
		
Dear	Dr.	Paul	Stoy,		
	
Please	find	a	point	by	point	response	to	the	referee	comments	attached.		
	
Sincerely,	
Milan	Flach	(on	behalf	of	all	co-authors)	
	

	

Review	of	the	Revised	Manuscript:	“Contrasting	biosphere	responses	to	

hydrometerological	extremes:	revisiting	the	2010	western	Russian	Heatwave”	by	Flach	

and	coauthors	

	

Main	Comments	

	

As	was	raised	in	my	first	review	of	this	manuscript,	what	I	find	hardest	to	reconcile	is	

the	concept	of	GPP	compensation	between	two	ecosystems	that	are	spatially	distinct	and	

that	occur	at	different	times.		

	

Response:	We	are	grateful	to	the	reviewer	raising	this	important	point	again	and	take	his	
critique	about	the	concept	of	GPP	compensation	very	seriously.	In	line	with	Wolf	et	al.,	
2016,	PNAS,	and	Sippel	et	al.,	2017,	ERL,	we	think	that	compensation	as	used	here	means	
just	highlighting	the	positive	and	negative	contribution	to	a	summary	statistics,	which	is	
aggregation	in	this	case.	We	think	that	this	is	valid	spatially	as	well	as	temporally:	

1) Spatial	aggregation:	It	is	important	to	note	that	we	do	not	aggregate	between	two	
spatially	distinct	hydrometeorological	extreme	events.	It	is	the	very	same	
hydrometeorological	extreme	event,	which	drives	different	responses	in	different	
ecosystems.	Furthermore,	these	two	ecosystems	might	have	distinct	centroids	
(500km)	of	their	peak	response	to	the	very	same	heatwave,	but	they	are	also	
spatially	adjacent	as	they	share	a	common	boundary	over	roughly	more	than	
3300km	(30°E-60°E	without	taking	small	variations	into	account,	Fig,	7a).	The	
response	of	both	adjacent	ecosystems	hit	by	the	same	extreme	event	is	nevertheless	
different	(Fig,	7b).	

	
2) Different	times:	We	aggree	with	the	reviewer	that	just	aggregating	over	spring	and	

summer	as	was	written	in	the	former	version	of	the	manuscript	is	special.	However,	
the	aggregation	over	spring	and	summer	equals	the	annual	aggregation	or	the	
aggregation	over	the	grwoing	season	in	our	case	as	we	did	not	find	anomalies	in	
autumn	or	winter.	We	mention	it	in	the	text	at	p.10,	l.10	and	changed	spring	and	
summer	in	annually	for	better	understanding.	Additionally,	the	connection	(and	
thus,	aggregation)	between	spring	and	summer	events	makes	sense	from	a	process-
based	view	due	to	soil	moisture	carry-over	effects.	Plants	use	water	for	additional	
productivity	during	warm	springs,	which	is	lacking	in	the	following	summer.	We	
elaborate	on	that	in	the	introduction	at	p.3,	l.15-16	and	the	discussion	on	p.14,	l.6,	
and	p.	14,	l.17-23.	

	

When	aggregating	over	the	spring	and	summer	corresponding	to	the	RHW	the	text	

makes	it	seem	like	overall	the	impact	of	the	RHW	was	‘good’	in	terms	of	the	net	change	

in	GPP	integrated	over	the	whole	region.		

	



Response:	We	carefully	checked	the	text	for	instances	leaving	this	impression.	We	apologize	
for	the	instances	where	this	impression	might	have	arisen.	We	addressed	this	point	by	
rephrasing	parts	of	the	discussion	(3rd	and	4th	paragraph)	and	the	last	paragraph	of	the	
conclusions.	
	

However	it	was	the	agricultural	ecosystems	that	were	severely	impact	over	the	summer.	

Although	there	is	one	remark	that	post-RHW	GPP	anomalies	were	negligible	indicating	a	

recovery	of	the	agricultural	ecosystems	this	could	be	emphasised	more	by	the	

discussion	of	Figure	9.	

	

Response:	We	added	another	sentence	on	the	post	heatwave	recovery	by	the	discussion	of	
Figure	9	(p.12,	l.5).	
	

Despite	the	authors	reassuring	in	the	response	to	reviewers	that	they	would	carefully	

check	the	manuscript	text	I	was	very	disappointed	at	how	poorly	this	was	done.	I	have	

now	noted	in	the	minor	comments	most	of	the	instances	that	I	have	found	in	the	hope	

that	they	can	be	rectified	in	the	next	revision.	

	

Response:	We	are	grateful	to	the	reviewer	for	checking	the	manuscript	text	and	corrected	
the	instances,	which	were	noted	in	the	minor	comments,	as	well	as	further	cases.		
	

Minor	Comments	

	

•	The	authors	need	to	get	someone	to	check	the	text	more	carefully.	There	are	several	

instances	where	the	tense	changes	from	past	to	present	which	is	quite	irritating.	e.g.	

“positive	GPP	anomalies	occurred	during	the	spring	event,	whereas	negative	GPP	

anomalies	are	occurring	during	the	summer	heatwave”	It	is	not	sufficient	to	note	

appreciation	to	the	journal	for	language	editing	services	if	they	have	yet	to	be	used.		

	

Response:	We	apologize	for	tense	changes,	which	were	overseen	during	the	last	
corrections.	We	corrected	the	instances,	which	occurred	especially	during	the	2nd	
paragraph	of	the	introduction	(dealing	with	the	Russian	heatwave	event	in	the	past).	
We	had	a	language	check	by	a	half-native	American,	who	was	OK	with	the	quality	of	the	
text.		
	

•	Furthermore,	when	citing	other	research	terms/phrases	such	as	“probably	breaking	

temperature	records	of	several	centuries”	and	“The	RHW	is	often	associated	with	an	

atmospheric	blocking	situation”	are	ambiguous.	Did	the	RHW	break	records	or	not?	Was	

the	RHW	associated	with	atmospheric	blocking?	(yes)	Be	specific.	

	

Response:	We	rephrased	the	above	mentioned	sentences	to	be	more	specific.	
	

•	Replace:	“a	negative	soil	moisture	contributed”	with	“a	negative	soil	moisture	anomaly	

contributed”.	Again,	please	check	the	text;	one	cannot	assume	that	every	reader	will	

necessarily	be	able	to	know	which	words	are	missing.	

	

Response:	We	added	the	missing	word	and	went	through	the	text	carefully	again.	
	

•	I	would	suggest	replacing	3.5	“may	facilitate	our	knowledge	about	the	RHW”	with	“may	

further	our	understanding	of	the	RHW”	



	

Response:	Done.	
	

•	3.10:	“The	positive	GPP	response	in	spring	might	be	a	reaction	to	warmer,	more	

optimal	spring	temperatures	(Wang	et	al.,	2017)	possibly	accompanied	by	enough	water	

availability”	Why	not	check	this	so	that	your	statement	can	be	more	definitive?	

	

Response:	We	already	checked	this	assumption	and	confirm	later	in	the	results	section.	We	
do	not	want	to	anticipate	later	results	in	the	introduction	(p.11,	l.2).	
	

•	3.14:	“Increased	GPP	in	spring	may	negatively	influence	soil	moisture	and	thus	GPP	

during	summer	(Buermann	et	al.,	2013).”	Perhaps	elaborate	on	this	a	bit	more	

	

Response:	We	extended	the	discussion	about	the	article	as	suggested.	
	

•	3.20	remove	‘equitably’	

	

Response:	Done	
	

•	5.1:	“We	consider	turbulent	fluxes	to	be	biospheric	response	variables	because	they	

are	strongly	determined	by	processes	in	the	terrestrial	biosphere.”	I	don’t	quite	agree.	

Latent	heat	is	also	a	hydrological	variable.	Is	this	sentence	necessary?	

	

Response:	We	agree	with	the	reviewer	that	latent	heat	is	determined	by	both,	hydrosphere	
and	biosphere.	We	removed	the	sentence.	
	

•	5.3:	“The	selected	variables	cover	the	spatial	extent	of	Europe	(latitude	34.5-71.5˚N;	

longitude:	-18-60.5˚E	)	and	are	regridded	on	a	spatial	resolution	of	0.25˚	from	2001	to	

2011	in	an	eight-daily	temporal	resolution.”	Perhaps	specify	that	the	period	is	selected	

as	the	common	period	that	all	datasets	cover,	a	necessary	condition	for	the	analysis	

	

Response:	We	added	a	sentence	on	that:	“The	temporal	extend	is	selected	as	it	is	covered	by	
all	datasets.“	
	

•	5.5	I	would	say	‘dominant	land	cover	class’	

	

Response:	We	changed	“major“	in	“dominant“	as	suggested.	
	

