation absorbed by vegetation, which in turn depends on green leaf area 20 

and the efficiency by which light energy is used to fix carbon during photosynthesis (i.e. LUE) (Cheng et al., 2014; Yuan et 

al., 2014).  

Based on this approach large efforts have been put to derive vegetation indices able to represent the green leaf area and LUE. 

The Normalized Difference Vegetation Index (NDVI) is widely used for its known linear relationship with the absorbed 

radiation (Fensholt et al., 2004; Joel et al., 1997; Myneni and Williams, 1994). However, some exceptions are reported in the 25 

literature. For example in highly productive environments, such as grasslands, NDVI becomes easily saturated, not 

responding to increased leaf area and LUE, and the regression observed is no more linear (Vescovo et al., 2012; Viña and 

Gitelson, 2005). 

In annual grasslands, such as the Mediterranean, control on ecosystem carbon balance is generally considered related mainly 

to the amount of green leaf area, while little LUE changes are expected (Gamon, 2015). Nonetheless, several studies reported 30 

a hysteresis in LUE in grasslands when the duration of the study encompasses the whole life cycle (Nestola et al., 2016; 

Pérez-Priego et al., 2015b). 
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The Photochemical Reflectance Index (PRI) is frequently adopted as a proxy of LUE (Gamon et al., 1997) at leaf and canopy 

scale (Garbulsky et al., 2011). PRI in the short term represents the dynamic of the xanthophylls cycle ( Peñuelas et al., 1995) 

which is related to thylakoid energization and hence to light harvesting by photosynthesis. In the long term, PRI was found 

to be correlated with the ratio of carotenoids to chlorophyll (Filella et al., 2004; Porcar-Castell et al., 2012) and hence to 

plant senescence, since chlorophyll degradation and N export is a distinctive process of leaf ageing (Thomas, 2013). 5 

However, also PRI shows some drawbacks, since it is largely affected by species identity, leaf age or environmental 

conditions (Peñuelas et al., 1995) and by sensors geometry and atmospheric factors (Moreno et al., 2012). Hence the 

performance of models integrating PRI is frequently below expectation (Pérez-Priego et al., 2015b). 

As a result, other vegetation indices have been tested as alternatives to NDVI and PRI for GPP estimation. Rossini et al. 

(Rossini et al., 2012), in an subalpine grassland obtained the best model to estimate GPP adopting together the MERIS 10 

Terrestrial Chlorophyll Index (MTCI) (Dash and Curran, 2004), a proxy of chlorophyll, and PRI. In another study, in a 

subalpine grassland, Sakowska et al. (2014), found that the red-edge NDVI, a modified NDVI, where the infrared band is 

substituted with a red-edge band (Gitelson and Merzlyak, 1994) improved GPP estimates. In Mediterranean grasslands with 

different N and P fertilization level, PRI, together with solar induced fluorescence, improved GPP estimates (Pérez-Priego et 

al., 2015b). In a semi-arid grassland, Vicca et al. (2016) observed that several vegetation indices including NDVI and the 15 

Normalized Different Water Index (NDWI) (Gao, 1996), a proxy of vegetation water content, were able to capture the 

drought effect on GPP.  

Altogether these results clearly indicate that, in spite of the usefulness of VIs to represent dynamic changes in biophysical 

properties of vegetation, further studies are needed, to identify vegetation indices and the spectral regions that can be 

potentially interesting to estimate grassland GPP under different environmental constraints, such as nutrient availability.  20 

The adoption of a specific model depends also frequently on the availability of remote sensed products at a suitable spatial 

and temporal scale. In the case of local scale monitoring of managed grasslands, sensors with high spatial resolution will 

produce better results than sensors with coarse spatial resolution. In this study we opted for simulating data from Sentinel-2A 

MSI (Multi-Spectral Instrument), (hereafter named S2) and Landsat8 OLI (Operational Land Imager) (hereafter named L8), 

for their spatial resolution, (10-20m for S2 and 30m for L8) more suitable for representing grasslands spatial heterogeneity 25 

and hence better adapted to implement management options from a precision agriculture perspective. L8 provides reflectance 

in 7 bands ranging from the visible to the short wave infrared region (SWIR) (Loveland and Irons, 2016), but its main 

drawback is the long revisiting time of 16 days. The recently launched S2 covers the visible and near-infrared regions and 

also the SWIR in 13 bands with at worst five days revisiting time for the combination of S-2A and S-2B platforms (Drusch 

et al., 2012).  30 

Field collection of vegetation reflectance by hyperspectral sensors is less cost-effective and more time consuming than 

satellite remote sensed data but presents the advantage of providing reflectance in numerous, high resolution, wavelengths 

(Porcar-Castell et al., 2015). Therefore, it can be usefully employed for identifying which wavelengths best reflect  

biophysical properties and physiological status of vegetation  (Balzarolo et al., 2015; Matthes et al., 2015) and point to 
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regions of the spectra potentially interesting for GPP modelling which until now have not been exploited by remote sensors. 

The high detail of spectral resolution (1 nm nominal) is a further advantage of hyperspectral measurements. In particular, it 

allows comparing the performance of similar vegetation indices available from different satellite platforms resampling 

hyperspectral information to match spectral bands of different remote sensors. 

A promising new technology is the use of space borne imaging spectroscopy. The hyperspectral resolution of these images 5 

allows identifying canopy properties with higher sensitivity than traditional vegetation indices. For example, the use of space 

borne imaging spectroscopy was able to detect changes in canopy leaf area and water stress in a humid tropical forest, 

whereas NDVI and other vegetation indices failed (Asner et al., 2004).   

The aim of this study was to identify combinations of vegetation indices and bands that better reflect GPP changes in the 

period comprised between the annual-peak of growth and senescence dry out in Mediterranean grasslands subjected to 10 

different fertilization treatments. To achieve this goal, in situ hyperspectral measurements of vegetation reflectance were 

used to estimate GPP in a  grassland north-east of Lisbon, Portugal, before and after the annual peak of growth which 

generally occurs in May, with large inter-annual differences (Jongen et al., 2011). A set of vegetation indices proposed in the 

literature were calculated and the performance of models to estimate GPP based on linear combinations of vegetation indices 

and bands were compared.  15 

Whenever comparable spectral range was available for the S2 and L8, vegetation indices were also calculated simulating the 

respective bands and the performance of GPP estimates based on remote platforms and in situ hyperspectral measurements 

compared. 

