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Abstract. In Amazon forests, the relative contributions of climate, phenology, and disturbance to net ecosystem exchange of 18 

carbon (NEE) are not well understood. To partition influences across various timescales, we use a statistical model to represent 19 

eddy covariance-derived NEE in an evergreen Eastern Amazon forest as a constant response to changing meteorology and 20 

phenology throughout a decade. Our best fit model represented hourly NEE variations as changes due to sunlight, while seasonal 21 

variations arose from phenology influencing photosynthesis and from rainfall influencing ecosystem respiration, where 22 

phenology was asynchronous with dry season onset. We compared annual model residuals with biometric forest surveys to 23 

estimate impacts of drought-disturbance. We found that our simple model represented hourly and monthly variations in NEE 24 

well (R2 = 0.81, 0.59 respectively). Modeled phenology explained 1% of hourly and 26% of monthly variations in observed 25 

NEE, whereas the remaining modeled variability was due to changes in meteorology. We did not find evidence to support the 26 

common assumption that the forest phenology was seasonally light- or water-triggered. Our model simulated annual NEE well, 27 

with exception to 2002, the first year of our data record, which contained 1.2 MgC ha-1 of residual net emissions, because 28 

photosynthesis was anomalously low. Because a severe drought occurred in 1998, we hypothesized that this drought caused a 29 

persistent, multi-year depression of photosynthesis. Our results suggest drought can have lasting impacts on photosynthesis, 30 

possibly via partial damage to still-living trees.  31 

1. Introduction 32 

The Amazon’s tropical forests are pivotal to global climate, exchanging large, globally important quantities of energy and matter, 33 

including atmospheric carbon (Betts et al., 2004). Amazon forests contain 10-20% of Earth’s biomass carbon (Houghton et al., 34 

2001). Increased emissions of the forest’s carbon can therefore accelerate climate change and attention is now focused on how 35 

vulnerable this large reservoir of carbon will be to a potentially drier future climate (de Almeida Castanho et al., 2016; Farrior et 36 

al., 2015; Duffy et al., 2015; Longo et al., 2018; McDowell et al., 2018). Characterizing the response of present-day Amazon rain 37 

forest carbon balance to climate and drought disturbance is a necessary step to improving predictions of future vulnerability. 38 

Eddy covariance CO2 flux measurements are a powerful tool for quantifying net ecosystem exchange of carbon (NEE) 39 

(Baldocchi, 2003). NEE is the difference between uptake from gross ecosystem productivity (GEP) and emission from 40 
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ecosystem respiration (RE). The magnitudes of these gross fluxes are influenced both by exogenous environmental conditions 41 

such as light, moisture, and temperature (Collatz et al., 1991; Bolker et al., 1998; Fatichi et al., 2014; Kiew et al., 2018), as well 42 

as endogenous biophysical properties such as canopy structure, phenology, and community composition (Barford et al., 2001; 43 

Melillo et al., 2002; Dunn et al., 2007; Doughty and Goulden, 2008; Stark et al., 2012; Frey et al., 2013; Morton et al., 2016; Wu 44 

et al., 2016).  45 

Partitioning the exogenous and endogenous influences upon eddy covariance NEE is possible using statistical modeling 46 

(Barford et al., 2001, Yadav et al., 2010; Wu et al., 2017). To partition influences upon NEE in a 20-year eddy flux record in a 47 

temperate New England forest, Urbanski et al. (2007) used a statistical modeling approach: by representing hourly NEE merely 48 

as response to exogenous meteorology and annually integrating their results, they concluded that meteorology did not explain the 49 

accelerated uptake seen annually integrated NEE. They hypothesized that residual uptake was due to long-term forest regrowth 50 

and succession, a hypothesis that was corroborated by biometric measurements of increasing canopy foliage and accelerating 51 

mid-successional tree biomass accrual. This novel partitioning framework for NEE has not previously been applied to any 52 

tropical forest, in part because long-term eddy covariance coverage of tropical forests is lacking (Zscheischler et al., 2017). A 53 

simple statistical framework may allow tropical forest CO2 flux measurements to better inform model development and 54 

improvement. 55 

On seasonal timescales, tropical evergreen forests undergo endogenous changes in GEP via the phenology of leaf flush 56 

and abscission (Doughty and Goulden, 2008, Restrepo-Coupe et al., 2013; Wu et al., 2016). The seasonal dependency of 57 

productivity has motivated the development of rooting depth and phenology sub-models in DVGMs (Verbeeck et al., 2011; De 58 