•	There	are	three	references	to	Figure	4	prior	to	the	first	reference	to	Figure	2	(and	

Figure	3).	Usually	the	figures	are	ordered	according	to	when	they	are	first	referenced	in	

the	manuscript	text.	Please	fix	as	this	oversight	is	irritating.	

	

Response:	We	changed	the	ordering	of	the	Figures	accordingly.	
	

•	5.31	replace	‘strategy’	with	‘methodology’	

	

Response:	Done	
	

•	8.13:	“They	are	to	compute	the	spatial	and	temporal	distance	between	res+	and	res-	.”	

Awkward	sentence,	perhaps	something	is	missing.	Please	rephrase.	



	

Response:	We	added	the	missing	word:	“They	[the	centroids]	are	used	to	compute	...“	
	

•	Figure	5.	Could	the	authors	make	the	colorbars	larger?	They	are	currently	illegible.	

	

Response:	Done	
	

•	10.2:	“We	find	that	the	GPP	response	is	entirely	positive	during	the	shortlasting	

hydrometeorological	spring	event	(+17:8	Tg	C,	Tab.	1),	while	it	is	mainly	negative	during	

the	summer	(+8:8	Tg	C,-49	Tg	C,	Tab.	5	1).	Nonetheless,	18%	of	the	GPP	summer	losses	

associated	with	the	RHW	in	the	southern	region	are	instantaneously	compensated	by	

over-productive	vegetation	in	the	northern	latitudes.”	I’m	still	not	comfortable	with	how	

this	has	been	phrased.	Please	correct	me	if	I	have	misunderstood	but	authors	argue	that	

the	positive	GPP	anomaly	in	the	high	latitudes	compensate	for	the	negative	GPP	anomaly	

in	the	mid-latitudes.	They	are	different	locations	and	vegetation	types.	Yes	over	the	

whole	EU	domain,	there	is	a	net	positive	GPP	anomaly	but	this	still	doesn’t	equate	to	a	

good	outcome	over	the	mid-latitude	croplands.		

	

Response:	We	apologize	for	the	latter	sentence,	which	can	be	interpreted	as	a	net	positive	
GPP	anomaly	of	the	Russian	Heatwave	(RHW).	Thus,	we	reformulate	the	sentence	to:	
“A	part	of	the	GPP	summer	losses	(18\%)	associated	with	the	RHW	in	the	southern	region	are	
instantaneously	reduced	by	over-productive	vegetation	in	the	higher	latitudes,	which	are	hit	
by	the	extreme	event.“		
To	prevent	further	missunderstanding,	it	is	important	to	note	that	the	same	
hydrometeorological	extreme	event	(the	RHW)	causes	contrasting	responses	in	GPP	
depending	which	adjacent	ecosystem	it	hits.	We	added	a	sentence	for	clarification:		
“Please	note,	that	the	carbon	balance	in	summer	accounts	for	the	GPP	response	to	the	same	
hydrometeorological	extreme	event,	namely	the	RHW,	which	leads	to	contrasting	
responses	in	adjacent	regions.“		
We	do	not	average	over	the	whole	EU	domain,	we	average	only	over	the	region,	which	was	
hit	by	the	RHW.		
	

Perhaps	looking	in	the	season	after	the	RHW	would	provide	a	sense	of	the	recovery.	

Perhaps	including	a	map	of	the	net	GPP	change	across	both	spring	and	summer	would	

convey	that	while	over	the	domain	as	a	whole	there	is	a	‘GPP	compensation’	but	that	

there	are	still	regions	that	could	be	considered	worse	off	locally.	

	

Response:	We	agree	with	the	reviewer,	that	looking	in	the	season	after	the	RHW	provides	a	
sense	of	the	recovery.	As	noted	at	p.10,	l.8	and	p.13,	l.3,	there	are	no	anomalies	after	the	
RHW,	which	implies	a	fast	recovery	of	the	ecosystems.	We	already	provide	maps	for	spring	
and	summer,	separately,	their	combination	does	not	provide	new	insights	(Fig.	5b,d).	The	
strong	differences	between	adjacent	ecosystems	can	already	be	seen	from	the	existing	
maps.	
	

•	10.10:	“integrated	annual	(spring	and	summer)”	what	about	winter	and	autumn?	

	

Response:	We	are	grateful	for	the	reviewer	pointing	us	to	this	important	point.	We	
removed	“spring	and	summer“	as	there	were	neither	anomalous	events	in	autumn	nor	in	
winter.	Thus,	the	annual	integration	equals	the	integration	over	spring	and	summer	
(which	we	note	in	the	3rd	paragraph	of	the	discussion).	



	

•	I	was	a	bit	lost	on	how	to	interpret	Figure	8	as	it	shows	some	soil	moisture	information	

that	is	never	discussed.	Perhaps	the	authors	could	include	a	statement	on	how	the	

temperatures	correspond	to	the	anomalous	soil	moisture	conditions	

	

Response:	We	added	a	sentence	on	the	soil	moisture	information	(p.12,	l.2)	
	

•	13.1:	I’m	not	sure	the	simple	linear	regression	model	is	adding	value	here?	It	doesn’t	

tell	us	anything	new.	

	

Response:	Reviewer	I	(first	revision)	was	very	interested	in	the	linear	regression	model	and	
asked	us	to	better	emphasize	it.	Thus,	we	moved	parts	of	it	from	the	supplementary	to	the	
main	text.	The	model	shows	that	vegetation	type	along	with	a	latitudinal	gradient	are	the	
main	drivers	of	gross	primary	productivity	during	the	heatwave	in	summer	(and	not	
temperature	or	surface	moisture,	as	expected)	(see	also	p.13,	l.6).	The	objective	statistical	
confirmation	of	our	findings	with	the	model	is	important	and	not	intuitive	to	our	mind.		
	

•	14.10:	“The	absence	of	events	after	the	summer	heatwave	which	implies	a	fast	

recovery	of	the	ecosystems.”	This	would	be	useful	if	stated	much	sooner.	

	

Response:	We	added	a	sentence	on	the	post	heatwave	recovery	by	the	discussion	of	Figure	9	
(p.12,	l.5).	
	

•	15.25:	“Regarding	the	RHW	in	particular,	compensation	effects	remain	unconsidered	in	

previous	studies	to	the	best	of	our	knowledge.”	Perhaps	because	the	authors	consider	

‘compensation’	occurring	over	two	different	regions	and	times	as	opposed	to	the	same	

region	or	at	the	same	time.	This	is	what	I	find	hard	to	reconcile	and	I	was	not	satisfied	

with	the	revisions	made	when	I	commented	on	this	in	the	first	review.	

	

Response:	We	removed	the	sentence	of	suspect	and	would	like	to	refer	to	our	response	on	
the	concept	of	compensation	before:	We	argue	that	summary	statistics	like	aggregation	or	
compensation	are	valid	(1)	over	the	entire	region	of	the	heatwave	and	(2)	over	time,	i.e.	the	
growing	season	/	year	to	gain	meaningful	summaries.	
	

•	I’m	a	bit	perplexed	that	there	is	both	an	appendix	and	supplementary	material.	Could	

these	perhaps	been	combined?	

	

Response:	We	combined	both	in	the	appendix.		
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Abstract. Combined droughts and heatwaves are among those compound extreme events that induce severe impacts on the

terrestrial biosphere and human health. A record breaking hot and dry compound event hit western Russia in summer 2010

(Russian heatwave, RHW). Events of this kind are relevant from a hydrometeorological perspective, but also interesting from

an a
:

biospheric point of view because of their impacts on ecosystems, e.g., reductions of the terrestrial carbon storage. In-

tegrating both perspectives might facilitate our knowledge about the RHW. We revisit the RHW both from a biospheric and5

a hydrometeorological perspective. We apply a recently developed multivariate anomaly detection approach to a set of hy-

drometeorological variables, and then to multiple biospheric variables relevant to describe the RHW. One main finding is

that the extreme event identified in the hydrometeorological variables leads to multidirectional responses in biospheric vari-

ables, e.g., positive and negative anomalies in gross primary production (GPP). In particular, the region of reduced summer

ecosystem production does not match the area identified as extreme in the hydrometeorological variables. The reason is that10

forest-dominated ecosystems in the higher latitudes respond with unusually high productivity to the RHW. Furthermore, the

RHW was preceded by an anomalously warm spring, which leads annually integrated to a partial compensation of 54% (36%

in the preceding spring, 18% in summer) of the reduced GPP in southern agriculturally dominated ecosystems. Our results

show that an ecosystem-specific and multivariate perspective on extreme events can reveal multiple facets of extreme events by

simultaneously integrating several data streams irrespective of impact direction and the variables’ domain. Our study exempli-15

fies the need for robust multivariate analytic approaches to detect extreme events in both hydrometeorological conditions and

associated biosphere responses to fully characterize the effects of extremes, including possible compensatory effects in space

and time.

