

Supplemental Online Material

Description of model algorithms:

1. DayCENT model

N₂O emission from nitrification (F_{nt} , g N m⁻² day⁻¹):

$$F_{nt} = k_1 R_{nt} \quad (S1)$$

$$R_{nt} = Net_m k_2 + k_{max} C_{NH_4^+} f_{nt}(T_s) f_{nt}(WFPS) f_{nt}(pH) \quad (S2)$$

$$f_{nt}(T_s) = \exp(-0.03(T_s - T_{opt})^2) \quad (S3)$$

$$f_{nt}(WFPS) = \left(\frac{WFPS-b}{a-b} \right)^{\frac{d(b-a)}{a-c}} \left(\frac{WFPS-c}{a-c} \right) \quad (S4)$$

$$f_{nt}(pH) = 0.56 + \arctan(0.45(-5 + pH)/pi)/pi \quad (S5)$$

where R_{nt} is the rate of nitrification (g N m⁻² day⁻¹); k_1 is the fraction of nitrified N lost as N₂O flux; Net_m is the daily net N mineralization from soil organic matter (kg N m⁻² day⁻¹); k_2 is the fraction of net mineralization that is assumed to be nitrified each day; $C_{NH_4^+}$ is soil ammonium content (g N m⁻²); k_{max} is the maximum fraction of ammonium nitrified and is set to 0.10 day⁻¹; $f_{nt}(T_s)$, $f_{nt}(WFPS)$ and $f_{nt}(pH)$ are the effect of soil temperature, water and soil pH on nitrification, respectively; T_s and $WFPS$ are soil temperature (°C) and soil water-filled pore space (%); T_{opt} is soil optimal temperature for nitrification and is set to 25°C; Parameter a, b, c, d are 0.55, 1.70, -0.007, 3.22 respectively for sandy soil, and 0.60, 1.27, 0.0012, 2.84 respectively for medium-textured soil (Parton et al., 1996, 2001);

N₂O emission from denitrification (F_{dn} , g N m⁻² day⁻¹):

$$F_{dn} = D_{ttl}/(1 + R_{N_2/N_2O}) \quad (S6)$$

$$D_{ttl} = \min(f_{dn}(NO_3^-), f_{dn}(CO_2)) f_{dn}(WFPS) \quad (S7)$$

$$R_{N_2/N_2O} = f_r(R_{NC}) f_r(WFPS) \quad (S8)$$

$$f_{dn}(NO_3^-) = 1.15(C_{NO_3^-})^{0.57} \quad (S9)$$

$$f_{dn}(CO_2) = 0.1(CO_2)^{1.3} \quad (S10)$$

$$f_{dn}(WFPS) = 0.5 \arctan(0.6pi(0.1WFPS - \alpha))/pi \quad (S11)$$

$$f_r(R_{NC}) = \max(0.16k_1, k_1 e^{-0.8R_{NC}}) \quad (S12)$$

$$R_{NC} = C_{NO_3^-}/CO_2 \quad (S13)$$

$$k_1 = \max(1.7, 38.4 - 350Diff_{FC}) \quad (S14)$$

$$Diff_{FC} = \alpha WFPS + \beta \quad (S15)$$

$$f_r(CO_2) = 13 + 30.78 \arctan(0.07(CO_2 - 13)/pi)/pi \quad (S16)$$

$$f_r(WFPS) = 1.4/13^{(17/(13^{2.2WFPS}))} \quad (S17)$$

where D_{ttl} is total nitrogen gas (N₂O and N₂) (g N ha⁻¹ day⁻¹) from denitrification; R_{N_2/N_2O} is the ratio of N₂ and N₂O;

$f_{dn}(NO_3^-)$ and $f_{dn}(CO_2)$ are, respectively, the maximum total N gas fluxes ($\text{g N ha}^{-1} \text{ day}^{-1}$) for a given soil nitrate level and respiration rate; $f_{dn}(WFPS)$ is the effect of WFPS on denitrification rate; $f_r(R_{NC})$ is used to estimate the ratio of $\text{N}_2/\text{N}_2\text{O}$ based on the ratio (R_{NC}) of soil nitrate content and soil respiration; $f_r(WFPS)$ are the effect of soil nitrate and soil respiration and WFPS on the ratio of N_2 and N_2O ; CO_2 is soil respiration rate ($\text{kg C ha}^{-1} \text{ day}^{-1}$); k_1 is a parameter controlling the maximum value of the $\text{N}_2/\text{N}_2\text{O}$ ratio function; $Diff_{FC}$ is a gas diffusion coefficient (Parton et al., 1996); Parameter α, β are $-0.375, 0.233$, respectively for sandy soil, and $-0.464, 0.145$, respectively, for medium-textured soil (Del Grosso et al., 2000; Parton et al., 1996, 2001).

