

Nitrogen and oxygen availabilities control water column nitrous oxide production during seasonal anoxia in the Chesapeake Bay

Qixing Ji¹, Claudia Frey¹, Xin Sun¹, Melanie Jackson², Yea-Shine Lee¹, Amal Jayakumar¹, Jeffrey C. Cornwell² and Bess B. Ward¹

⁵ ¹Department of Geosciences. Princeton University, Princeton, 08544, New Jersey, USA ²Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, 21613, Maryland, USA *Correspondence to*: Qixing Ji (qji@princeton.edu)

Abstract. Nitrous oxide (N_2O) is a greenhouse gas and an ozone depletion agent. One of the major uncertainties in the global N_2O budget is the contribution of the coastal region, including estuaries, which can be sites of intense N_2O efflux. Incubation experiments with nitrogen stable isotope tracer (^{15}N) enabled the investigation of the environmental controls of

- N_2O production in the water column of Chesapeake Bay, the largest estuary in North America. The highest potential rates of N_2O production (7.5±1.2 nmol-N L⁻¹ hr⁻¹) were detected during summer anoxia, during which oxidized nitrogen species (nitrate and nitrite) were absent from the water column. At the top of the anoxic layer, N_2O production from denitrification was stimulated by addition of nitrate and nitrite. The relative contribution of nitrate and nitrite to N_2O production was
- 15 positively correlated with the ratio of nitrate to nitrite concentrations. Increased oxygen availability, up to 7 μM oxygen inhibited both N₂O production and the reduction of nitrate to nitrite. Therefore, reducing the nitrogen input into the Chesapeake Bay has two potential impacts on the N₂O efflux: In the short-term, N₂O emission will be mitigated due to nitrogen deficiency. In the long-run, eutrophication will be alleviated and subsequent re-oxygenation of the bay will further inhibit N₂O production.

20 1 Introduction

10

Nitrous oxide (N_2O) is a strong greenhouse gas with 298-fold higher global warming potential per mole than that of carbon dioxide. N_2O is also a catalyst of ozone depletion in the stratosphere. Since the Industrial Revolution, the N_2O atmospheric concentration has been increasing at an unprecedented rate, and the current concentration is the highest in the last 800,000 years of Earth's history (Schilt et al., 2010). The contribution of N_2O emissions to global warming and ozone

25 depletion will increase because N_2O is not as strictly regulated as are CO_2 and halocarbon compounds. With the successful mitigation of halocarbon compounds accomplished by the Montreal Protocol, N_2O is likely to be the single most important anthropogenically emitted ozone-depleting agent in the 21st century (Ravishankara et al., 2009).

5

Microbial processes are responsible for the majority of N₂O production, both in natural and anthropogenically impacted environments. These pathways include oxidative and reductive processes occurring at the full range of environmental oxygen concentrations. In the presence of oxygen, N₂O can be produced as a by-product during autotrophic aerobic ammonium (NH₄⁺) oxidation to nitrite (NO₂⁻) by bacteria (Arp and Stein, 2003) and archaea (Santoro et al., 2011). The production of N₂O can also occur via NO₂⁻ reduction by nitrifying organisms, termed nitrifier denitrification. This process was demonstrated in cultures (Poth and Focht, 1985; Frame and Casciotti, 2010), and in the water column of the subtropical North Pacific Ocean (Wilson et al., 2014). Under low oxygen and anoxic conditions, N₂O is produced via stepwise, enzymemediated heterotrophic denitrification, i.e. the reduction of nitrate (NO₃⁻) and NO₂⁻, with organic matter as the electron donor. N₂O is not produced via anaerobic ammonium oxidation (anammox), another important nitrogen removal process in

10 the natural environment (Kartal et al., 2011).

The increase of atmospheric N₂O is attributed to intensification of human activities (e.g. fossil fuel combustion, fertilizer application, human and animal waste disposal), which alter the microbial nitrogen cycle in the biosphere. Increased nitrogen supply from fertilizer and atmospheric deposition causes increased N₂O emission not only from agricultural land, but also in rivers, streams and coastal waters (Ciais et al., 2013; Thompson et al., 2014). Among these aquatic environments, 15 the most intense N_2O efflux originates from estuaries and associated river networks, which occupy 0.3% of global waters (Dürr et al., 2011) but contribute up to 10 % of anthropogenic fluxes (Seitzinger and Kroeze, 1998; Ciais et al., 2013). Being the largest estuary in the North America, the Chesapeake Bay and its tributaries have been identified as a N₂O source in the summertime (June to September), during which surface N₂O oversaturation with respect to air occurs (Elkins et al., 1978; Kaplan et al., 1978; McElroy et al., 1978). The water column is characterized by strong oxygen gradients (equilibrium with atmosphere at the surface and complete anoxia below ~ 10 m), depletion of oxidized nitrogen species (NO₃⁻ and NO₂⁻), 20 and accumulation of ammonium in the deep water (Lee et al., 2015b). Since the 18th century, increased population, expansion of industrialization and land use changes in the Northeastern US have increased nutrient input into the Chesapeake tributaries and caused expansion of summertime anoxia (Cooper and Brush, 1993; Boesch et al., 2001). Increased microbial activities driving carbon assimilation and respiration have been demonstrated in the vicinity of the oxicanoxic interface in the water column (Lee et al., 2015a). The global estimate of estuarine N₂O fluxes is poorly constrained, 25

partly because of the paucity of data on N₂O production and the associated environmental controlling factors in estuarine systems such as Chesapeake Bay.

Here we report a pilot study using nitrogen stable isotope incubation experiments to investigate N_2O production in Chesapeake Bay, and to quantify its dependence on the availabilities of oxygen and oxidized nitrogen. Because seasonal

5 anoxia occurs at the study site in the central region of the Chesapeake Bay, reductive pathways of N₂O production are the main focus. Further understanding of the environmental controls on N₂O production in estuaries will facilitate the design of effective environmental engineering projects to mitigate N₂O emission.

2 Methods

2.1 Sample acquisition and processing

10 Sampling and incubation experiments were carried out on July 19, 2016, November 17, 2016 and May 3, 2017, corresponding to typical conditions of summer, autumn and spring, respectively. Samples were collected at 38.55 N, 76.43 W (bottom depth 26.5 m) close to the mouth of the Choptank River in the central region of the Chesapeake Bay. Conductivity-temperature-depth and oxygen were measured with a YSI sonde package (Model 600XLM with a 650 MDS display logger) equipped with a diaphragm pump which was deployed for water sampling. The oxygen sensor had a detection limit of ~ 5 μ mol L⁻¹. Samples for NO₂⁻ and NO₃⁻ concentration measurements were filtered (0.22 μ m poresize, 15 Sterivex-GP, EMD Millipore) and frozen at -80 °C until analysis. Discrete samples for N₂O concentration were collected directly from the pump outlet into the bottom of acid washed, 60 mL glass serum bottles (Catalog # 223745, Wheaton, Millville, NJ). Bottles were sealed with butyl rubber stoppers (Catalog # W224100-202, Wheaton, Millville, NJ) and aluminium rings while submerged under water pumped from depth to avoid atmospheric N_2O and oxygen contamination. Samples for characterizing N₂O concentration profile were preserved immediately after filling by injecting 0.1 mL saturated 20 HgCl₂. Samples for N₂O incubation experiments (section 2.2) were acquired from 12 m, 17 m and 19 m during July 2016, November 2016 and May 2017, respectively, and sealed the same way as described above for discrete N₂O concentration

samples, and stored in the dark at 4 $^{\circ}$ C without adding HgCl₂. Samples for denitrifying *nirS* gene abundance were collected at

10

15

14, 17 and 19 m by filtering 600mL - 2000mL of water through 0.22 μ m filter (Sterivex-GP, EMD Millipore) and frozen at - 80 °C until DNA extraction and analysis.