Keywords. compound events, multivariate extreme events, gross primary productivity, heatwaves, droughts, spring-summer

compensation.20
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1 Introduction

One consequence of global climate change is that the intensity and frequency of heatwaves will most likely be increasing in

the coming decades (Seneviratne et al., 2012). Heatwaves co-occurring with droughts form so-called compound events, for

which we can expect severe impacts on the functioning of land ecosystems (e.g., primary production, von Buttlar et al., 2018)

that may affect human well-being (e.g., via reduced crop yields, health impacts) (e.g., Scheffran et al., 2012; Reichstein et al.,5

2013; Lesk et al., 2016). Investigating historical extreme events offers important insights for deriving mitigation strategies in

the future.

One well-known example of a compound extreme event is the 2010 western Russian heatwave (RHW). The RHW was one

of the most severe heatwaves on record, probably breaking temperature records of several centuries (Barriopedro et al., 2011).

It was accompanied by extensive wild and peat fires with smoke plumes about 1.6 km high at the peak of the heatwave in10

early August, and estimated emissions of around 77 Tg carbon due to multiple fire events (Guo et al., 2017). Carbon losses

due to reduced vegetation activity are
::::
were

:
estimated to be in the same order of magnitude as losses due to fires (90 Tg, Bastos

et al., 2014). The amount of emitted carbon monoxide is
:::
was almost comparable to the anthropogenic emissions in this region

(Konovalov et al., 2011). Approximately 55,000 cases of death have been attributed to health impacts of the RHW (Barriopedro

et al., 2011).15

The RHW is often
:::
The

::::::
RHW

:::
was

:
associated with an atmospheric blocking situation (Matsueda, 2011), leading

:::::
which

::::
lead

to a persistent anticyclonic weather pattern in Eastern Europe (Dole et al., 2011; Petoukhov et al., 2013; Schubert et al., 2014;

Kornhuber et al., 2016).

However, to fully understand the developments and impacts of heatwaves or droughts, apart from hydrometeorological

drivers, associated land-surface dynamics and feedbacks need to be considered (Seneviratne et al., 2010). For instance, under20

persistent anticyclonic and dry conditions, land-atmosphere feedbacks are expected to further amplify the magnitude of heat-

waves via enhanced sensible heat fluxes, as shown also for the RHW (Miralles et al., 2014; Hauser et al., 2016). These feedback

mechanisms highlight the importance of depleted soil moisture to heatwaves. In 2010 a negative soil moisture
:::::::
anomaly con-

tributed to increased temperatures (Hauser et al., 2016). It is a general observation that the combination of anticyclonic weather

regimes and initially dry conditions prior to the event amplifies heatwaves in most cases (Quesada et al., 2012).25

The direct impacts of such extreme events on ecosystems are manifold. Summer heat and drought typically reduce (or

even inhibit) photosynthesis, hence reducing the carbon uptake potential of ecosystems (Reichstein et al., 2013). However, the

magnitude of these impacts varies between ecosystems (Frank et al., 2015), and the resulting net effects are still under debate,

particularly for heatwaves (Sippel et al., 2018). However, in-depth investigations of a number of individual events such as

the European heatwave 2003 (Ciais et al., 2005), the 2000-2004 and 2012 droughts in North America (Schwalm et al., 2012;30

Wolf et al., 2016), and the RHW (Bastos et al., 2014) agree on an overall tendency towards negative impacts on the carbon

accumulation potential.

The RHW has been thoroughly investigated from a hydrometeorological point of view linking the atmospheric blocking

to the large-scale positive anomalies in air temperatures and negative anomalies in water availability (e.g., Barriopedro et al.,
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2011; Rahmstorf and Coumou, 2011). The event has been also well investigated with an emphasis on the biospheric impacts

describing the negative anomalies in ecosystem productivity and related vegetation indices (e.g., Bastos et al., 2014). However,

comparing the reports of areas affected by these studies
::
the

:::::
RHW

:
reveals some discrepancies. Hydrometeorological anomalies

point at much larger areas affected compared to biosphere response patterns. Fig. 1 shows the zonal evolution of the RHW

in both domains. We find that the spatiotemporal patterns of the temperature anomaly does not match the zonal anomaly5

in vegetation productivity anomalies. Thus, an integrated assessment including the hydrometeorological and the biospheric

domain simultaneously may facilitate our knowledge about
:::::
further

:::
our

::::::::::::
understanding

::
of
:
the RHW.

The figure reveals an unusually warm period during spring and one longer heatwave during summertime (Fig. 1a). Temper-

ature anomalies exceeded
::::::
exceed more than 10 K in both spring and summer, but they lead to distinctive anomalies in gross

primary productivity (GPP). Positive GPP anomalies occurred
::::
occur

:
during the spring event, whereas negative GPP anomalies10

are occurring during the summer heatwave. The positive GPP response in spring might be a reaction to warmer, more optimal

spring temperatures (Wang et al., 2017) possibly accompanied by enough water availability. However, negative GPP anomalies

in summer occurred
::::
occur

:
only in areas south of 55 �N (Fig. 1c) indicating that the GPP response involves much more pro-

cesses than high temperatures and drought during the unique RHW. As already indicated by Smith (2011), the connection be-

tween biosphere and hydrometeorology is much more complex than just a direct one-to-one mapping. Further complicating this15

issue is the fact that the summer event cannot be investigated without the previous spring as both seasons are inherently related

via memory effects in water availability. Increased GPP in spring may
:::
due

::
to

:::::
warm

::::::::::
temperatures

::::
can negatively influence soil

moisture and thus GPP during summer (Buermann et al., 2013).
::::::::::::::::::::::::::::::::::::::::::::::::::
(Buermann et al., 2013; Wolf et al., 2016; Sippel et al., 2017).

::
In

:::::::::
particular,

::::::::::::::::::::::::
Buermann et al. (2013) show

:::
for

:::::
North

:::::::::
American

:::::
boreal

:::::::
forests

:::
that

::::::
earlier

:::::::
springs

:::
are

::::::::
followed

:::
by

:::::::
reduced

::::::::::
productivity

::
in

:::::::
summer

:::::::
because

::
of

:::::
water

:::::::::
constraints.

:
20

In summary, comparing these two Hovmöller diagrams shows that (1) the affected latitudinal range of the negative GPP

anomaly is much smaller than the positive temperature anomaly and (2) the evolution of the summer impacts should consider

potential carry over effects of positive GPP anomalies during spring, as earlier studies showed that
:::::
earlier

:::::
spring

:::::
onset

::::
and

increased spring GPP may negatively influence soil moisture and thus GPP during summer (Buermann et al., 2013). The

objective of this paper is to revisit the RHW and to investigate the GPP response during the spring event and the summer25

heatwave in detail by equitably investigating spatiotemporal anomalies in hydrometeological drivers and ecological variables.

This kind of integrated assessment requires a generic methodological approach. Here, we use a multivariate extreme event

detection approach that (1) does not differentiate between a positive and a negative extreme event, and (2) can equally be

applied on any set of time series, regardless of whether they describe the biospheric or the hydrometeorological domain. We

expect that we can reveal previously overlooked facets in the RHW and discuss whether our approach may facilitate a broader30

perspective and improved interpretation of extreme events and their impacts.

3
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Figure 1. Longitudinal average (30.25 to 60.0 � E) of (a) temperature anomalies (reference period: 2001-2011), (b) absolute temperature,

and (c) GPP anomalies in 2010 with a contour of temperature anomalies (+3 K, +5 K).

2 Methods & data

2.1 Rationale

One approach to detect extreme events like the RHW could be to identify the peaks over some threshold in the marginal

distribution of a variable (or its anomaly) of interest. For instance, one could identify values that deviate by more than two

standard deviations from the variable’s mean values (Hansen et al., 2012; Sippel et al., 2015). However, univariate approaches5

only allow to characterize an event by e.g. extremely high temperature anomalies, lack of precipitation, or very low soil

moisture but not their compound anomaly. However, from earlier studies (e.g., Miralles et al., 2014; Hauser et al., 2016) we

know that more than one variable is involved in the RHW and a multivariate extreme event detection (i.e., a compound event,

Leonard et al., 2014; Zscheischler and Seneviratne, 2017) is more feasible. Multivariate algorithms to detect extreme events

are expected to offer more robust detection capabilities when accounting for dependencies and correlations among the selected10

variables (e.g., Zimek et al., 2012; Bevacqua et al., 2017; Flach et al., 2017; Mahony and Cannon, 2018). Multivariate extreme

event detection considers all observable dimensions of the domain simultaneously. With a multivariate approach one may, for

instance, detect very rare combinations of variables even if the individual variables are not extreme. In the following, we detect

the anomalies in a multivariate variable space in two sets of variables describing (1) the hydrometeorological conditions, and

(2) the biospheric response. The workflow involves a data pre-processing to compute anomalies, a step for dimensionality15

reduction to not be biased by redundancies among variables. Based on the reduced data-space, an anomaly score is computed

that can then be used as threshold. For various reasons, however, in practice the threshold needs to be computed across multiple

spatial grid cells of comparable phenology.