2. DNDC model

40 N_2O emission from nitrification (F_{nt} , $\text{g N m}^{-3} \text{ day}^{-1}$):

$$F_{nt} = 0.0006R_{nt}f_{nt}(T_s)WFPS \quad (\text{S18})$$

$$R_{nt} = R_{nt,max}C_{NH_4^+}B_n pH \quad (\text{S19})$$

$$R_g = R_{g,max}(DOC/(1+DOC) + f_{nt}(M_s)/(1+f_{nt}(M_s))) \quad (\text{S20})$$

$$R_d = R_{d,max}B_n/(5+DOC)/(1+f_{nt}(M_s)) \quad (\text{S21})$$

$$R_b = (R_g - R_d)B_n f_{nt}(T_s) f_{nt}(M_s) \quad (\text{S22})$$

$$f_{nt}(T_s) = ((60 - T_s)/25.78)^{3.503} e^{(3.503(T_s - 34.22)/25.78)} \quad (\text{S23})$$

$$f_{nt}(M_s) = \begin{cases} 1.01 - 0.21WFPS & WFPS > 0.05 \\ 0 & WFPS \leq 0.05 \end{cases} \quad (\text{S24})$$

where R_{nt} and $R_{nt,max}$ are relative and maximum nitrification rate (l h^{-1}), respectively; B_n is biomass of nitrifier (kg C ha^{-1}); R_g is relative growth rate of nitrifier; $R_{g,max}$ is maximum growth rate of nitrifier (4.87 l day^{-1} , Blagodatsky and Richter, 1998); DOC is concentration of dissolved organic C (kg C ha^{-1}); R_d is relative death rate of nitrifier; $R_{d,max}$ is maximum death rate of nitrifier (1.44 l day^{-1} , Blagodatsky and Richter, 1998); R_b is net increase in nitrifiers biomass; pH is soil pH; $f_{nt}(T_s)$ and $f_{nt}(M_s)$ are the factors of soil temperature and soil moisture, respectively.

N_2O emission from denitrification (F_{dn} , $\text{g N m}^{-3} \text{ day}^{-1}$):

$$\mu_{NO_x} = \mu_{NO_x,m} DOC/(K_c + DOC)C_{NO_x}/(K_n + C_{NO_x}) \quad (\text{S25})$$

$$\mu_{g,t} = f_{dn}(T_s)(\mu_{NO_3}f_{pH1} + \mu_{NO_2}f_{pH2} + \mu_{NO}f_{pH2} + \mu_{N_2O}f_{pH3}) \quad (\text{S26})$$