Samples for total dissolved inorganic carbon ($DIC=[H_2CO_3]+[HCO_3^-]+[CO_3^{2-}]$) and community respiration rates were collected only in July 2016. The DIC samples were preserved with mercuric chloride (HgCl₂) for initial conditions, while

5 biochemical oxygen demand (BOD) bottles were incubated in a temperature-controlled environmental chamber (±1 °C of in situ water temperatures). After 24 h, samples were siphoned from the vials, preserved with HgCl₂, and respiration rates were determined as the difference in DIC between initial and final samples divided by the 24 hours (Lee et al., 2015b).

2.2¹⁵N incubation experiments for N₂O production

Within 3 hours of sampling, incubation experiments were initiated at the Horn Point Laboratory, Cambridge, Maryland. Samples were divided into two sets for nitrogen and oxygen manipulation experiments.

Dissolved inorganic nitrogen (DIN) manipulation: The nitrogen manipulation experiment was conducted only in July 2016 because NO₂⁻ and NO₃⁻ were absent from the water column (see section 3.1). A small (3 ml) headspace was created in the serum bottles, which were subsequently flushed with helium for 10 minutes to minimize oxygen contamination from sampling and transportation. In order to detect N₂O production, ~1.2 nmol N₂O was injected to each bottle, reaching a concentration of ~20 nmol L⁻¹ in the water phase (calculated equilibrium concentration (Weiss and Price, 1980) with 3 mL headspace and 57 mL water). Two suites of ¹⁵N tracer solutions (¹⁵NO₂⁻ plus ¹⁴NO₃⁻, ¹⁵NO₃⁻ plus ¹⁴NO₂⁻, 0.1 mL of total volume of tracer addition) were injected to designated bottles to achieve ratios of NO₂⁻ : NO₃⁻ \approx 1:10, 1:3, 3:1 and 10:1, with ¹⁵N fraction labelled between 0.016 and 0.16 (Table 1, experiment 2-A to 2-H). This allows simultaneous detection of N₂O production from NO₂⁻ and NO₃⁻ at different ratios of NO₂⁻ to NO₃⁻ concentration. Tracer solutions were made from deionized

20 water, and were flushed with helium prior to addition to incubation experiments. Initial conditions (one bottle of each time courses) were sampled within 30 min of tracer addition by injecting 0.1 mL saturated HgCl₂. Incubations lasted ~2 hours at a temperature difference < 0.5 °C of those of *in situ*, during which duplicate bottles were preserved with HgCl₂ every 40 to 60 minutes, totalling seven bottles over four time points, including the initial.

Oxygen manipulation: The oxygen manipulation experiment was conducted in July 2016 and November 2016. 25 Headspace (3 – 8 ml) was created before flushing with helium for 10 minutes. Oxygen-saturated site water was made by air-

5

equilibration at *in situ* temperature. To achieve different oxygen levels, 0.2, 0.5, 1.0, 2.0 or 5.0 ml of oxygen-saturated site water was injected. With a final volume of ~3 mL of headspace during the course of the incubation, the oxygen concentrations in the water phase were 0.3 to 6.4 μ mol L⁻¹ in July 2016 (Table 1, experiment 3-A – 3-J), and were 0.2 to 7.3 μ mol L⁻¹ in November 2016 (Table 1, experiment 5-A – 5-J) after the calculated equilibration between headspace and seawater (Garcia and Gordon, 1992). The control experiment was designated as anoxic with no oxygen addition (Table 1, experiment 1-A and 1-B, 4-A and 4-B). After oxygen adjustment, ~1.2 nmol N₂O was injected into each bottle, and two suites of ¹⁵N tracer solutions (¹⁵NO₂⁻ plus ¹⁴NO₃⁻, ¹⁵NO₃⁻ plus ¹⁴NO₂⁻, 0.1mL) were injected to achieve final concentration of 5 μ mol L⁻¹ NO₂⁻ and NO₃⁻. The ¹⁵N fraction for NO₂⁻ or NO₃⁻ during the incubation experiments are shown in Table 1.

2.3 Analytical procedures

- For water column nutrients, dissolved NO_2^- was measured using a colorimetric method (Hansen and Koroleff, 2007) and $NO_3^- + NO_2^-$ was measured using a hot (90 °C) acidified vanadium (III) reduction column coupled to a chemiluminescence NO/NOx Analyzer (Teledyne API, San Diego, CA) (Garside, 1982; Braman and Hendrix, 1989). DIC was measured with an automated infrared analyzer (Apollo SciTech, Newark, DE) as previously reported (Lee et al., 2015b). Preserved N₂O samples were stored in the dark at room temperature (~22 °C) for less than three weeks before analysis.
- 15 Dissolved N₂O was extracted by flushing with helium for 40 min at a rate of 37 ml min⁻¹ (extraction efficiency 99 \pm 2 %), and subsequently cryo-trapped by liquid nitrogen and isolated from interfering compounds (H₂O, CO₂) by gas chromatography (Weigand et al., 2016). Pulses of purified N₂O were injected into a Delta V^{Plus} mass spectrometer (Thermo Fisher Scientific, Waltham, MA) for mass (m/z = 44, 45, 46) and isotope ratio (m₁/m₂ = 45/44, 46/44) measurements. The amount of N₂O was calibrated with standard N₂O vials, which were made by injecting 1, 2, or 5 nmol N₂O-N into 20 mL
- 20 glass vials (Catalog # C4020-25, Thermo Fisher Scientific, Waltham, MA).

After N₂O analysis, samples incubated with ¹⁵NO₃⁻ were also assayed for ¹⁵NO₂⁻ to determine rates of NO₃⁻ reduction. Two millilitres of each sample were transferred from the 60-mL serum bottle to a 20-mL glass vial and then flushed with helium for 10 min. Dissolved ¹⁵NO₂⁻ was converted to N₂O using the acetic acid-treated sodium azide solution for quantitative conversion (McIlvin and Altabet, 2005). Resulting N₂O was measured on the Delta V^{Plus} for nitrogen isotope ratio so as to determine the ¹⁵N enrichment of NO -

²⁵ ratio so as to determine the ^{15}N enrichment of NO₂⁻.

For molecular analysis, DNA extraction and qPCR for the *nirS* gene using SYBR Green were performed as previously described (Jayakumar et al. (2009); 2013). Extracted DNA was quantified using PicoGreen fluorescence (Molecular Probes, Eugene, OR) prior to the qPCR assay. Samples for qPCR were run in triplicates including a no template control, a no Primer control and 5 different dilutions of a *nirS* standard. Threshold cycle (Ct) values were obtained using automatic analysis settings of the quantitative PCR and further used to calculate the gene copy numbers as described in Jayakumar et al. (2013).

