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Abstract. Combined droughts and heatwaves are among those compound extreme events that induce severe impacts on the

terrestrial biosphere and human health. A record breaking hot and dry compound event hit western Russia in summer 2010

(Russian heatwave, RHW). Events of this kind are typically studied either
::::::
relevant

:
from a hydrometeorological perspective,

or with a focus on impacts in the terrestrial biosphere such as
::
but

::::
also

:::::::::
interesting

:::::
from

::
an

:::::::::
biospheric

:::::
point

::
of

:::::
view

:::::::
because

::
of

::::
their

:::::::
impacts

::
on

:::::::::::
ecosystems,

::::
e.g., reductions of the terrestrial carbon storage. These different perspectives might not only5

require different strategies for event detection, but also change interpretations and impact assessment. To exemplify this issue,

we
:::::::::
Integrating

::::
both

::::::::::
perspectives

:::::
might

::::::::
facilitate

:::
our

:::::::::
knowledge

:::::
about

:::
the

::::::
RHW.

:::
We

:
revisit the RHW both from a biospheric

and a hydrometeorological perspective. We consider several hydrometeorological and biospheric variables agnostically as

inputs to
::::
apply

:
a recently developed multivariate anomaly detection approach . Our analysis of biospheric variables reveals

that the RHWwas preceded by increased gross ecosystem production in spring that partly compensated the reduced summer10

production, but remained unconsidered in earlier impact oriented studies. We also find that
::
to

:
a
:::
set

::
of

::::::::::::::::::
hydrometeorological

::::::::
variables,

:::
and

::::
then

::
to

:::::::
multiple

:::::::::
biospheric

::::::::
variables

:::::::
relevant

::
to

:::::::
describe

:::
the

::::::
RHW.

::::
One

::::
main

:::::::
finding

:
is
::::
that

:
the

::::::
extreme

:::::
event

::::::::
identified

::
in

:::
the

:::::::::::::::::
hydrometeorological

::::::::
variables

:::::
leads

::
to

:::::::::::::
multidirectional

:::::::::
responses

::
in

:::::::::
biospheric

::::::::
variables,

::::
e.g.,

:::::::
positive

::::
and

:::::::
negative

::::::::
anomalies

::
in

:::::
gross

:::::::
primary

:::::::::
production

::::::
(GPP).

::
In

::::::::
particular,

:::
the

:
region of reduced summer ecosystem production does

not match the area identified as extreme in the hydrometeorological variables. The reason is that forest-dominated ecosystems15

in the higher latitudes respond with unusually high productivity to the RHW, leading overall to a .
:::::::::::
Furthermore,

:::
the

::::::
RHW

:::
was

::::::::
preceded

::
by

:::
an

:::::::::::
anomalously

:::::
warm

::::::
spring,

:::::
which

:::::
leads

:::::::
annually

:::::::::
integrated

::
to

:
a
::::::
partial compensation of 54% (36% in

:::
the

::::::::
preceding spring, 18% in summer) of the reduced gross primary production (GPP )

::::
GPP in southern agriculturally dominated

ecosystems. Our results show that an ecosystem-specific and multivariate perspective on extreme events can reveal multiple

facets of extreme events by simultaneously integrating several data streams irrespective of impact direction and the variables’20

domain(here "biosphere" or "hydrometeorology"). Focusing on negative impacts in specific variables e.g. a vegetation index,

leads to a spatiotemporally delineation of extreme events that is inconsistent with the hydrometeorological conditions and and
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can limit the interpretation of their impacts on the terrestrial biosphere. .
:
Our study exemplifies the need for robust multivariate

analytic approaches to detect extreme events in both hydrometeorological conditions and associated biosphere responses to

fully characterize the effects of extremes, including possible compensatory effects in space and time.

Keywords. compound events, multivariate extreme events, gross primary productivity, heatwaves, droughts, spring-summer

compensation.
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1 Introduction5

One consequence of global climate change is that the intensity and frequency of heatwaves will most likely be increasing in the

coming decades (Seneviratne et al., 2012). Heatwaves co-occurring with droughts form so-called compound events, for which

we can expect severe impacts on the functioning of land ecosystems (e.g. primary production, von Buttlar et al., 2018)
::::::::::::::::::::::::::::::::::::::::
(e.g., primary production, von Buttlar et al., 2018) that

may affect human well-being (e.g.
:
, via reduced crop yields, health impacts) (e.g., Scheffran et al., 2012; Reichstein et al., 2013;

Lesk et al., 2016). Investigating historical extreme events offers important insights for deriving mitigation strategies in the fu-10

ture.

One well-known example of a compound extreme event is the 2010 western Russian heatwave (RHW). The RHW was

one of the most severe heatwaves on record, probably breaking temperature records of several centuries (Barriopedro et al.,

2011). It was accompanied by extensive wild and peat fires with smoke plumes about 1.6 km high at the peak of the heat-

wave in early August, and estimated emissions of around 77
:

Tg carbon due to multiple fire events (Guo et al., 2017).15

Carbon losses due to reduced vegetation activity are estimated to be in the same order of magnitude as losses due to fires

(90Tg, Bastos et al., 2014)
::::::::::::::::::::::
(90 Tg, Bastos et al., 2014). The amount of emitted carbon monoxide is almost comparable to the

anthropogenic emissions in this region (Konovalov et al., 2011). Approximately 55,000 cases of death have been attributed to

health impacts of the RHW (Barriopedro et al., 2011).

The RHW is often associated with a
::
an atmospheric blocking situation (Matsueda, 2011), leading to a persistent anticyclonic20

weather pattern in Eastern Europe (Dole et al., 2011; Petoukhov et al., 2013; Schubert et al., 2014; Kornhuber et al., 2016).

However, to fully understand the developments and impacts of heatwaves or droughts, apart from hydrometeorological

drivers, associated land-surface dynamics and feedbacks need to be considered (Seneviratne et al., 2010). For instance, un-

der persistent anticyclonic and dry conditions, land-atmosphere feedbacks are expected to further amplify the magnitude of

heatwaves via enhanced sensible heat fluxes, as shown also for the RHW (Miralles et al., 2014; Hauser et al., 2016). These feed-25

back mechanisms highlight the importance of depleted soil moisture to heatwaves. In 2010 the depleted state of soil moisture

was one important driver which locally amplified the high temperature regime
:
a
:::::::
negative

::::
soil

:::::::
moisture

::::::::::
contributed

::
to

::::::::
increased

::::::::::
temperatures

:
(Hauser et al., 2016). It is a general observation that the combination of anticyclonic weather regimes and initially

dry conditions prior to the event amplifies heatwaves in most cases (Quesada et al., 2012).

The direct impacts of such extreme events on ecosystems are manifold. Summer heat and drought typically reduce (or30

even inhibit) photosynthesis, hence reducing the carbon uptake potential of ecosystems (Reichstein et al., 2013). However, the

magnitude of these impacts varies between ecosystems (Frank et al., 2015), and the resulting net effects are still under debate,

particularly for heatwaves (von Buttlar et al., 2018)
::
(?). However, in-depth investigations of a number of individual events such

as the European heat summer
:::::::
heatwave 2003 (Ciais et al., 2005), the 2000-2004 and 2012 droughts in North America (Schwalm

et al., 2012; Wolf et al., 2016), and the RHW (Bastos et al., 2014) agree on an overall tendency towards negative impacts on

the carbon accumulation potential.

The RHW has been thoroughly investigated from an
:
a
:
hydrometeorological point of view linking the atmospheric blocking

to the large-scale positive anomalies in air temperatures and negative anomalies in water availability (e.g., Barriopedro et al.,
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2011; Rahmstorf and Coumou, 2011). The event has been also well investigated with an emphasis on the biospheric impacts5

describing the negative anomalies in ecosystem productivity and related vegetation indices (e.g., Bastos et al., 2014). However,

investigating the two domains in isolation might lead to an inconsistent description and thus interpretation of what is thought

to represent the very same extreme event. If we only look at
::::::::
However,

:::::::::
comparing

:::
the

::::::
reports

:::
of

:::::
areas

:::::::
affected

:::
by

:::::
these

::::::
studies

::::::
reveals

::::
some

::::::::::::
discrepancies.

::::::::::::::::::
Hydrometeorological

::::::::
anomalies

:::::
point

::
at

:::::
much

:::::
larger

::::
areas

:::::::
affected

::::::::
compared

::
to
:::::::::
biosphere

:::::::
response

:::::::
patterns.

::::
Fig.

::
1

:::::
shows

:
the zonal evolution of the RHW (Fig. 1), we

:
in

::::
both

::::::::
domains.

:::
We

:
find that the spatiotemporal10

patterns of the temperature anomaly does not match the zonal anomaly in vegetation productivity anomalies.
::::
Thus,

::
an

:::::::::
integrated

:::::::::
assessment

::::::::
including

:::
the

:::::::::::::::::
hydrometeorological

::::
and

:::
the

:::::::::
biospheric

::::::
domain

:::::::::::::
simultaneously

::::
may

:::::::
facilitate

:::
our

::::::::::
knowledge

:::::
about

::
the

::::::
RHW.

The figure reveals an unusually warm period during spring and one longer heatwave during summertime (Fig. 1a). Temper-

ature anomalies exceeded more than 10 K in both spring and summer, while negative
::
but

::::
they

::::
lead

::
to

:::::::::
distinctive

:
anomalies in15

gross primary productivity (GPP)occurred .
:::::::
Positive

::::
GPP

:::::::::
anomalies

:::::::
occurred

::::::
during

:::
the

::::::
spring

:::::
event,

:::::::
whereas

:::::::
negative

:::::
GPP

::::::::
anomalies

:::
are

::::::::
occurring

::::::
during

:::
the

::::::
summer

:::::::::
heatwave.

:::
The

:::::::
positive

::::
GPP

:::::::
response

::
in
::::::
spring

:::::
might

::
be

:
a
:::::::
reaction

::
to

:::::::
warmer,

:::::
more

::::::
optimal

::::::
spring

:::::::::::
temperatures

:::::::::::::::::::::::
(Wang et al., 2017) possibly

:::::::::::
accompanied

:::
by

::::::
enough

:::::
water

::::::::::
availability.

::::::::
However,

:::::::
negative

:::::
GPP

::::::::
anomalies

::
in

:::::::
summer

::::::::
occurred only in areas south of 55 �N (Fig. 1c) . Comparing

::::::::
indicating

::::
that

:::
the

::::
GPP

::::::::
response

:::::::
involves

::::
much

:::::
more

::::::::
processes

::::
than

::::
high

:::::::::::
temperatures

::::
and

::::::
drought

::::::
during

:::
the

::::::
unique

::::::
RHW.

::
As

:::::::
already

::::::::
indicated

::
by

::::::::::::
Smith (2011),

:::
the20

:::::::::
connection

:::::::
between

::::::::
biosphere

::::
and

:::::::::::::::
hydrometeorology

::
is
:::::
much

:::::
more

::::::::
complex

::::
than

:::
just

::
a

:::::
direct

:::::::::
one-to-one

::::::::
mapping.

:::::::
Further

::::::::::
complicating

::::
this

::::
issue

::
is

:::
the

:::
fact

::::
that

:::
the

:::::::
summer

:::::
event

:::::
cannot

:::
be

::::::::::
investigated

::::::
without

:::
the

::::::::
previous

:::::
spring

::
as

::::
both

:::::::
seasons

:::
are

::::::::
inherently

::::::
related

:::
via

:::::::
memory

::::::
effects

::
in

:::::
water

:::::::::
availability.

:::::::::
Increased

::::
GPP

::
in

:::::
spring

::::
may

:::::::::
negatively

::::::::
influence

:::
soil

:::::::
moisture

::::
and

:::
thus

:::::
GPP

:::::
during

:::::::
summer

::::::::::::::::::::
(Buermann et al., 2013).

:

::
In

::::::::
summary,

:::::::::
comparing

:
these two Hovmöller diagrams shows that (1) the affected latitudinal range of the negative GPP25

anomaly is much smaller than the positive temperature anomaly and (2) one may easily overlook the positive GPP anomaly

during springthat coincides with an anomalous warm state.