The specific objectives of the study were:  (i) Test the impact of different nutrient availability on GPP in Mediterranean 

grassland. (ii) Identify the set of vegetation indices to optimize GPP model in our experimental conditions; (iii) Compare the 20 

performance of GPP models employing only vegetation indices, spectral bands or a combination of both;  (iv) Finally, 

compare GPP models using spectral information obtained from hyperspectral sensors with similar models obtained from S2 

and L8 platforms.  
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2. Material and Methods 

2.1 The study site  

Our study was conducted in a semi-natural Mediterranean grassland at Companhia das Lezírias, an estate of approximately 

15 000 ha, located north-east of Lisbon, Portugal (38
o
49´45.13´´N, 8

o
47´28.61´´W). The grassland plant community is 

composed by annual C3 species. The climate is Mediterranean, with mild, wet winters and hot, dry summers. Long-term 5 

(1961–1990) mean annual rainfall is 709 mm. Mean annual temperature is 15.9 °C (INMG, 1991). Site topography is flat 

and the soil is a well-drained deep Haplic Arenosol (WRB, 2006). 

2.2 Experimental design 

The grassland studied is part of the Nutrient Network experiment (http://www.nutnet.umn.edu; Borer et al., 2017; 

Seabloom et al., 2013). Plots (5m x 5m) were established in 2012, in a randomized block design. Factorial combinations of 10 

nitrogen (N), phosphorus (P), and potassium plus micronutrients (K), a total of eight treatments per block, including controls 

(C) with no added nutrients, were established. All nutrients were added at a rate of 10 g m
-2

 yr
-1

. N was added as slow-

release urea (60-90 days), P was added as triple-super phosphate and K as potassium sulphate. Micronutrients (6% Ca, 3% 

Mg, 12% S, 0.1% B, 1% Cu, 17% Fe, 2.5% Mn, 0.05% Mo, and 1% Zn) were added with K only once, at the start of the 

study to avoid possible micronutrient toxicity. In this study, only four fertilization treatments were considered: C, N, P and 15 

NPK. Each one of these treatments was repeated twice per block, a total of 24 plots were measured (2 replicates x 4 

treatments x 3 blocks). 

2.3 Environmental measurements 

Temperature, PAR and relative humidity were measured in situ using a VP-3 humidity temperature and vapour pressure 

sensor and QSO-S PAR Photon Flux sensor (Decagon Devices, Pullman, USA) logged every 30 min (EM50 data logger, 20 

Decagon Devices, Pullman, USA). Precipitation was recorded using a tipping bucket rain gauge (RG2, Delta-T Devices, 

Cambridge, UK). Soil water content (SWC) was continuously measured, at a depth of 10 cm, which corresponds to the main 

rooting zone (Jongen et al., 2013a; Schenk and Jackson, 2002), using EC-5 soil moisture sensors (Decagon Devices, 

Pullman, USA). The rain gauge and soil sensors were connected to a CR1000 and AM16/32B multiplexer data logger 

(Campbell Scientific, Logan, USA).  25 

2.4 Field Measurements 

2.4.1 NEP and R from a closed system IRGA  

Grassland net ecosystem productivity (NEP) was measured with a closed chamber (40 cm X 40 cm X 54 cm) of 

polymethylmethacrylate (3 mm thick) inserted into a permanent frame buried 5 cm into the soil. Radiation transmittance was 

http://www.nutnet.umn.edu/
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higher than 95%. The same chamber was covered with a reflective cloth for dark respiration (R) measurements. Air 

temperature inside the chamber was continuously monitored and PAR was measured at beginning and end of measurements 

with a ceptometer (AccuPAR-LP80, Decagon Devices, Inc. Pullman, WA, USA). Fans in the chamber ensured air 

circulation. The chamber was connected to an infrared gas analyser (LI-840, Li-Cor, Lincoln, NE, USA) measuring CO2 and 

water vapour. Each measurement was no longer than 3 min. Fluxes were calculated based on the rate of change of CO2 5 

inside the chamber, after an initial period of at least 10 seconds. Flux calculations and corrections for CO2 water vapour 

dilution followed Pérez-Priego et al. (2015a). GPP was obtained by detracting R from NEP at each measurement. All plots 

were measured between 11:00 and 13:00 on clear sky sunny days, as close as possible to field spectroradiometric 

measurements. Measurements were performed during the 2016 growing season. Two field campaigns were carried out 

during vegetation growth, day 1 (31
st
 March - 1

st
 April) and day 2 (24

th
 - 25

th
 April) and two during the senescence phase, 10 

day 3 (19
th

 – 20
th

 May) and day 4 (1
st
-3

rd
 June).  

2.4.2 Green Plant Area Index and biomass 

The Plant Area Index (PAI), a measure of all aboveground plant structure, was indirectly measured with a linear PAR 

ceptometer (AccuPAR LP-80 Decagon Devices Inc., Pullman, WA, USA). The ceptometer measures the fraction of PAR 

intercepted by the canopy (fPAR) according to equation (1):  15 

𝑓𝑃𝐴𝑅 =
1−𝑃𝐴𝑅𝑡

𝑃𝐴𝑅𝑖
                                                                                                                                                                          (1) 

Where 𝑃𝐴𝑅𝑖  is the incoming PAR measured above the canopy and 𝑃𝐴𝑅𝑡  is the PAR transmitted through the canopy, 

measured below it. 

The fPAR was considered approximately equal to absorbed radiation, as the amount of reflected radiation in the PAR range 

is usually low (Gower et al., 1999). For each plot, 6-8 measurements above (𝑃𝐴𝑅𝑖) and below (𝑃𝐴𝑅𝑡) the canopy were taken 20 

and averaged. 

The PAI is calculated by inversion of the Beer-Lambert law (equation 2):  

𝑓𝑃𝐴𝑅 = 1 − 𝑒−𝐾∗𝑃𝐴𝐼                                                                                                                                                                 (2) 

where K is the light extinction coefficient, which depends on the leaf angle distribution of the canopy, in this study 

considered spherical distributed (Jones, 1992), and on the zenith angle of the probe, calculated by the ceptometer with basis 25 

on the geographic coordinates of the local and date and time of measurements. To avoid low solar zenith angles all 

measurements were performed around solar noon.  

As the growing season progressed some species started to senesce. In order to estimate the fraction of PAR absorbed only by 

photosynthesizing components of the canopy (“green” fPAR and PAI, fPARgr and PAIgr respectively), fPAR and PAI were 

multiplied by a normalized (by scaling between 0 and 1) greenness index (GI, calculated as a ratio between the digital 30 

number values of green and the sum of red, green, and blue digital number values) derived from the analysis of digital 
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pictures of the plots taken at each measurements day around solar noon (Cyber-shot DSC-W530, SONY), using the 

Phenopix R package (Filippa et al., 2016). 