2.4 Data analysis

5

10

20

 N_2O concentration was calculated from the amount of N_2O detected by mass spectrometry divided by the volume of water in the serum bottles. N_2O production (*R*) was calculated from the progressive increase in ⁴⁵ N_2O and ⁴⁶ N_2O concentrations in each serum bottle over the time course experiments.

$$R = \frac{1}{F} \times \left(\frac{d^{45} N_2 O}{dt} + 2 \times \frac{d^{46} N_2 O}{dt} \right)$$
(1)

where $d^{45}N_2O/dt$ and $d^{46}N_2O/dt$ represent the production rates (nmol-N L⁻¹ hr⁻¹) of mass 45 and 46 N₂O during incubation. F represents the ¹⁵N fraction in the initial substrate (NO₂⁻ or NO₃⁻). Rates were considered significant based on the linear regression of the time course data (p < 0.05, n=7, student t-test). The detection limit for N₂O production is 0.002 nmol-N L⁻¹ hr⁻¹.

15 The rate of NO_3^- reduction to NO_2^- was calculated as

 $NO_2^- \text{ production} = (d^{15}NO_2^-/dt) / F$ (2)

where $d^{15}NO_2^{-}/dt$ represents the production rate of ${}^{15}NO_2^{-}$ (nmol-N L⁻¹ hr⁻¹), which is calculated as the slope of ${}^{15}NO_2^{-}$ concentrations versus time. *F* represents initial substrate ${}^{15}NO_3^{-}$ enrichment. Rates were considered significant based on linear regression of the time course data (p<0.05, student's t-test). The detection limit for NO₂⁻ production is 0.05 nmol-N L⁻¹ hr⁻¹.

5

25

3 Results and discussion

3.1 Water column features

The physical and chemical properties of the water column in central Chesapeake Bay experience seasonal variation (Fig. 1). Temperature and salinity differed among the three seasons but were essentially constant in the top 7 m of the water column on the three sampling dates. In July, the water column was stratified because of lower salinity (~ 16 PSU) and higher temperature (~ 28.5 °C) in the top ~ 10 m resulting in a pronounced halocline and thermocline (Fig. 1a and 1b). Less pronounced stratification in May and November was due to weaker temperature difference between top 10 m and below. The July oxygen profile shows significant concentration decrease between 3 to 10 m (Fig. 1c), with a sharp oxycline (~ 30 μ mol L⁻¹ m⁻¹). Below 10 m, the oxygen concentration was below detection of the sensor (~ 5 μ mol L⁻¹) and was likely anoxic.

10 However, sulphide compounds were most likely not present in July at depth; the water samples were free of any hydrogen sulphide odour. No anoxic layer was observed in May and November (Fig. 1c), and previous studies showed that the water column of the Chesapeake Bay was reoxygenated following summertime anoxia during winter and spring (Lee et al., 2015a).

In July, N₂O concentration was close to air-saturation level (6.6 nmol L⁻¹) at the surface layer (Fig. 1d). In the low oxygen layer (below 12 m), N₂O was undersaturated ($2.0 - 3.7 \text{ nmol } \text{L}^{-1}$, 20 - 50 % air-saturation). This was the only

- 15 instance of N₂O undersaturation observed in three sampling trips; N₂O concentrations in May were constant at air-saturation level of 11.2 nmol L⁻¹ between 3 and 17 m in the water column; in November, the N₂O concentrations varied between 9.8 and 11.2 nmol L⁻¹. The concentrations of NO₃⁻ and NO₂⁻ (Fig. 1d and 1e) in July were below 0.02 μ mol L⁻¹ within the sampling depth interval (top 17 m of water column). Measureable levels of oxidized nitrogen species were found in May and November. The concentrations of NO₂⁻ and NO₃⁻ in May were 20 and 0.5 μ mol L⁻¹, respectively; and the concentrations
- 20 decreased with depth. In November, NO_3^- and NO_2^- were depleted at the surface (~ 3 m) and their concentrations increased with depth; at 17 m the concentrations of NO_3^- and NO_2^- were 5.0 and 0.4 µmol L⁻¹, respectively.

As a proxy for the size of the denitrifying community, the abundance of the *nirS* gene was $(5.91 \pm 0.1) \times 10^4$ copy mL⁻¹ at 14 m in July, which was the highest among the three sampling trips (Fig. 1g). Lowest *nirS* gene abundance $(9.1 \pm 1.3) \times 10^3$ copy mL⁻¹ was observed in May at 19 m. The abundance of *nirS* was measured only at the depths at which incubations were performed, and the *nirS* abundance positively correlated with measured rates of N₂O production (see section 3.2). In

July 2016, water column DIC concentrations ranged from 1,377 to 1,831 µmol L⁻¹, with the highest concentrations below 10 m. Average community respiration rates at 3 m and 14 m depth were 2.01 and 0.63 µmol L⁻¹ hr⁻¹, respectively.

3.2 Active N₂O production by denitrification

- Active N₂O production was detected (Fig. 2) in the control experiment (helium-flushed anoxic incubation) at the top of 5 anoxic layer (~ 12.3 m) in July 2016; rates of N₂O production from NO₂⁻ and NO₃⁻ reduction were 5.42±0.35 and 2.04±0.86 nmol-N L⁻¹ hr⁻¹, respectively, when 5 μ mol L⁻¹ NO₂⁻ or NO₃⁻ was added. In November 2016, the water column was oxygenated (> 180 μ mol L⁻¹), and the rates of N₂O production from NO₂⁻ and NO₃⁻ reduction at 17 m in the anoxic control (helium-flushed anoxic incubation) were 0.33±0.01 and 0.95±0.35 nmol-N L⁻¹ hr⁻¹, respectively. In May 2017, no N₂O production was detected.
- The total N₂O production rate of 7.5 ± 1.2 nmol-N L⁻¹ hr⁻¹ in July 2016 is lower than the measurements (18 77 nmol-N 10 L⁻¹ hr⁻¹) made 40 years ago in the Potomac River (McElroy et al., 1978), a tributary to the Chesapeake Bay. This difference could be due to much higher water column nutrients in the Potomac River (NO₂⁻ plus NO₃⁻ concentration > 30 μ mol L⁻¹) at that time, and presumably denser microbial populations because of sediment resuspension (4 - 10 m water depth). With added substrates (NO₂⁻ and NO₃⁻) being more than an order of magnitude higher than in situ levels in July 2016, and the anoxic conditions being used in the November 2016 experiments (in situ $[O_2] > 180 \mu mol L^{-1}$), N₂O production rates 15

20

reported here are potential rates, which nevertheless highlight the potential for N₂O production in anoxic waters responding rapidly (within hours) to pulses of oxidized nitrogen.

Based on the nirS gene abundance, the denitrifying population was more abundant in July (summer) than November (autumn), and was the smallest in May (spring) in the lower water column (14 - 19 m) of the Chesapeake Bay (Fig. 1g). In July highest N₂O production rates co-occurred with the highest nirS abundances (Fig. 2). While the water column oxygen was > 180 μ mol L⁻¹ in November, the *nirS* gene abundance supported potential denitrification at a N₂O production rate of 1.28 ± 0.35 nmol-N L⁻¹ hr⁻¹ in anoxic incubation experiments. In May when hypoxic conditions had not yet developed, no N₂O production was detected, and the *nirS* abundance $(9.1 \times 10^3 \text{ copies mL}^{-1})$ was the lowest among three sample dates. This pattern is consistent with a metatranscriptome analysis that showed lowest transcript ratios for denitrification in June before

25 the onset of hypoxia and highest ratios in August when anoxia was most pronounced (Eggleston et al., 2015).