Weirdt et al., 2012; Kim et al., 2012). These sub-models have led to complexity in the modeled mechanisms controlling the GEP 59 

seasonal cycle without necessarily improving accuracy. It is necessary to quantify the magnitude and timing of phenology’s 60 

effect on the GEP seasonal cycle after accounting for the integrated hourly response to sunlight. 61 

On interannual to decadal timescales, endogenous changes in forest NEE can arise from disturbance and recovery 62 

(Nelson et al., 1994; Moorcroft et al., 2001; Chambers et al., 2013; Espírito-Santo et al., 2014; Anderegg et al., 2015). The km67 63 

eddy flux site in the Tapajós National Forest (TNF) presents a unique opportunity to study the potential legacy of disturbance 64 

caused by drought. This Eastern Brazilian Amazon forest lies on the dry end of the rainfall spectrum for tropical evergreen 65 

forests (Saleska et al., 2003; Hutyra et al., 2005). A severe El Niño drought in 1997-1998 was followed by disturbance, 66 

evidenced by a large and heavily respiring CWD pool in 2001. Subsequent NEE measurements showed a 4-year transition from a 67 

net carbon source in 2002 to nearly carbon-neutral in 2004 and 2005 (Hutyra et al., 2007). The observed disequilibrium state led 68 

researchers to the hypothesis that RE was high but dissipating, and that the forest will continue to transition into equilibrium, 69 

becoming a sink throughout the decade (Pyle et al., 2008). Conversely, this hypothesis implies that any new disturbance should 70 

drive the forest back into disequilibrium, becoming a source again. We test these predictions using meteorological records, forest 71 

inventories of aboveground biomass (AGB) and CWD, and an additional 3.5 years of eddy flux data, resumed after a 2.5-year 72 

interruption, collected since prior studies. 73 

In this study, we test hypotheses related to controls of NEE on multiple timescales at an Eastern Amazon rain forest. 74 

Specifically, we sought to answer the following questions: (1) what were the effects of exogenous meteorology upon NEE across 75 

hourly to yearly timescales? (2) What is the seasonal effect of canopy phenology upon NEE? Is phenology synchronized with 76 

wet/dry seasonality? (3) Major basin-wide droughts occurred in 1998 before eddy flux measurements began, and were reported 77 

again in 2005 and 2010 (Zeng et al., 2008; Philips et al., 2009; Lewis et al., 2011; Doughty et al., 2015) during the span of 78 

measurements. Did any of these basin-wide droughts affect the TNF in particular? What was the impact of drought upon 79 

interannual variability and the decadal trend in NEE? Furthermore, which NEE component, GEP or RE, was perturbed most by 80 
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drought? Overall, we statistically partitioned the multiple influences on NEE across timescales from hours to an entire decade of 81 

eddy flux and forest inventory measurements. 82 

2 Methods 83 

2.1 Site Description 84 

The Tapajós National Forest (TNF) is located to the southeast of the convergence of the Tapajós and Amazon Rivers in 85 

Pará, Brazil. The forest site is on the dry end of the spectrum of evergreen tropical forests, receiving 1918 mm of annual rainfall 86 

and experiencing a 5 month long dry season from July 15 to December 14, defined by average monthly precipitation of less than 87 

100 mm (Hutyra et al., 2007). Temperature and humidity average 25 °C and 85% respectively (Rice et al., 2004). The forest has 88 

a closed canopy with a height of roughly 40 m (Stark et al., 2012), emergent trees up to 55 m (Rice et al., 2004). The forest has 89 

fast turnover rates with much of the population consisting of small-diameter trees (Pyle et al., 2008), but many larger trunks, an 90 

uneven age distribution, many epiphytes, and emergent trees; the forest may be considered primary or “old growth” (Goulden et 91 

al., 2004). Soils are predominantly nutrient-poor clay oxisols with some sandy utisols (Rice et al., 2004), both of which have low 92 

organic content and cation exchange capacity. The forest terrain is 75 m upland on a plateau adjacent to the nearby Tapajós 93 