$$F_{dn} = V_{diff}(C_{N_2O} + R_{N_2O,p} - R_{N_2O,c}) \quad (\text{S27})$$

$$V_{diff} = D_m AFPS(1 - ANVF)F_{clay}2^{T_s/20} \quad (\text{S28})$$

$$F_{clay} = 0.13 - 0.079C_{clay} \quad (\text{S29})$$

$$f_{dn}(T_s) = 2^{(T_s - 22.5)/10} \quad (\text{S30})$$

$$f_{pH1} = 1 - 1/(1 + e^{(pH - 4.25)/0.5}) \quad (\text{S31})$$

$$f_{pH2} = 1 - 1/(1 + e^{(pH - 5.25)/1.0}) \quad (\text{S32})$$

$$f_{pH3} = 1 - 1/(1 + e^{(pH-6.25)/1.5}) \quad (S33)$$

$$R_g = R_{g,t} B_d \quad (S34)$$

$$R_d = M_c Y_c B_d \quad (S35)$$

$$R_c = (R_{g,t}/Y_c + M_c) B_d \quad (S36)$$

$$R_{NO_x} = (\mu_{NO_x}/Y_{NO_x} + M_{NO_x} C_{NO_x}/C_N) B_d \quad (S37)$$

where μ_{NO_x} and $\mu_{NO_x,m}$ are the relative and maximum growth rate of NO_x denitrifier ($l\ h^{-1}$), respectively; C_{NO_x} is the concentration of NO_x ($kg\ N\ m^{-3}$); DOC is soluble C concentration ($kg\ C\ m^{-3}$); K_c and K_n are respectively half-saturation value of soluble carbon and N oxides ($0.017\ kg\ C\ m^{-3}$ and $0.083\ kg\ N\ m^{-3}$, Shan and Coulman, 1978); $\mu_{g,t}$ is the relative growth rate of total denitrifier ($l\ h^{-1}$); μ_{NO_3} , μ_{NO_2} , μ_{NO} and μ_{N_2O} are relative growth rate of NO_3^- , NO_2^- , NO and N_2O denitrifiers ($l\ h^{-1}$), respectively; f_{pH1} , f_{pH2} and f_{pH3} are pH factors for NO_3^- , NO_2^- , NO and N_2O denitrifiers, respectively; V_{diff} is the gas diffusion factor of N_2O (%); C_{N_2O} , $R_{N_2O,p}$ and $R_{N_2O,c}$ are initial concentration ($g\ N\ m^{-3}$), production and consumption rate ($g\ N\ m^{-3}\ day^{-1}$) of N_2O , respectively; D_m is maximum diffusion rate in air ($m^2\ h^{-1}$); AFPS is air-filled porosity (%); ANVF is volumetric fraction of anaerobic microsites; F_{clay} is clay factor; C_{clay} is clay fraction in soil; R_g is the growth rate of total denitrifier ($l\ h^{-1}$); B_d is denitrifier biomass ($kg\ C\ m^{-3}$); R_d is denitrifier death rate ($l\ h^{-1}$); M_c is maintenance coefficient on carbon ($0.0076\ kg\ N\ kg^{-1}\ h^{-1}$, Van Verseveld et al., 1977); Y_c is maximum growth rate of denitrifier on soluble carbon ($0.503\ kg\ C\ kg^{-1}\ C$, Van Verseveld et al., 1977); R_c is consumption rate of soluble carbon ($kg\ C\ m^{-3}\ h^{-1}$). Y_{NO_x} is maximum growth rate on N oxides ($kg\ N\ kg^{-1}\ C$); M_{NO_x} maintainance coefficient on N oxides ($kg\ N\ kg^{-1}\ C$); C_N is the concentration of all NO_x ($kg\ N\ m^{-3}$).

80

3. DLEM model

N_2O emission from nitrification (F_{nt} , $g\ N\ m^{-3}\ day^{-1}$):

$$F_{nt} = 0.001 R_{nt} (10^{0.026vwc/\emptyset-1.66}) / (1 + 10^{0.026vwc/\emptyset-1.66}) \quad (S38)$$

$$R_{nt} = \min(R_{pnt}, C_{NH_4^+}) \quad (S39)$$

$$R_{pnt} = V_{nt,max} C_{NH_4^+} / (C_{NH_4^+} + Km_{nt}) f_{nt}(T_s) f_{nt}(vwc) \quad (S40)$$

$$f_{nt}(T_s) = Q_{10,nt}^{((T_s-T_{opt,nt})/10)} \quad (S41)$$

$$f_{nt}(vwc) = \begin{cases} 1.17 vwc/vwc_{fc} + 0.165 & vwc < vwc_{fc} \\ 1 - 0.1 vwc/vwc_{fc} & vwc \geq vwc_{fc} \end{cases} \quad (S42)$$

where R_{nt} is the rate of nitrification ($g\ N\ m^{-3}\ day^{-1}$); vwc and \emptyset are soil volumetric water content and porosity, respectively; R_{pnt} is the potential nitrification rate ($g\ N\ m^{-3}\ day^{-1}$); $C_{NH_4^+}$ is soil ammonium content($g\ N\ m^{-3}$); $V_{nt,max}$ is potential nitrification rate without limitation ($g\ N\ m^{-3}\ day^{-1}$); $f_{nt}(T_s)$ and $f_{nt}(vwc)$ are respectively the effect of soil temperature and water on nitrification; vwc_{fc} is the volumetric water content at field capacity; $Q_{10,nt}$ is the temperature sensitiviy of nitrification, which is set to 2; $T_{opt,nt}$ is the optimum temperature for nitrification, which is set to $20^\circ C$ (Tian et al., 2010).