To determine aboveground productivity, strip of vegetation (0.1 m x 1 m) within each plot was collected close to peak 

growth and biomass divided into functional types (legumes, forbs, graminoids) and dried in an oven until constant weight at 

60ºC.  5 

2.4.3 Hyperspectral measurements of vegetation reflectance 

At each field campaign, hyperspectral observations of all plots were performed with a FieldSpec3 spectroradiometer (ASD 

Inc., Boulder, USA), which provides reflectance of vegetation in the range of 350-2300 nm. The spectral resolution (Full-

Width-Half-Maximum) is 3 nm at 700 nm and 10 nm at 1400 nm and 2100 nm. The sampling interval is 1.4 nm for the 

spectral region of 350-1000 nm (visible and near infrared) and 2 nm for the spectral region of 1000-2500 nm (short-wave 10 

infrared). A white reference of known reflectance (Spectralon panel, Labsphere, Inc., North Sutton, USA) was used to 

normalize for variations in atmospheric conditions and to convert the measurements into absolute reflectance (Ref.). Spectra 

were collected using a bare fibre optical cable (with an instantaneous field of view of 25
o
) inserted into a pistol grip at 

approximately 90 cm above the canopy and a nadir view. 

Five spectra were recorded for each plot, each one representing the average of 25 observations. All measurements were 15 

conducted immediately after grassland gas exchange measurements, within two hours around solar noon, to minimize the 

effects of shadowing and solar zenith changes.  

2.5 Data analysis 

All statistical analyses were performed using open-source R (R Core Team, 2016). We used the lme4 package (Bates et al., 

2014) to perform linear mixed effect analyses of the effect of the fertilization and control treatments on NEP, R, GPP and 20 

PAIgr. Treatment and date were the fixed effects and the block was the random effect. Conditions of homoscedasticity and 

normality were always verified by visual inspection of residuals. P-values were obtained by likelihood ratio tests of the full 

model with the effect in question against the model without the effect in question. A Tukey test was used for post-hoc 

comparison using the multcomp package (Hothorn et al., 2008). 

The full spectra of vegetation reflectance retrieved from the Fieldspec was used to model GPP, after excluding noisy values 25 

in the range 1350-1400 nm and 1800-1950 nm. Our P=1748 original explanatory variables are x350,...,x2299 where xλ 

represents the reflectance in the narrow band [λ, λ +1] (nm) and our response variable is the GPP (mol m
-2 

s
-1

). A total 

number of 96 observations was available (4 treatments x 2 replicates x 3 blocks x 4 dates). Since we have 1748 explanatory 

variables and just 96 observations, hence a high level of redundancy in our data, the number of predictors was first reduced 

by grouping variables that belong to intervals of wavelengths where all variables are highly correlated. A hierarchical cluster 30 

analysis was performed to reduce the number of predictors from P= 1748 to p= 25 groups of contiguous variables named 

“bands”. The basic idea is to aggregate contiguous and highly correlated individual 1 nm intervals of wavelength into 
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broader wavelength bands. Two original predictors xλa, xλb are clustered together if their correlation coefficient r(xλa, xλb) is 

larger than 0.90. Bands correspond to the largest contiguous intervals where all pairs of original predictors satisfy that 

condition. If a band groups all original predictors between λ1 and λ2, then it is represented by a new variable x[λ1, λ2], which is 

the arithmetic mean of the original variables xλ1,…,xλ2. The procedure is repeated to obtain all bands that partition the full 

x350,...,x2299 spectrum.  5 

Reflectance values were also resampled to simulate bands of Sentinel-2A MSI (S2) and Landsat8 OLI (L8). Since each band 

of S2 or L8 has a spectral response which is not perfectly uniform, we use the spectral response function of each sensor 

(Barsi et al., 2014; ESA, 2018) to weigh the contribution of each original predictor. As a result, for each sensor and band [λ1, 

λ2], we calculated the reflectance as a weighted mean of xλ1,…,xλ2, where the weights are given by the spectral response. The 

list of S2 and L8 bands used in this study is shown in table 1.  10 

Vegetation indices (VIs) (Table 2) were calculated from hyperspectral (Hyp), or simulated S2 and L8 sensors (Table 1). The 

VIs selected were retrieved from the literature with basis on their relation to biophysical properties of vegetation affecting 

GPP. Given that the goal of the analysis is to determine the set of VIs and /or bands that best model GPP, we apply a data 

analysis method that identifies the best subset of single variables. This is distinct from Principal Component Analysis (PCA) 

where dimensionality reduction is achieved through replacing variables by their linear combinations, which still involve all 15 

the variables. We adopted linear regression (MLR) to model the relation between our explanatory variables (bands and VIs) 

and the response variable (GPP). Although the expressiveness of non-linear models (e.g. in the field of machine learning) is 

stronger than MLR, we believe that linear models provide a clearer interpretation of the relation between predictors and 

GPP, while offering enough flexibility by including variables in a high dimension representation space. Moreover, and as 

discussed below, linear models allow us to derive confidence intervals for our results, apply statistical tests to compare 20 

models at a given significance level, and they are less prone to overfitting than complex non-linear models. 

Since the number of observations is only roughly twice as large as the number of new explanatory variables we performed 

variable selection and excluded those that do not contribute significantly to the goodness-of-fit of our model. Although the 

dimensionality of the problem is very large, it can be solved efficiently by the LEAPS algorithm (Furnival and Wilson, 

1974) available through the R package leaps (Lumley, 2009). Unlike alternative heuristic approaches (Cadima et al, 2004), 25 

LEAPS returns the optimal subset of predictors according to a given criteria. In our analysis, the criteria was the adjusted R
2
, 

so LEAPS returns the sub-model with the highest adjusted R
2
 among all possible 2

p
 sub-models, where p is the number of 

predictors. 

A nested approach was adopted to formally test which model better explained GPP. A preliminary test showed that better 

results were obtained with exponential regressions and therefore ln GPP was adopted as the response variable in all analyses. 30 

The general model was ln 𝐺𝑃𝑃~∑ 𝑣𝑗𝑛
𝑗,1 , where 𝑣 are vegetation indices (VIs) or optical bands (B) from Hyp grouping 

procedure or from simulated S2 or L8 data. The subset of j was selected by maximizing the adjusted R
2 
among all possible 

combination of predictors. The LEAPS procedure returns an optimal model that we called L. However, L may include 

variables which contribute only marginally for the overall adjusted R
2
. To further reduce the dimensionality of the predictors, 
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we test sub-models of L (obtained by backwards stepwise selection of predictors) against the LEAPS optimal model L. 