Denitrification, as a major pathway of fixed nitrogen removal, is critical to mitigating eutrophication in natural waters. In spring, runoff from the anthropogenically influenced watershed results in high NO₃⁻ and NO₂⁻ concentrations in the Bay. The subsequent increase in denitrification activity, which peaks in summertime, depletes water column NO₃⁻ and NO₂⁻ (Baird et al., 1995; Boynton et al., 1995). Even when the substrates NO₂⁻ and NO₃⁻ were nearly absent in the summertime, the water column was readily capable of denitrification. The net N₂O production rates could serve as a proxy for estimating nitrogen loss. It is estimated that 1% of total denitrified nitrogen is converted to N₂O in river networks (Beaulieu et al., 2011) so the ratio of N₂O : N₂ during denitrification = 1 : 100. Assuming that N₂O production occurs at a rate of 7 nmol-N L⁻¹ hr⁻¹ within 0.2 m of the oxic-anoxic interface in summertime (based on the July 2016 control data, N₂O production from NO₃⁻ plus NO₂⁻), denitrification yields a potential water column N removal rate of 140 µmol-N m⁻² hr⁻¹, or 0.24 mg-N m⁻² d⁻¹. In addition, the sediment in the Bay is capable of anaerobic ammonia oxidation (Rich et al., 2008) and denitrification (Kemp et al., 1990; Kana et al., 2006). Total sedimentary N₂ production, measured by the acetylene block reduction method (Kemp et al., 1990; Kana et al., 2006).

al., 1990) and N₂ accumulation method (Kana et al., 2006) recorded areal rates of $50 - 70 \mu mol-N m^{-2} hr^{-1}$. Therefore, the sediment-water system in the Chesapeake Bay is effective in biological nitrogen removal.

3.3 N₂O production pathways regulated by availability of nitrogen substrate

- The ratio of the rates of N₂O production from NO₂⁻ reduction vs. N₂O production from NO₃⁻ reduction positively correlates with the ratio of NO₂⁻ : NO₃⁻ concentrations (Fig. 3). This suggests increasing NO₂⁻ (NO₃⁻) availability favours N₂O production from NO₂⁻ (NO₃⁻) reduction. At concentration ratios of NO₂⁻ : NO₃⁻ < 0.5, the ratios of rates were similar to the concentration ratio, 0.3±0.2. At a concentration ratio of NO₂⁻ : NO₃⁻ = 1 : 1, the ratio of rates of N₂O production from respective substrates measured from replicate experiments varied from 0.6 to 2.6. At NO₂⁻ : NO₃⁻ = 10, the ratio of rates was greater than 10. Therefore, the primary nitrogen source of N₂O production via denitrification depends in part on the relative
 - availability of the substrate (NO_2^- or NO_3^-). The following discussion is based on data from July 2016 because this was the only instance on which the DIN concentration ratio experiment was conducted.

Denitrification is a step-wise enzymatic reduction from NO_3^- , NO_2^- , NO, N_2O to N_2 . However, the pathway is somewhat modular (Graf et al., 2014), i.e., many organisms possess only one or a few steps, rather than the complete

5

10

20

pathway. In complete denitrifiers (organisms capable of reducing NO₃⁻ to N₂), the degree to which intermediates (i.e. NO₂⁻) exchange across cellular membranes with the ambient environment is unknown (Moir and Wood, 2001). To estimate the exchange of intracellular and ambient NO₂⁻ during NO₃⁻ reduction to N₂O by denitrifiers, the following calculations use the conditions and results from experiment 2-H (Table 1) because this experiment had the highest ambient NO₂⁻ pool and an exchange between the pools could be easily detected. During NO₃⁻ reduction to N₂O, if denitrifiers reduce ¹⁵NO₃⁻ (total 1.2 µmol L⁻¹, ¹⁵N fraction labeled 0.16) to ¹⁵NO₂⁻ at maximal rate (0.2 µmol-N L⁻¹ hr⁻¹, see section 3.4) and the product fully exchanges with the ambient ¹⁴NO₂⁻ (10 µmol L⁻¹, ¹⁵N fraction labeled 0.0037), after 2 hours, the ¹⁵N addition to the total

 NO_2^- pool will be 0.0064 µmol L⁻¹:

(Rate of NO₂⁻ production from NO₃⁻ × incubation time × initial fraction labelled of NO₃⁻ × concentration of NO₃⁻) / (concentration of NO₂⁻)

= $(0.2 \ \mu mol-N \ L^{-1} \ hr^{-1} \times 2 \ hr \times 0.16 \times 1 \ \mu mol-N \ L^{-1}) / (10 \ \mu mol-N \ L^{-1}) = 0.0064 \ \mu mol \ L^{-1}$,

and the resulting ¹⁵N fraction (unitless) of NO₂⁻ will be 0.004:

 $(^{15}N \text{ addition to } NO_2^- + \text{initial fraction labelled of } NO_2^- \times \text{initial concentration of } NO_2^-) / (\text{total concentration of } NO_2^-)$

= $(0.0064 \ \mu mol \ L^{-1} + 0.0037 \ \times 10 \ \mu mol \ L^{-1}) / (10 + 0.0064) \ \mu mol \ L^{-1} \approx 0.004.$

15 Assuming 10 nmol-N L⁻¹ hr⁻¹ as the rate of N₂O production from NO₂⁻ reduction (twice as high as the NO₂⁻ \rightarrow N₂O rate shown in fig. 3; ¹⁵N fraction labeled of NO₂⁻ = 0.004), and the initial N₂O concentration as 20 nmol L⁻¹ (described in section 2.2; ¹⁵N fraction labeled of N₂O = 0.0037), after 2 hours, the resulting ¹⁵N fraction of N₂O will be 0.0038:

((¹⁵N fraction labelled of NO₂⁻ × rate of N₂O production from NO₂⁻ × incubation time) + (initial fraction labelled of N₂O × initial concentration of N₂O × molar nitrogen in molar N₂O)) / ((rate of N₂O production from NO₂⁻ × incubation time) + (initial concentration of N₂O × molar nitrogen in molar N₂O))

 $= ((0.004 \times 10 \text{ nmol-N } L^{-1} \text{ hr}^{-1} \times 2 \text{ hr}) + (0.0037 \times 20 \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N } L^{-1} = 0.0038 \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{ nmol-N}_2 \text{O} L^{-1} \times 2 \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O}) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O}) / (10 \times 2 + 20 \times 2) \text{N/N}_2 \text{O})) / (10 \times 2 + 20 \times 2) \text{N$

The calculated ¹⁵N fraction of N₂O (0.0038) is much lower than the measured ¹⁵N fraction of N₂O (> 0.02) in experiment 2H. This means that full exchange of NO_2^- during NO_3^- reduction to N_2O_2 , at maximum possible rates of NO_3^- reduction to $NO_2^$ and N₂O, would yield a rate of N₂O production from NO₃⁻ much lower than observed in the experimental results. Thus, we concluded that the exchange between intracellular and ambient NO_2^- during NO_3^- reduction to N₂O by the denitrifying community in Chesapeake Bay is limited. Such a tight coupling among nitrate reduction, nitrite reduction and nitric oxide reduction suggests the co-occurrence of the respective functional genes and enzymes in the cell of nitrate reducers. Both dissimilatory nitrate and nitrite reducers are able to produce N₂O independently, so total N₂O production can be quantified accurately by separate measurement of NO₃⁻ and NO₂⁻ reduction.