N₂O emission from denitrification (F_{dn} , g N m⁻³ day⁻¹):

$$F_{dn} = R_{dn}(10^{0.026vw/0-1.66})/(1 + 10^{0.026vw/0-1.66}) \quad (S43)$$

$$R_{dn} = \min(R_{pdn}, C_{NO_3^-}) \quad (S44)$$

$$R_{pdn} = V_{dn,max} C_{NO_3^-} / (C_{NO_3^-} + Km_{dn}) f_{dn}(T_s) f_{dn}(vw) \quad (S45)$$

$$f_{dn}(T_s) = Q_{10,dn}^{((T_s - T_{opt,dn})/10)} \quad (S46)$$

$$f_{dn}(vw) = \begin{cases} 0.0 & vw < vwc_{fc} \\ vw/vwc_{fc} & vw \geq vwc_{fc} \end{cases} \quad (S47)$$

where R_{dn} is the actual rate of denitrification (g N m⁻³ day⁻¹); R_{pdn} is the potential rate of denitrification (g N m⁻³ day⁻¹);

$C_{NO_3^-}$ is soil nitrate content (g N m⁻³); $V_{dn,max}$ is the potential rate of denitrification without limitation (g N m⁻³ day⁻¹);

$f_{dn}(T_s)$ and $f_{dn}(vw)$ are respectively the effect of soil temperature and water on denitrification; $Q_{10,dn}$ is the temperature sensitivity of denitrification, which is set to 3; $T_{opt,dn}$ is the optimum temperature for denitrification, which is set to 25°C (Tian et al., 2010).

105 4. DyN model

N₂O emission from nitrification (F_{nt} , g N m⁻² day⁻¹):

$$F_{nt} = r_{nt} R_{nt} f_{st,diff} (1 - C_w) \quad (S48)$$

$$R_{nt} = F_{max} f_{st,nt} C_{NH_4^+, aerobic} \quad (S49)$$

$$f_{st,diff} = \min(1, \exp(308.56(1/71.02 - 1/(T_s + 46.02)))) \quad (S50)$$

$$f_{st,nt} = \text{pow}((70 - T_s)/(70 - 38), 12) \exp(12(T_s - 38)/(70 - 38)) \quad (S51)$$

where R_{nt} is the rate of nitrification (kg N m⁻³ day⁻¹); r_{nt} is the ratio of N₂O production from nitrification; $f_{st,diff}$ is the effect of soil temperature on diffusion of N₂O from soil into air; C_w is soil water content; F_{max} is the maximum fraction of ammonium nitrified; $f_{st,nt}$ is temperature factor for nitrification; $C_{NH_4^+, aerobic}$ is soil ammonium content (mg N kg⁻¹) in aerobic microsites of soil layer (Xu et al., 2008).

115 N₂O emission from denitrification (F_{dn} , g N m⁻³ day⁻¹):

$$F_{dn} = r_{dn} f_{st,dn} N_2 f_{st,diff} (1 - C_w) \quad (S52)$$

$$N_2 = DN_{max} f_{st,dn} NO_2^- / (NO_2^- + K_n) \quad (S53)$$

$$NO_2^- = DN_{max} f_{st,dn} NO_3^- / (NO_3^- + K_n) \quad (S54)$$

$$DN_{max} = LCA / (LCA + K_c) \quad (S55)$$

$$f_{st,dn} = \exp(1, \exp(308.56(1/68.02 - 1/(T_s + 46.02)))) \quad (S56)$$

where N_2 is the rate of transformation of nitrite to N₂ (g N m⁻³ day⁻¹); r_{dn} is the ratio of N₂O production from denitrification;

$f_{st,dn}$ is temperature factor for denitrification; DN_{max} is the maximum rate of denitrification (g N m⁻³ day⁻¹); NO_2^- is the transformation of nitrate to nitrite (g N m⁻³ day⁻¹); NO_3^- is the availability of nitrate (g N m⁻³ day⁻¹); LCA is labile carbon

availability (kg C m^{-3}); K_c and K_n are Michaelis–Menten constant (half–saturation values) for labile C and N oxides, which

125 are set to $0.017 \text{ kg C m}^{-3}$ and $0.083 \text{ kg N m}^{-3}$, respectively (Li et al., 1992).