When sub-models of L were found not to be significantly worse than L, at a significance level alpha=0.05, then we 

considered the most parsimonious of those sub-models as the optimal solution. A F-test was used to perform those 

comparisons.  The analysis was repeated separately for all vegetation indices (VIs) and bands (B) from Hyp, S2 or L8 data, 

obtaining an optimal model for each sensor. We performed an analysis of residuals for each selected model, which showed 5 

no evidence of violation of the linear model assumptions. 

Besides determining the adjusted R
2
 for the optimal model from the full sample, we applied a bootstrap procedure (N=10000 

iterations) to estimate the distribution of the adjusted R
2 
 in the whole population (Ohtani, 2000). This allowed us to estimate 

quantiles (25%-75%) for adjusted R
2
and also compare the adjusted R

2 
distributions among models. In particular, it permits to 

estimate the probability that the model A has a higher adjusted R
2 
than the alternative model B. 10 

Two-step models were also used to investigate if optical bands had the potential to improve models based only on vegetation 

indices (VIs). Toward that end, bands (B) were added to the optimal models obtained by the procedure above described 

denoted by Hyp-VIs, S2-VIs and L8-VIs (step 1). Using step 1 as the base model, we applied LEAPS to determine the subset 

of bands that maximized the overall adjusted R
2
. As before, we applied a F-test (alpha=0.05) to possibly reduce the number 

of bands in the optimal model. As a result, we defined the optimal two-step models: Hyp-VIs+B, S2-VIs+B and L8-VIs+B. 15 

Finally, for Hyp, S2 and L8, we performed a F-test to compare the one step optimal model with the correspondent two-step 

optimal model. A low p-value for this F-test indicates that the two-step model is significantly better and means that bands, in 

addition to vegetation indices, contribute for an improved modelling of GPP. 

3. Results 

3.1 Conditions during the experimental period 20 

During the period of measurements, from March 31 to June 3, 2016, the average daily PAR and temperature increased 

progressively, ranging from 630 mol m
-2 

s
-1

 to 1000 mol m
-2 

s
-1

 and from 9.6 ˚C to 17˚C, respectively (Fig.1a). Soil water 

content (SWC) (Fig. 1b) showed fluctuations according to rainfall events, ranging from 0.05 to 0.2 m
3 

m
-3

. During the 

experimental period, rainfall was concentrated in the first half of April and at the beginning of May. Along the experimental 

period rainfall recorded was 195 mm, corresponding to the 33% of the whole year.  25 

3.2 The effect of fertilization on Plant Area Index and functional groups proportion  

From the beginning to the end of the study period, PAI increased on average 4 fold from 1 to 4 (Fig. 2a). In all treatments, 

the increase in PAI was completed by May 20 and no further increase was observed in the last measurement (June 3). On the 

contrary, at the beginning of the experiment, PAIgr (Fig. 2b) showed an increasing tendency similar to PAI but from May 20 

onwards, the tendency changed and a decrease was observed corresponding to the onset of grassland senescence.  30 



10 

 

The fertilization treatments influenced both the PAI (P< 0.000) and the PAIgr (P< 0.000) being both significantly higher for 

treatments NPK and P than for treatment C (P< 0.001). No differences were observed between C and N treatments (P> 

0.05). In both PAI and PAIgr the treatment P showed similar values to NPK, with the exception of the first measurements 

day (April 1). The grassland communities fertilized with NPK had a higher and earlier leaf area growth when compared to 

the other treatments.  5 

Plant species composition has been measured every year since 2012 (pre-treatment) under an ongoing long-term nutrient 

addition experiment on this grassland site. In line with results from that study (Nogueira et al., personal communication), the 

fertilization treatments influenced the functional composition of grasslands (Table 3). In the NPK treatment the percentage 

of graminoids was higher than in any of the other treatments. P treatment showed a higher percentage of legumes and in the 

C and N treatments forbs were the dominant functional group.  10 

3.3 The effect of fertilization on GPP 

The ability of grasslands to sequester atmospheric carbon dioxide was not affected by fertilization treatments. The NEP (Fig. 

3a) and the GPP (Fig.3c) did not reveal any statistical significant difference among treatments (P> 0.05). On the contrary, 

the rate of respiration (Fig.3b, R) was affected by the fertilization treatment (P< 0.05), being on average higher for 

treatments NPK and P than C. CO2 gas exchanges were influenced by the grassland life cycle and marked trends were 15 

observed along the measurement period. NEP showed an average drop of 74 %, shifting from 14.47 mol m
-2 

s
-1

 to 3.67 

mol m
-2 

s
-1

, from April 01 (day 1) to June 03 (day 4) (P< 0.000). This decrease in NEP rate was particularly evident from 

the second to the third measurement day, after the annual peak of grassland growth was achieved (Fig. 3a). R also showed 

differences along the experimental period (P< 0.000) but the trend observed was different. R increased from the first to the 

second measurement day, from 8.22 mol m
-2 

s
-1

 to 13.65 mol m
- 2

s
-1 

and then decreased toward the end of the experiment 20 

(Fig. 3b). GPP also changed significantly along the studied period (P< 0.000), decreasing from 25.72 mol m
-2 

s
-1

 on April 

25 (day 2) to 12.12 mol m
-2 

s
-1

on June 3 (day 4). A linear relationship was observed between GPP and fPARgr (Fig.4), 

however the slope of the regression line changed along the experimental period and marked differences were observed 

between the vegetation growth (day 1 and 2) and the senescence phase (day 3 and 4) (Fig.4). 

3.4 Vegetation reflectance 25 

The reflectance of vegetation (Ref) varied on average between 0 and 0.4 (Fig. 5a).The cluster analysis created 25 bands (Fig. 

5b) based on Ref similarity of contiguous wavelengths (r> 90%). Bands were narrower in the visible region (350 nm to 750 

nm) than in the NIR (750 nm to 1350 nm) and in the SWIR (1350 nm to 2300 nm) region. In particular, in the red-edge 

region, between 698 and 732nm 6 different bands were identified, corresponding to a steep increase in reflectance observed 

in this region of the spectra.  30 
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3.5 Vegetation indices  

Adopting wave bands obtained by cluster analysis (Fig. 5b) several vegetation indices were calculated (Table 2). The 

average values of the indices GNDVI, NDWI, PSRI and MTCI are shown in figure 5. Other indices are omitted from the 

figure for showing very similar trends to the ones represented (NDVI, NDVIre, WBI, CI) or not being significantly 

correlated with the response variable (PRI). All of them showed larger changes during the study period, particularly after 5 

April 25 (day 2), when the annual peak of growth was achieved.  