The inconsistency of spatiotemporal anomalies in the hydrometeorological conditions and biosphere responses during the

RHW reflects different disciplinary perspectives. We suspect that this domain-specific point of view might become an issue in

studies of this kind.
::
the

::::::::
evolution

::
of

:::
the

:::::::
summer

:::::::
impacts

:::::
should

::::::::
consider

:::::::
potential

:::::
carry

::::
over

:::::
effects

::
of

:::::::
positive

::::
GPP

:::::::::
anomalies30

:::::
during

::::::
spring,

::
as

::::::
earlier

::::::
studies

::::::
showed

::::
that

::::::::
increased

:::::
spring

:::::
GPP

:::
may

:::::::::
negatively

::::::::
influence

:::
soil

::::::::
moisture

:::
and

::::
thus

::::
GPP

::::::
during

::::::
summer

::::::::::::::::::::
(Buermann et al., 2013).

:
The objective of this paper is therefore to revisit the RHW and to investigate differences in the

description and consequent interpretation of the very same extreme event , when adopting a biospheric vs. hydrometeorological

point of view. Moving from a compartment-specific perspective towards an integrated one requires a shift in the methodological

focus
:::
the

::::
GPP

::::::::
response

:::::
during

::::
the

:::::
spring

:::::
event

:::
and

:::
the

::::::::
summer

::::::::
heatwave

::
in

:::::
detail

::
by

::::::::
equitably

:::::::::::
investigating

:::::::::::::
spatiotemporal

::::::::
anomalies

::
in

::::::::::::::::
hydrometeological

::::::
drivers

:::
and

:::::::::
ecological

::::::::
variables.

::::
This

::::
kind

::
of

::::::::
integrated

::::::::::
assessment

:::::::
requires

:
a
:::::::
generic

:::::::::::::
methodological

::::::::
approach. Here, we use a multivariate extreme event5

detection approach that (1) does not differentiate between a positive and a negative extreme event, and (2) can equally be applied

on any set of time series, regardless of whether they describe the biospheric or the hydrometeorological domain. We expect
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that we can reveal previously overlooked facets in the RHW and discuss whether an impact-agnostic approach as presented

here may complement compartmental/domain approaches facilitating
:::
our

::::::::
approach

::::
may

:::::::
facilitate

:
a broader perspective and

improved interpretation of extreme events and their impacts.10
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Figure 1. Longitudinal average (30.25 to 60.0 � E) of (a) temperature anomalies
:::::::
(reference

::::::
period:

::::::::
2001-2011), (b) absolute temperature,

and (c) GPP anomalies in 2010 with a contour of temperature anomalies (+3 K, +5 K).

2 Methods & data

A simple

2.1
::::::::

Rationale

:::
One

:
approach to detect extreme events like the RHW could be using a peak-over-threshold scheme

::
to

:::::::
identify

:::
the

:::::
peaks

::::
over

::::
some

::::::::
threshold

:
in the marginal distribution of variables

:
a
:::::::
variable

:::
(or

::
its

::::::::
anomaly)

:
of interest. For instance, a popular approach15

is to consider an observation in a single (ideally normally distributed) anomaly variable to be extreme if it deviates
:::
one

:::::
could

::::::
identify

::::::
values

::::
that

::::::
deviate

:
by more than two standard deviations from the variable’s mean values . By using these kind of

univariate approaches for hydrometeorological variables, the RHW can be characterized by
:::::::::::::::::::::::::::::::::
(Hansen et al., 2012; Sippel et al., 2015).

::::::::
However,

::::::::
univariate

:::::::::
approaches

:::::
only

::::
allow

::
to
:::::::::::
characterize

::
an

:::::
event

::
by

:::
e.g.

:
extremely high temperature anomalies, lack of pre-

cipitationand ,
:::
or very low soil moisture , which amplified the heatwave (e.g., Miralles et al., 2014; Hauser et al., 2016) . From20

this characterization it can be seen
:::
but

:::
not

::::
their

:::::::::
compound

:::::::
anomaly.

::::::::
However,

::::
from

::::::
earlier

::::::
studies

:::::::::::::::::::::::::::::::::::::::::
(e.g., Miralles et al., 2014; Hauser et al., 2016) we

::::
know

:
that more than one variable is involved in the RHW , which is thus

::
and

:
a multivariate extreme event

:::::::
detection

:
(i.e.,

:
a

compound event) (e.g., Leonard et al., 2014; Zscheischler and Seneviratne, 2017)
:
is
:::::
more

:::::::
feasible. Multivariate algorithms to

detect extreme events can therefore be
:::
are expected to offer additional detection capabilities for simultaneous anomalies in

multiple variables (e.g., Zimek et al., 2012; Bevacqua et al., 2017; Flach et al., 2017; Mahony and Cannon, 2018).

Multivariate extreme event detection methods account for
::::
more

::::::
robust

::::::::
detection

:::::::::
capabilities

:::::
when

:::::::::
accounting

:::
for dependen-

cies and correlations among the selected variables
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Zimek et al., 2012; Bevacqua et al., 2017; Flach et al., 2017; Mahony and Cannon, 2018).5

Multivariate extreme event detection considers all observable dimensions of the domain simultaneously. With a multivariate

5



approach one may, for instance, detect very rare constellations
:::::::::::
combinations

:
of variables even if the individual variables

are not extreme. In the following, we detect the anomalies in a multivariate variable space in two sets of variables describ-

ing (1) the hydrometeorological conditions, and (2) the biospheric response.
:::
The

::::::::
workflow

::::::::
involves

:
a
::::
data

:::::::::::::
pre-processing

::
to

:::::::
compute

:::::::::
anomalies,

::
a
::::
step

:::
for

::::::::::::
dimensionality

::::::::
reduction

:::
to

:::
not

::
be

::::::
biased

:::
by

:::::::::::
redundancies

::::::
among

::::::::
variables.

::::::
Based

:::
on

:::
the10

::::::
reduced

::::::::::
data-space,

::
an

:::::::
anomaly

:::::
score

::
is

::::::::
computed

::::
that

:::
can

::::
then

::
be

::::
used

::
as

:::::::::
threshold.

:::
For

::::::
various

:::::::
reasons,

::::::::
however,

::
in

:::::::
practice

::
the

::::::::
threshold

:::::
needs

::
to
:::
be

::::::::
computed

::::::
across

:::::::
multiple

::::::
spatial

:::
grid

:::::
cells

::
of

::::::::::
comparable

:::::::::
phenology.

2.2 Data
:::
and

:::::::::::::
pre-processing

Our dataset for analysing the hydrometeorological domain includes those variables which we consider to be of particular im-

portance for processes taking place during extreme events in the biosphere based on prior process knowledge (Larcher, 2003)15

and empirical analysis (von Buttlar et al., 2018). The hydrometeorological dataset consists of air temperature, radiation, relative

humidity
:::::::
(original

::::::::
resolution

:::::
0.71�)(all three from ERA-INTERIM, Dee et al., 2011), precipitation (Adler et al., 2003)

:::::::
(original

::::::::
resolution

::::::::::::::::::
1�)(Adler et al., 2003), and surface moisture

:::::::::
(resolution

::::::
0.25�)(http://www.gleam.eu, v3.1a, Miralles et al., 2011;

Martens et al., 2017). We consider surface moisture to be a hydrometeorological variable due to its importance for drought

detection, although we notice that surface moisture is influenced by biospheric processes. We use gross primary productivity20

(GPP), latent heat flux (LE), sensible heat flux (H)
::::::::
(resolution

::::::
0.25�)(all three from FLUXCOM-RS, Tramontana et al., 2016),

and the fraction of absorbed photosynthetic active radiation (FAPAR, moderate resolution imaging spectroradiometer (MODIS) based FAPAR, Myneni et al., 2002)
:::::::
(original

::::::::
resolution

:::::
1 km)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(FAPAR, moderate resolution imaging spectroradiometer (MODIS) based FAPAR Myneni et al., 2002) to de-

scribe the land surface dynamics. We consider turbulent fluxes to be biospheric response variables because they are strongly

determined by processes in the terrestrial biosphere.25

The selected variables cover the spatial extent of Europe (latitude 34.5� 71.5�N ; longitude: �18� 60.5�E) and are re-

gridded on a spatial resolution of 0.25� from 2001 to 2011 in an eight-daily temporal resolution. To check for differences

in land cover types, we estimate the main
:::::
major land cover type of the European Space Agency Climate Change Initiative

land cover classification on a spatial resolution 0.25�
:::::::
(original:

::::
300

:::
m). To check for consistency of our findings among other

variables (Sect. 3.2), we additionally use terrestrial ecosystem respiration (TER) and net ecosystem productivity (NEP, both30

originating from FLUXCOM-RS, Tramontana et al., 2016).

2.3 Preprocessing and spatiotemporal segmentation

:::
The

:::::
actual

:::::
event

::::::::
detection

::
is

:::::::
realized

::
on

:::
the

:::::::::
anomalies

::
of

:::::
these

::::
data

::::
sets.

:::
To

:::::::
compute

:::
the

:::::::::
anomalies,

:
For each variable under

consideration, we compute
:::
first

:::::::
estimate

:::
the

:::::::::
seasonality

::
as

:
a smoothed median seasonal cycle per grid cellto obtain an estimate

of seasonality. We subtract the seasonal cycle
:
.
:::
We

:::
use

:::
the

::::::
median

:::::::
instead

::
of

:::
the

:::::
mean

::
as

::
it

:
is
::::
less

:::::::::
susceptible

:::
to

:::::::
outliers.

:::
We

:::
then

:::::::
subtract

:::::
these

:::::::
seasonal

:::::
cycles

:
from each variable and

::::
year

::
to obtain a multivariate data cube of deviations from the median

seasonality
:::::::::
anomalies (Fig. 3, step 1). In this multivariate anomaly data cube, we fill small data gaps with

:::::
Small

::::
data

::::
gaps

:::
are

::
set

::
to

:
zeros to ensure that they are not detected as anomalies.

:::
The

:::
gap

::::::
filling

::
is

::::::::
necessary

:::
for

:
a
::::::::::
multivariate

::::::::
detection

::::::::
approach

::
as

::::
there

:::
are

:::::
many

:::::
more

::::
cases

::
in
::::::
which

:::
one

:::::::
variable

::
is

:::::::
missing

::
in

:::
the

::::::::::
multivariate

::::
cube

::::::::
compared

::
to
::
a
::::::::
univariate

::::
data

::::::
stream.

:
5
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To define extreme events in this multivariate data cube several approaches are possible. One approach would be to define

thresholds globally. Spatiotemporal points exceeding the global threshold would be flagged as extreme event. However, the

data is spatially heteroscedastic, i. e. a global approach detects extreme events in predominantly in high variance regions and is

blind to regions with low variance. Another approach would be to define a certain threshold locally within each grid cell. This

approach would assume10

2.3
::::::

Feature
:::::::::
extraction

::::
and

::::::::
anomaly

::::::::
detection

:::
We

:::
use

::
a
::::::::::
multivariate

::::::::
anomaly

::::::::
detection

:::::::::
algorithm

::::::::
proposed

::
by

:::::::::::::::::::
Flach et al. (2017) and

::::::
apply

:
it
:::::::::

separately
:::

to
:::
two

::::
sets

:::
of

:::::::
variables

:::
for

:::
the

::::::::
biosphere

::::
and

:::::::::::::::
hydrometeorology.

::::
The

:::::::
method

::::::
expects

::
a

::::::::::
multivariate

::
set

:::
of

::::::::
anomalies

::::
and

:::::::
projects

::::
them

::
to

::
a

::::::
reduced

:::::
space

:::
via

::::::::
principal

::::::::::
component

:::::::
analysis,

::::::::
retaining

:
a
:::::::
number

::
of

::::::::
principal

::::::::::
components

::::
that

::::::
explain

:::::
more

::::
than

::::
95%

:::
of

::
the

::::::::
variance

::::
(Fig.

::
3,

:::
step

::::
3b).

