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Abstract. Nutrient resorption plays an important role in plant ecology because it 32 

plays a key role in nutrient conservation strategies of plants. However, our current 33 

knowledge about the patterns of nutrient resorption among herbaceous species at a 34 

global scale is still inadequate. Here, we present a meta-analysis using a global dataset 35 

of nitrogen (N) and phosphorus (P) resorption efficiency spanning 521 observations 36 

and 248 herbaceous species. This analysis shows that the N resorption efficiency 37 

(NRE) and P resorption efficiency (PRE) across all herbaceous plant groups are 54.7% 38 

and 64.5%, respectively. Across all species, NRE, PRE and N:P resorption ratios 39 

(NRE:PRE) vary statistically significantly at a global scale, i.e., NRE, PRE and 40 

NRE:PRE increase with increasing latitude but decrease with increasing mean annual 41 

temperature (MAT) and mean annual precipitation (MAP). For different functional 42 

groups, similar patterns of NRE, PRE and NRE:PRE with respect to latitude, MAT 43 

and MAP are observed. Our study are very important complementary to global-scale 44 

studies of nutrient resorption and also can inform attempts to model biogeochemical 45 

cycling at a global scale. 46 
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1 Introduction 52 

Nutrient resorption, that is, internal nutrient recycling is recognized as most important 53 

mechanisms of nutrient conservation that permits plants to re-use nutrients directly 54 

and reduces a dependence on external nutrient supplies especially in nutrient-poor 55 

environment (Aerts, 1996; Aerts and Chapin, 1999). This conservation mechanism 56 

can affect many ecosystem processes such as plant competition, nutrient uptake, 57 

reproduction, and carbon cycling (Killingbeck, 1996; Berg and McClaugherty, 2008; 58 

Richardson et al., 2008; Zhang et al., 2013). Thus, a quantitative understanding the 59 

nutrient resorption patterns of plants would offer insights into plant nutrient 60 

limitations (Güsewell, 2004; Richardson et al., 2008), possibly the different response 61 

of plants to multiple global changes (Yuan and Chen, 2009a; Reed et al., 2012) and 62 

nutrient cycling (Aerts and Chapin, 1999; Chapin et al., 2011). 63 

Nutrients such as nitrogen (N) and phosphorus (P) are the main nutrients most 64 

frequently restricting plant growth and production globally (Chapin, 1980; Güsewell, 65 

2004), the resorption of N and P are paramount importance to plant nutrient 66 

conservation (Killingbeck, 1996; Kobe et al., 2005). N and P resorption are often 67 

presented as two important indices of internal nutrient recycling in plants, resorption 68 

efficiency of N (NRE) and P (PRE), which defined as the proportional resorbed of N 69 

and P during leaves senescence: NRE or PRE = [(N or P in green leaves – N or P in 70 

senesced leaves) / N or P in green leaves] × 100% (Killingbeck, 1996; Kobe et al., 71 

2005; Yuan and Chen, 2009a).  72 

Significant increase in atmospheric greenhouse gases levels contribute to global 73 
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warming with significant local and regional changes in precipitation regimes (IPCC, 74 

2007). Such great changes in temperature and precipitation have a significant impact 75 

not only on nutrient element cycling in those regions where plant growth and 76 

development tend to be limited by nutrient availability (Hungate et al., 2003; Austin et 77 

al., 2004; Nelson et al., 2004), but also on soil nutrient availability and plant nutrient 78 

status (Vitousek, 2004; Yuan et al., 2006; Yuan and Chen, 2009a). Given that changes 79 

in these climatic factors can influence the N and P in green (Reich and Oleksyn, 2004; 80 

Wright et al., 2004; Chen et al., 2013) and senesced leaves (Read et al., 2003; Parton 81 

et al., 2007; Ge et al., 2016), the NRE and PRE may also change with these climatic 82 

factors. It is therefore imperative to acquire more information about the NRE and PRE 83 

responses to global environmental factors and to predict these responses in light of 84 

future climate changes (Gordon and Jackson, 2000; De Frenne et al., 2013; Brant and 85 

Chen, 2015).  86 

Currently, it is well known that the N and P contents of leaves also exhibit distinct 87 

biogeographic patterns (Han et al., 2005; Niklas et al., 2007; Yuan and Chen., 2009b; 88 