2.2 Data and pre-processing

Our dataset for analysing the hydrometeorological domain includes those variables which we consider to be of particular im-20

portance for processes taking place during extreme events in the biosphere based on prior process knowledge (Larcher, 2003)

4



(1) multivariate anomalies cube

(2) spatiotemporal segments

(3) feature extraction

(4) anomaly detection

(5) anomaly score

(6) events

a) standardize b) PCA

KDE

for biospheric and hydrometeorological variables separately

transform into normalized ranks

get events based on connected components

Figure 2.
::::
Data

::::::::
processing

::
for

:::::::
detecting

::::::::::
multivariate

::::::::
anomalies.

and empirical analysis (von Buttlar et al., 2018). The hydrometeorological dataset consists of air temperature, radiation, rela-

tive humidity (original resolution 0.71�, all three from ERA-INTERIM, Dee et al., 2011), precipitation (original resolution 1�,

Adler et al., 2003), and surface moisture (resolution 0.25�, http://www.gleam.eu, v3.1a, Miralles et al., 2011; Martens et al.,

2017). We consider surface moisture to be a hydrometeorological variable due to its importance for drought detection, although

we notice that surface moisture is influenced by biospheric processes. We use gross primary productivity (GPP), latent heat5

flux (LE), sensible heat flux (H) (resolution 0.25�, all three from FLUXCOM-RS, Tramontana et al., 2016), and the fraction

of absorbed photosynthetic active radiation (original resolution 1 km, FAPAR, moderate resolution imaging spectroradiome-

ter (MODIS) based FAPAR Myneni et al., 2002) to describe the land surface dynamics. We consider turbulent fluxes to be

biospheric response variables because they are strongly determined by processes in the terrestrial biosphere.

The selected variables cover the spatial extent of Europe (latitude 34.5� 71.5�N ; longitude: �18� 60.5�E) and are re-10

gridded on a spatial resolution of 0.25� from 2001 to 2011 in an eight-daily temporal resolution.
:::
The

:::::::
temporal

::::::
extend

::
is

:::::::
selected

::
as

:
it
::
is
:::::::
covered

::
by

:::
all

:::::::
datasets

::::
used

::
in

:::
the

:::::
study.

:
To check for differences in land cover types, we estimate the major

::::::::
dominant

land cover type of the European Space Agency Climate Change Initiative land cover classification on a spatial resolution 0.25�

(original: 300 m). To check for consistency of our findings among other variables (Sect. 3.2), we additionally use terrestrial

ecosystem respiration (TER) and net ecosystem productivity (NEP, both originating from FLUXCOM-RS, Tramontana et al.,15

2016).

The actual event detection is realized on the anomalies of these data sets. To compute the anomalies, For each variable under

consideration, we first estimate the seasonality as a smoothed median seasonal cycle per grid cell. We use the median instead

of the mean as it is less susceptible to outliers. We then subtract these seasonal cycles from each variable and year to obtain

a multivariate data cube of anomalies (Fig. 2, step 1). Small data gaps are set to zeros to ensure that they are not detected20

as anomalies. The gap filling is necessary for a multivariate detection approach as there are many more cases in which one

variable is missing in the multivariate cube compared to a univariate data stream.

5



2.3 Feature extraction and anomaly detection

We use a multivariate anomaly detection algorithm proposed by Flach et al. (2017) and apply it separately to two sets of

variables for the biosphere and hydrometeorology. The method expects a multivariate set of anomalies and projects them to a

reduced space via principal component analysis, retaining a number of principal components that explain more than 95% of

the variance (Fig. 2, step 3b). This procedure accounts for linear correlations in the data only by removing redundancies among5

the variable anomalies.

We compute an anomaly score via kernel density estimation (KDE, Parzen, 1962; Harmeling et al., 2006) in the reduced

anomaly space (Fig. 2, step 4). KDE showed very good performance among different other options to detect multivariate

anomalies in previous experiments (Flach et al., 2017). One strength of KDE is that it considers nonlinear dependencies among

dimensions (Fig. 3). The anomaly scores are transformed into normalized ranks between 1.0 (very anomalous, data point in10

the margins of the multivariate distribution) and 0.0 (completely normal, data point in the dense region of the multivariate

distribution; Fig. 2, step 5). In this univariate index of compound extremes, it is legitimate to use a classical threshold that can

be intuitively analysed. However, to avoid an equal spatial distribution of event occurrences we do not apply this multivariate

anomaly detection per pixel, but rather by region.
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Figure 3. Illustration of the multivariate anomaly detection algorithm with two variables. The data has: (a) linear dependencies (multivariate

normal) and (b) a nonlinear dependency structure. Univariate extreme event detection
:::::::::::::::
(peak-over-threshold

::
in

:::
the

:::::::
marginal

::::::::
distribution

::
of
::

a

::::::
variable)

:
does not follow the shape of the data, whereas algorithms assuming a multivariate normal distribution (Hotelling’s T2, Lowry and

Woodall, 1992) are suitable for case (a); kernel density estimation (KDE) gets the shape of the data in both cases (a) and (b). 5% extreme

anomalies are outside the shaded areas (region of "normality") for all three algorithms.

2.4 Spatiotemporal segmentation15

The spatiotemporal segmentation aims to identify spatial areas of comparable phenology, climate and seasonality. For identi-

fying these regions, we follow the strategy
::::::::::
methodology

:
described by Mahecha et al. (2017) and extend it to the multivariate

case. The main idea is that the (now spatial) principal components of the mean seasonal cycles can be used for classifying

regions according to their characteristic temporal dynamics.
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(1)	median	seasonal	cycles	of	one	grid	cell		 (2)	ordered	seasonal	cycles		

sort	according	T	
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(4)	grid	cells	with	similar	climate	on	the	map	

selected grid cells in the main bin
grid cells in  the neighbouring bin

PC 1
PC

 2

locations in PC space
selected bin
neighbouring bins

Figure 4. Illustration of the spatial segmentation procedure with two principal components.

The procedure for extracting spatial segments of similar grid cells works as follows (for a detailed description see Mahecha

et al., 2017):

(1)
:::
We estimate the median seasonal cycle in each grid cell and of each variable individually and standardize the median

seasonal cycles to zero mean and unit variance to get the cycles comparable across different units (Fig. 4 (1)).

(2) To remove the effect of different phasing (similar, but only lagged seasonal cycles), we sort the median seasonal cycles5

according to a variable showing a strong seasonality, which is temperature in our case. Thus, we memorize how to bring

temperature in a sorted increasing or decreasing order (the ’permutation’ of temperature) and apply the same permutation to

the other median seasonal cycles (Fig. 4 (2)). We prepare the data for dimensionality reduction by concatenating the seasonal

cycle of all variables to a matrix seasonal cycles ⇥ space. We apply a principal component analysis (PCA) to reduce the

dimension of the concatenated median seasonal cycles.10

(3) We select locations (grid cells) of similar phenology and climate by dividing the orthogonal principal component sub-

space into equally sized bins (Fig. 4 (3)). We used NPC = 4 components in this step, explaining 71% of variance. The bins are

sufficiently small compared to the length of the principal components to ensure a fine binning of very similar phenology and

climate.

(4) We compute the multivariate anomaly score in an overlapping moving window for all grid cells that fall into one of the15

bins (the central bin and the neighbouring binds
::::
bins, Fig. 4 (4)).

A final detail to consider is the effect of changing seasonal variance (temporal heteroscedasticity). These patterns lead to

detecting extreme events predominantly during the high-variance seasons (i.e. summer times). To avoid seasonal biases in the

7



extreme event detection, we additionally apply the entire anomaly detection scheme to seasonally overlapping moving window

:::::::
windows

:
across years.

Within the spatiotemporal segmentation procedure, we ensure that the number of observations is at least 198 (9 time steps

⇥ 11 years, at least one spatial replicate). To reunify the spatiotemporal segments, we assign the normalized anomaly scores

temporally to the time step in the center of the temporal moving window and spatially to the grid cell in the central bin of5

similar climate and phenology.