The GNDVI (Fig. 6a) showed small changes among treatments and dates, with a significant drop of 20% observed from 

April 1 to June 3 (P< 0.000), and significant differences in the NPK and P treatments (P< 0.001) as compared to C but 

differences were not evident anymore on June 3 (day 4). The MTCI (Fig. 6b) showed a large drop particularly evident after 

April 25 (day 2). At April 1 (day 1), the effect of fertilization was evident in treatments NPK and P as compared to C (P< 10 

0.001), however along the experimental period differences among treatments diminished and by June 3 (day 4) no 

differences among treatments were observed. The NDWI (Fig. 6c) showed a similar temporal trend with a marked decrease 

from April 1 to June 3 (P< 0.001). Also for MTCI, the NPK and P treatments showed always higher values than C (P< 

0.001), suggesting a positive impact of the higher nutrient availability on tissue water content. The PSRI had an opposite 

trend, showing on average a threefold increase from April 1 to June 3 (P<0.000) and a tendency to lower values in fertilized 15 

treatments as compared to C (P< 0.001 for NPK and P and P< 0.01 for N).  

Significant regressions were established between GPP and all the vegetation indices considered (Table 4) with the exception 

of PRI. The NDWI was the index that explained the higher proportion of variability of GPP. 

3.6 GPP estimates by multiple linear regression models 

The LEAPS procedure selected VIs or Bands as predictor variables retrieved from Hyperspectral data (Hyp) or simulating 20 

Sentinel-2 MSI (S2) and Landsat8 OLI (L8) sensors.  

The Hyp- and S2- models adopting only VIs as predictor variables (Hyp-VIs and S2-VIs) performed similarly with a 

considerable overlap of adjusted R
2 

(Table 5). On the contrary, the L8-VIs model showed a lower performance (lower 

adjusted R
2
) than Hyp-VIs and S2-VIs models (Table 5). Bootstrap results allowed us to conclude, at a confidence level of 

90%, that Hyp-VIs has higher adjusted R
2
 than L8-VIs. 25 

The selection of VIs in the Hyp-VIs and S2-VIs models exhibited a similar spectral pattern. Both models included PSRI and 

GNDVI. On the contrary, NDVI, the most frequently adopted index as green leaf area proxy was not included in the Hyp-

VIs model but only in the S2-VIs. Two of the indices included in the Hyp model are related with water balance (WBI) and 

water tissue content (NDWI). The S2 model includes also MTCI, which represents chlorophyll-a and N.  

Models including only bands (-B) showed similar performance to respective models employing vegetation indices (-VIs). 30 

Only in the case of L8, where just one vegetation index (NDVI) was available, bands (L8-B) led to better modelling of GPP 

than vegetation indices (L8-VIs). Similar spectral patterns were also observed in the selection of bands for GPP estimate for 
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all sensors (Hyp, S2, L8). A common pattern is the inclusion of bands in the SWIR region strongly represented in the Hyp-B 

(R1951-2299, R1209-1327, R1328-1349), S2-B (B11) and L8-B (B6 and B7) models. The red edge region of the spectra was also 

largely represented in the Hyp-B (R724-732, R706-710, R702-705, R698-701, R716-723) and S2-B (B5, B6 and B7) underlining the 

importance of this region for vegetation reflectance.  

The LEAPS two-step procedure allowed us to identify bands with potential to improve the VIs based models, identifying 5 

regions of the spectra generally not adopted in vegetation indices. For both S2 and L8 the two-step model (VIs + B) 

increased significantly (P< 0.010) the performance of the model, while for Hyp the difference between Hyp-VIs and Hyp-

VIs+B model, in spite of still being significant, is less marked (P<0.05). The bootstrap procedure indicated that the 

probability of the Hyp-VIs+B being significantly better is 83% when compared to S2-VIs+B and 81% when compared to 

L8-VIs+B. On the contrary, the S2-VIs+B and L8-VIs+B models do not differ significantly.  In all VIs+B models, bands in 10 

the SWIR region were included. The second region of the spectra more represented in the Hyp-B and Hyp-VIs+B model was 

the red-edge.   
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4. Discussion 

4.1 The impact of fertilization treatment  

The fertilization treatment influenced the growth rate and the composition of the herbaceous plots more than carbon 

sequestration. In line with a five year and ongoing study at the same grassland site, the fertilization treatment resulted in 

differences in aboveground biomass and functional groups proportion for NPK and P treatments as compared to C, while the 5 

single addition of N had no effect.    

An earlier growth response was also observed in the NPK treatment. The higher percentage of graminoid species with on 

average higher growth rates as compared to most forb species (Ansquer et al., 2009; Craine et al., 2001; Westoby et al., 

2002) could explain early differences in PAI and PAIgr in this treatment. As leaf area is usually positively related to GPP 

(e.g. Aires et al., 2008b; Xu and Baldocchi, 2004), it would be expected that higher PAIgr in NPK treatments would induce 10 

in increased GPP. However, confounding factors such as increased water demand associated with higher growth rates might 

have downscaled differences between treatments (e.g. Weisser et al., 2017). 

The relationship GPP-fPARgr showed some differences along the experiment. The slope of the regression line was 

considerably lower during the vegetative growth than during the senescence period (Fig. 4) revealing the occurrence of 

marked changes in the effective LUE along the growth life cycle and confirming previous results (Nestola et al., 2016; 15 

Pérez-Priego et al., 2015b). 

While the fertilization treatment had no impact on NEP or GPP, a higher R rate was observed at the measurement day 4 

(June, 3) in the NPK and P treatments. Differences can be ascribed to the higher PAI, and precipitation at the end of May, 

which must have stimulated soil respiration (Jarvis et al., 2007; Reichstein et al., 2003).  

4.2 Best VIs for GPP estimation 20 

The LEAPS procedure selected several indices as significant predictor variables for GPP in the Hyp-VIs and S2-VIs model 

(Tab. 5). The vegetation indices selected in the Hyp-VIs and S2-VIs models are known to represent different properties of 

vegetation, specifically: the green fraction of the leaf area (GNDVI and NDVI), the chlorophyll-a and N concentration 

(MTCI), the ratio carotenoids/chlorophyll (PSRI) and the tissue water content (NDWI, WBI). Each of these traits has a 

major role in GPP.  25 

Among the vegetation indices selected in the multiple linear models, both the Hyp-VIs and the S2-VIs included PSRI 

(Merzlyak et al., 1999), which is generally applied to detect the occurrence of vegetation senescence. PSRI is able to capture 

changes in the carotenoids/chlorophyll ratio which occur during vegetation senescence since chlorophyll declines more 

rapidly than carotenoids (Merzlyak et al., 1999). In this study, PSRI increased in all treatments after April 25, when the 

maximum peak of growth (Fig. 2b) was achieved and close to the onset of canopy drying out. Another index known to be 30 

related with the carotenoids/chlorophyll ratio, the PRI (Filella et al., 2009), showed no correlation with GPP in our study. 