3.4 Oxygen inhibits N₂O production by denitrification

10

5

Oxygen availability may mediate the denitrification response to DIN availability. The incubation experiments demonstrated that potential N₂O production was initiated when external nitrogen sources were added. Therefore, controlling the influx of nitrogen into Chesapeake Bay could mitigate the efflux of N₂O and its environmental and climate impacts. Since the late 20th century, Chesapeake Bay has received increased anthropogenic nitrogen loading from various sources including fertilizer (Groffman et al., 2009), untreated sewage (Kaplan et al., 1978) and atmospheric deposition (Russell et al., 1998; Loughner et al., 2016). The Chesapeake Bay was identified in 1978 as a potential N_2O source due to N_2O 15 supersaturation at the surface (Elkins et al., 1978). Since then, measures have been successfully enforced to control the nitrogen runoff into the bay from the tributaries (Boesch et al., 2001; Program, 2017). The near absence of summertime water column $NO_2^- + NO_3^-$ concentrations near the middle of Chesapeake Bay as shown in this study and others (Lee et al., 2015a) could prevent N₂O emission. Contrary to the studies conducted in the 1970s (Elkins et al., 1978; Kaplan et al., 1978;

McElroy et al., 1978; Elkins et al., 1981), our measurements from July 2016 showed surface N₂O concentration was close to 20 air-saturation, and undersaturation of N₂O within the anoxic layer (Fig. 1d). Assuming N₂O concentration was in steady state, water column N₂O undersaturation is a sign of N₂O consumption, which lowers N₂O flux from the Chesapeake Bay and is an indication of N₂O serving as an electron acceptor during organic matter remineralization. However, N₂O consumption is inhibited by trace amounts of oxygen, and is thus confined within the anoxic layer; the Chesapeake Bay is

unlikely to be a sink for atmospheric N_2O because the downward mixing and molecular diffusion introduce oxygen to the anoxic layer, inhibiting N_2O consumption.

The sensitivities to increasing $[O_2]$ of NO₂⁻ reduction and NO₃⁻ reduction to N₂O were evaluated in samples from July and November 2016 (Fig. 4). The control experiment (anoxic incubation, see Section 3.2) showed a total N₂O production ⁵ rate (from NO₂⁻ plus NO₃⁻ reduction) of 7.5 ±1.2 and 1.28 ± 0.35 nmol-N L⁻¹ hr⁻¹ during July 2016 and November 2016, respectively. Increasing $[O_2]$ generally decreased N₂O production rates from denitrification. In July 2016, under $[O_2] = 0.3$ µmol L⁻¹, N₂O production from NO₂⁻ reduction decreased from 5.4 to 2.5 nmol-N L⁻¹ hr⁻¹, whereas the rate of NO₃⁻ reduction to N₂O production from NO₂⁻ reduction decreased from 5.4 to 2.5 nmol-N L⁻¹ hr⁻¹, significantly inhibited the rate of N₂O production from both NO₂⁻ and NO₃⁻ reduction (Fig. 4a). Note that 6 µmol L⁻¹ $[O_2]$ did not fully inhibit N₂O production from NO₂⁻ reduction, the rate of which was 0.08 nmol-N L⁻¹ hr⁻¹. However, N₂O production from NO₃⁻ reduction was completely inhibited when $[O_2] > 0.6$ µmol L⁻¹. Similar to results from July 2016, in November 2016, increasing $[O_2]$ gradually decreased rates of NO₂⁻ reduction to N₂O; no rates were detected when $[O_2] > 2$ µmol L⁻¹. Rates of NO₃⁻ reduction to N₂O were not detected at $[O_2] > 0$ µmol L⁻¹ (Fig. 4b). A previous study found that NO₃⁻ reduction to N₂O was less oxygen sensitive than NO₂⁻ reduction to N₂O in open ocean oxygen minimum zones (Ji et al., 2015). The reasons for the opposite

15 behavior in Chesapeake Bay are unknown.

Rate of NO₃⁻ reduction to NO₂⁻ was also measured in July 2016 to supplement the sensitivity analysis of denitrification to oxygen. The rate of NO₃⁻ reduction to NO₂⁻ was 100 nmol L⁻¹ hr⁻¹ under anoxic condition. At $[O_2] = 0.3 \mu mol L^{-1}$, the rate doubled, to 200 nmol-N L⁻¹ hr⁻¹ (Fig. 4). Further increase of $[O_2]$ significantly decreased the rate of NO₃⁻ reduction to NO₂⁻. However, at $[O_2] = 6.4 \mu mol L^{-1} NO_3^-$ reduction to NO₂⁻ was still detectable at 0.82 ± 0.06 nmol-N L⁻¹ hr⁻¹ (Fig. 5).

20 These results suggest that the oxic-anoxic interface in the water column is potentially a "hot spot" for N₂O production from denitrification, and that oxygenation of the water column in the Chesapeake Bay, even micro-molar level oxygen, would significantly mitigate N₂O production. Both July 2016 and November 2016 data showed the difference in the effect of oxygen on N₂O production from NO₂⁻ vs. NO₃⁻ reduction. Samples from July 2016 showed 98% and complete inhibition on N₂O production from NO₂⁻ and NO₃⁻ reduction at $[O_2] = 6 \mu mol L^{-1}$, respectively. The November 2016 samples showed 94

5

% and complete inhibition on N₂O production from NO₂⁻ and NO₃⁻ reduction at $[O_2] = 0.4 \mu mol L^{-1}$, respectively. These results can be explained by the differences in physiology among microbial communities mediating these processes. Both nitrifiers and denitrifiers are present in the Chesapeake Bay (Bouskill et al., 2012; Hong et al., 2014) and they are capable of NO₂⁻ reduction to N₂O, whereas NO₃⁻ reduction to N₂O is solely mediated by denitrifiers. Nitrifier denitrification is an important N₂O production pathway occurring under the full range of oxygen environments in agricultural soil (Zhu et al., 2013) and the open ocean (Wilson et al., 2014). Partial denitrification (NO₃⁻ reduction to N₂O) however, is moderately oxygen sensitive. Thus, increasing oxygen inhibits the activities of denitrifiers, as demonstrated in decreasing rates of NO₃⁻ reduction to N₂O (Fig. 3) and NO₃⁻ reduction to NO₂⁻ (Fig. 5). Increasing oxygen does not completely inhibit N₂O production activity of nitrifiers but probably lowers the N₂O production rates by nitrifier denitrification (Zhu et al., 2013).

Nitrification is a possible pathway for N₂O production within the sharp oxycline of the Chesapeake Bay water column. N₂O is produced as a byproduct via aerobic ammonium oxidation under low oxygen conditions (Anderson, 1964). The yield of N₂O (molar ratio of N₂O production to ammonium oxidation) increases with decreasing oxygen (Goreau et al., 1980). Culture (Qin et al., 2017) and field studies (Bristow et al., 2016; Peng et al., 2016) have shown high affinity of oxygen (< 5 µmol L⁻¹) during ammonium oxidation. The main sources of ammonium in the Chesapeake Bay include remineralization of organic matter in the oxygenated water column and sediments (Kemp et al., 1990) and atmospheric deposition (Larsen et al., 2001). Onset of ammonium oxidation is viable at NH₄⁺ concentration < 100 nmol L⁻¹ by the natural ammonia oxidizing

- community (Horak et al., 2013). Thus, N_2O production from ammonium oxidation might be stimulated under low oxygen conditions by influx of ammonium near the oxic-anoxic interface, which deserves future research efforts.
- Moreover, the relatively shallow oxic-anoxic interface means that N₂O produced in the water column could be easily 20 emitted to the atmosphere. In summertime (June to August), the typical depth of the oxic-anoxic interface is 10 – 15 m in the Chesapeake Bay (Taft et al., 1980; Kemp et al., 1992; Lee et al., 2015a). When storm events, boat traffic and surface cooling disturb the water column stratification, intermittent release of N₂O to the atmosphere could occur.