Vergutz et al., 2012; Kang et al., 2010; Ge et al., 2016). Indeed, there is sufficient 89 

evidence to conclude that NRE and PRE also differ in response to ecological variables 90 

such as mean annual temperature and rainfall (Richardson et al., 2005; Yuan and Chen, 91 

2009a; Vergutz et al., 2012; Tang et al., 2013). In particular, most meta-analyses at a 92 

global and regional level have shown that NRE and PRE are related to latitude, mean 93 

annual temperature (MAT), and mean annual precipitation (MAP)(Yuan and Chen, 94 

2009a; Vergutz et al., 2012; Tang et al., 2013). For example, Yuan and Chen (2009a) 95 
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found that within different plant functional groups (trees, shrubs, broadleaf species, 96 

and conifers), NRE and PRE have opposite trends with respect to MAT and MAP and 97 

with latitude, i.e., NRE decreases with increasing MAT and MAP but increases with 98 

respect to latitude, whereas PRE increases with respect to MAT and MAP but 99 

decreases with latitude. These trends are consistent with the results reported by Tang 100 

et al., (2013) in Eastern China for woody plants. In contrast, Vergutz et al., (2012) 101 

reveal that both NRE and PRE decrease with MAT and MAP and increase with 102 

respect to latitude at a global level. Although great progress has been made on the 103 

relationships between NRE and PRE and ambient climatic factors at the local (Wright 104 

and Westoby, 2003; Tully et al., 2013; Zhao et al., 2017), regional (Tang et al., 2013; 105 

Kang et al., 2015; Sun et al., 2016) and global scales (Kobe et al., 2005; Yuan et al., 106 

2009b; Vergutz et al., 2012), such mixed findings present an obstacle to modelling 107 

global biogeochemical cycling. In particular, most meta-analyses have reported global 108 

trends of nutrient resorption for woody plants, with little data pertaining to herbaceous 109 

plants (Vergutz et al., 2012). This gap in our knowledge is particularly important 110 

because perennial grasses also play a substantial role in a range of global-scale 111 

processes, including productivity and nutrient cycling and limitation, and an 112 

understanding nutrient-resorption characteristics of these species has significant 113 

global change implication (Hobbie, 1992; Knops et al., 2002; Zhou et al., 2006). 114 

Therefore, additional studies of herbaceous plants on the global scale are badly 115 

needed.  116 

For this purpose, we assembled a global database from published studies to explore 117 
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(1) variations in NRE and PRE across a diverse spectrum herbaceous species, and (2) 118 

identify how NRE, PRE and N:P ratios of resorption efficiency (NRE:PRE) vary as a 119 

function of latitude, MAT, and MAP. We also investigated whether there is a global 120 

pattern of NRE, PRE and NRE:PRE with respect to latitude, MAT, and MAP and, if 121 

so, whether it differed between different functional species groups (i.e., graminoids vs. 122 

forbs and monocots vs. eudicots). 123 

2 Materials and Methods 124 
2.1 Data collection 125 
A global meta-analysis was conducted using published data for NRE and PRE (see 126 

Appendix S1 in Supporting Information). To ensure data comparability, we used data 127 

from papers in which the authors specifically indicated that leaf litter samples came 128 

from newly fallen leaves that fell naturally or from freshly filled litter-traps. Further, 129 

we excluded data from leguminous plants (N-fixing species), plants grown under 130 

greenhouse conditions, and from fertilized plants. We used the Global Gazetteer 131 

Version 2.2 (http://www.fallingrain.com/world/) and WorldClim 1.4 database 132 

(http://www.worldclim.org/) to determine latitude, longitude, altitude, temperature 133 

and precipitation data (a global dataset with spatial resolution of c. 1 km2) if this 134 

information was missing in the original paper. In total, 521 observations were 135 

collected encompassing 248 herbaceous species from 55 studies. Across this global 136 

data set, sites ranged from 0 to 4756m in altitude, from -9 to 27°C in MAT, and from 137 