These results are in contrast with previous studies (Pérez-Priego et al., 2015b). However, a low performance of PRI in 
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representing the carotenoids/chlorophyll ratio has been already observed in semiarid grasslands (Vicca et al., 2016). In crops, 

a good agreement between PRI and pigment pools was observed at leaf  (Gitelson et al., 2017a) but not at stand level. 

(Gitelson et al., 2017b). Differences in the last two studies were ascribed to changes in canopy structure (e.g., changes in leaf 

inclination angle) over the growing season.  

The Hyp model also put in evidence the importance of changes in canopy water content, as both NDWI (Gao, 1996) and 5 

WBI (Penuelas et al., 1997) were included in the model. Considering changes observed in NDWI along the experiment and 

the good correlation observed between NDWI or WBI and GPP it is reasonable to assume that GPP is largely affected by the 

progressive senescence of vegetation (Balzarolo et al., 2015; Vescovo et al., 2012). In a previous study, Vicca et al. (2016) 

found that NDWI was able to estimate GPP in semiarid grasslands better than other indices, allowing to distinguish the effect 

of drought. 10 

Other indices, sensitive to changes in chlorophyll-a concentration, MTCI (Dash and Curran, 2004) and GNDVI (Gitelson 

and Merzlyak, 1998) were also included in the model. The fertilization treatment resulted in an increase in MTCI during the 

first stage of the experiment in the NPK and P treatments, followed by a decrease observed in all treatments as the season 

progressed toward the end of the annual growth cycle. A similar trend was observed in a study by (Pérez-Priego et al., 

2015b) in which Mediterranean grasslands were subjected to fertilization with N or NP. The primary role of chlorophyll in 15 

photosynthesis is well known and justifies the positive relationship observed between GPP and MTCI. However, in the 

present study, no differences were observed in GPP among fertilized and non-fertilized treatments suggesting that the 

expected increase in photosynthesis due to the increase in chlorophyll and nitrogen was constrained by other environmental 

and physiological factors.    

Notably NDVI, the most frequently applied index in GPP estimates by LUE models (Yuan et al., 2014) was not selected  in 20 

the Hyp-VIs model and showed a poorer coefficient of determination than other indices, (e.g. NDWI). NDVI is expected to 

reflect changes in green leaf area, being generally linearly related with the fraction of photosynthetically absorbed radiation  

(Myneni and Williams, 1994). However, previous studies reported a saturation of NDVI and consequent lack of linearity in 

the regression in high productive vegetation communities (Gianelle et al., 2009; Vescovo et al., 2012), such as grasslands, 

and sometimes other indices showed a better performance. For example, in grasslands subjected to water and nutrient stress, 25 

the NDVI green index (GNDVI), which adopts a green band instead of the red band of NDVI and hence is more sensitive to 

chlorophyll-a concentration (Gitelson et al., 1996), showed a better performance than NDVI as  proxy of leaf area (Cristiano 

et al., 2010; Gianelle et al., 2009). Also in this study, the GNDVI explained a larger proportion of GPP variance than NDVI 

in the Hyp-VIs and S2-VIs models being selected in both and before NDVI in the S2-VIs model. 

The indices selected by the LEAPS (i.e. NDVI, GNDVI, NDWI, MTCI, PSRI and WBI) also showed high significant 30 

relationship with GPP (tab. 4) in simple regressions explaining 63% to 72% of the variability observed. The functional 

convergence (Ollinger, 2011) of different traits participating in the photosynthetic process may have hampered results 

observed in the regression for each single vegetation index, showing a high degree of correlation for most of them (Table 4). 

However, the selection of several VIs, representatives of different structural and functional traits in the multiple linear 
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models and the lower performance observed in the L8 model, including solely the NDVI index, clearly indicate the 

importance of considering the contribution of different traits with different temporal dynamics to capture GPP temporal 

changes in models integrating vegetation indices.  

4.3 Are spectral bands better GPP estimators than VIs? 

Our results suggest a marginal improvement in  GPP estimates obtained adopting bands (Hyp-B, S2-B,  Table 5) instead of 5 

vegetation indices (Hyp-VIs, S2-VIs, Table 5). However, a large impact was observed in the case of L8-VIs+B model when 

compared with the L8-VIs model which included only NDVI (Table 5).  

These results confirm previous studies comparing the explanatory power of VIs and bands in grasslands (Balzarolo et al., 

2015; Matthes et al., 2015), also evidencing the importance of the selection of the proper spectral range and suggesting that 

the selection of the proper band is equally important to the mathematical formulation of vegetation indices for the 10 

explanatory power of spectral retrievals. In our study, the approach adopted, assured a high correlation among wavelengths 

within a band maximizing their representativeness.   

However, it cannot be disregarded that VIs offer, in comparison with spectral bands, the advantage of being more robust in 

representing vegetation features, since differences resulting from background reflectance, sun-sensor geometry and 

atmospheric effects are mitigated by normalization of spectral values (Glenn et al., 2008). 15 

Our results also evidenced the importance of the SWIR region of the spectra, as bands in this region were selected in all one- 

and two-step models, which is rarely adopted in vegetation indices with few exceptions. The SWIR region is known to 

correlate with canopy water content (Casas et al., 2014). Studies investigating the potential of spectral bands to estimate 

canopy chlorophyll content and green fAPAR, found that the SWIR region was strongly positively correlated with them in 

grasslands (Sakowska et al., 2016) and also GPP in a semi-arid savanna (Tagesson et al., 2015). 20 

Bands in the red-edge region were also largely represented in the Hyp-B, S2-B and in the Hyp-VIs+B models. The red-edge 

corresponds to the steep increase in reflectance at the boundary between the red region where chlorophyll is absorbed and the 

leaf scattering at the NIR region. Red-edge bands were successfully employed for estimating chlorophyll content in maize 

(Zhang and Zhou, 2017) and LAI in crops (Kira et al., 2017). For these reasons they were integrated into numerous VIs, such 

as MTCI and PSRI, also applied in this study, which explain the reason for the lack of red-edge bands in the second step of 25 

the S2 model (S2-VIs+B) while strongly represented in the S2-B.  