Data processing for detecting multivariate anomalies.

2.5 Statistics of extreme events

We assume that 5% of the data are anomalous in each overlapping spatiotemporal segment and convert the anomaly scores into

binary information. However, the main results of compensation effects are not sensitive to this threshold selection (Supplementary10

materials S3
::::::::
Appendix

::::
Tab.

:::
A1, varying the threshold between 1% to 10%). To compute statistics based on the spatiotemporal

structure of each extreme event, we follow an approach developed by Lloyd-Hughes (2011); Zscheischler et al. (2013) and

compute the connections between spatiotemporal extremes if they are connected within a 3 ⇥ 3 ⇥ 3 (lon ⇥ lat ⇥ time) cube.

Each connected anomaly is considered as a single event (Fig. 2, step 6). In this way, we observe event-based statistics, i.e.,

affected area (km2), affected volume (km2 · days), centroids of the area and histograms of the single variable anomalies strati-15

fied according to different ecosystem types (land cover classes). Furthermore, we observe the response of individual variables

to the multivariate event by computing the area weighted sum of the variable during the event in which the variable of interest

is positive relative to the seasonal cycle (res+) or negative, respectively (res�). For many biospheric variables, one expects

a mainly negative response to hydrometeorological extreme events like heatwaves or droughts (Larcher, 2003; von Buttlar

et al., 2018). Thus, we define compensation of a specific variable to be the absolute fraction of res+ from res�. The balance20

of a variable is the sum of res+ and res�. Centroids of res+ and res� are computed as average of the affected longitudes,

latitudes, and time period, weighted with the number of affected grid cells at this longitude, latitudes, and time period, and its

respective anomaly score. They are
:::
used

:
to compute the spatial and temporal distance between res+ and res�. Affected area,

volume, response and centroids take the spherical geometry of the Earth into account by weighting the affected grid cells with

the cosine of the respective latitude.25

3 Results

3.1 Extreme events in western Russia in 2010

We identify two multivariate extreme events in the set of hydrometeorological variables in western Russia 2010, based on the

spatiotemporal connectivity(more details Supplementary Materials S1). The two extreme events are separated by approximately

one week of normal conditions towards the end of May:30
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– hydrometeorological spring event: anomaly of the hydrometeorological variables in western Russia during May ranging

from longitude 30.25 - 60.0 � E, latitude � 55�N (Fig. 5a, b)

– hydrometeorological summer event: anomaly of the hydrometeorological variables in western Russia, June to August,

ranging from longitude 28.75 - 60.25� E, latitude 48.25 - 66.75 �N . This event is usually referred to as Russian Heatwave

(RHW) 2010 (e.g., Barriopedro et al., 2011; Rahmstorf and Coumou, 2011) (Fig. 5c, d).5

Both multivariate hydrometeorological anomalies partly overlap with a multivariate anomaly in the set of biosphere variables

(biospheric spring event and biospheric summer event). Of specific interest is that the area affected by anomalous hydrometeo-

rological summer conditions is remarkably larger than the one detectable in the biospheric variables (biospheric summer event,

2.4 ·106 vs. 1.1 ·106 km2, Tab. 1). This fact might already indicate
::::::
already

:::::::
indicates

:
that biosphere responses are more nuanced

than the hydrometeorological events and do not simply follow the extent of the hydrometeorological anomaly. As indicated10

e.g., also by Smith (2011), a hydrometeorological extreme event does not necessarily imply an extreme response.
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(a) duration of the hydrometeorological spring event

10
20
30
40
50

0° 20°E
40°E

60°E

50°N

60°N

70°N

D
ur

at
io

n 
[d

ay
s]

(b) sum of GPP during the hydrometeorological spring

event

−4
−2
0
2
4

0° 20°E
40°E

60°E

50°N

60°N

70°N

G
PP

 [g
/m

^2
]

(c) duration of the hydrometeorological summer event
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(d) sum of GPP during the hydrometeorological summer

event
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(e) duration of the biospheric spring event
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(f) sum of GPP during the biospheric spring event
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(h) sum of GPP during the biospheric summer event

−4
−2
0
2
4

0° 20°E
40°E

60°E

50°N

60°N

70°N

G
PP

 [g
/m

^2
]

Figure 5. Left column: temporal duration of the (a) hydrometeorological spring event, (c) hydrometeorological summer event, and biospheric

events (e),(g). Right column: corresponding GPP response, i.e., the sum of deviations from the seasonal cycle during the event for the (b)

hydrometeorological spring event, (d) hydrometeorological summer event, and biospheric events (f), (h). While the GPP response during the

hydrometeorological spring event is entirely positive (more productive than usual, b), GPP response during the hydrometeorological summer

event differs between higher latitudes (> 55� N, short-lasting, positive) and lower latitudes (long-lasting, negative).

3.1.1 Hydrometeorogical events

As GPP is a key determinant of ecosystem–atmosphere carbon fluxes, we focus on the gross primary productivity (GPP)

response to the multivariate hydrometeorological anomaly: We find that the GPP response is entirely positive during the short-

10



lasting hydrometeorological spring event (+17.8 Tg C, Tab. 1), while it is mainly negative during the summer
:::::
event (+8.8 Tg C,

�49 Tg C, Tab. 1). Nonetheless, 18%
::
A

:::
part

:
of the GPP summer losses

:::::
(18%)

:
associated with the RHW in the southern

region are instantaneously compensated
::::::
reduced

:
by over-productive vegetation in the northern latitudes.

:::::
higher

:::::::
latitudes,

::::::
which

::
are

:::
hit

:::
by

:::
the

:::::::
extreme

::::::
event.

::::::
Please

:::::
note,

:::
that

::::
the

::::::
carbon

:::::::
balance

::
in

:::::::
summer

::::::::
accounts

:::
for

:::
the

:::::
GPP

:::::::
response

:::
to

:::
the

:::::
same

:::::::::::::::::
hydrometeorological

:::::::
extreme

:::::
event,

::::::
namely

:::
the

:::::
RHW,

::::::
which

::::
leads

::
to
::::::::::
contrasting

::::::::
responses

::
in

:::::::
adjacent

:::::::
regions. If we estimate5

the annually integrated effect of the anomalies, another 36% of the carbon losses are compensated during spring in higher

latitudes.Please note, that we
::
We

:
did not find extreme events after summer, which implies a fast recovery of vegetation activity

after summer. Integration over the spring and summer events thus equals the annual integration. Overall, we find that 54% of

the negative GPP anomalies are compensated either because of the positive spring anomalies or across ecosystems
::
hit

:::
by

:::
the

::::
same

:::::
event

:
during summer. These compensation effects reduce the negative carbon impact of integrated annual (spring and10

summer) hydrometeorological event from �49.0 Tg C to �24 Tg C in total (Tab. 1).
:::
We

::::
want

:::
to

:::::::::
emphasize,

::::
that

:::
the

:::::::
negative

:::::
impact

:::
of

:::
the

:::::
RHW

::
in

::::::
therms

::
of

::::
GPP

::
is

:::
just

::::::::
reduced,

:::
but

:::
still

:::::::
negative

::
in

:::::
total.

3.1.2 Biospheric events

Moving the focus to the multivariate biosphere events (biospheric spring and biospheric summer event), which overlap with

the hydrometeorological events, we find that GPP responses based on the biospheric spring event are almost entirely positive15

(+33.8 Tg C), and based on the biospheric summer event almost entirely negative (�82.6 Tg C). If we consider the annually-

integrated effect of the spring and summer anomalies, spring carbon gains are estimated to offset 41% of the subsequent carbon

losses in summer (56 days earlier) in the higher latitudes (514 km distance of the centroids, Tab. 1). To further examine these

findings, we check for these kind of compensation effects among different variables and another GPP dataset in the following

section. Note that the dataset of biosphere variables includes GPP itself. Computing the responses based on the extent of the20

biospheric event is nevertheless useful, as an extreme event in the biosphere variables is not exclusively restricted to extreme

conditions in the hydrometeorological conditions (Smith, 2011).

3.2 Compensation in other data-sets and variables

The annually-integrated compensation effect in GPP is highly consistent among different variables. For instance, NEP (ex-

cluding fire) shows such kind of compensation, but also FAPAR and LE (Tab. 2). Sensible heat flux, on the other hand, is high25

during the hydrometeorological summer event (biospheric summer event), as well as the hydrometeorological spring event

(biospheric spring event) as expected for strong positive temperature anomalies. However, some of the remote sensing data

products might be affected by high fire induced aerosol loadings during the heatwave that affect atmospheric optical thick-

ness (e.g., Guo et al., 2017; Konovalov et al., 2011). Exploring an almost entirely climate-driven GPP product (FLUXCOM

RS+METEO, Jung et al., 2017) also shows the integrated compensation effect, although much lesser pronounced (Appendix30

:::
Fig.