7.3 to 4000 mm year-1 in MAP. Accordingly, the dataset broadly covered most of the 138 

range of MAT and MAP occupied by the majority of herbaceous species and thus 139 

permitted a detailed global level of analysis not previously possible. 140 
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2.2 Data analysis 141 
The mean values of NRE and PRE between functional species groups (i.e., 142 

graminoids vs. forbs and monocots vs. eudicots) were assessed using one-way 143 

analysis of variance (ANOVA) and least-significant difference (LSD) post-hoc 144 

analyses when effects were significant. Data for NRE, PRE, and NRE:PRE ratios 145 

were log10-transformed before analysis in order to meet assumptions of normality and 146 

homogeneity of variances. Multiple regression analysis was used to identify the 147 

effects of latitude, MAT, and MAP on NRE, PRE and NRE:PRE. The combined 148 

effects of functional type, phylogeny (monocots versus eudicots), and MAT and MAP 149 

on NRE, PRE, and NRE:PRE were determined using analysis of variance. General 150 

linear model (GLM) was also used to examine if the responses of NRE, PRE, and 151 

NRE:PRE to MAT and MAP differed between different functional species groups. All 152 

statistical analyses were performed using R for Window version 3.1.0 statistical 153 

software (R Core Team 2014). 154 

3 Results 155 

For the pooled data, the mean NRE and PRE were 54.7% (n = 521, SD = 0.73%) and 156 

64.5% (n = 360, SD = 0.79%), respectively. NRE and PRE differed significantly 157 

between the two functional groups. Forbs had lower NRE and PRE (52.8% and 61.2%) 158 

than graminoids (57.3% and 68.4%) (P < 0.05), whereas monocots had higher NRE 159 

and PRE (55.8% and 67%) than eudicots (52.9% and 61.3%) (P < 0.05) (Fig. 1).  160 

NRE, PRE, and NRE:PRE manifested statistically significant trends with altitude, 161 

MAT, and MAP. For the pooled data, NRE, PRE, and NRE:PRE were positively 162 

correlated with latitude and negatively correlated with both MAT and MAP (P < 163 
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0.0001) (Table S1). Latitude, MAT, and MAP respectively accounted for 6%, 4%, and 164 

5% of the variation observed in NRE, 8%, 6%, and 6% of variation observed in PRE, 165 

and 4%, 4% and 2% of variation observed in NRE:PRE. MAT, MAP, and latitude 166 

collectively explained 11-19% of the variation observed in NRE, PRE, and NRE:PRE 167 

(Table 1). Functional type and climatic data collectively explained 10%, 16% and 7% 168 

of global variation observed in NRE, PRE, and NRE:PRE (Table 2). 169 

 Similar patterns of NRE, PRE, and NRE:PRE with respect to latitude, MAT, and 170 

MAP were observed for the two life-form groups (forbs vs. graminoids) and for the 171 

two phylogenetic groups (monocots vs. eudicots) (Fig. 2 and Fig. 3). Although there 172 

were differences between regression slopes between forbs and graminoids and 173 

between monocots and eudicots (Table 3), the responses of NRE, PRE, and NRE:PRE 174 

to MAT and MAP were qualitatively similar. 175 

4 Discussion 176 
4.1 Functional traits and differences in NRE and PRE at the global level 177 
We evaluated leaf NRE and PRE in herbaceous species using a global dataset. The 178 

mean values of NRE and PRE across all the herbaceous species are 54.7% and 64.5%, 179 

respectively. These values are only slightly higher than values reported by Aerts, 180 

(1996) based on a comparatively few data for only herbaceous species at a global 181 

scale (i.e., 50% and 57%, respectively), but lower than values reported by Jiang et al., 182 

(2012) for 18 herbaceous species in the Qinghai-Tibetan Plateau (i.e., 65.2% and 183 

67.4%). However, these values are markedly higher than those reported for woody 184 

plants by Yuan et al., (2009a) (i.e., 47% and 54%, respectively, at a global level) or by 185 

Tang et al., (2013) (i.e., 49% and 51%, respectively, at the regional scale). Nutrient 186 
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resorption efficiency of herbaceous species show obviously higher values than the 187 

values of woody species. The relatively higher nutrient resorption efficiency has been 188 

interpreted to indicate that non-woody species are more well adapted to nutrient stress 189 

through high internal N and P recycling (Norris and Reich, 2009; Freschet et al., 190 