 

4.4 Satellite sensors as estimators of GPP 

Differences in the selection of the vegetation indices among sensors had apparently no effect on the performance of the S2-

VIs and Hyp-VIs models (Table 5), while the limited number of available vegetation indices for the L8 resulted in a lower 30 

performance of the model. Our results show that S2 and L8 spectral signatures are equally suitable for assessing GPP.  
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 GPP estimates obtained simulating S2 and L8 sensors showed a similar performance in the –B and –VIs+B models, while 

when only VIs were adopted, the S2 model had clearly a better performance than L8. These results suggest a need for testing 

new vegetation indices adopting L8 bands. In agreement with our results, other studies comparing linear additive models 

showed similar ability for estimating canopy cover and LAI adopting the S2 or L8  sensors (Korhonen et al., 2017). 

An important difference between the S2 and L8 availability of wavebands is the lack of reflectance values in the red-edge 5 

region for L8, which limited the possibility of computing VIs, such as MTCI and PSRI (Korhonen et al., 2017). However, 

the limitation imposed by the lack of bands in the red-edge region, had apparently more importance for the -VIs model, 

while differences in the performance of the model between S2 and L8 decreased for –B and VIs+B models.  

In this study, S2 and L8 data comparison was based only on the simulation of the respective bands not taking into 

consideration other factors possibly affecting sensors spectral response such as sun-sensor viewing geometry (Tagesson et 10 

al., 2015). Nonetheless, in a recent study (Korhonen et al., 2017) the comparisons of satellite data from the two platforms 

showed no differences  between S2 and L8 reflectance values in the NIR, SWIR1 and SWIR 2 bands. In other regions of the 

spectra, such as the green and blue bands reflectance values were considerably smaller in the S2 than in the L8 but still 

proportional, suggesting that comparisons between S2 and L8 simulated bands can largely be representative of the actual 

differences obtained by the two remote platforms.  15 

Our results confirm the importance of performing hyperspectral measurements. Indeed, inferential bootstrap results show 

that for the whole population, and with probability 80%, the Hyp-VIs+B model is superior to the corresponding S2 and L8 

models. The high detailed resolution and the wide range if wave bands makes hyperspectral sensors  unique in identifying 

regions of the spectra of high interest for representing different vegetation properties (Porcar-Castell et al., 2015)  

 20 

5. Conclusions 

In agreement with previous studies (Pérez-Priego et al., 2015b; Rossini et al., 2012; Vicca et al., 2016), our results clearly 

indicate the need to integrate into GPP models spectral information representing both structural and functional  traits of 

vegetation  along the whole grasslands life cycle. Specifically, water content (NDWI), chlorophyll (MTCI, GNDVI) and the 

ratio of chlorophyll to carotenoids (PSRI) were indicated as best predictor variables for GPP estimates. Altogether these 25 

vegetation indices describe the loss of photosynthetic pigments and efficiency and dry out of vegetation occurring and when 

considered together improved considerably GPP estimates in comparison with models adopting only NDVI.  

Our study also confirms the importance of hyperspectral in-situ measurements for exploratory analysis of the relationship 

between biophysical and optical properties of vegetation providing a wide spectral range and high resolution of spectral 

retrievals.  30 

The hyperspectral reflectance values, together with the two-step procedure adopted for the selection of predictor variables 

allowed also to identify critical region of the spectra, not included in the initial selection of vegetation indices but that 
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revealed their usefulness in estimating GPP.  For example, the LEAPS two-step procedure evidenced which bands could 

improve significantly a model including only vegetation indices, identifying the red edge and SWIR regions of the spectra as 

of major importance for improving GPP estimates. This information can be critical in the development of new spectral 

indices and sensors. 

Our results also evidenced the potential of S2 and L8 sensor in assessing GPP, since models obtained by simulating bands 5 

from the two sensors showed similar performance. The possibility of using remote sensing information for monitoring and 

modelling vegetation at a suitable spatial resolution, such as in S2 and L8 sensor, allows for attempted vegetation monitoring 

and modelling in a cost-effective way, in support of sustainable agriculture management practice.  
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Table 1. Spectral bands range and spatial resolution of Sentinel-2A MSI and Landsat 8 OLI sensors simulated in this study. 

  Sentinel-2A 

MSI 

  Landsat 8 

OLI 

 

Band 
Spectral 

region 

Wavelength 

range (nm) 

Resolution 

(m) 

Spectral 

region 

Wavelength 

range (nm) 

Resolution 

(m) 

B1     Blue 435-451 30 

B2 Blue  458-523 10 Blue 452-512 30 

B3 Green peak 543-578 10 Green 533-590 30 

B4 red 650-680 10 Red 636-673 30 

B5 Red-edge 698-713 20 NIR 851-879 30 

B6 Red-edge 733-748 20 SWIR1 1566-1651 30 

B7 Red-edge 773-793 20 SWIR2 2107-2294 30 

B8 NIR 785-899 10    

B8A NIR narrow 855-875 20    

B11 SWIR 1565-1655 20    

B12 SWIR 2100-2280 20    
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Table 2. Selection of vegetation indices adopted in this study with their formulation using hyperspectral (Hyp) grouped bands, S2 or L8 simulated 

sensors, biophysical properties represented according to the literature and original bibliographic reference.  

Vegetation Index Hyp S2 L8 Biophysical property Reference 

NDVI  
Normalized Difference 

Vegetation Index 

𝑅800 − 𝑅670
𝑅800 + 𝑅670

 
𝐵8𝐴 − 𝐵4

𝐵8𝐴 + 𝐵4
 
𝐵5 − 𝐵4

𝐵5 + 𝐵4
 Green biomass and area 

(Rouse et al., 

1974) 

GNDVI   
Green Normalized Diff. 

Veg. Ind. 

𝑅750 − 𝑅550
𝑅750 + 𝑅550

 
𝐵7 − 𝐵3

𝐵7 + 𝐵3
 

𝐵5 − 𝐵3

𝐵5 + 𝐵3
 Green biomass and area 

(Gitelson and 

Merzlyak, 1998) 

NDVIre  
Red-edge Normalized 

Diff. Veg. Ind. 