::::
This

:::::::::
procedure

:::::::
accounts

:::
for

:::::
linear

::::::::::
correlations

::
in

:::
the

:::
data

::::
only

:::
by

::::::::
removing

:::::::::::
redundancies

::::::
among15

::
the

:::::::
variable

:::::::::
anomalies.

:

:::
We

:::::::
compute

:::
an

:::::::
anomaly

:::::
score

::::
via

:::::
kernel

:::::::
density

:::::::::
estimation

::::::::::::::::::::::::::::::::::::::
(KDE, Parzen, 1962; Harmeling et al., 2006) in

::::
the

:::::::
reduced

:::::::
anomaly

:::::
space

:::::
(Fig.

::
3,

::::
step

:::
4).

:::::
KDE

::::::
showed

:::::
very

::::
good

:::::::::::
performance

:::::::
among

:::::::
different

:::::
other

:::::::
options

::
to

:::::
detect

:::::::::::
multivariate

::::::::
anomalies

::
in

:::::::
previous

:::::::::::
experiments

::::::::::::::::
(Flach et al., 2017).

:::
One

:::::::
strength

::
of

:::::
KDE

::
is

:::
that

::
it

::::::::
considers

::::::::
nonlinear

:::::::::::
dependencies

::::::
among

:::::::::
dimensions

:::::
(Fig.

::
4).

::::
The

::::::::
anomaly

:::::
scores

:::
are

:::::::::::
transformed

:::
into

::::::::::
normalized

:::::
ranks

:::::::
between

:::
1.0

:::::
(very

::::::::::
anomalous,

::::
data

:::::
point

::
in

::
the

::::::::
margins

::
of

:::
the

::::::::::
multivariate

:::::::::::
distribution)

:::
and

::::
0.0

::::::::::
(completely

:::::::
normal,

::::
data

:::::
point

::
in

:::
the

:::::
dense

::::::
region

::
of

:::
the

:::::::::::
multivariate

::::::::::
distribution;

:::
Fig.

::
3,
::::
step

:::
5).

::
In

:::
this

:::::::::
univariate

:::::
index

::
of

:::::::::
compound

::::::::
extremes,

::
it

::
is

::::::::
legitimate

::
to

:::
use

::
a

:::::::
classical

::::::::
threshold

:::
that

::::
can

::
be

:::::::::
intuitively

::::::::
analysed.

::::::::
However,

::
to

:::::
avoid an equal spatial distribution of extreme events which is particularly problematic for5

rather short time series as the ones under scrutiny. We use an alternative approach which compares grid cells to other grid cells

with similar phenologyrecently developed
::::
event

::::::::::
occurrences

:::
we

::
do

:::
not

:::::
apply

::::
this

::::::::::
multivariate

:::::::
anomaly

::::::::
detection

:::
per

:::::
pixel,

:::
but

:::::
rather

::
by

::::::
region.

:

2.4
:::::::::::::

Spatiotemporal
::::::::::::
segmentation

:::
The

::::::::::::
spatiotemporal

:::::::::::
segmentation

:::::
aims

:
to
:::::::
identify

::::::
spatial

::::
areas

::
of

::::::::::
comparable

:::::::::
phenology,

::::::
climate

::::
and

:::::::::
seasonality.

:::
For

::::::::::
identifying10

::::
these

:::::::
regions,

:::
we

:::::
follow

:::
the

:::::::
strategy

::::::::
described

:
by Mahecha et al. (2017) and extend it to the multivariate caseby also including

similar climatology. The regional approach is important in our case to get robust regional estimates of thresholds defining

extreme events in rather short time series via spatial replicates. The main idea behind the scheme for identifying similar

phenology and climate .
::::
The

:::::
main

:::
idea

:
is that the

::::
(now

:::::::
spatial) principal components of the mean seasonal cycles and can be

used for classifying regions according to their mean
:::::::::::
characteristic temporal dynamics.15

The procedure for extracting spatial segments of similar grid cells works as follows (for a detailed description see Supplementary Materials S1 or Mahecha et al., 2017):

::::::::::::::::::::::::::::::::::::::::::
(for a detailed description see Mahecha et al., 2017):

:

(1) estimate the median seasonal cycle in each grid cell and of each variable individually and standardize the median seasonal

cycles to zero mean and unit variance . Sort the
::
to

:::
get

:::
the

:::::
cycles

::::::::::
comparable

::::::
across

:::::::
different

::::
units

:::::
(Fig.

:
2
::::
(1)).

:

7
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Figure 2.
::::::::
Illustration

::
of

:::
the

:::::::::
multivariate

::::::
anomaly

:::::::
detection

::::::::
algorithm

::::
with

:::
two

:::::::
variables.

:::
The

::::
data

:::
has:

::
(a)

:::::
linear

::::::::::
dependencies

::::::::::
(multivariate

::::::
normal)

:::
and

:::
(b)

:
a
::::::::

nonlinear
:::::::::
dependency

::::::::
structure.

::::::::
Univariate

:::::::
extreme

::::
event

:::::::
detection

::::
does

::::
not

:::::
follow

:::
the

:::::
shape

::
of

:::
the

::::
data,

:::::::
whereas

::::::::
algorithms

:::::::
assuming

:
a
::::::::::

multivariate
:::::
normal

:::::::::
distribution

::::::::::::::::::::::::::::::::::
(Hotelling’s T2, Lowry and Woodall, 1992) are

:::::::
suitable

::
for

::::
case

:::
(a);

:::::
kernel

::::::
density

::::::::
estimation

:::::
(KDE)

::::
gets

:::
the

::::
shape

:::
of

:::
the

:::
data

::
in
::::

both
:::::

cases
:::
(a)

:::
and

:::
(b).

:::
5%

:::::::
extreme

::::::::
anomalies

:::
are

::::::
outside

::
the

::::::
shaded

:::::
areas

::::::
(region

::
of

:::::::::
"normality")

:::
for

::
all

::::
three

:::::::::
algorithms.

(1)	median	seasonal	cycles	of	one	grid	cell		 (2)	ordered	seasonal	cycles		

sort	according	T	

PCA	(including	
all	grid	cells)	

(3)	grid	cells	in	PC	space	

memorize	
locations	
on	map	

(4)	grid	cells	with	similar	climate	on	the	map	

selected grid cells in the main bin
grid cells in  the neighbouring bin

PC 1

PC
 2

locations in PC space
selected bin
neighbouring bins

Figure 3.
::::::::
Illustration

::
of

:::
the

:::::
spatial

::::::::::
segmentation

::::::::
procedure

:::
with

:::
two

:::::::
principal

::::::::::
components.

::
(2)

:::
To

::::::
remove

:::
the

:::::
effect

:::
of

:::::::
different

:::::::
phasing

:::::::
(similar,

:::
but

::::
only

::::::
lagged

:::::::
seasonal

:::::::
cycles),

:::
we

:::
sort

:::
the

:
median seasonal cycles20

according to
:
a
:::::::
variable

:::::::
showing

::
a
::::::
strong

::::::::::
seasonality,

:::::
which

:::
is

::::::::::
temperature

::
in

::::
our

::::
case.

:::::
Thus,

::::
we

::::::::
memorize

::::
how

:::
to

:::::
bring

::::::::::
temperature

::
in

:
a
::::::
sorted

::::::::
increasing

:::
or

:::::::::
decreasing

:::::
order

:::
(the

::::::::::::
’permutation’

::
of

:::::::::::
temperature)

::::
and

:::::
apply

:::
the

::::
same

:::::::::::
permutation

::
to

the permutation of temperature to remove the effect of different phasing and concatenate the
::::
other

:::::::
median

:::::::
seasonal

::::::
cycles

::::
(Fig.

:
2
::::
(2)).

::::
We

::::::
prepare

:::
the

::::
data

:::
for

::::::::::::
dimensionality

::::::::
reduction

:::
by

::::::::::::
concatenating

:::
the seasonal cycle of all variables . (2) Apply

8



::
to

:
a
::::::
matrix

:::::::
seasonal

:::::
cycles

:::
⇥

:::::
space.

:::
We

:::::
apply

:
a principal component analysis

:::::
(PCA)

:
to reduce the temporal dimension of the5

concatenated median seasonal cycles.

(3) Select grid cells
:::
We

:::::
select

::::::::
locations

::::
(grid

:::::
cells)

:
of similar phenology and climate by dividing the orthogonal principal

component subspace into equally sized bins .
::::
(Fig.

::
2

::::
(3)).

:::
We

:::::
used

::::::::
NPC = 4

::::::::::
components

:::
in

:::
this

:::::
step,

:::::::::
explaining

::::
71%

:::
of

:::::::
variance.

:
The bins are sufficiently small compared to the length of the principal components to ensure a fine binning of very

similar phenology and climate.10

(4) Select one grid cell and grid cells in their neighbouring bins to obtain overlapping spatial segments of similar phenology

and climate.
:::
We

:::::::
compute

:::
the

::::::::::
multivariate

::::::::
anomaly

:::::
score

::
in

::
an

::::::::::
overlapping

:::::::
moving

:::::::
window

::
for

:::
all

::::
grid

::::
cells

:::
that

::::
fall

:::
into

::::
one

::
of

:::
the

:::
bins

::::
(the

::::::
central

:::
bin

:::
and

:::
the

::::::::::::
neighbouring

:::::
binds,

::::
Fig.

:
2
::::
(4)).

:

After identifying similar regions one approach is to detect multivariate anomalies and define thresholds of the obtained

anomaly scores in each of the spatially overlapping segments. However, the data also exhibits a changing variance within the15

year
::
A

::::
final

:::::
detail

::
to

:::::::
consider

::
is
:::
the

::::::
effect

::
of

::::::::
changing

:::::::
seasonal

::::::::
variance (temporal heteroscedasticity), the variance is e. g.

higher during growing season in the set of biosphere variables. These heteroscedastic .
::::::
These patterns lead to detecting extreme

events predominantly during the high-variance season.To avoid these seasonal patterns
::::::
seasons

::::
(i.e.

:::::::
summer

::::::
times).

:::
To

:::::
avoid

:::::::
seasonal

:::::
biases

:
in the extreme event detectionscheme, we extract the season in a temporally

:
,
:::
we

::::::::::
additionally

:::::
apply

:::
the

:::::
entire

:::::::
anomaly

::::::::
detection

:::::::
scheme

::
to

:::::::::
seasonally overlapping moving window (9 observations, 72 days) and compare it to the same20

season in other yearsin the same grid cell and to the same season in grid cells with similar climate and phenology.
:::::
across

:::::
years.

Within the spatiotemporal segmentation procedure, we ensure that the number of observations is at least 198 (9 time steps

⇥ 11 years, at least one spatial replicate). We run the following anomaly detection workflow in each segment (Fig. 3, step 2).

Data processing for detecting multivariate anomalies.5

2.5 Feature extraction and anomaly detection

We apply the multivariate anomaly detection algorithm separately to the set of variables representing the biosphere and

the hydrometeorology with a workflow proposed by Flach et al. (2017). In each spatiotemporal segment of the multivariate

anomaly data cube we standardize the data to zero mean and unit variance (Fig. 3, step 3a). Subsequently, we calculate

principal components (von Storch and Zwiers, 2001) of the variables in each spatiotemporal segment, thus representing the10

variables by orthogonal transformed vectors and retaining a number of principal components that explain more than 95% of

the variance of this spatial segment (Fig. 3, step 3b). This procedure accounts for linear correlations in the data only and

removes "unimportant" high dimensionality.