:
B1). Thus, we are confident that the observed compensation effect is not related to the optical thickness during the RHW.

11



Table 1. Statistics of the extreme events, based on their spatiotemporal connected
:::::::::
connectivity

:
structure: affected area, affected volume,

positive and negative GPP response
:::::::
(res+/�) to the event, compensation of the negative response (comp.), as well as average spatial and

temporal distance between the parts of the events with positive and negative responses.

event area [km2] volume [km2 · days] GPP comp. res+GPP res�GPP spatial [km] temporal [d]

hydrometeorological

spring 0.77 · 106 0.81 · 107 - 17.8 Tg -

summer 2.44 · 106 5.79 · 107 0.18 8.8 Tg �49.0 Tg 499 -4

integrated 3.29 · 106 6.60 · 107 0.56 26.6 Tg �49.0 Tg 452 -34

biospheric

spring 1.25 · 106 1.48 · 107 117.04 33.8 Tg �0.3 Tg 756 -16

summer 1.06 · 106 4.22 · 107 0.00 0.4 Tg �82.4 Tg 962 50

integrated 2.28 · 106 5.70 · 107 0.41 34.2 Tg �82.7 Tg 514 -56

Table 2. Compensation of negative
:::::::
Negative responses to the western Russian events in 2010

::::
RHW

:::
are

:::::
partly

::::::::::
compensated based on the

integrated biospheric or hydrometeorological events
:
in
:::::
2010.

:::
The

::::::
finding is consistent over different variables and data sets.

hydrometeorological events biospheric events

Variable
:::::
variable

:
res+ Tg res� Tg Comp

::::
comp. [%] res+ Tg res� Tg Comp

::::
comp. [%]

NEP 17.53 Tg �34.03 Tg 51.5 23.45 Tg �48.49 Tg 48.4

LE 19.90 Tg �53.97 Tg 36.9 16.34 Tg �102.81 Tg 15.9

FAPAR 1.89 �4.03 Tg 47.0 2.52 Tg �6.61 Tg 38.1

TER 18.97 Tg �11.06 Tg 171.4 13.71 Tg �23.43 Tg 58.5

3.3 Influence of Vegetation Types

In Fig. 6 we present the histograms of GPP anomalies for different land cover classes (forests, grasslands and crops) based

on
::
the

:
hydrometeorological spring event,

:::
and

:
hydrometeorological summer event ,

:
(biospheric spring event, and biospheric

summer event, respectively(,
:

Fig. C1) to highlight two aspects: First, during the spring event (hydrometeorological spring

or biospheric spring), forests react almost entirely with positive GPP anomalies (Fig. 6a). Forests in this region are energy-5

limited, so the timing of the extreme event
:::::
leads

::
to

:::::::::::::::::
hydrometeorological

:::::::::
conditions

:
(e.g., positive temperature anomalies in

spring) leads to hydrometeorological conditions
:
,
::::
more

::::::::
incoming

::::::::
radiation

:::::::::::
accompanied

:::
by

::::::
enough

:::::
water

::::::::::
availability)

:
which

are favourable for vegetation productivity, as absolute spring temperatures are still below the temperature optimum of GPP

(Fig. 8a, Wolf et al., 2016; Wang et al., 2017).

Second, during the hydrometeorological summer event, we observe positive to neutral GPP responses in forests, whereas10

crops and grasslands react strongly negative (Fig. 6b). The positive versus negative GPP responses almost entirely reflect the

map of dominant vegetation types (forest vs. agricultural ecosystems, Fig. 7). However, different vegetation types exhibit a

transition from higher latitudes (predominantly forest ecosystems) to lower latitudes (dominated by agricultural ecosystems).

12



(a) hydrometeorological spring event
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(b) hydrometeorological summer event
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Figure 6. Histogram of GPP anomalies (reference period: 2001-2011) for different land cover classes based on the spatio–temporal extent of

(a) the hydrometeorological spring event and (b) the hydrometeorological summer event. Bars denote the sum of all vegetation classes.
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Figure 7. (a) Dominant land cover classes of a spatial extent of the RHW. (b) The boundaries of the different ecosystem types (forest-

dominated ecosystems vs. agriculture-dominated ecosystems, denoted by the black contour line) match the observed patterns of the GPP

response (reference period for the calculating anomalies: 2001-2011) during the hydrometeorological summer event.

Thus, the different responses of vegetation types might be confounded by the fact that absolute temperatures also follow a

latitudinal gradient (Fig. 1b). Absolute temperatures for agricultural ecosystems are higher and far beyond the temperature

optimum of GPP (
:::
Fig.

:
8c), whereas

:
.
:::::::::::
Additionally,

::::::::::
agricultural

:::::::::
ecosystems

:::
are

::::::
drying

:::
out

::
in

:::::::
summer

::::
(low

::::
soil

::::::::
moisture,

::::
Fig.

:::
8c).

::
In

::::::::
contrast, forest-dominated ecosystems at higher latitudes experience temperatures just slightly above the temperature

optimum of GPP(
:
,
:::::::::::
accompanied

::
by

::::
high

:::
soil

::::::::
moisture

::::
(Fig.

:
8b). The response of forest ecosystems partly reflects this kind of

:
a5

latitudinal gradient: forest ecosystems in the lower latitudes react positively to the spring temperature anomaly and then tend to

13



Figure 8. Temperature optimality for GPP in (a) forests during spring, (b) forests during summer, and (c) crops during summer. Contour

lines enclose 75% of the data points.

react more negatively to the summer heatwave than forest ecosystems in higher latitudes. Forest ecosystems in higher latitudes

are still productive in terms of GPP during the peak of the heatwave (Fig. 9).
:::
We

:::
find

:::::::::
negligible

::::::::
anomalies

::
in

:::::::
autumn

:::
for

::::
both

::::::::::
ecosystems,

:::::
which

::::::
implies

::
a
:::
fast

::::::::
recovery

::::
after

:::
the

::::::::
heatwave.

:

To disentangle the variable importance of the different confounding factors, we run a simple linear regression model which

tries to explain GPP as function of the hydrometeorological driver variables (temperature, precipitation, radiation, surface5

moisture, including their anomalies and absolute values), as well as vegetation type, duration and latitude (Supplementary

S2
::::::::
Appendix

::
D). We use an algorithm after Chevan and Sutherland (1991) which extracts the independent contribution of the

variable importance related to this particular variable regardless of the model complexity or dependencies among variables. The

model reveals from a statistical point of view, that vegetation type and the latitudinal gradient are the most important variables

explaining GPP during the summer event, followed by the hydrometeorological drivers. Access to deeper water and soil type10

as well as non-linear feedbacks are factors which are not represented in the model, but might explain the high importance of

latitude. Apart from vegetation type being important for the GPP response, underlying water use efficiency (calculated accord-

ing to Zhou et al. (2014) is consistently higher in forest-dominated ecosystems compared to agriculture-dominated ecosystems

(Appendix Fig. E1a), and higher evaporative fraction in forest ecosystems during the peak of the heatwave (Appendix Fig.

E1b).15

4 Discussion

In this paper we show that the hydrometeorological extreme events affecting western Russia in spring and summer 2010 do

not fully correspond
::
are

:::
not

:::::::
directly

::::::::
mapping to the observed vegetation responses. Positive to neutral GPP responses prevail

in higher latitudes during summer, whereas strong negative impacts on GPP can be found in lower latitudes. We interpret this

14



(a) agricultural ecosystems (b) forest ecosystems

Figure 9. Temporal evolution of the GPP anomaly (reference period: 2001-2011) for (a) agricultural ecosystems and (b) forest ecosystems,

colored according to the latitude.

effect by different water management strategies of forest vs. agricultural ecosystems (Teuling et al., 2010; van Heerwaarden and

Teuling, 2014) that meet a general latitudinal temperature gradient. Apart from a more efficient water usage of forest-dominated

ecosystems, access to deeper soil water might be another reason of ecosystem-specific responses (Fan et al., 2017; Yang et al.,

2016). Note that the latitudinal temperature gradient alone might explain differences in the response within ecosystems in

summer and between spring and summer, but does not sufficiently explain differentiated GPP responses in summer among5

different ecosystems (predominantly forest vs. agricultural ecosystems).