𝑅750 − 𝑅720
𝑅720 + 𝑅750

   Green biomass 
(Gitelson and 

Merzlyak, 1994) 

CI  Chlorophyll index 
𝑅750 − 𝑅705
𝑅750 + 𝑅705

   Chlorophyll 

(Gitelson and 

Merzlyak, 1994) 

MTCI  

MERIS Terrestrial 

chlorophyll Index 

𝑅754 − 𝑅709
𝑅709 + 𝑅681

 
𝐵6 − 𝐵5

𝐵5 + 𝐵4
  Chlorophyll, nitrogen 

(Dash and 

Curran, 2004) 

PRI  
Photochemical 

Reflectance Index 

𝑅570 − 𝑅531
𝑅570 + 𝑅531

   
Radiation Use-Efficiency, 

Carotenoid/chlorophyll 

(Gamon et al., 

1992) 

PSRI  
Plant Senescence 

Reflectance Index 

𝑅680 − 𝑅500
𝑅750

 
𝐵4 − 𝐵3

𝐵6
  Carotenoid/chlorophyll 

(Merzlyak et al., 

1999) 

NDWI  
Normalized Difference 

Water Index 

𝑅860 − 𝑅1240
𝑅860 + 𝑅1240

   Tissue water content (Gao, 1996) 

WBI  Water Band Index 
𝑅970 − 𝑅900
𝑅970 + 𝑅900

   Tissue water content 
(Peñuelas et al., 

1993) 
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Tab.3 - Percentage of each plant functional type (Forbs, Graminoids and Legumes) in above ground biomass of grasslands 

under different fertilization treatments (C, N, NPK and P). Values represent means of 6 replicates; standard errors are shown 

in parenthesis. 

Treatment Forbs Grams Legumes 

C 56.85 

(5.10) 

21.22 

(3.62) 

21.93 

(4.20) 

N 65.00 

(1.89) 

25.04 

(2.53) 

9.95 

(1.45) 

NPK 34.07 

(3.43) 

52.55 

(3.29) 

13.37 

(1.03) 

P 25.60 

(3.06) 

31.43 

(4.47) 

42.96 

(3.82) 
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Table 4. Linear regressions established between lnGPP and vegetation indices (VI) selected for this study (see Table 2). Best 

regression is shown in bold. 

Vegetation 

Index 

R
2
 RMSE P 

NDVI 0.6853 0.2364 0.0000 

GNDVI 0.6360 0.2543 0.0000 

NDVIre 0.6872 0.2357 0.0000 

CI 0.7161 0.2246 0.0000 

MTCI 0.6303 0.2563 0.0000 

PRI 0.0209 0.4171 0.1715 

PSRI 0.6745 0.2405 0.0000 

NDWI 0.7205 0.2228 0.0000 

WBI 0.6491 0.2497 0.0000 
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Table 5. Best selection of linear models for GPP estimate according to the general equation:  𝑙𝑛𝐺𝑃𝑃𝑃~∑ 𝑣𝑗𝑛
𝑗,1 , where 𝑣 are vegetation indices (VIs) or optical bands (B). Bands 

and vegetation indices are obtained from Hyperspectral measurements grouped in clusters with 90% similarity (Hyp), or resampled for simulating Sentinel 2/MSI (S2) and 

Landsat8/OLI (L8) sensors. Vegetation indices formulation is shown in Table 2. The order of the variables (most important first) reflects their importance in the model. The 

Quantiles 25% and 75% of the adj R
2
 are obtained from a bootstrap with 10000 iterations. The two-step models add a selection of bands to the variables (VIs) selected at step one. 

A low p-value indicates that the model including VIs and bands (step 2) is significantly better than the model just with VIs (step 1).  

Model Step one Adj R
2
 

Adj R
2
 

Q-25% 

Adj R
2
 

Q-75% 
Step two Adj R

2
 

Adj R
2
 

Q 25% 

Adj R
2
 

Q75% 
p 

Hyp-VIs NDWI; PSRI; WBI; GNDVI 0.7659 0.7431 0.8047      

S2-VIs MTCI; PSRI; GNDVI; NDVI 0.7426 0.7225 0.7822      

L8-VIs NDVI 0.6792 0.6405 0.7194      

Hyp-B 

R1951-2299; R724-732; R1328-1349; R706-710;  

R449-466; R566-582; R519-532;  R350-397; R398-

411; R1209-1327; R702-705; R698-701; R716-723; 

0.7884 0.7906 0.8392      

S2-B B7; B11; B5; B2; B8; B6 0.7412 0.7222 0.7848      

L8-B B7; B5; B6; B4; B3; B1 0.7557 0.7367 0.7974      

Hyp-VIs+B NDWI; PSRI; WBI; GNDVI    

R698-701; R412-448; R716-723; R467-518; R706-

710; R449-466; R350-397; R1209-1327; R1412-1505;  

R1951-2299; R702-705; R724-732; R1328-1349 

0.7986 0.8083 0.8550 0.0260 

S2-VIs+B MTCI; PSRI; GNDVI; NDVI    B11; B3; B12 0.7684 0.7542 0.8104 0.0081 

L8-VIs+B NDVI    B6; B3; B7 0.7686 0.7472 0.8047 0.0000 
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Figure 1: Daily average PAR, temperature (a), soil water content for different treatments and total rainfall (b) recorded on the site during 

the experimental period. Dates of field measurements are indicated by vertical dash-dotted lines. 
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Figure 2 Average green Plant Area index (PAI) and the green fraction of PAI (PAIgr) observed in grasslands subjected to different 

fertilization treatments (C, N, NPK or P). Each point is the average of 6 replicates. Vertical bars represent error bars.  
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Fig.3 Average Net Ecosystem Productivity (NEP)(a), dark Respiration (R) (b) and Gross Primary Productivity (GPP) (c) measured in 

grasslands under different fertilization regimes (C, N, NPK and P). Each point is the average of 6 replicates. Vertical bars represent 

standard errors. 
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Figure 4: Relationship between GPP and fPARgr observed in grassland subjected to different fertilization treatment (C, N, NPK and P). 

Measurements performed during the vegetation growth are indicated as circles (corresponding to measurement days 1 and 2 ) while those realized 

during the senescence period are indicated as triangles (measurement days 3 and 4). Linear regression lines were fitted separately to the two periods 

(GPP= 14.48 fPARgr + 18.44, R2=0.39, P<0.001 and GPP= 30.08 fPARgr + 6.39, R2=0.65, P<0.001, respectively for the growth and the senescence 

period).  
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Fig.5 Average reflectance values and standard deviation (grey ribbon) observed in herbaceous plots undergoing different fertilization 

treatments (A). The bottom picture (B) shows the bands obtained by grouping Ref for similarity (r>=90%) of contiguous hyperspectral 

measurements with 1nm resolution in the range 350-2300nm, bands are alternated black and white. Grey bars represent areas of the 

spectrum not considered for being noise.  
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Fig 6. Average values of several vegetation indices retrieved from reflectance measurements of herbaceous plots undergoing different 

fertilization treatments. Vertical bars represent standard errors. Different letters indicate significant differences among treatments within 

the same date (P< 0.05).  