2010).  191 

Additionally, NRE and PRE differ significantly between graminoids and forbs at a 192 

global scale. Both NRE and PRE are significantly higher in the former functional type 193 

compared to forbs (Fig. 1). This finding is consistent with previous observations 194 

(Aerts, 1996; Jiang et al., 2012) and has been interpeted to indicate that graminoids 195 

have a competitive advantage over forbs, which provides additional evidence that 196 

productivity, foliar nutrient allocation, and leaf biomass may lead to the higher 197 

nutrient reabsorption in graminoids compared to forbs (Aerts and Berendse, 1989). 198 

Likewise, monocots have higher NRE and PRE compared to eudicots (Fig. 1). 199 

However, in this context, it is important to note that the data for monocots are biased 200 

because approximately one half of all of the monocots in our data set are graminoids, 201 

further investigations are warranted to be conclusive. 202 
4.2 Climatic variations in NRE and PRE at the global level 203 
This study presents the first global-scale analyses on how nutrient resorption of N and 204 

P differentially vary with environmental variables across a broad spectrum of 205 

herbaceous species. Based on this worldwide level of analysis, both NRE and PRE 206 

increase with latitude and decrease with MAT and MAP across all herbaceous species. 207 

Plants from tropical habitats (higher temperatures) have lower NRE and PRE, 208 

whereas plants from high-latitude habitats (lower-temperatures) have higher NRE and 209 
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PRE. These trends hold true for each of the two functional types as well as when the 210 

data are pooled (Fig. 2 and Fig. 3).  211 

In terms of NRE, the trends reported here are similar to those of Yuan and Chen, 212 

(2009a) and Tang et al., (2013) who found that NRE increased with increasing latitude 213 

but decreased with increasing MAT and MAP across woody species. Collectively, 214 

these findings support the idea that plants growing at low latitudes, or in areas with 215 

high precipitation or temperature are on average more P-limited and would be 216 

expected to have lower NRE (Austin and Vitousek, 1998; Aerts and Chapin, 1999; 217 

Sterner and Elser, 2002; Reich and Oleksyn, 2004; Santiago et al., 2005). Our results 218 

are also supported by findings from common-garden experiments (Oyarzabal et al., 219 

2007), which report a negative relationship between NRE and both MAT and MAP. 220 

However, the trends we observed differ from those reported by Aerts et al., (2007), 221 

who found that controlled temperature and precipitation treatment had little or no 222 

effect on NRE in a high-latitude subarctic peatland. This inconsistency can be 223 

attributed to the fact that Aerts et al., (2007) used short-term temperature and 224 

precipitation manipulations on a single plant community, whereas our study examined 225 

different plant communities across large environmental gradients. 226 

Regarding the NRE pattern reported here, our results are in accordance with the 227 

global patterns observed across species by Vergutz et al., (2012) and the regional 228 

patterns observed for a single species by Sun et al., (2015). In turn, it is the opposite 229 

of that reported by Yuan and Chen, (2009a) and by Tang et al., (2013), who observed 230 

that PRE is negatively correlated with latitude and positively correlated with MAT 231 
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and MAP for woody species. The opposite patterns of PRE in woody and herbaceous 232 

species could reflect different plant growth form conservation strategies in responses 233 

to climatic differences. It is generally agreed that NRE and PRE patterns are 234 

influenced significantly by soil nutrient availability, which can affect plant 235 

conservation strategies including nutrient resorption (Oleksyn et al., 2003, Yuan et al., 236 

2005). Previous studies have shown that the effects of temperature and precipitation 237 

can lead to limited P in tropical soils, which are generally regarded as older and 238 

offering low P availability (Reich and Oleksyn, 2004; Vitousek, 2004). Consequently, 239 

it is generally believed that plants growing in tropical soils are more likely to have 240 

higher PRE than plants growing in temperate soils (Vitousek, 1984; Aerts, 1996; Yuan 241 

and Chen, 2015). However, the climatic patterns of PRE reported here do not manifest 242 

this trend. We attribute this to the considerable heterogeneity in tropical soil nutrient 243 

conditions and availability (Richter and Babbar, 1991; Reed et al., 2012) that vary 244 

across large temporal and spatial scales (Hedin et al., 2009). Unfortunately, data 245 

recording this variability are currently unavailable. Further studies are required to 246 

resolve this apparent paradox.  247 

The NRE and PRE reported here may also reflect the nutrient conservation 248 

strategies of herbaceous species growing at high latitudes with low MAT and MAP. 249 