Another important aspect is that the combination of the anomalous spring and the unique heatwave in summer might be

inherently connected via land surface feedbacks. Buermann et al. (2013) showed that warmer springs going in hand with earlier

vegetation activity negatively affect soil moisture in summer
:
,
:::
and

:::::::
thereby

::::::::
vegetation

:::::::
activity. It is a general observation that

warm and dry springs enhance summer temperatures during droughts, which suggests the presence of soil-moisture temperature10

feedbacks across seasons (Haslinger and Blöschl, 2017). In case of the Russian heatwave 2010, soil moisture was one of the

main drivers (Hauser et al., 2016), in hand with persistent atmospheric pressure patterns (Miralles et al., 2014). Thus, we

suspect that the spring event is connected to the summer heatwave in 2010, if not setting the preconditions for a heatwave of

this unique magnitude.

The integration of the carbon balance over spring and summer might be justified by assumed connections between spring and15

summer as outlined before. However, we would like to note that a common annual integration and assessment of compensatory

effects of
::
on

:
the carbon balance over events during the growing season equals the integration over spring and summer for

this particular case, as we did not find any events after summertime. The absence of events after the summer heatwave which

implies a fast recovery of the ecosystems.

Compensations of the
::::
parts

::
of

:::
the

:::::::
negative

:::::::
impacts

:::
on

::
the

:
carbon balance during hydrometeorological extreme events have20

been reported in earlier studies. On the one hand, Wolf et al. (2016) report that a warm spring season preceding the 2012 US

summer drought reduced the impact on the carbon cycle on the one side. Yet on the other hand, the increased spring produc-

tivity amplified the reduction in summer productivity by spring–summer carry-over effects via soil moisture depletion: higher

spring productivity leads to higher water consumption in spring. The high water additionally consumed during spring reduces

15



the water availability in summer and thereby affects productivity during the following summer. However, it remains unclear

whether this observation was a singular case, or whether this compensation effect
:
it could become a characteristic pattern to

be regularly expected in a warmer world. In this study, we provide some evidence for presumed comparable compensation

effects. In contrast to the discussion in Wolf et al. (2016), the RHW compensation
::::::::
enhanced

::::::::::
productivity does not exclusively

occur temporally, i.e., spring compensating
:::::
partly

:::::::::::
compensates for summer losses, but rather spatially distinct

:::::::
adjacent forest5

ecosystems are identified as drivers for this compensation. Spatially compensating ecosystem effects to drought
:::::::
reducing

:::
the

:::::::
negative

::::::
impact

::
of

::::::::::
agricultural

:::::::::
ecosystems

:::
on

:::
the

::::::
carbon

:::::::
balance.

::::::::
Spatially

:::::::
adjacent

::::::::::
ecosystems

:::::
partly

::::::::::::
compensating

::::::
carbon

:::::
losses

:::
due

::
to

:::::::
drought

::
or

:::::::::
heatwaves

:
have been observed earlier

:
,
::::
e.g., in mountainous ecosystems that respond differently than

lowlands during the European heatwave 2003 (Reichstein et al., 2007).

Following up on such compensation
:::::::::::
compensatory

:
effects, Sippel et al. (2017) use ensemble model simulations to disen-10

tangle the contribution of spring compensation vs. spring
::::::::::::
spring–summer

:
carry-over effects on a larger scale. They show that

in general warm springs increasingly compensate
::::::::::
compensate

:::
for

:::::
parts

::
of

:
summer productivity losses in Europe, whereas

spring–summer carry-over effects are constantly counteracting this compensation
::
by

:::::::::
enhancing

:::::::
summer

:::::
losses. Also Mankin

et al. (2017, 2018) note that increased spring productivity with spring–summer carry-over effects can be observed in earth sys-

tem models. We can confirm the general finding on spring compensation effects of
:::
that

:::::
spring

:::::
partly

:::::::::::
compensates

:::
for summer15

productivity losses in observations for our case study on the RHW. Without using model simulations it is difficult to quan-

tify spring–summer carry-over effects via soil moisture depletion. In case of the RHW only very few areas are anomalously

productive in terms of GPP in spring and unproductive in summer as well. Thus, we suspect that exclusively temporal spring–

summer carry-over effects play a rather small role for the RHW. However, we also emphasize that longer-term effects, such as

compensation in subsequent year
::::::
effects

::
in

:::::::::
subsequent

:::::
years

:
through species changes for instance (Wagg et al., 2017), have20

not been considered in the present study and likely remain hard to quantify beyond dedicated experiments.

The RHW is probably among the best studied extreme events in the Northern Hemisphere. However, the compensation

effects
:::::::
enhanced

:::::::::::
productivity

::
of

:::::::
Northern

::::::
forests

::::::
which

:::::::::
diminishes

:::
the

:::::::
negative

::::::
carbon

::::::
impact

::
of

:::
the

:::::
RHW

::
as

:
reported in this

study have
:::
has only received marginal attention so far. For instance, Wright et al. (2014) mention positive NDVI anomalies in

spring 2010, but then focus largely on productivity losses in the Eurasian wheat belt. Similarly, Bastos et al. (2014) focus on a25

spatial extent of the biosphere impacts that only partly includes forest ecosystems at higher latitudes. Our estimation of carbon

losses due to decreased vegetation activity (82 Tg C) is comparable to the one of Bastos et al. (2014) (90 Tg C). Similar to

the results of our study, Yoshida et al. (2015) report reductions in photosynthetic activity in agriculture-dominated ecosystems

during the RHW, but only small to no reductions in forest ecosystems during summertime. However, their interpretations focus

on the summer heatwave. Nevertheless, re-evaluating impact maps (published e.g., in Wright et al., 2014; Yoshida et al., 2015;30

Zscheischler et al., 2015) in the light of our findings suggests that their evidence supports the presence of compensation effects

:::::::::
contrasting

:::::::::
responses,

:::::::
differing

::::::
among

::::::::::
ecosystems during the RHW. When it comes to extreme events, the general tendency in

many existing studies is naturally to focus on negative impacts as they are of particular interest for society (Bastos et al., 2014;

Wright et al., 2014; Yoshida et al., 2015; Zscheischler et al., 2015). Regarding the RHW in particular, compensation effects

remain unconsidered in previous studies to the best of our knowledge.35
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5 Conclusions

We re-analysed biospheric and hydrometeorological conditions in western Russia 2010 with a generic spatiotemporal mul-

tivariate anomaly detection algorithm. We find that the hydrometeorological conditions and the biospheric responses exhibit

two anomalous extreme events, one in late spring (May) and one over the entire summer (June, July, August), covering large

areas of western Russia. For the summer event, we find that the spatially homogeneous anomaly pattern (characterized by high5

solar radiation and temperature, low relative humidity and precipitation) translate into a bimodal
:::
and

::::::::::
contrasting biosphere re-

sponse. Forest ecosystems in higher latitudes show a positive anomaly in gross primary productivity, while agricultural systems

decrease their productivity dramatically.

If we consider the annually integrated effect of the anomalous hydrometeorological conditions
:
in
:::::
2010, we find that forest

ecosystems partly compensate for
::::::
reduce

:::
the

:::::::
negative

::::::
impact

::
of

:::
the

::::::::::
productivity

:::::
losses

::::::::::
experienced

::
in
::::::::::
agricultural

::::::::::
ecosystems10

::
by

:
54% (36% during spring, 18% during summer)of the productivity losses experienced in agricultural ecosystems. Please

note, that the annually integrated impact of the 2010 events on the carbon balance is
::::
stays strongly negative. Our findings do

not alleviate the consequences of extreme events for food security in agricultural ecosystems.

From a methodological point of view, this study emphasizes the importance of considering the multivariate nature of anoma-

lies. From this study, we learn that it is insightful to consider both, the possibility of negative as well as of positive impacts,15

and assess their annually integrated compensation
:::::::
statistics. Although the integrated impact on

::
of gross primary production of

::
on

:
the hydrometeorological conditions

:
in

:::::
2010

:
is strongly negative, it is important to notice the partial compensatory effects

due to differently affected ecosystem types, as well as timing of the extreme events.
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Appendix A:
:::::::::
Sensitivity

::
of

:::
the

:::::::::
threshold

::::::::
selection

Table A1.
::::::::::
Compensation

:::::
effects

::
of

:::
the

:::::::
integrated

::::::::::::::::
hydrometeorological

:::::
events

:::::
(spring

:::
and

:::::::
summer)

:::
are

:::
not

::::::
sensitive

::
to

::::::
varying

:::
the

:::::::
threshold

::
for

::::::
extreme

:::::
event

:::::::
detection

::::::
between

::::
93%

::
to
::::
99%

::::
(7%

::
to

:::
1%

::
of

::::::
extreme

::::
data

:
in
::::

each
::::::::::::
spatiotemporal

:::::::
segment).