We choose kernel density estimation (KDE, Parzen, 1962; Harmeling et al., 2006) for multivariate extreme event detection

in feature space (Fig. 3, step 4). KDE showed very good performance among different other options to detect multivariate15

anomalies in previous experiments (Flach et al., 2017). It considers nonlinear dependencies among principal components to

obtain an anomaly score (Fig. 4). The anomaly scores are transformed into normalized ranks between 1.0 (very anomalous,

data point in the margins of the multivariate distribution) and 0.0 (completely normal, data point in the dense region of the

9



(1) multivariate anomalies cube

(2) spatiotemporal segments

(3) feature extraction

(4) anomaly detection

(5) anomaly score

(6) events

a) standardize b) PCA

KDE

for biospheric and hydrometeorological variables separately

transform into normalized ranks

get events based on connected components

Figure 4. Illustration of the multivariate anomaly detection algorithm with two variables. The data has: (a) linear dependencies (multivariate

normal) and (b) a nonlinear dependency structure. Univariate extreme event detection does not follow the shape of the data, whereas

algorithms assuming a multivariate normal distribution (Hotelling’s T2, Lowry and Woodall, 1992) are suitable
::::
Data

::::::::
processing

:
for case

(a); kernel density estimation (KDE) gets the shape of the data in both cases (a) and (b). 5% extreme
::::::
detecting

::::::::::
multivariate anomaliesare

outside the shaded areas (region of "normality") for all three algorithms.

multivariate distribution) in each overlapping spatiotemporal segment (Fig. 3, step 5). To reunify the spatiotemporal segments,

we assign the normalized anomaly scores temporally to the time step in the center of the temporal moving window and spatially

to the grid cell in the central bin of similar climate and phenology.5

2.5 Statistics of extreme events

We assume that 5% of the data are anomalous in each overlapping spatiotemporal segment and convert the anomaly scores into

binary information.
:::::::
However,

:::
the

:::::
main

:::::
results

::
of

::::::::::::
compensation

:::::
effects

:::
are

:::
not

:::::::
sensitive

::
to
::::
this

::::::::
threshold

:::::::
selection

:::::::::::::
(Supplementary

:::::::
materials

::::
S3,

::::::
varying

:::
the

::::::::
threshold

:::::::
between

::::
1%

::
to

:::::
10%).

:
To compute statistics based on the spatiotemporal structure of each

extreme event, we follow an approach developed by Lloyd-Hughes (2011); Zscheischler et al. (2013) and compute the connec-10

tions between spatiotemporal extremes if they are connected within a 3x3x3
:
3

::
⇥

:
3
::
⇥

:
3
:
(lon ⇥ lat ⇥ time) cube. Each connected

anomaly is considered as a single event (Fig. 3, step 6). In this way, we observe event-based statistics, i.e.,
:
affected area (km2),

affected volume (km2 · days), centroids of the area and histograms of the single variable anomalies stratified according to

different ecosystem types (land cover classes). Furthermore, we observe the response of individual variables to the multivariate

event by computing the area weighted sum of the variable during the event in which the variable of interest is positive relative15

to the seasonal cycle (res+) or negative, respectively (res�). For many biospheric variables, one expects a mainly negative

response to hydrometeorological extreme events like heatwaves or droughts (Larcher, 2003; von Buttlar et al., 2018). Thus, we

define compensation of a specific variable to be the absolute fraction of res+ from res�. The balance of a variable is the sum

of res+ and res�. Centroids of res+ and res� are computed as average of the affected longitudes, latitudes, and time period,

10



weighted with the number of affected grid cells at this longitude, latitudes, and time period, and its respective anomaly score.20

They are to compute the spatial and temporal distance between res+ and res�. Affected area, volume, response and centroids

take the spherical geometry of the Earth into account by weighting the affected grid cells with the cosine of the respective

latitude.

3 Results

3.1 Extreme events in western Russia in 2010

We identify two multivariate extreme events in the set of hydrometeorological variables in western Russia 2010, based on the5

spatiotemporal connectivity (more details Supplementary Materials S2
::
S1). The two extreme events are separated by approxi-

mately one week of normal conditions towards the end of May:

– hydrometeorological spring event: anomaly of the hydrometeorological variables in western Russia during May ranging

from longitude 30.25 - 60.0 � E, latitude � 55�N (Fig. 5a, b)

– hydrometeorological summer event: anomaly of the hydrometeorological variables in western Russia, June to August,10

ranging from longitude 28.75 - 60.25� E, latitude 48.25 - 66.75 �N . This event is usually referred to as Russian Heatwave

(RHW) 2010 (e.g., Barriopedro et al., 2011; Rahmstorf and Coumou, 2011) (Fig. 5c, d).

Both multivariate hydrometeorological anomalies partly overlap with a multivariate anomaly in the set of biosphere variables

(biospheric spring event and biospheric summer event). Of specific interest is that the area affected by anomalous hydrome-

teorological summer conditions is remarkably larger than the one detectable in the biospheric variables (biospheric summer15

event, 2.4 · 106 vs. 1.1 · 106 km2, Tab. 1). This fact might already indicate that biosphere responses are more nuanced
::::
than

:::
the

:::::::::::::::::
hydrometeorological

:::::
events

:
and do not simply follow the extent of the hydrometeorological anomaly. As indicated e.g.

:
,
:
also

by Smith (2011), a hydrometeorological extreme event does not necessarily imply an extreme response.

11



(a) duration of the hydrometeorological spring event
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(c) duration of the hydrometeorological summer event
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(d) sum of GPP during the hydrometeorological sum-

mer event
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biospheric
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spring
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Figure 5. Left column: temporal duration of
::
the

:
(a) the hydrometeorological spring eventand

:
, (c) the hydrometeorological summer event

:
,

:::
and

::::::::
biospheric

:::::
events

:::::
(e),(g). Right column: corresponding GPP response, i.e.,

:
the sum of deviations from the seasonal cycle during the

event for
::
the

:
(b) the hydrometeorological spring eventand ,

:
(d) the hydrometeorological summer event,

:::
and

::::::::
biospheric

:::::
events

:::
(f),

::
(h). While

the GPP response during the hydrometeorological spring event is entirely positive (more productive than usual, b), GPP response during

the hydrometeorological summer event differs between higher latitudes (> 55� N, short-lasting, positive) and lower latitudes (long-lasting,

negative). 12



3.1.1
::::::::::::::::
Hydrometeorogical

::::::
events

As GPP is a key determinant of ecosystem–atmosphere carbon fluxesand well described, we focus on the gross primary pro-20

ductivity (GPP) response to the multivariate hydromteorological
::::::::::::::::
hydrometeorological

:
anomaly: We find that the GPP response

is entirely positive during the short-lasting hydromteorological
::::::::::::::::
hydrometeorological

:
spring event (+17.8 Tg C, Tab. 1), while

it is mainly negative during the summer (+8.8 Tg C, �49 Tg C, Tab. 1). Nonetheless, 18% of the GPP summer losses during

the RHW
::::::::
associated

:::::
with

:::
the

:::::
RHW

::
in

:::
the

:::::::
southern

::::::
region

:
are instantaneously compensated by over-productive vegetation in

the northern latitudes. If we estimate the
:::::::
annually

:
integrated effect of summer and spring

::
the

:
anomalies, another 36% of the

carbon losses are compensated during spring in higher latitudes.
::::::
Please

::::
note,

:::
that

:::
we

:::
did

:::
not

::::
find

:::::::
extreme

:::::
events

::::
after

::::::::
summer,

:::::
which

::::::
implies

::
a
:::
fast

::::::::
recovery

::
of

:::::::::
vegetation

::::::
activity

:::::
after

:::::::
summer.

:::::::::
Integration

::::
over

:::
the

::::::
spring

:::
and

::::::::
summer

:::::
events

::::
thus

::::::
equals

::
the

::::::
annual

::::::::::
integration.

:
Overall, we find that 54% of the negative GPP responses

::::::::
anomalies

:
are compensated either because

of the positive spring anomalies or across ecosystems during summer. These compensation effects reduce the negative carbon5

impact of integrated annual (spring and summer) hydrometeorological event from �49.0 Tg C to �24 Tg C in total (Tab. 1).

3.1.2
:::::::::
Biospheric

::::::
events

Moving the focus to the multivariate biosphere events (biospheric spring and biospheric summer event), which overlap with

the hydrometeorological events, we find that GPP responses based on the biospheric spring event are almost entirely positive

(+33.8 Tg C), and based on the biospheric summer event almost entirely negative (�82.6 Tg C). In total,
:
If
:::
we

::::::::
consider

::
the

:::::::::::::::::
annually-integrated

:::::
effect

::
of

:::
the

::::::
spring

::::
and

:::::::
summer

:::::::::
anomalies,

::::::
spring

::::::
carbon

:::::
gains

:::
are

::::::::
estimated

:::
to

:::::
offset

:
41% of the5

summer carbon losses are compensated by an anomalously productive spring
:::::::::
subsequent

::::::
carbon

::::::
losses

::
in

:::::::
summer

:
(56 days

earlier) in the higher latitudes (514 km distance of the centroids, Tab. 1). To further examine these findings, we check for

these kind of compensation effects among different variables and another GPP dataset in the following section. Note that the

dataset of biosphere variables includes GPP itself. Computing the responses based on the extent of the biospheric event is

nevertheless useful, as an extreme event in the biosphere variables is not exclusively restricted to extreme conditions in the10

hydrometeorological conditions (Smith, 2011).

3.2 Compensation in other data-sets and variables

The integrated (spring and summer)
:::::::::::::::
annually-integrated

:
compensation effect in GPP is highly consistent among different

variables. For instance,
:
NEP (excluding fire) shows this

:::
such

:
kind of compensation, but also FAPAR and LE (Tab. 2). Sensible

heat flux, on the other hand, is high during the hydrometeorological summer event (biospheric summer event), as well as the15

hydrometeorological spring event (biospheric spring event) as expected for strong positive temperature anomalies. However,

some of the remote sensing data products might be affected by high fire induced aerosol loadings during the heatwave that

affect atmospheric optical thickness (e.g., Guo et al., 2017; Konovalov et al., 2011). Exploring an almost entirely climate-

driven GPP product (FLUXCOM RS+METEO, Jung et al., 2017) also shows the integrated compensation effect, although

13



Table 1. Statistics of the extreme events, based on their spatiotemporal connected structure: affected area, affected volume, positive and

negative GPP response to the event, compensation of the negative response (comp.), as well as average spatial and temporal distance between

the parts of the events with positive and negative responses.

event area [km2] volume [km2 · days] GPP comp. res+GPP res�GPP spatial [km] temporal [d]

hydrometeorological

spring 0.77 · 106 0.81 · 107 - 17.8 Tg -

summer 2.44 · 106 5.79 · 107 0.18 8.8 Tg �49.0 Tg 499 -4

integrated 3.29 · 106 6.60 · 107 0.56 26.6 Tg �49.0 Tg 452 -34

biospheric

spring 1.25 · 106 1.48 · 107 117.04 33.8 Tg �0.3 Tg 756 -16

summer 1.06 · 106 4.22 · 107 0.00 0.4 Tg �82.4 Tg 962 50

integrated 2.28 · 106 5.70 · 107 0.41 34.2 Tg �82.7 Tg 514 -56

Table 2. Compensation of negative responses to the western Russian events in 2010 based on the integrated biospheric or hydrometeorological

events is consistent over different variables and data sets.

hydrometeorological events biospheric events

Variable res+ [Tg] res� [Tg] Comp. [%] res+ [Tg] res� [Tg] Comp. [%]

NEP 17.53 Tg �34.03 Tg 51.5 23.45 Tg �48.49 Tg 48.4

LE 19.90 Tg �53.97 Tg 36.9 16.34 Tg �102.81 Tg 15.9

FAPAR 1.89 �4.03 Tg 47.0 2.52 Tg �6.61 Tg 38.1

TER 18.97 Tg �11.06 Tg 171.4 13.71 Tg �23.43 Tg 58.5

much lesser pronounced (Appendix A1). Thus, we are confident that the observed compensation effect is not related to the

optical thickness during the RHW.