5. NOE model

N_2O emission from nitrification (F_{nt} , $\text{kg N ha}^{-1} \text{ day}^{-1}$):

$$F_{nt} = \begin{cases} zR_{nt}WFPS < 0.62 \\ r_{max}zR_{nt} 0.62 \leq WFPS \leq 0.80 \\ 0 WFPS > 0.80 \end{cases} \quad (\text{S57})$$

130 $R_{nt} = R_w f_{NH_4^+} f_{st}$ (S58)

$$R_w = aC_w + b \quad (\text{S59})$$

$$f_{NH_4^+} = C_{NH_4^+} / (C_{NH_4^+} + Km_1) \quad (\text{S60})$$

$$f_{st} = \begin{cases} \exp[(T_s - 11) \ln(89) - 9 \ln(2.1)] & st < 11^\circ\text{C} \\ \exp[(T_s - 20) \ln(2.1) / 10] & st \geq 11^\circ\text{C} \end{cases} \quad (\text{S61})$$

where R_{nt} is the actual nitrification rate ($\text{kg N ha}^{-1} \text{ day}^{-1}$); R_w , $f_{NH_4^+}$ and f_{st} are response functions to soil water content,

135 ammonium content and soil temperature, respectively; C_w is soil gravimetric water content (%); $C_{NH_4^+}$ and st are soil ammonium concentration (mg N kg^{-1} soil) and soil temperature ($^\circ\text{C}$), respectively; Parameter Km_1 is half saturation coefficient and set to 10 mg N L^{-1} ; z and r_{max} are the fractions of nitrogen emitted during nitrification and denitrification. a and b are the slope and intercept, respectively, of the linear relationship between soil nitrification rate and soil gravimetric water content.

140 N_2O emission from denitrification (F_{dn} , $\text{kg N ha}^{-1} \text{ day}^{-1}$):

$$F_{dn} = r_{max}R_{dn} \quad (\text{S62})$$

$$R_{dn} = R_{pdn} f_{NO_3^-} f_{WFPS} f_{st} \quad (\text{S63})$$

$$f_{NO_3^-} = C_{NO_3^-} / (C_{NO_3^-} + Km_2) \quad (\text{S64})$$

$$f_{WFPS} = \begin{cases} 0 & WFPS < 0.62 \\ ((WFPS - 0.62) / 0.38)^{1.74} & WFPS \geq 0.62 \end{cases} \quad (\text{S65})$$

145 where R_{dn} and R_{pdn} are soil actual and potential denitrification rate ($\text{kg N ha}^{-1} \text{ day}^{-1}$), respectively; $f_{NO_3^-}$, f_{WFPS} and f_{st} are response factors to soil nitrate content, water–filled pore space and temperature, respectively; $C_{NO_3^-}$ is soil nitrate concentration (mg N kg^{-1} soil); Km_2 is half saturation coefficient and is set to 22 mg N kg^{-1} soil (Heault et al., 2005).

6. NGAS model

150 N_2O emission from nitrification (F_{nt} , $\text{g N ha}^{-1} \text{ day}^{-1}$):

$$F_{nt} = N_{H_2O} N_{pH} N_{st} (K_{mx} + N_{mx} N_{NH_4^+}) \quad (\text{S66})$$

$$N_{H_2O} = \left(\frac{WFPS - b}{a - b} \right)^{\frac{d(b-a)}{a-c}} \left(\frac{WFPS - c}{a - c} \right) \quad (\text{S67})$$

$$N_{pH} = 0.56 + \arctan(0.45(-5 + pH)pi)/pi \quad (S68)$$

$$N_{st} = -0.06 + 0.13e^{(0.07T_s)} \quad (S69)$$

$$N_{NH_4^+} = 1 - e^{(-0.0105C_{NH_4^+})} \quad (S70)$$

where N_{H_2O} , N_{pH} , N_{st} and $N_{NH_4^+}$ are the effect of soil water, pH, temperature and soil ammonium content on nitrification, respectively; K_{mx} is the N turnover coefficient ($\text{g N ha}^{-1} \text{ day}^{-1}$) of a specific soil; N_{mx} is the maximum nitrification N_2O flux ($\text{g N ha}^{-1} \text{ day}^{-1}$); Parameter a, b, c, d are 0.55, 1.70, -0.007, 3.22 respectively for sandy soil, and 0.60, 1.27, 0.0012, 2.84 respectively for medium-textured soil (Parton et al., 1996).