4 Conclusion and outlook

The Chesapeake Bay is a potential N₂O source via denitrification when NO₃⁻ and NO₂⁻ are present in low oxygen waters. Nitrogen (absolute and relative concentrations of NO₃⁻ and NO₂⁻) and oxygen availabilities control N₂O production in the water column of Chesapeake Bay. Therefore the seasonal variation of nitrogen and oxygen availabilities (Lee et al., 2015a) drive the seasonal variation in denitrifying community size, as shown by *nirS* gene abundance, and associated potential N₂O production rates. The rate and occurrence of N₂O production vary greatly between seasons; thus the annual rate of N₂O production and consumption by the Bay and other estuarine systems is very difficult to estimate. The inhibition of N₂O production by oxygen highlights the positive outcomes of re-oxygenation of the Chesapeake Bay. When elevated primary production in the surface layer is fueled by nitrogen input, aerobic remineralization at depth consumes oxygen

- 10 rapidly. In summertime, water column stratification restricts influx of oxygen to depth, creating seasonal anoxia/hypoxia in the Bay. The documented eutrophication and expansion of anoxia/hypoxia in the Chesapeake Bay in the late 20th century attracted public attention because of increasing mortality of organisms with high commercial and recreational value (Cooper and Brush, 1993). Moreover, expansion of the volume of low oxygen waters will result in more "hot spots" for N₂O production. The key factor of mitigating anoxia is to control the nitrogen input to the bay (Hagy et al., 2004; Zhou et al.,
- 15 2014). This can be achieved by collaborative efforts of effective fertilizer application, sewage treatment, and natural nitrogen removal by microbial denitrification/anammox and plant uptake. Reducing the nitrogen input into estuaries such as the Chesapeake Bay will help mitigate N₂O efflux: In the short-term, nitrogen sources (NH₄⁺, NO₂⁻ and NO₃⁻) for N₂O production will be decreased. In the long run, eutrophication will be alleviated, which will re-oxygenate the water column, and inhibit N₂O production.

Figure 1: Depth profiles on three sampling dates, July 19, 2016 (black square), November 17, 2016 (cross), May 3, 2017 (grey circle) of a) salinity, b) temperature, c) oxygen, d) nitrous oxide, e) nitrate, f) nitrite. Analysis of *nirS* gene abundance (g) was only conducted at one depth, at which incubations were also performed, during each trip.

5

Figure 2: Abundances of *nirS* gene and total N₂O production rates (from nitrate plus nitrite reduction) at three sampling times. The *nirS* gene abundances were analyzed at 14, 17 and 19 m during July 2016, November 2016 and May 2017, respectively. The total N₂O production rates were measured in the control experiment (helium-flushed anoxic incubation) at 12, 17 and 19 m during July 2016, November 2016 and May 2017, respectively.

Figure 3: Ratio of rates of N_2O production from NO_2^- reduction and NO_3^- reduction plotted with the respective ratio of NO_2^- to NO_3^- concentration in the DIN manipulation experiment from July 2016 sampling. Log scale on both axes is for clarity at the low values.

Figure 4: Rates of N₂O production from NO₂⁻ reduction (orange circles), NO₃⁻ reduction (green squares) and combined NO₂⁻ and NO₃⁻ reduction (black diamonds) under increasing oxygen concentrations in July 2016 (a) and November 2016 (b). The standard deviation of rates in most of the samples were small so that error bars are not visible. Note the scale break at 2 µmol L⁻¹ O₂ on x-axis.

Figure 5: Rates of NO₂⁻ production from NO₃⁻ reduction under increasing oxygen concentrations. Error bar indicates the standard

5 deviation of rates from linear regression of three time points (n=7).

5

Experiment	Experiment ID	¹⁵ NO ₂ ⁻ (μM)	¹⁵ NO3 ⁻ (µM)	¹⁴ NO ₂ ⁻ (μM)	¹⁴ NO3 ⁻ (μM)	NO2 ⁻ :NO3 ⁻	¹⁵ N fraction label (species)	Ο ₂ (μΜ)
Control	1-A	5			5	1:1	0.99 (NO ₂ ⁻)	0
(July 2016)	1-B		5	5		1:1	0.99 (NO3 ⁻)	0
Nitrogen	2-A	0.2		1	10	1.2:10	0.16 (NO ₂ ⁻)	0
manipulation	2-B		0.2	1	10	1:10.2	0.016 (NO ₃ ⁻)	0
(July 2016)	2-C	0.2		1	3	1.2:3	0.16 (NO ₂ ⁻)	0
/	2-D		0.2	1	3	1: 3.2	0.06 (NO ₃ ⁻)	0
	2-E	0.2		3	1	3.2:1	0.06 (NO ₂ ⁻)	0
	2-F		0.2	3	1	3:1.2	0.16 (NO ₃ ⁻)	0
	2-G	0.2		10	1	10.2 : 1	0.016 (NO ₂ ⁻)	0
	2-Н		0.2	10	1	10:1.2	0.16 (NO ₃ -)	0
Oxygen	3-A	5			5	1:1	0.99 (NO ₂ ⁻)	0.3
manipulation	3-B		5	5		1:1	0.99 (NO ₃ -)	0.3
(July 2016)	3-C	5			5	1:1	0.99 (NO ₂ -)	0.6
	3-D		5	5		1:1	0.99 (NO3 ⁻)	0.6
	3-E	5			5	1:1	0.99 (NO ₂ -)	1.3
	3-F		5	5		1:1	0.99 (NO3 ⁻)	1.3
	3-G	5			5	1:1	0.99 (NO2 ⁻)	2.6
	3-Н		5	5		1:1	0.99 (NO3 ⁻)	2.6
	3-I	5			5	1:1	0.99 (NO2 ⁻)	6.4
	3-J		5	5		1:1	0.99 (NO ₃ -)	6.4
Control	4-A	5		0.4	10	0.54:1	0.93 (NO2 ⁻)	0
(November 2016)	4-B		5	5.4	5	0.54:1	0.50 (NO ₃ ⁻)	0
Oxygen	5-A	5		0.4	10	0.54:1	0.93 (NO2 ⁻)	0.2
manipulation	5-B		5	5.4	5	0.54:1	0.50 (NO3 ⁻)	0.2
(November 2016)	5-C	5		0.4	10	0.54:1	0.93 (NO ₂ -)	0.4
	5-D		5	5.4	5	0.54:1	0.50 (NO3 ⁻)	0.4
	5-E	5		0.4	10	0.54:1	0.93 (NO ₂ -)	1.9
	5-F		5	5.4	5	0.54:1	0.50 (NO3 ⁻)	1.9
	5-G	5		0.4	10	0.54:1	0.93 (NO2 ⁻)	4.2
	5-H		5	5.4	5	0.54:1	0.50 (NO3 ⁻)	4.2
	5-I	5		0.4	10	0.54:1	0.93 (NO2 ⁻)	7.3
	5-J		5	5.4	5	0.54:1	0.50 (NO3 ⁻)	7.3

Table 1: Parameters for control, nitrogen manipulation and oxygen manipulation incubation experiments in July 2016 and November 2016 sampling. The unit " μ mol L⁻¹" is represented by " μ M". Shaded columns highlight the concentrations for ¹⁵N tracers. In situ nitrate and nitrite concentrations in July 2016 were < 0.02 μ mol L⁻¹, and in November 2016 the concentrations were 5.0 and 0.4 μ mol L⁻¹, repectively.