3.3 Influence of Vegetation Types

In Fig. 6 we present the histograms of GPP anomalies for different land cover classes (forests, grasslands and crops) based

on hydrometeorological spring event, hydrometeorological summer event, biospheric spring event, and biospheric summer5

event, respectively (Fig. B1) to highlight two aspects: First, during the spring event (hydrometeorological spring or biospheric

spring), forests react almost entirely with positive GPP anomalies (Fig. 6a). Thus,
::::::
Forests

::
in

:::
this

::::::
region

:::
are

::::::::::::
energy-limited,

:::
so

the timing of the extreme event (e.g.,
:
positive temperature anomalies in spring) leads to hydrometeorological conditions which

are favourable for vegetation productivity, as absolute spring temperatures are still below the temperature optimum of GPP

(Fig. 8a, Wolf et al., 2016; Wang et al., 2017).10

Second, during the hydrometeorological summer event, we observe positive to neutral GPP responses in forests, whereas

crops and grasslands react strongly negative (Fig. 6b). The positive versus negative GPP responses almost entirely reflect the

14
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Figure 6. Histogram of GPP anomalies
:::::::
(reference

:::::
period:

:::::::::
2001-2011)

:
for different land cover classes based on the spatio–temporal extent of

(a) the hydrometeorological spring event and (b) the hydrometeorological summer event. Bars denote the sum of all vegetation classes.
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Figure 7. (a) Dominant land cover classes of a spatial extent of the RHW. (b) The boundaries of the different ecosystem types (forest-

dominated ecosystems vs. agriculture-dominated ecosystems, denoted by the black contour line) match the observed patterns of the GPP

response
:::::::
(reference

:::::
period

:::
for

::
the

:::::::::
calculating

::::::::
anomalies:

:::::::::
2001-2011) during the hydrometeorological summer event.

map of dominant vegetation types (forest vs. agricultural ecosystems, Fig. 7). In fact, we can also show that from a statistical

point of view vegetation type is the most important factor explaining the GPP response in summertime, followed by radiation

anomalies and duration (Supplementary S3). However, different vegetation types exhibit a transition from higher latitudes15

(predominantly forest ecosystems) to lower latitudes (dominated by agricultural ecosystems). Thus, the different responses

of vegetation types might be confounded by the fact that absolute temperatures also follow a latitudinal gradient (Fig. 1b).

Absolute temperatures for agricultural ecosystems are higher and far beyond the temperature optimum of GPP (8c), whereas

15



Figure 8. Temperature optimality for GPP in (a) forests during spring, (b) forests during summer, and (c) crops during summer. Contour

lines enclose 75% of the data points.

forest-dominated ecosystems at higher latitudes experience temperatures just slightly above the temperature optimum of GPP

(8b). The response of forest ecosystems partly reflects this kind of latitudinal gradient: forest ecosystems in the lower latitudes20

react positively to the spring temperature anomaly and then tend to react more negatively to the summer heatwave than forest

ecosystems in higher latitudes. Forest ecosystems in higher latitudes are still productive in terms of GPP during the peak of the

heatwave (Fig. 9). This finding is accompanied by consistently higher

::
To

::::::::::
disentangle

:::
the

:::::::
variable

:::::::::
importance

::
of

:::
the

::::::::
different

::::::::::
confounding

:::::::
factors,

:::
we

:::
run

:
a
::::::
simple

:::::
linear

:::::::::
regression

:::::
model

::::::
which

:::
tries

:::
to

::::::
explain

:::::
GPP

::
as

::::::::
function

::
of

:::
the

::::::::::::::::::
hydrometeorological

:::::
driver

::::::::
variables

:::::::::::
(temperature,

::::::::::::
precipitation,

::::::::
radiation,

:::::::
surface

:::::::
moisture,

:::::::::
including

::::
their

:::::::::
anomalies

::::
and

:::::::
absolute

:::::::
values),

::
as

::::
well

:::
as

:::::::::
vegetation

:::::
type,

:::::::
duration

::::
and

::::::
latitude

::::::::::::::
(Supplementary

:::
S2).

::::
We

:::
use

:::
an

::::::::
algorithm

:::::
after

::::::::::::::::::::::::::::::
Chevan and Sutherland (1991) which

:::::::
extracts

::::
the

::::::::::
independent

:::::::::::
contribution

::
of

::::
the

:::::::
variable

:::::::::
importance

::::::
related

::
to

:::
this

:::::::::
particular

::::::
variable

:::::::::
regardless

::
of

:::
the

::::::
model

:::::::::
complexity

::
or

::::::::::::
dependencies

:::::
among

:::::::::
variables.

:::
The

::::::
model

::::::
reveals

::::
from

::
a
::::::::
statistical

:::::
point

:::
of

:::::
view,

:::
that

::::::::::
vegetation

::::
type

:::
and

::::
the

:::::::::
latitudinal

:::::::
gradient

:::
are

:::
the

:::::
most

:::::::::
important

::::::::
variables5

::::::::
explaining

:::::
GPP

:::::
during

:::
the

:::::::
summer

::::::
event,

:::::::
followed

:::
by

:::
the

:::::::::::::::::
hydrometeorological

:::::::
drivers.

::::::
Access

::
to

::::::
deeper

:::::
water

:::
and

::::
soil

::::
type

::
as

::::
well

::
as

:::::::::
non-linear

::::::::
feedbacks

:::
are

::::::
factors

::::::
which

:::
are

:::
not

::::::::::
represented

::
in

:::
the

::::::
model,

:::
but

:::::
might

:::::::
explain

:::
the

::::
high

:::::::::
importance

:::
of

::::::
latitude.

::::::
Apart

::::
from

:::::::::
vegetation

::::
type

::::
being

:::::::::
important

:::
for

::
the

:::::
GPP

::::::::
response, underlying water use efficiency (calculated accord-

ing to Zhou et al. (2014)
:
is
::::::::::
consistently

::::::
higher in forest-dominated ecosystems compared to agriculture-dominated ecosystems

(Appendix Fig. C1a), and higher evaporative fraction in forest ecosystems during the peak of the heatwave (Appendix Fig.10

C1b).
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(a) agricultural ecosystems (b) forest ecosystems

Figure 9. Temporal evolution of the GPP anomaly
:::::::
(reference

::::::
period:

:::::::::
2001-2011) for (a) agricultural ecosystems and (b) forest ecosystems,

colored according to the latitude.

4 Discussion

In this paper we show that the hydrometeorological extreme events affecting western Russia in spring and summer 2010 do

not fully correspond to the observed vegetation responses. Positive to neutral GPP responses prevail in higher latitudes during

summer, whereas strong negative impacts on GPP can be found in lower latitudes. We interpret this effect by different water15

management strategies of forest vs. agricultural ecosystems (Teuling et al., 2010; van Heerwaarden and Teuling, 2014) that

meet a general latitudinal temperature gradient. Apart from a more efficient water usage of forest-dominated ecosystems, access

to deeper soil water might be another reason of ecosystem-specific responses (Fan et al., 2017; Yang et al., 2016). Note that

the latitudinal temperature gradient alone might explain differences in the response within ecosystems in summer and between

spring and summer, but does not sufficiently explain differentiated GPP responses in summer among different ecosystems20

(predominantly forest vs. agricultural ecosystems).

:::::::
Another

::::::::
important

::::::
aspect

::
is

:::
that

:::
the

:::::::::::
combination

::
of

::::
the

:::::::::
anomalous

::::::
spring

:::
and

:::
the

::::::
unique

::::::::
heatwave

:::
in

:::::::
summer

:::::
might

:::
be

::::::::
inherently

:::::::::
connected

:::
via

:::::
land

::::::
surface

::::::::::
feedbacks.

:::::::::::::::::::::::::
Buermann et al. (2013) showed

::::
that

:::::::
warmer

:::::::
springs

:::::
going

:::
in

::::
hand

:::::
with

:::::
earlier

:::::::::
vegetation

:::::::
activity

:::::::::
negatively

:::::
affect

::::
soil

:::::::
moisture

:::
in

:::::::
summer.

::
It

::
is

::
a

::::::
general

::::::::::
observation

::::
that

:::::
warm

::::
and

:::
dry

:::::::
springs

:::::::
enhance

:::::::
summer

:::::::::::
temperatures

::::::
during

::::::::
droughts,

:::::
which

::::::::
suggests

:::
the

::::::::
presence

::
of

:::::::::::
soil-moisture

::::::::::
temperature

:::::::::
feedbacks

::::::
across25

::::::
seasons

::::::::::::::::::::::::::
(Haslinger and Blöschl, 2017).

::
In

::::
case

:::
of

:::
the

:::::::
Russian

::::::::
heatwave

::::::
2010,

:::
soil

::::::::
moisture

::::
was

::::
one

::
of

::::
the

::::
main

:::::::
drivers

:::::::::::::::::
(Hauser et al., 2016),

::
in

:::::
hand

::::
with

::::::::
persistent

:::::::::::
atmospheric

:::::::
pressure

:::::::
patterns

::::::::::::::::::
(Miralles et al., 2014).

:::::
Thus,

:::
we

:::::::
suspect

::::
that

:::
the

:::::
spring

:::::
event

::
is

:::::::::
connected

::
to

:::
the

::::::::
summer

::::::::
heatwave

::
in

:::::
2010,

::
if
::::

not
::::::
setting

:::
the

::::::::::::
preconditions

:::
for

:
a
::::::::

heatwave
:::

of
::::
this

::::::
unique

:::::::::
magnitude.

Compensations of
:::
The

:::::::::
integration

::
of

:::
the

::::::
carbon

:::::::
balance

::::
over

:::::
spring

::::
and

::::::
summer

::::::
might

::
be

:::::::
justified

::
by

::::::::
assumed

::::::::::
connections30

:::::::
between

::::::
spring

:::
and

::::::::
summer

::
as

:::::::
outlined

:::::::
before.

::::::::
However,

::::
we

:::::
would

::::
like

:::
to

::::
note

::::
that

:
a
::::::::

common
:::::::

annual
:::::::::
integration

::::
and

:::::::::
assessment

::
of

::::::::::::
compensatory

::::::
effects

::
of

:::
the

::::::
carbon

:::::::
balance

::::
over

::::::
events

:::::
during

:::
the

::::::::
growing

::::::
season

:::::
equals

:::
the

::::::::::
integration

::::
over

:::::
spring

::::
and

:::::::
summer

:::
for

:::
this

::::::::
particular

:::::
case,

::
as

:::
we

:::
did

:::
not

::::
find

::::
any

:::::
events

:::::
after

:::::::::::
summertime.

:::
The

:::::::
absence

:::
of

:::::
events

:::::
after

:::
the

::::::
summer

::::::::
heatwave

::::::
which

::::::
implies

::
a

:::
fast

:::::::
recovery

:::
of

::
the

:::::::::::
ecosystems.
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::::::::::::
Compensations

:::
of

::
the

:
carbon balance during hydrometeorological extreme events have been reported in earlier studies. For

instance
::
On

:::
the

:::
one

:::::
hand, Wolf et al. (2016) report that a warm spring season preceding the 2012 US summer drought reduced

the impact on the carbon cycle on the one side. Yet on the other side
::::
hand,

:
the increased spring productivity amplified the

reduction in summer productivity by spring–summer carry-over effects via soil moisture depletion: higher spring productivity5

leads to higher water consumption in spring. The high water additionally consumed during spring reduces the water availability

in summer and thereby affects productivity during the following summer. However, it remains unclear whether this observation

was a singular case, or whether this compensation effect could become a characteristic pattern to be regularly expected in a

warmer world. In this paper
::::
study, we provide some evidence for presumed comparable compensation effects. In contrast to

the discussion in Wolf et al. (2016), the RHW compensation does not exclusively occur temporally, i.e.
:
, spring compensating10

for summer losses, but rather spatially distinct forest ecosystems are identified as drivers for this compensation. Spatially

compensating ecosystem effects to drought have been observed earlier in mountainous ecosystems that respond differently

than lowlands during the European heatwave 2003 (Reichstein et al., 2007).