160 N_2O emission from denitrification (F_{dn} , $\text{g N ha}^{-1} \text{ day}^{-1}$):

$$F_{dn} = D_{ttl}/(1 + R_{N_2/N_2O}) \quad (S71)$$

$$D_{ttl} = \min(f_{dn}(NO_3^-), f_{dn}(CO_2))f_{dn}(WFPS) \quad (S72)$$

$$R_{N_2/N_2O} = \min(f_r(NO_3^-), f_r(CO_2))f_r(WFPS) \quad (S73)$$

$$f_{dn}(NO_3^-) = 11000 + 40000 \arctan(0.002(C_{NO_3^-} - 180)pi)/pi \quad (S74)$$

$$f_{dn}(CO_2) = 24000/(1 + 200/e^{(0.35CO_2)}) \quad (S75)$$

$$f_{dn}(WFPS) = a/b^{(c/(b^{dWFPS}))} \quad (S76)$$

$$f_r(NO_3^-) = 1 - 25(0.5 + \arctan(0.01(C_{NO_3^-} - 190)pi)/pi) \quad (S77)$$

$$f_r(CO_2) = 13 + 30.78 \arctan(0.07(CO_2 - 13)pi)/pi \quad (S78)$$

$$f_r(WFPS) = 1.4/13^{(17/(13^{2.2WFPS}))} \quad (S79)$$

170 where D_{ttl} is total nitrogen gas (N_2O and N_2) flux ($\text{g N ha}^{-1} \text{ day}^{-1}$) from denitrification; R_{N_2/N_2O} is the ratio of N_2 and N_2O of total denitrification gas fluxes; $f_{dn}(NO_3^-)$ and $f_{dn}(CO_2)$ are the maximum total N gas fluxes ($\text{g N ha}^{-1} \text{ day}^{-1}$) for a given soil nitrate level and respiration rate, respectively; $f_{dn}(WFPS)$ is the effect of WFPS on denitrification rate; $f_r(NO_3^-)$, $f_r(CO_2)$ and $f_r(WFPS)$ are the effect of soil nitrate, soil respiration and WFPS on the ratio of N_2 and N_2O ; CO_2 is the soil respiration rate ($\text{kg C ha}^{-1} \text{ day}^{-1}$) (Parton et al., 1996); Parameter a, b, c, d are 1.56, 12.0, 16.0, 2.01 respectively for sandy soil, 4.82, 14.0, 16.0, 1.39, respectively for medium-textured soil, and 60.0, 18.0, 22.0, 1.03, respectively for loam soil (Parton et al., 1996).

Table S1. Inversed values of primary parameters for different models.

Models	Parameters	Value	Range	Literature
NOE	R_{pdn} ($\text{kg N ha}^{-1} \text{ day}^{-1}$)	4.514	1.0–16.9	Henault and Germon, 2000; Henault et al., 2001, 2005; Garrido et al., 2002.
	r_{max}	0.562	0.09–0.6	
	z	0.009	0.0006–0.01	
	a	0.052	0.019–0.059	
	b	-0.085	-0.4 – -0.1	

NGAS	K _m x (g N ha ⁻¹ day ⁻¹)	17.874	3.8–28.6	Parton et al., 1988, 1996.
	N _m x (g N ha ⁻¹ day ⁻¹)	16.645	15.9–30.0	
DLEM	V _{nt,max} (g N m ⁻³ day ⁻¹)	0.10	0–0.109	Kim et al., 1997; Garcia-Ruiz et al., 1998; Starry et al., 2005;
	V _{dnt,max} (g N m ⁻³ day ⁻¹)	0.050	0–2.18	
	K _m _{nt} (g N m ⁻³)	0.676	0.21–1.11	
	K _m _{dn} (g N m ⁻³)	1.625	0.18–6.5	
DyN	F _{max} (day ⁻¹)	0.05	0.01–0.1	Ingwersen et al., 1999; Groffman et al., 2000; Breuer et al., 2002; Khalil et al., 2004; Well and Flessa, 2008.
	r _{nt} (day ⁻¹)	0.002	< 0.001–0.002	
	r _{dn} (day ⁻¹)	0.024	0.002–0.47	
DayCENT	F _{max} (day ⁻¹)	0.10	0.01–0.1	Groffman et al., 2000; Parton et al., 2001.
	K ₁	0.02	0.05–0.12	
	K ₂	0.21	0.05–0.25	
DNDC	R _{nt,max} (l day ⁻¹)	0.108	0.05–0.12	Blogadatsky et al., 1998. Hartel and Alexander, 1987; Hosen et al., 2000.
	R _{g,max} (l day ⁻¹)	4.873	3.5–5.9	
	R _{d,max} (l day ⁻¹)	1.300	1.2–1.6	
	D _{max} (m ² h ⁻¹)	0.052	0.006–0.055	