5 Funding Sources and Acknowledgements

This work is supported by the following funding sources: The PEI Grand Challenges – Control of Microbial Nitrous Oxide

Production in Coastal Waters to B.B.W.. National Science Foundation (OCE 1427019) to J.C.C.. German Academic

Exchange Service Postdoctoral Researchers International Mobility Experience fellowship to C.F. The authors would like to

5 thank Michael Owens at Horn Point Laboratory for his assistance with field research equipment. We thank Sergey Oleynik for technical assistance during laboratory analysis.

6 References

Anderson, J. H.: The metabolism of hydroxylamine to nitrite by Nitrosomonas, Biochem. J., 91, 8-17, 1964.

Arp, D. J., and Stein, L. Y.: Metabolism of inorganic N compounds by ammonia-oxidizing bacteria, Crit Rev Biochem Mol Biol, 38, 471-10 495, doi:10.1080/10409230390267446, 2003.

Baird, D., Ulanowicz, R. E., and Boynton, W. R.: Seasonal Nitrogen Dynamics in Chesapeake Bay: a Network Approach, Estuar. Coast. Shelf Sci., 41, 137-162, doi:10.1006/ecss.1995.0058, 1995.

15

Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Grimm, N. B., Johnson, S. L., McDowell, W. H., Poole, G. C., Valett, H. M., Arango, C. P., Bernot, M. J., Burgin, A. J., Crenshaw, C. L., Helton, A. M., Johnson, L. T., O'Brien, J. M., Potter, J. D., Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci. U.S.A., 108, 214-219, doi:10.1073/pnas.1011464108, 2011.

20

Boesch, D. F., Brinsfield, R. B., and Magnien, R. E.: Chesapeake Bay Eutrophication, J. Environ. Qual., 30, 303-320, doi:10.2134/jeq2001.302303x, 2001.

25 Bouskill, N. J., Eveillard, D., Chien, D., Javakumar, A., and Ward, B. B.: Environmental factors determining ammonia-oxidizing organism distribution and diversity in marine environments, Environ. Microbiol., 14, 714-729, doi:10.1111/j.1462-2920.2011.02623.x, 2012.

Boynton, W. R., Garber, J. H., Summers, R., and Kemp, W. M.: Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries, Estuaries, 18, 285-314, doi:10.2307/1352640, 1995.

30

40

Braman, R. S., and Hendrix, S. A.: Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection, Anal. Chem., 61, 2715-2718, doi:10.1021/ac00199a007, 1989.

Bristow, L. A., Dalsgaard, T., Tiano, L., Mills, D. B., Bertagnolli, A. D., Wright, J. J., Hallam, S. J., Ulloa, O., Canfield, D. E., and 35 Revsbech, N. P.: Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters, Proc. Natl. Acad. Sci. U.S.A., 113, 10601-10606, doi:10.1073/pnas.1600359113, 2016.

Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéé R.B. Myneni, Piao, S., and Thornton, P.: Carbon and Other Biogeochemical Cycles, Cambridge, United Kingdom and New York, NY, USA, 465–570, 2013.

Cooper, S. R., and Brush, G. S.: A 2,500-Year History of Anoxia and Eutrophication in Chesapeake Bay, Estuaries, 16, 617-626, doi:10.2307/1352799, 1993.

Dürr, H. H., Laruelle, G. G., van Kempen, C. M., Slomp, C. P., Meybeck, M., and Middelkoop, H.: Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans, Estuaries Coasts, 34, 441-458, doi:10.1007/s12237-011-9381-y, 2011.

5 Eggleston, E. M., Lee, D. Y., Owens, M. S., Cornwell, J. C., Crump, B. C., and Hewson, I.: Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary, Environ. Microbiol., 17, 2306-2318, doi:10.1111/1462-2920.12690, 2015.

Elkins, J. W., Steven C. Wofsy, Michael B. Mcelroy, Charles E. Kolb, and Kaplan, W. A.: Aquatic sources and sinks for nitrous oxide, Nature, 275, 602-606, doi:10.1038/275602a0, 1978.

10

Elkins, J. W., Wofsy, S. C., McElroy, M. B., and Kaplan, W. A.: Nitrification and Production of N2O in the Potomac: Evidence for Variability, in: Estuaries and Nutrients, edited by: Neilson, B. J., and Cronin, L. E., Humana Press, Totowa, NJ, 447-464, 1981.

Frame, C. H., and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammoniaoxidizing bacterium, Biogeosciences, 7, 2695-2709, doi:10.5194/bg-7-2695-2010, 2010.

Garcia, H. E., and Gordon, L. I.: Oxygen solubility in seawater: Better fitting equations, Limnol. Oceanogr., 37, 1307-1312, doi:10.4319/lo.1992.37.6.1307, 1992.

20 Garside, C.: A chemiluminescent technique for the determination of nanomolar concentrations of nitrate and nitrite in seawater, Mar. Chem., 11, 159-167, doi:10.1016/0304-4203(82)90039-1, 1982.

Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W.: Production of NO₂⁻ and N₂O by nitrifying bacteria at reduced concentrations of oxygen, Appl. Environ. Microbiol., 40, 526-532, 1980.

25

Graf, D. R. H., Jones, C. M., and Hallin, S.: Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions, PLOS ONE, 9, e114118, doi:10.1371/journal.pone.0114118, 2014.

Groffman, P. M., Williams, C. O., Pouyat, R. V., Band, L. E., and Yesilonis, I. D.: Nitrate leaching and nitrous oxide flux in urban forests and grasslands, J. Environ. Qual., 38, 1848-1860, doi:10.2134/jeq2008.0521, 2009.

Hagy, J. D., Boynton, W. R., Keefe, C. W., and Wood, K. V.: Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow, Estuaries, 27, 634-658, doi:10.1007/BF02907650, 2004.

35 Hansen, H. P., and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, Wiley-VCH Verlag GmbH, 159-228, 2007.

Hong, Y., Xu, X., Kan, J., and Chen, F.: Linking seasonal inorganic nitrogen shift to the dynamics of microbial communities in the Chesapeake Bay, Appl Microbiol Biotechnol, 98, 3219, doi:10.1007/s00253-013-5337-4, 2014.

40 Horak, R. E. A., Qin, W., Schauer, A. J., Armbrust, E. V., Ingalls, A. E., Moffett, J. W., Stahl, D. A., and Devol, A. H.: Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea, ISME J, 7, 2023-2033, doi:10.1038/ismej.2013.75, 2013.

Jayakumar, A., O'Mullan, G. D., Naqvi, S. W. A., and Ward, B. B.: Denitrifying Bacterial Community Composition Changes Associated with Stages of Denitrification in Oxygen Minimum Zones, Microb. Ecol., 58, 350-362, doi:10.1007/s00248-009-9487-y, 2009.

Jayakumar, A., Peng, X., and Ward, B. B.: Community composition of bacteria involved in fixed nitrogen loss in the water column of two major oxygen minimum zones in the ocean, Aquatic Microbial Ecology, 70, 245-259, doi:10.3354/ame01654, 2013.