Following up on these
:::
such

:
compensation effects, Sippel et al. (2017) use ensemble model simulations to disentangle the

contribution of spring compensation vs. spring carry-over effects on a larger scale. They show that
::
in

::::::
general

:
warm springs15

increasingly compensate summer productivity losses in Europe, whereas spring–summer carry-over effects are constantly

counteracting this compensation.
::::
Also

::::::::::::::::::::::::::
Mankin et al. (2017, 2018) note

:::
that

::::::::
increased

::::::
spring

::::::::::
productivity

::::
with

:::::::::::::
spring–summer

::::::::
carry-over

::::::
effects

:::
can

:::
be

:::::::
observed

::
in
:::::
earth

::::::
system

:::::::
models. We can confirm the general finding on spring compensation effects

of summer productivity losses in observations for our case study on the RHW. Without using model simulations it is difficult to

quantify spring–summer carry-over effects via soil moisture depletion. In case of the RHW only very few areas are anomalously

productive in terms of GPP in spring and unproductive in summer as well. Thus, we suspect that exclusively temporal spring–

summer carry-over effects play a rather small role for the RHW. However, we also emphasize that longer-term effects, such5

as compensation in subsequent year through species changes for instance (Wagg et al., 2017), have not been considered in the

present study and likely remain hard to quantify beyond dedicated experiments
:
.

The RHW is probably among the best studied extreme events in the northern hemisphere
::::::::
Northern

::::::::::
Hemisphere. However,

the compensation effects reported in this study have only received marginal attention so far. For instance, Wright et al. (2014)

mention positive NDVI anomalies in spring 2010, but then focus largely on productivity losses in the Eurasian wheat belt.10

Similarly, Bastos et al. (2014) focus on a spatial extent of the biosphere impacts that only partly includes forest ecosystems

at higher latitudes. Our estimation of carbon losses due to decreased vegetation activity (82 Tg C) is comparable to the one

of Bastos et al. (2014) (90 Tg C). Similar to the resutls
:::::
results

:
of our study, Yoshida et al. (2015) report reductions in photo-

synthetic activity in agriculture-dominated ecosystems during the RHW, but only small to no reductions in forest ecosystems

during summertime. However, their interpretations focus on the summer heatwave. Nevertheless, re-evaluating impact maps15

(published e.g. in Wright et al., 2014; Yoshida et al., 2015; Zscheischler et al., 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(published e.g., in Wright et al., 2014; Yoshida et al., 2015; Zscheischler et al., 2015) in

the light of our findings suggests that their evidence supports the presence of compensation effects during the RHW. When

it comes to extreme events, the general tendency in many existing studies is naturally to focus on negative impacts as they

are of particular interest for society (Bastos et al., 2014; Wright et al., 2014; Yoshida et al., 2015; Zscheischler et al., 2015).
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Thus
::::::::
Regarding

:::
the

:::::
RHW

::
in
:::::::::

particular, compensation effects remain unconsidered in previous studies on the RHW to the best

of our knowledge.5

5 Conclusions

We re-analysed biospheric and hydromteorological
:::::::::::::::::
hydrometeorological

:
conditions in western Russia 2010 with a generic

spatiotemporal multivariate anomaly detection algorithm. We find that the hydrometeorological constellation
::::::::
conditions

:
and

the biospheric responses exhibit two anomalous extreme events, one in late spring (May) and one over the entire summer

(June, July, August), covering large areas of western Russia. For the summer event, we find that the spatially homogeneous10

anomaly pattern (characterized by high solar radiation and temperature, low relative humidity and precipitation) translate into

a bimodal biosphere response. Forest ecosystems in higher latitudes show a positive anomaly in gross primary productivity,

while agricultural systems decrease their productivity dramatically.

If we consider the integrated spring and summer
:::::::
annually

:::::::::
integrated effect of the anomalous hydrometeorological conditions,

we find that forest ecosystems
::::
partly

:
compensate for 54% (36% during spring, 18% during summer) of the productivity losses15

experienced in agricultural ecosystems. On the one hand, this finding highlights the importance of forest ecosystems to mitigate

the impacts of climate extremes. On the other hand, however, this finding does
:::::
Please

:::::
note,

:::
that

:::
the

:::::::
annually

:::::::::
integrated

::::::
impact

::
of

:::
the

::::
2010

::::::
events

::
on

:::
the

::::::
carbon

::::::
balance

::
is

:::::::
strongly

::::::::
negative.

:::
Our

:::::::
findings

:::
do not alleviate the consequences of extreme events

for food security in agricultural ecosystems.

From a methodological point of view, this study emphasizes the importance of considering the multivariate nature of anoma-20

lies. From this study, we learn that it is insightful to consider both, the possibility of negative as well as of positive impacts,

and assess their
:::::::
annually integrated compensation. Although the integrated impact on gross primary production of the hydrom-

eteorological conditions is strongly negative, it is important to notice the strong
:::::
partial compensatory effects due to differently

affected ecosystem types, as well as duration and timing of the extreme events.
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Appendix A: Comparison with METEO + RS25
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Figure A1. The longitudinal (30.25-60.25� E) average of the GPP anomalies during the RHW 2010, based on the Climate Research Unit

observation-based climate variables (CRUNCEPv6, New et al., 2000) driven GPP product originating from FLUXCOM RS+METEO (Jung

et al., 2017) shows similar but weaker compensation effects. 28% of the negative GPP response to the RHW are compensated based on the

shown latitude-longitude subset.

Appendix B: Biosphere response

(a) biospheric spring event
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(b) biospheric summer event
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Figure B1. Histogram of GPP anomalies
::::::::
(reference

:::::
period:

:::::::::
2001-2011)

:
for different land cover classes constrained by a) biospheric spring

and b) biospheric summer event.
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(a) biospheric spring event duration(b) biospheric spring event GPP sum(c) biospheric summer event duration(d) biospheric

summer event GPP sumLeft hand side: temporal duration of (a) biospheric spring, and (c) biospheric summer event. Right

hand side: corresponding GPP response, i.e. the deviation from the seasonal cycle during the event for (b) biospheric spring,

and (d) biospheric summer event. The Biospheric summer event is missing the positive response of forests at higher latitudes,30

as the response was positive, but is not considered to be "extremely" positive. Therefore, it is not detected by the multivariate

algorithm.

Appendix C: Water use efficiency and evaporative fraction of different land cover types

(a) underlying Water Use Efficiency (b) Evaporative Fraction

Figure C1. (a) Underlying water use efficiency (uWUE) and (b) evaporative fraction (EF) of the area affected by the RHW in 2010. uWUE

is calculated according to Zhou et al. (2014) including vapour pressure deficit. In contrast to WUE, uWUE attempts to correct for differences

in temperature and vapour pressure deficit to a certain degree.
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Response to Anonymous Referee #1  

Received and published: 24 April 2018  

Summary:  

This manuscript presents a case study analysis to examine the impacts of compound events 

through a comparison of hydrological (via soil moisture) and biospheric (via GPP) perspectives 

in the season preceding, and during, the Russian 2010 heatwave. The paper provides a case for 

why singular extreme events need to be examined under different perspectives to understand the 

full implications of these events across multiple sectors. It is a nice study however I was 

anticipating a more indepth analysis of the processes that connect the two events. Its almost there 

and perhaps only requires minor revision of the text to achieve this. 

Response: We would like to thank the reviewer for the positive evaluation of our manuscript and 

agree that the discussion regarding the processes connecting the hydrometeorological and 

biopsheric event, and the connections between the spring and summer events can be substantially 

improved. We do our very best to provide a more in-depth discussion which hopefully addresses 

the reviewer’s concerns. Specifically, we will add a paragraph to the introduction (see reply to 

1), and the discussion (see reply to 3). 

Main Comments:  

1) The hydrological event and the biospheric events don’t have the same spatial coverage which 

makes it hard for those new to the concept of compound events to appreciate how the events 

evaluated in the manuscript are indeed related. Could the authors perhaps provide a stronger case 

for why these distinctive events should be considered together beyond the ‘different disciplinary 

perspectives’ by delving into how one may be a result of the other.  The commentary around 

Figure 1 on page 3 makes it difficult to reconcile the fact that the two events are related. Perhaps 

part of the confusion also stems from having a spring event, a summer event and then considering 

these events defined in terms of either the biospheric and hydrological perspective (so effectively 

giving 4 events to compare). I think this can be resolved by amending the text and including more 

discussion on how these events fit together.  



Response: We highly appreciate the reviewers’ perspective on compound events. We already 

elaborate a little bit on the biospheric response to heatwaves and droughts (p. 2, l.25-31), but we 

agree with the reviewer, that the link between biosphere and atmosphere, as well as spring and 

summer is not well explained. Thus, we will extend the commentary around Figure 1 and 

elaborate on connections between hydrometeorology and biosphere as well as spring and 

summer (p.3, l.5) as follows:  

Temperature anomalies exceeded more than 10~K in both spring and summer, but they lead to 

distinctive anomalies in gross primary productivity (GPP). Positive GPP anomalies occurred 

during the spring event, whereas negative GPP anomalies are occurring during the summer 

heatwave. The positive GPP response in spring might be a reaction to warmer, more optimal 

spring temperatures (Wang et al, 2017) possibly accompanied by enough water availability. 

However, negative GPP anomalies in summer occurred only in areas south of 55°N (Fig. 1c) 

indicating that the GPP response involves much more processes than high temperatures and 

drought during the unique RHW. As already indicated by Smith, 2011, the connection between 

biosphere and hydrometeorology is much more complex than just a direct one-to-one mapping. 

Further complicating this issue is the fact that the summer event cannot be investigated without 

the previous spring, as both seasons are inherently related via memory effects in water 

availability. Increased GPP in spring may negatively influence soil moisture and thus GPP 

during summer (Buermann et al., 2013). In Summary, comparing ... 

 

2) The narrative in section 2.2 was hard to follow in that there is some information that may be 

better to remove (e.g. defining extremes using global thresholds) or a dependence on jargon that 

not everyone may understand (some examples noted in the minor comments). Given that the 

manuscript aims to articulate a methodology for extracting information on compound events this 

could be revised. Would it be possible to add some illustration to the schematic in Figure 2 to 

clarify how the spatiotemporal segments are defined and extracted.  

Response: We agree with the reviewer, that section 2.2 can be improved. We will completely 

revise the section. We will remove unecessary parts (e.g. the global thresholds) and avoid jargon 

whenever possible. We will add the following schematic Figure to illustrate the extraction of the 

spatial segments.  



 

3) I was a bit disappointed in the lack of discussion of the processes involved that led to this 

combination of events over Spring and Summer. Figure 7 provides some insight into how the 

unique the RHW event was but stronger statements could be made about whether the spring event 

was a necessary condition for the RHW.  

Response: We agree with the reviewer, that it would indeed be very nice to show the connection 

between summer and spring events and whether this kind of unique summer events only happen 

preconditioned on an anomalous spring. However, this would require running process based 

model simulations (as some of the coauthors already did for evaluating the general presence of 

spring summer compensation effects in Sippel et al. 2017) which goes beyond the scope of this 

paper - focussing more on a statistical detection. We agree that this is a very relevant question 

that can be addressed in a follow up study.  

To address the reviewer’s need for process based connections between the spring and summer 

events we suggest to intensify the discussion about the biophysical processes that could link 

spring and summer anomalies. Several works suggest that spring warming leads to depleted soil 

moisture in summer, thus amplifying the summer droughts (e.g., Buermann et al., 2013, ERL, 

Wolf et al., 2016, PNAS).  To address this issue, we will add a paragraph to the introduction (see 

reply to 1), and we will add a paragraph before p.12, l. 22 – p. 13, l. 10. with a more in-depth 

discussion as folows: 
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Another important aspect is that the combination of the anomalous spring and the unique 

heatwave in summer might be inherently connected via land surface feedbacks. Buermann et al., 

2013 showed that warmer springs going in hand with earlier vegetation activity negatively affect 

soil moisture in summer. It is a general observation that warm and dry springs enhance summer 

temperatures during droughts, which suggests the presence of soil-moisture temperature 

feedbacks across seasons (Haslinger et al., 2017). In case of the Russian heatwave 2010, soil 

moisture was one of the main drivers (Hauser et al., 2016), in hand with persistent atmospheric 

pressure patterns (Miralles et al., 2014). Thus, we suspect that the spring event is connected to 

the summer heatwave in 2010, if not setting the preconditions for a heatwave of this unique 

magnitude. 