::
A

:::::
slight

:::::::
tendency

::::::
towards

::::
more

:::::::::
pronounced

::::::::::
compensation

::::::
effects

:::
can

::
be

::::
seen

:::
for

::
the

::::
90%

::::::::
threshold.

::::
Such

::::
kind

::
of

::::::::
enhancing

:::
the

::::::
positive

:::::::
response

::
is
:::::::
expected

:::
for

::::
lower

::::::::
thresholds,

::
as
:::
the

:::::::::::::::
hydrometeorological

::::::::
conditions

:::
are

:::
not

:::::::
perceived

::
as

::::::::
"extreme"

:::::::
anymore.

Compensation [%]

:::::::
Threshold

: :::
90%

: :::
93%

: :::
95%

: :::
97%

: :::
99%

:

::::
GPP

:
65

: :
53

: :
54

: :
58

: :
55

:

::::
NEP

:
60

: :
52

: :
52

: :
51

: :
46

:

::
LE

: :
49

: :
36

: :
37

: :
38

: :
32

:

::::::
FAPAR

:
70

: :
46

: :
47

: :
50

: :
50

:

::::
TER

::
150

: ::
147

: ::
171

: ::
191

: ::
197

:

Appendix B: Comparison with METEO + RS
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Figure B1. The longitudinal (30.25-60.25� E) average of the GPP anomalies during the RHW 2010, based on the Climate Research Unit

observation-based climate variables (CRUNCEPv6, New et al., 2000) driven GPP product originating from FLUXCOM RS+METEO (Jung

et al., 2017) shows similar but weaker compensation effects. 28% of the negative GPP response to the RHW are compensated based on the

shown latitude-longitude subset.
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Appendix C: Biosphere response

(a) biospheric spring event
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(b) biospheric summer event
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Figure C1. Histogram of GPP anomalies (reference period: 2001-2011) for different land cover classes constrained by a) biospheric spring

and b) biospheric summer event.

Appendix D:
::::::
Factors

::::::::::
explaining

:::
the

::::
GPP

::::::::
response

::
As

::::::
several

:::::::
factors

:::::
might

:::::::::
contribute

::
to

:::
the

::::
GPP

::::::::
response

::
to

:::
the

:::::::::::::::::
hydrometeorological

:::::::::
anomalies

::
in

::::::
spring

:::
and

::::::::
summer

:::::
2010,

::
we

:::::::
assume

:::
that

::
a

:::::
linear

:::::
model

::::
can

:::::
partly

::::::
explain

:::
the

:::::::
variance

::
in

:::::
GPP

:::
and

:::::::
improve

:::
our

::::::::::::
understanding

::
of

:::
the

:::::::
extreme

::::::
events

::
in

:::::
spring

:::
and

:::::::
summer

:::
via

:::
the

:::::::
variable

::::::::::
importance

::
of

:::
the

::::::
model.

:::::
Thus,

:::
we

::::::
model

::::
GPP

::
of

:::
all

:::::
pixels

::::::
during

::::::
spring

:::
and

:::::::::
separately5

:::::
during

:::::::
summer

::
as

::
a

:::::::
function

::
of

:::
the

:::
the

:::::
factors

::::::::::
temperature

::::
(T),

::::::::::
precipitation

::::
(P),

:::::
global

::::::::
radiation

::::
(Rg),

::::
soil

:::::::
moisture

:::::
(SM),

::::
and

::::
their

::::::::::::
corresponding

:::::::::
anomalies.

:::
We

::::::
include

::::
land

::::
cover

:::::
type,

:::::::
duration

:::
and

::::::
latitude

:::
as

:::::::
possible

:::::
drivers

::
of

:::
the

:::
full

::::::
model

::::::
(spring

:::
R2

:
=
:::::
0.86,

::::::
summer

:::
R2

::
=

:::::
0.35).

:::
We

:::
use

:
a
:::::::
variable

::::::::::
importance

:::::::::
partitioning

:::::::::
algorithm

::::::::
according

::
to

:::::::::::::::::::::::::::
Chevan and Sutherland (1991) to

::
get

::::
the

:::::::
variable

:::::::::
importance

::
of
::::

the
:::
full

::::::
model

:::::
while

:::::::::
accounting

:::
for

:::::::::::
redundancies

:::::
(e.g.,

::::::::::::
dependencies)

::::::
among

:::
the

::::::
factors

::::
and

:::::
model

::::::::::
complexity.

::::
The

::::::::::
partitioning

:::::::::
algorithms

::::::::
computes

:::
all

:::::::
possible

::::::::::::
combinations

::
of

:::::::::
submodels

::::::::::
(excluding

:::
one

::
or

:::::::
several10

:::::::
factors).

::
By

:::::::::
combining

:::
the

:::::::::
differences

::
of

:::
R2

::::::::
measures

::
of

:::
the

:::::::::
submodels

::
in

::
an

::::::::
intelligent

::::
way

::::::::::::::::::::::::::::::::::::::::::
(for more details see Chevan and Sutherland, 1991),

:
it
::
is

:::::::
possible

::
to

:::::::
partition

:::
the

::::
total

:::::::::
importance

:::
of

::::
each

:::::::
variable

:::
into

::
an

:::::::::::
independent

::::::::::
contribution

:::
and

::
a

::::
joint

::::::::::
contribution.

:::::::
Results

:::::
show,

:::
that

:::
the

:::::::::::::::::
hydrometeorological

:::::
spring

:::::
event

::
is

:::::
mainly

::
a
:::::::
response

::
to

::::
very

:::::::::
favourable

:::::::::::::::::
hydrometeorological

:::::::::
conditions

::::::
(higher

:::::::
radiation

::::
due

::
to

:::
the

::::
lack

::
of

:::::::::::
precipitation,

::::
high

:::::::
absolute

::::::
spring

:::::::::::
temperatures

::::::
beyond

:::
the

::::::::
optimum

::
of

::::::
GPP),

:::::
which

::
is

::::::::
indicated

::
by

:::
the

::::
high

::::::::::
independent

::::::::::::
contributions

::
of

:::
the

::::::::
variables.

:::
As

::::
only

:::::
forest

::::::::::
ecosystems

:::
are

:::::::
affected,

:::::::::
vegetation

::::
type

:::::
plays

:
a
::::::
minor15

:::
role

::::
(Fig.

:::
D1

:::
a).

:::
The

:::::
lower

::::::::::
explanatory

::::::
power

::
of

:::
the

:::::
model

:::
for

:::
the

:::::::
summer

:::::
event

:::::::
indicates

::::
that

::::
there

:::
are

:::::::::
potentially

:::::::::
non-linear

:::::::
feedback

:::::
loops

::::
not

:::::::
captured

:::
by

:::
the

::::::
model

:::
or

::::::
factors

:::::::
playing

:
a
:::::

role,
:::::
which

::::
we

:::
did

:::
not

:::::::
include

::
in

::::
the

::::::
model.

::::
One

::
of
::::

the
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::::
latter

:::::::::
candidates

::
is

:::
the

::::::
access

::
to

::::::
deeper

:::::
water,

::::
also

::::::::
indicated

:::
by

:::
the

::::
high

:::::::
variable

:::::::::
importance

::
of

::::::::
latitude.

:::::
Apart

::::
from

:::::::
latitude

::::::::
vegetation

::::
type

::
is

:::
the

::::
most

:::::::::
important

:::::
factor

::::::
driving

:::
the

::::
GPP

:::::::
respose

:::::
during

:::
the

:::::::
summer

:::::
event

::::
(Fig.

:::
D1

:::
b).
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Figure D1.
:::::::::
Independent,

::::
joint

:::
and

:::
total

::::::::::
contribution

:
of
:::

the
:::::
factors

::::::::
explaining

:::
(a)

::::
GPP

::::::
response

:::::
during

:::
the

::::::::::::::::
hydrometeorological

::::
spring

:::::
event

:::
and

::
(b)

:::::
during

:::
the

::::::::::::::::
hydrometeorological

::::::
summer

:::::
event.

::::
Used

::::::::::
abbreviations

:::
are:

::
T
:::::::::::
(temperature),

:
P
::::::::::::

(precipitation),
::
Rg

:::::::::
(radiation),

:::
SM

::::
(soil

:::::::
moisture).

Appendix E: Water use efficiency and evaporative fraction of different land cover types

(a) underlying Water Use Efficiency (b) Evaporative Fraction

Figure E1. (a) Underlying water use efficiency (uWUE) and (b) evaporative fraction (EF) of the area affected by the RHW in 2010. uWUE

is calculated according to Zhou et al. (2014) including vapour pressure deficit. In contrast to WUE, uWUE attempts to correct for differences

in temperature and vapour pressure deficit to a certain degree.
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