50 Ji, Q., Babbin, A. R., Jayakumar, A., Oleynik, S., and Ward, B. B.: Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone, Geophys. Res. Lett, 42, 10,755-710,764, doi:10.1002/2015GL066853, 2015.

Kana, T. M., Cornwell, J. C., and Zhong, L.: Determination of Denitrification in the Chesapeake Bay from Measurements of N₂ Accumulation in Bottom Water, Estuaries Coasts, 29, 222-231, 2006.

Kaplan, W. A., Elkins, J. W., Kolb, C. E., McElroy, M. B., Wofsy, S. C., and Durán, A. P.: Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste, Pure Appl. Geophys., 116, 423-438, doi:10.1007/bf01636897, 1978.

5 Kartal, B., Maalcke, W. J., de Almeida, N. M., Cirpus, I., Gloerich, J., Geerts, W., Op den Camp, H. J. M., Harhangi, H. R., Janssen-Megens, E. M., Francoijs, K.-J., Stunnenberg, H. G., Keltjens, J. T., Jetten, M. S. M., and Strous, M.: Molecular mechanism of anaerobic ammonium oxidation, Nature, 479, 127-130, doi:10.1038/nature10453, 2011.

Kemp, W., Sampou, P., Caffrey, J., Mayer, M., Henriksen, K., and Boynton, W. R.: Ammonium recycling versus denitrification in 10 Chesapeake Bay sediments, Limnol. Oceanogr., 35, 1545-1563, 1990.

Kemp, W. M., Sampou, P. A., Garber, J., Tuttle, J., and Boynton, W. R.: Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes, Mar. Ecol. Prog. Ser., 85, 137-152, 1992.

15 Larsen, R. K., Steinbacher, J. C., and Baker, J. E.: Ammonia exchange between the atmosphere and the surface waters at two locations in the Chesapeake Bay, Environ. Sci. Technol., 35, 4731-4738, doi:10.1021/es0107551, 2001.

Lee, D. Y., Owens, M. S., Crump, B. C., and Cornwell, J. C.: Elevated microbial CO2 production and fixation in the oxic/anoxic interface of estuarine water columns during seasonal anoxia, Estuar. Coast. Shelf Sci., 164, 65-76, doi:10.1016/j.ecss.2015.07.015, 2015a.

20

Lee, D. Y., Owens, M. S., Doherty, M., Eggleston, E. M., Hewson, I., Crump, B. C., and Cornwell, J. C.: The Effects of Oxygen Transition on Community Respiration and Potential Chemoautotrophic Production in a Seasonally Stratified Anoxic Estuary, Estuaries Coasts, 38, 104-117, doi:10.1007/s12237-014-9803-8, 2015b.

25 Loughner, C. P., Tzortziou, M., Shroder, S., and Pickering, K. E.: Enhanced dry deposition of nitrogen pollution near coastlines: A case study covering the Chesapeake Bay estuary and Atlantic Ocean coastline, J. Geophys. Res.: Atmos., 121, 14,221-214,238, doi:10.1002/2016JD025571, 2016.

McElroy, M. B., Elkins, J. W., Wofsy, S. C., Kolb, C. E., Durán, A. P., and Kaplan, W. A.: Production and release of N2O from the 30 Potomac Estuary 1, Limnol. Oceanogr., 23, 1168-1182, doi:10.4319/lo.1978.23.6.1168, 1978.

McIlvin, M. R., and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater, Anal. Chem., 77, 5589-5595, doi:10.1021/ac050528s, 2005.

35 Moir, J. W. B., and Wood, N. J.: Nitrate and nitrite transport in bacteria, Cell. Mol. Life Sci., 58, 215-224, doi:10.1007/PL00000849, 2001.

Peng, X., Fuchsman, C. A., Jayakumar, A., Warner, M. J., Devol, A. H., and Ward, B. B.: Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls, J. Geophys. Res.: Oceans, 121, 1667-1684, doi:10.1002/2015JC011455, 2016.

40 Poth, M., and Focht, D. D.: (15)N Kinetic Analysis of N(2)O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification, Appl. Environ. Microbiol., 49, 1134-1141, 1985.

Nitrogen Loads to the Chesapeake Bay by Source: <u>http://www.chesapeakeprogress.com/clean-water/watershed-implementation-plans</u>, access: August 28, 2017.

45 Qin, W., Meinhardt, K. A., Moffett, J. W., Devol, A. H., Virginia Armbrust, E., Ingalls, A. E., and Stahl, D. A.: Influence of oxygen availability on the activities of ammonia-oxidizing archaea, Environ. Microbiol. Rep., 9, 250-256, doi:10.1111/1758-2229.12525, 2017.

Ravishankara, A., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century, Science, 326, 123-125, 2009.

50

Rich, J. J., Dale, O. R., Song, B., and Ward, B. B.: Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments, Microb. Ecol., 55, 311-320, doi:10.1007/s00248-007-9277-3, 2008.

Russell, K. M., Galloway, J. N., Macko, S. A., Moody, J. L., and Scudlark, J. R.: Sources of nitrogen in wet deposition to the Chesapeake 55 Bay region, Atmos. Environ., 32, 2453-2465, doi:10.1016/S1352-2310(98)00044-2, 1998.

Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic Signature of N2O Produced by Marine Ammonia-Oxidizing Archaea, Science, 333, 1282-1285, doi:10.1126/science.1208239, 2011.

Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F.: Glacial-interglacial and millennialscale variations in the atmospheric nitrous oxide concentration during the last 800,000 years, Quat. Sci. Rev., 29, 182-192, doi:10.1016/j.quascirev.2009.03.011, 2010.

Seitzinger, S. P., and Kroeze, C.: Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Glob. Biogeochem. Cycles, 12, 93-113, doi:10.1029/97GB03657, 1998.

10

Taft, J. L., Taylor, W. R., Hartwig, E. O., and Loftus, R.: Seasonal oxygen depletion in Chesapeake Bay, Estuaries, 3, 242-247, doi:10.2307/1352079, 1980.

Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G., Weiss, R. F., Tohjima, Y., Nakazawa, T.,
Krummel, P. B., Steele, L. P., Fraser, P., O'Doherty, S., Ishijima, K., and Aoki, S.: Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, Atmos. Chem. Phys., 14, 1801-1817, doi:10.5194/acp-14-1801-2014, 2014.

Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S., and Sigman, D. M.: Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method, Rapid Commun. Mass Spectrom., 30, 1365-1383, doi:10.1002/rcm.7570, 2016.

20

Weiss, R. F., and Price, B. A.: Nitrous oxide solubility in water and seawater, Mar. Chem., 8, 347-359, doi:10.1016/0304-4203(80)90024-9, 1980.

Wilson, S. T., del Valle, D. A., Segura-Noguera, M., and Karl, D. M.: A role for nitrite in the production of nitrous oxide in the lower euphotic zone of the oligotrophic North Pacific Ocean, Deep-Sea Res. I, 85, 47-55, doi:10.1016/j.dsr.2013.11.008, 2014.

Zhou, Y., Scavia, D., and Michalak, A. M.: Nutrient loading and meteorological conditions explain interannual variability of hypoxia in Chesapeake Bay, Limnol. Oceanogr., 59, 373-384, doi:10.4319/lo.2014.59.2.0373, 2014.

30 Zhu, X., Burger, M., Doane, T. A., and Horwath, W. R.: Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability, Proc. Natl. Acad. Sci. U.S.A., 110, 6328-6333, doi:10.1073/pnas.1219993110, 2013.