Cold temperatures and drought are known to inhibit the nutrient uptake of roots and 250 

thus constrain the metabolic activity of herbaceous plants (Sun et al., 2015). 251 

Herbaceous species require some adaptive nutrient conservation strategies to reduce 252 

their dependence on the supply of soil nutrients (e.g., rapid growth, high leaf nutrient 253 
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contents, and an accelerated life history, Adler et al., 2014) that can collectively 254 

reduce N and P acquisition by roots and their associated ectomycorrhiza (Lambers et 255 

al., 2008). In turn, the relatively high degradation capacity of nutrient (Tsujii et al., 256 

2017) would encourage high NRE and PRE as an adaptation.  257 
4.3 Climatic variations in NRE:PRE at the global level 258 
The patterns of NRE:PRE reported here differs from those reported by Sun et al., 259 

(2015), who found that NRE : PRE has no significant correlation with either latitude 260 

or MAP and only a very weak statistical relationship with MAT. The difference 261 

between the findings of Sun et al., (2015) and ours may be explained by the fact that 262 

Sun et al., (2015) focused on only a single species at a regional scale, whereas our 263 

results reflect interspecific variation at a global scale. In contrast, our findings are 264 

consistent with the global patterns observed for woody species by Reed et al., (2012) 265 

and by Han et al., (2013), who report that NRE:PRE increases with latitude and 266 

decreases with MAT and MAP. The NRE:PRE pattern we observe provides indirect 267 

evidence indicating that plants growing in the tropics with higher MAT and MAP are 268 

more frequently P limited, whereas plants growing in higher latitudes with lower 269 

MAT and MAP are often N limited (Austin and Vitousek, 1998; Sterner and Elser, 270 

2002; Reich and Oleksyn, 2004). Because nutrient availability can strongly influence 271 

nutrient resorption (Pugnaire and Chapin, 1993). NRE is generally expected to be 272 

higher (and PRE lower) at higher latitude compared to the tropics. However, the PRE 273 

pattern reported here is not consistent with this expectation. As noted, we speculate 274 

that the acclimation responses of herbaceous species to soil nutrient availability and 275 

the heterogeneity of tropical soil nutrient content help to explain this apparent 276 
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contradiction. 277 
 278 
5 Conclusion 279 

Our analyses indicate that, when viewed at a worldwide level, more than half of all 280 

leaf N and P is resorbed during senescence in herbaceous species at a global level. 281 

Nevertheless, N and P resorption efficiencies and their ratios manifest discernable 282 

significant biogeographic patterns. Specifically, NRE, PRE, and NRE:PRE are 283 

positively correlated with latitude and negatively correlated with MAT and MAP. 284 

These patterns hold for two functional types (graminoids and forbs) and for 285 

phylogenetic groups (monocots and eudicots), indicating that they are sensitive to 286 

functional or phylogenetic traits. These trends can inform attempts to model potential 287 

changes in ecosystem dynamics in response to changing climate and attempts to 288 

model biogeochemical cycling at a global scale.  289 
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 502 

Figure Legends 503 

Fig. 1. Mean nitrogen resorption efficiency (NRE) and phosphorus resorption 504 

efficiency (PRE) for functional types (forbs, F versus graminoids, G) and 505 

phylogenetic groups (monocots, M versus eudicots, E). Different letters (a and b) 506 

indicate significant differences at the 0.05 level. Error bas are standard errors. The 507 

number of observations is given within each bar.  508 

Fig. 2. Nutrient resorption efficiencies (NRE and PRE) and nutrient resorption 509 

efficiency ratio (NRE:PRE) in relation to latitude (°), mean annual temperature 510 

(MAT, °C), and mean annual precipitation (MAP, mm). Red and blue circles represent 511 

data points for graminoids and forbs, respectively. The coefficients of determination 512 