 

4) The concluding paragraph seems to suggest that the positive GPP anomaly in spring offsets the 

negative anomaly in summer such that the net effect is a positive impact. This is slightly 

misleading given there were still substantial consequences on crop productivity in summer. This 

makes it hard to reconcile the ‘GPP compensation’ as necessarily a positive impact. This text 

needs careful revising.  

Response: We would like to thank the reviewer for pointing us that the concluding paragraph 

could be misunderstood. Our intention was not to suggest that the integrated net effect of the 

events in Russia 2010 was a positive one in terms of carbon budget and tried our best to avoid 

this kind of misunderstanding, e.g. state that in the first part of the concluding sentence (p.14, l. 

16): “Although the integrated impact on gross primary production of the hydrometeorological 

conditions is strongly negative, it is important to notice the strong compensatory effects due to 

differently affected ecosystem types, as well as duration and timing of the extreme events.“ We 

will replace „strong“ with „partial“ to avoid missunderstandings. 

To prevent further misunderstanding, we will exchange “compensate“ with “partly compensate“ 

or “compensation“ with “partial compensation” in the conclusions, and the abstract. 

Furthermore, we will add a sentence on p. 14, l.11 clarifying this once more: “Please note, that 

the integrated impact of the 2010 events on the carbon balance is strongly negative.“ 

 Minor Comments:  

5) There are a couple of instances where the text is awkward and could be revised e.g. page 2 line 



21: ‘In 2010 the depleted state of soil moisture was one important driver which locally amplified 

the high temperature regime’ could be written as ‘In 2010 a negative soil moisture contributed to 

increased temperatures’  

Response: We thank the reviewer and we will change it accordingly and go once again through 

the text to find such awkward instances.  

6) When calculating anomalies, it is still useful to know what they are anomalous to. Please 

include the reference period to which the anomalies are derived from for all figures that are 

showing anomalies.  

Response: We agree with the reviewer and add this information as suggested to Fig. 1, 4, 6, 8, 

A1, B1.  

7) I don’t understand the phrase ‘impact-agnostic approach’ on Page 3  

Response:  “Impact-agnostic“ may be just our own jargon. We meant here, that our approach is 

independent, whether the event is related to a positive or a negative impact. We will remove the 

phrase. 

8) Page 3-4 “For instance, a popular approach is to consider an observation in a single (ideally 

normally distributed) anomaly variable to be extreme if it deviates by more then two standard 

deviations from the variable’s mean values.” Perhaps include references here that use this 

approach. Many studies on extremes also use other definitions from the Expert Team on Sector-

specific Climate Indices (ET-SCI) which use percentile thresholds to identify extremes.  

Response: We will include references as suggested by the reviewer. 

9) Page 4, line 11: replace ‘constellations’ with ‘combinations’  

Response: We will replace it. 

10) Page 4, last paragraph: it may be useful to note the native resolution of the datasets that are 

used. I gather that the regridding of the land cover classification was done using a conservative or 

nearest neighbour approach?  

Response: We thank the reviewer for the suggestion. The spatial resolution of the original data-



sets will be provided. Regridding the land cover classification (original: 300m) was done by 

using the major land cover class for the new resolution. We will add this information 

accordingly. 

11) Page 5, first paragraph: is there a reason why the median is used? Obviously because it is less 

susceptible to outliers but perhaps worth noting why. I’m also not sure who would define 

regional extremes using a global threshold so perhaps omit this suggestion and simplify the 

narrative.  

Response: We thank the reviewer for this important comment: Yes, we used the median because it 

is less susceptible to outliers. We will add this explanation (p.5, l.3) and remove the part about 

global thresholds (p.5, l.6-9). 

12) Page 5, line 20: ‘sort the median seasonal cycles according to the permutation of temperature’ 

I’m not sure what is meant by ‘permutation of temperature’  

Response: We thank the reviewer for pointing to this jargon issue. We meant that the seasonal 

cycle of temperature is sorted (e.g. high to low). We memorize the order (permutation) and apply 

the same ordering to the other seasonal cycles. We will change the text to explain exactly what 

we did. 

13) It would be nice if Figure 4 and Figure B2 could be combined as this shows the contrast 

between the hydrometeorological and biospheric events and at the moment this feels concealed in 

the present form  

Response: We will combine them as new Figure 4.  

14) Don’t forget to do a spell check!  

Response: We will go through the text once again. We also highly appreciate that Biogeosciences 

now performs a carful language check previous to publication. 

15) Page 9, second paragraph: I’m not quite comfortable with the phrase “In total, 41% of the 

summer carbon losses are compensated by an anomalously productive spring” because it implies 

that there was a recovery in GPP after the summer event which we don’t actually know here. We 

only know that impact of the summer event is not as severe as it could have been because of the 



excess productivity in spring. Perhaps this can be resolved by using a word other than 

‘compensation’.  

Response: We thank the reviewer pointing to the potential misunderstanding regarding the 

“compenstion” effect and to the relevance of recovery after the heatwave. We checked for 

“extreme” GPP anomalies after the summer event, but we could not find any. Thus, vegetation 

might still be slightly less productive than the years before and after, but it is still considered to 

be within “normal” variability by the detection approach. This suggests that the effect of the 

heatwave is limited in time, and that ecosystems are able to recover relatively quickly. We will 

add a sentence of post-heatwave recovery in the manuscript on p.9, l.6.  

Regarding the reviewer’s concerns about the “compensation” effect we will rewrite the sentence 

to: “If we consider the annually-integrated effect of the spring and summer anomalies, spring 

carbon gains are estimated to offset 41% of the subsequent carbon losses in summer.“ In other 

cases, we would like to stick to the term “compensation” because it is already coined by previous 

literature on this topic (e.g. Wolf et al.,  2016,; Sippel et al., 2017). 

16) I like the narrative discussing the results according to vegetation type as this goes a long way 

to understanding differences in the spatiotemporal structure of the events.  

Response: We would like to thank the reviewer for this positive feedback. 

17) The narrative for Figure 7 is too concise, here would be an opportunity to emphasise how 

unique the RHW compound event really was  

Response: We will add a few sentences on that. 

18) Last sentence on page 13 seems to be contradictory to the narrative of the second paragraph 

on this page.  

Response: We thank the reviewer for pointing to this issue. We will make clear in the beginning 

of the second paragraph that the compensation effects mentioned there are more general and not 

directly related to the case study of the Russian heatwave (p.13, l.12): “They show that in general 

warm springs increasingly compensate summer productivity losses in Europe, ...“  



Furthermore we will emphasize that the last sentence on p.13  is only related to the RHW: 

“Regarding the RHW in particular, compensation effects remain unconsidered in previous 

studies to the best of our knowledge“. 

 

19) Page 14, line 3: ‘constellation’ makes me think of stars. I think ‘conditions’ would be more 

appropriate here.  

Response: We will change it as suggested. 

20) Page 14, line 11: “this finding highlights the importance of forest ecosystems to mitigate the 

impacts of climate extremes” Be careful here, as there is some location dependence. Furthermore, 

how much is this a necessary result of the preconditioning in spring? The focus of the paper isn’t 

the mitigation potential of forests so perhaps its better to remove this statement.  

Response: We will remove the statement.  

21) The text in supplementary section S1 seems to be repetition of the text in the main 

manuscript. Either elaborate more or remove.  

Response: We will remove it from the supplementary and merge the information into the revised 

paragraph 2.2 (spatiotemporal segmentation). 

22) Supplementary Figure S3 4 – x axis labels: what is ‘tempanoms’ and how is this distinct from 

‘temp’ – I’m guessing it’s the anomaly? The caption needs more information to understand what 

is actually plotted here. Is the data aggregated to obtain the spatial mean or are all grid cells used 

to construct the linear models?  

Response: We apologize for the bad labeling of Figure S3 4. We will change it in T anomalies 

and the other abbreviations accordingly. We will also add more information about the section in 

the main manuscript (as a request from reviewer#2) and revise the paragraph at S3, add 

explainations about the methods to the text, and add information to the caption. Regarding the 

reviewers question on the aggregation: All grid cells are used to construct the linear models 

without aggregation. 



Response to Anonymous Referee #2  

Received and published: 2 May 2018  

Review for bg-2018-130, Flach et al., "Contrasting biosphere responses to hydrometeorological 

extremes: revisiting the 2010 western Russian Heatwave."  

Flach and colleagues, using a multivariate spatiotemporal anomaly detection algorithm on both 

climate and ecosystem variables, assess the response of productivity to the Russian heat wave of 

2010. Motivated by the potential for inconsistencies in the climate event and the biospheric 

impact (which they suggest is a function of disciplinary divides) they find that an anomalous 

spring warming event in both the biosphere and climate increased GPP prior to the actual heat 

wave itself, which occurred later in summer, thus offsetting the negative productivity effects. 

They note that the compensation occurs in different ecosystems–losses dominated in lower 

latitude managed ecosytems, such as crop land, while spring gains dominated in higher latitude 

forested regions. During the heat event itself, they attributed the differential response of forests 

and crops to different water management strategies of the vegetation classes. Overall the paper is 

a nice contribution and appears methodologically sound (if not a bit overcomplicated in places). I 

have a few comments and suggestions for the authors to consider that I hope will help improve 

the clarity and argument of the paper.  

Response: We would like to thank the reviewer for the positive evaluation. 

Main comments:  

1. Stated motivation: While I am sympathetic to the larger issue that climate extremes and 

climate impacts are distinct domains and that extremes may not necessarily map to impacts, I find 

parts of the introduction to be somewhat of a ‘straw man.’ The hydro and bio perspectives 

generally do agree on the Russian heat wave–warm temperatures, along with dry soils leads to 

carbon loss. Consider the fact, for example, that the authors’ very own agnostic algorithm finds 

the same two events in both the met and bio fields; it suggests that the RHW at least, this 

disconnect does not lead to inconsistent interpretations or conclusions among different 

disciplines. The notion that there isn’t a one-to-one mapping between the geophysical event and 

the biophysical impact is certainly important for accurately representing the total effects as a 



function of the differential vulnerabilities of ecosystems. The authors rightfully emphasize this. 

However, the notion that this issue is emblematic of some kind of disciplinary divide is over-

reach, or at the very least, is not supported by the literature the authors cite here. I heartedly agree 

that a call for an integrative perspective is a good one, as it can provide both a richer treatment of 

an extreme event and a basis for better impacts prediction, but the way the introduction is cast at 

present overstates the extent to which disciplinary perspectives are or were an issue in some kind 

of misdiagnosis of the RHW. This can be seen, for example, at 3.10, where the authors state that 

because the GPP declines were not as large as the temperature anomalies in Fig. 1, that this is 

somehow reflective of “different disciplinary perspectives” rather than of the complexity of the 

Earth system itself. . .leading the authors to “suspect [. . .it] might become an issue in studies of 

this kind.” If the authors provided a stronger basis in the literature of inconsistent conclusions of 

the impacts of the RHW or similar events based on disciplinary divides, then sure, the way the 

intro is written can stand, but I think as is, it overstates it as a problem and diminishes the 

scientific conclusions of the paper, which are interesting in and of themselves. The point is, those 

interesting results and the science itself, gets a bit lost in the straw man discourse. Edits to the 

text can fix this.  

Response: We would like to thank the reviewer for the positive view on the scientific conclusions 

of our manuscript. We agree with the reviewer, that we somehow overstated the disciplinary 

differences on the existing literature at the basis of the Russian Heatwave.  We will carefully 

revise the abstract and the introduction to fix issues of this kind. In particular, we will rephrase 

the motivation at 3.10. along the lines the reviewer suggested (more focused on our own results, 

highlighting the call for an integrated perspective): 

“The objective of this paper is therefore to revisit the RHW and to investigate the GPP response 

during the spring event and the summer heatwave when adopting a hydrometeological driver vs. 

a biospheric perpective.“ 

Furthermore, we will reformulate the sentence on 3.2-3 to: “However, an integrated assessment 

including the hydrometeorological and the biospheric domain may facilitate our knowledge 

about the RHW. In particular, we highlight one aspect of the RHW which can easily be seen, i.e., 

if we look at the zonal evolution of the RHW in both domains“ and remove two sentences in the 

abstract (1.5 and 1.16-17). 

 



2. Two events v. one event: My comment here is a corollary to the above about how the paper is 

cast relative to the literature. The authors are taking two separate events in 2010, an anomalous 

spring and an anomalous summer, and integrating the impacts across those two events and 

casting it as the net effects of the RHW, rather than simply examining the net consequence of the 

RHW itself. Certainly the spring event is crucial to providing a picture of GPP over the growing 

season and this approach makes sense for the effects of the full growing season on GPP: the 

extent to which the spring anomaly primed, compensated, or otherwise interacted with the RHW 

is important. But conceptually the authors need to make clear that simply combining them does 

not constitute the carbon response to the RHW, for as written, the RHW impacts are presented as 

the net effects of two separate events, rather than just the heat wave. Given the motivation the 

authors lead with (i.e., that there is an inherent potential for some kind of mismatch from the 

atmosphere down and the biosphere up), calling the impact of the RHW the integration of two 

distinct events seems like an issue. Perhaps the results should be recast around the compensation 

effects of spring growth on total growing season GPP in the year of the Russian heat wave. I 

think just making this distinction clearer is important. The net impact of the RHW is not growing 

season GPP, which includes the anomalous spring, it’s just the GPP loss during the RHW. These 

integrations can be seen in Tables 1 and 2, S4.1, etc. Further complicating this is the fact that the 

actual losses and gains of GPP are domain integrated, and the domain integration is a function of 

the detection algorithm. Certainly the authors discuss that the compensation occurs in a 

fundamentally different part of the domain and land cover class than the heat wave impacts, so I 

find the combination a bit misleading–it occurs in a different location and time than the actual 

heat wave–1TgC in crops is fundamentally different than that for forests (though from a carbon 

accounting perspective perhaps not). This again, is just about how the results are presented, 

particularly the res+/res-, not the results themselves.  

Response: We would like to thank the reviewer for this comment. We apologize if the net effects 

of the Russian Heatwave (RHW) can be misunderstood as integrated spring and summer effect. 

We will carefully revise the manuscript to address this issue. Furthermore, we did not mention in 

the manuscript, that there is no event after summer. Thus the annual integration over the events 

in the growing season in 2010 equals the integration over spring and summer. We add a sentence 

to clarify this issue on p.9, l.6: “Please note, that we did not find extreme events after summer, 

which implies a fast recovery of vegetations activity after summer. Integrations over the spring 



and summer events thus equals the annual integration.“ Furthermore, we will reformulate 

“integrated over spring and summer“ to “annually integrated“.  

Reviewer #1 expressed concerns along the same lines, particularly with respect to process based 

connections between the spring and summer event. We will provide a more in-depth discussion 

abouth how the spring and summer event might be related:  

First, we will add a paragraph to the introduction (p.5, l.3): “Temperature anomalies exceeded 

more than 10~K in both spring and summer, but they lead to distinctive anomalies in gross 

primary productivity (GPP). Positive GPP anomalies occurred during the spring event, whereas 

negative GPP anomalies are occurring during the summer heatwave. The positive GPP response 

in spring might be a reaction to warmer, more optimal spring temperatures (Wang et al, 2017) 

possibly accompanied by enough water availability. However, negative GPP anomalies in 

summer occurred only in areas south of 55°N (Fig. 1c) indicating that the GPP response involves 

much more processes than high temperatures and drought during the unique RHW. As already 

indicated by Smith, 2011, the connection between biosphere and hydrometeorology is much more 

complex than just a direct one-to-one mapping. Further complicating this issue is the fact that the 

summer event cannot be investigated without the previous spring, as both seasons are inherently 

related via memory effects in water availability. Increased GPP in spring may negatively 

influence soil moisture and thus GPP during summer (Buermann et al., 2013). In Summary, 

comparing ... “ 

Second, we will add a paragraph to the discussion p.12, l. 22 – p. 13, l. 10. as folows: “Another 

important aspect is that the combination of the anomalous spring and the unique heatwave in 

summer might be inherently connected via land surface feedbacks. Buermann et al., 2013 showed 

that warmer springs going in hand with earlier vegetation activity negatively affect soil moisture 

in summer. It is a general observation that warm and dry springs enhance summer temperatures 

during droughts, which suggests the presence of soil-moisture temperature feedbacks across 

seasons (Haslinger et al., 2017). In case of the Russian heatwave 2010, soil moisture was one of 

the main drivers (Hauser et al., 2016), in hand with persistent atmospheric pressure patterns 

(Miralles et al., 2014). Thus, we suspect that the spring event is connected to the summer 

heatwave in 2010, if not setting the preconditions for a heatwave of this unique magnitude. “ 

3. Merits of the detection approach: Part of the basis of this manuscript is that a much more 

sophisticated detection approach is needed to accurately represent the biophysical impacts of 



climate extremes. If one simply did the detection–as is typical– at the grid point scale on the 

hydrometeorological fields and then composited on the biophysical fields for the same dates as 

the meteorological anomaly, would the results and/or conclusions substantially differ? At 5.10 

the authors claim that for a short time series a traditional threshold approach would be 

problematic. Is there evidence for this? The authors still have to perform a sensitivity analysis of 

their results to the chosen threshold (S4.1). At some places the paper feels needlessly complex–

perhaps the authors could better justify their complicated analytical choices?  

Response: We would like to thank the reviewer for the critical analysis of our detection 

approach. The main advantage of our multivariate detection approach is that we can integrate 

information about several variables simultaneously and might also detect rare combinations of 

variables which are not detected as extreme individually (4.9-14). However, the events in Russia 

2010 are not an example of this kind. Thus, we agree with the reviewer, that it is possible to get 

similar results by combining several univariate detection approaches for the Russian heatwave. 

Combining univariate detection approaches would require to choose a threshold for each 

variable individually. Performing a full sensitivity analysis of the choosen thresholds would lead 

to a combination of many possible thresholds which would render high dimensional unfeasable.  

We would like to thank the reviewer pointing us to our claim at 5.10. which might be suspect to 

missunderstanding. Our intention was not to state that the traditional threshold approach itself is 

problematic. We wanted to state that the underlying assumption (equal distribution of extreme 

events among all grid cells) is most likely not met for short time series (here: 11 years). A 10% 

threshold in a 10 year time series would seelct one extreme year in each grid cell (not more, not 

less).  There are regions where extremes events occur more often or are longer than one year, 

e.g., California (Griffin, D., and K. J. Anchukaitis, 2014 , GRL) or where by chance no extreme 

event at all is occuring in the given time frame. Our spatiotemporal segmentation is addressing 

this issue by choosing thresholds over larger areas with compareable climate and phenology. As 

a request also from Reviewer#1 we will completely revise the section 2.2 including a new 

schematic figure for the spatiotemporal extraction. In this process, we will rephrase the given 

part above, which is suspect to missunderstanding. Furthermore, we will justify complicated 

analytical choices as suggested by the reviewer, remove unneccessary parts (global thresholds, 

local thresholds), merge it with the information in S1, and avoid jargon whenever possible. 



4. Model of factors explaining the GPP response. This section (S3), which is referred to in the 

main, but relegated to the Supplemental could be better emphasized and explained. For example, 

the factors in the hierarchical modeling approach are not independent. Are interaction variables 

used to address this issue? Given the confounding of latitude and temperature and land cover 

class, why not add latitude to the regression hierarchy to see its explanatory power, given the 

sentiment at 12.3?  

Response: We would like to thank the reviewer for his interest in the Section S3 and agree that 

the section can be much better emphasized and explained. We will carefully revise the section 

and introduce more information in the main manuscript on 12.1. The factors in the hierarchical 

modeling approach are indeed not independent. However, the hierarchical partitioning after 

Chevan and Sutherland (1991), is exactly made for this kind of issues. The method extracts the 

independent contribution of interacting variables.  

We would also like to thank the reviewer for the idea to extent the regression model with the 

factor latitude. Indeed, latitude has a very high independent explanatory power (Figure below) 

which is comparable to the importance of land cover type in summertime. The high independent 

explanatory power indicates that latitude provides additional information, which is not already 

contained in the other factors (e.g., land cover type or absolute temperatures). In particular 

access to deeper water (and soil type) might be factors not contained in the model, but also 

changing with latitude and therefore possibly explaining the importance of latitude. Apart from 

including more information about the method, we will include more information on S3 in the 

main manuscript and the new results in section 3.3 with the following paragraph and reformulate 

other sections if necessary: 

“To disentangle the variable importance of the different confounding factors, we run a simple 

linear regression model which tries to explain GPP as function of the hydrometeorological driver 

variables (temperature, precipitation, radiation, surface moisture, anomalies and absolute 

values), as well as vegetation type, duration and latitude (Supplementary S3). We use an 

algorithm after \citet{Chevan:1991wg} which extracts the independent contribution of the 

variable importance related to this particular variable regardless of the model complexity or 

dependencies among variables. 



The model reveals from a statistical point of view, that vegetation type and the latitudinal 

gradient are the most important variables explaining GPP during the summer event, followed by 

the hydrometeorological drivers. Access to deeper water and soil type as well as non-linear 

feedbacks are factors which are not represented in the model, but might explain the high variable 

importance of latitude.“ 

 

 

 

5. Attribution to uWUE differences. The authors attribute the reduced GPP declines during the 

summer event of forests in part due to the uWUE. Certainly this has a role to play. One could also 

imagine uWUE being an explanatory variable in the model presented in section S3 as well–could 

the authors add that? It seems like the authors are positioned to better attribute whether it was the 

absolute magnitude of the temperature itself (which diminished as a function of latitude) or 

something innate to the land cover classes (and their underlying WUE), which just so happens to 

vary as a function of latitude. The model seems like an ideal place to disassociate these factors.  

Response: In general we like the idea to add uWUE as a explanatory variable in the model. 

However, uWUE is defined as GPP * VPD^0.5 / ET. Thus adding uWUE as factor to the model 

hydrometeorological summer event
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would be somehow circular, as the target variable (GPP) is contained in the possible factor 

uWUE. Thus, we think adding uWUE would be inappropriate from a statistical point of view. 

Regarding the spring event and soil moisture depletion carry-over effects under forcing discussed 

at 12.22-13.6, Mankin et al., Journal of Climate 2017 and Mankin et al. GRL 2018 note that 

increased productivity is associated with such carry over effects in some of the models, regionally 

and globally under forcing.  

We would like to thank the reviewer for the two additional references which we found very 

interesting.  We will add the references to the discussion about soil moisture carry over effects. 

Minor comments:  

11.5: I don’t understand the soil moisture in Fig. 7. Is it the normalized measure? Is it the m3/m3? 

Can the authors add contours if the forests separate by latitude in 7b?  

Response: It is m3/m3.  

Grammar/spelling throughout could be improved.  

Response: We will go through the text once again. We also highly appreciate that Biogeosciences 

now performs a carful language check previous to publication. 

1.16: (e.g., a vegetation index)  

Response:  The sentence will be removed to address major comment 1) 

inconsistency in comma usage after e.g. and i.e.  

Response: Will be checked for consistency 

2.29: not sure the name is “heat summer”  

Response: changed into “European heatwave 2003” 

2.32: a, not an hydrometeorological  

Response: Will be changed 



5.8: grammar (“in high”) 

Response: Will be corrected 

 5.4: Why not leave them as missing data? 

Response: We would like to thank the reviewer for this comment. Indeed, it would be an option to 

leave the data as missing in case all variables are missing at one observation, excluding the 

observation from the multivariate detection. However, in comparison to univariate event 

detection, our multivariate algorithm requires that all variables are available. Thus, there are 

many more missing instances, i.e., cases which have only one of the variables missing, all others 

are available. We will add the following sentence on that: 

“The gap filling is necessary for a multivariate detection approach as there are many more cases 

in which one variable is missing in the multivariate cube compared to a univariate data stream.“ 

 

 21.32 “spatiotemporal” not “. . .temporla” 

Response: Will be corrected 

 Author contributions: “wrote” not “ote"  

Response: Will be corrected 

 

 

 

 

 