(r2) and P are provided in each panel for graminoids (the first line) and forbs (the 513 

second line). 514 

Fig. 3. Nutrient resorption efficiencies (NRE and PRE) and nutrient resorption 515 

efficiency ratio (NRE:PRE) in relation to latitude (°), mean annual temperature 516 

(MAT, °C), and mean annual precipitation (MAP, mm). Red and blue circles represent 517 

data points for monocots and eudicots, respectively. The coefficients of determination 518 

(r2) and P are shown in each panel for eudicots (the first line) and monocots (the 519 

second line). 520 
 521 
 522 
 523 

 524 
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 525 

 526 

 527 

Table 1 Multiple regression analyses of nitrogen resorption efficiency (NRE), 528 

phosphorus resorption efficiency (PRE), and their ratio (NRE:PRE) in relation to 529 

latitude, mean annual temperature (MAT, °C) and mean annual precipitation (MAP, 530 

mm).  531 
 532 

n is sample number. F ratios and significance are shown for each of the dependent variables (ns, P > 0.05; *P < 533 
0.05; **P < 0.01; ***P < 0.001). 534 

 535 
 536 
 537 
 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

Trait n R2 Latitude F MAT F MAP F MAT×MAP F Latitude×MAT×MAP F 
NRE 521 0.106 42.22*** 1.28 ns 3.15* 0.33 ns 4.46* 
PRE 360 0.189 39.49*** 1.63 ns 0.25 ns 10.86** 26.60*** 
NRE:PRE 357 0.124 11.92*** 0.96 ns 4.00* 2.07 ns 0.01 ns 
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 548 

 549 

 550 

 551 

 552 

 553 

Table 2 Results of general linear models of nitrogen resorption efficiency (NRE), 554 

phosphorus resorption efficiency (PRE), and their ratio (NRE:PRE) in relation to 555 

functional type, latitude, mean annual temperature (MAT, °C), and mean annual 556 

precipitation (MAP, mm).  557 

n is sample number. F ratios and significance are shown for each of the dependent variables (ns, P > 0.05; *P < 558 
0.05; **P < 0.01; ***P < 0.001). 559 

 560 
 561 

 562 
 563 
 564 
 565 
 566 

 567 

 568 

 569 

 570 

 571 

Trait n R2 Phylogeny F Life-form F Latitude F MAT F MAP F 
NRE 521 0.100 5.48* 5.10*** 26.67*** 0.95ns 3.61* 
PRE 360 0.161 0.21 ns 8.50*** 30.92*** 1.84ns 0.37ns 
NRE:PRE 357 0.073 3.73* 2.12* 10.43** 1.16ns 3.70* 
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 572 

 573 

Table 3 Results of general linear models (F-values for model terms and model R2) of 574 

nitrogen resorption efficiency (NRE), phosphorus resorption efficiency (PRE), and 575 

N:P ratio of resorption efficiency (NRE:PRE) using functional group (FG, life-form) 576 

and phylogeny (ME) as factors and mean annual temperature (MAT) and mean annual 577 

precipitation (MAP) as continuous variables.  578 
 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 

 590 
 591 
 592 
 593 

 594 
 595 
 596 
 597 

ns, P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.001 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 
 607 
 608 

Trait NRE PRE NRE:PRE 
FG 3.45** 6.13*** 2.71* 
MAT 22.46*** 31.92*** 10.27** 
MAP 12.01*** 1.92 ns 2.08ns 
MAT × MAP 1.20 ns 12.19*** 1.85 ns 
FG × MAT 3.99** 0.75 ns 1.66 ns 
FG × MAP 2.13 ns 3.07* 2.18 ns 
FG × MAT × MAP 0.35 ns 5.62** 3.57* 
Model R2 0.12 0.21 0.11 
ME 6.38* 20.75*** 5.54* 
MAT 22.27*** 33.01*** 10.00** 
MAP 11.90*** 1.98 ns 2.03 ns 
MAT × MAP 0.61 9.27** 1.35 ns 
ME × MAT 6.49* 2.50 ns 3.72* 
ME × MAP 4.79* 13.37*** 0.92 ns 
ME × MAT × MAP 2.45 ns 19.22*** 1.76 ns 
Model R2 0.10 0.22 0.08 
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