River, and a deep water table accessed by roots sometimes more than 12 meters deep (Hutyra et al., 2007). The flux tower that 94 

provided flux and meteorological data is located near km 67 of the Santarém-Cuiabá highway. The tower and site are designated 95 

by site ID “BR-Sa1” in the FLUXNET data system, but are herein referred to simply as “km67”.  96 

2.2 Eddy Covariance Measurements 97 

Hourly fluxes of NEE were calculated using the sum of hourly turbulent eddy fluxes plus the hourly change in height-98 

weighted average CO2 concentration in the canopy air column. Our measurements covered two contiguous periods: one from 99 

January 2002 to January 2006 (period 1) and another from July 2008 to December 2011 (period 2). The tower fell in January 100 

2006 when a tree snapped a supporting guy-wire. Measurements resumed in July of 2008 when the tower was rebuilt and 101 

equipment repaired. Measurements ceased again in 2012 when electrical failures damaged measurement and calibration systems. 102 

Some data collection has resumed since 2015, although gaps in this data were much larger than those in periods 1 and 2, 103 

precluding calculating annual carbon balance after 2011. 104 

2.3 Flux Data Processing, Quality Control, and Gap Filling 105 

Nighttime NEE measurements were filtered for low turbulence.  We used a turbulence threshold filter of u*
Th = 0.22 to 106 

ensure consistency with previous studies (Saleska et al., 2003; Hutyra et al., 2008). The absolute magnitude of nighttime 107 

respiration and resulting carbon balance was highly sensitive to the selection of u*
Th, (Saleska et al, 2003; Miller et al., 2004).  108 

However, the interannual variability and trend remained the same regardless of the choice of u*
Th (Saleska et al., 2003). Errors in 109 

total annual NEE therefore do not reflect potentially large u*
Th error, and should be interpreted as errors in the differences 110 

between years, not errors in the annual magnitude of the carbon source/sink. Coverage of hourly NEE was substantial for both 111 

periods in the total eddy covariance record. After quality control and outlier detection, period 1 (2002-2006) had 80% and period 112 

2 (mid 2008-2011) had 75% data coverage for all hours. Filtering for u* below the threshold of 0.22 m/s left 48% and 42% 113 

coverage of period 1 and 2 respectively. 114 
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We used established gap-filling models to obtain annual NEE totals. Gross ecosystem productivity (GEP) was gap-filled 115 

using a hyperbolic fit curve between GEP and PAR (Waring et al., 1995). For ecosystem respiration (RE), we adapted the 116 

method by Hutyra et al. (2007), who calculated missing, filtered, and daytime hours using 50 u*-filtered nighttime hour bins, 117 

instead using a running average of 50 u*-filtered nighttime hours, allowing us to capture the onset of semiannual seasonal 118 

transitions in RE. Consistent with other tropical forest sites, temperature was not used in our gap-filling, because temperature 119 

variability at tropical forests is low, which results in weak and insignificant correlations with RE (Carswell et al., 2002). We 120 

calculated annual errors as 95% bootstrap confidence intervals by resampling like-hours with replacement (NEE conditions for 121 

the same month, time of day, and similar PAR conditions), instead of resampling all hourly NEE, so that resampling did not 122 

capture diurnal and long-term nonstationary.  123 

2.4 Meteorological Measurements 124 

Meteorological variables measured at km67 included photosynthetically active radiation (PAR), temperature, and 125 

specific humidity.  Downward drifts in PAR data due to a degrading sensor were corrected by de-trending a time series of mid-126 

day PAR observations in the top 95th percentile of each month (Longo, 2014). This threshold included substantial information 127 

about the sunniest hours, throughout which intensity should remain constant between years for any given month. We scaled the 128 

radiation time series using the proportion between the fitted trend and the initial fitted value. Simultaneous total incoming 129 

shortwave radiation measurements allowed us to partially fill missing periods of PAR data using a relationship derived from 130 

linear regression in simultaneously measured hours (R2 = 0.98).  131 

Rainfall measurements were greatly underestimated at this site because of a faulty tipping bucket rain gauge. We 132 

discarded site-based data and calculated a distance-weighted synthetic hourly rainfall time series from a network of nearby 133 

meteorological stations, with locations ranging from 10 km to 110 km away from km67. More information on the meteorological 134 

network is available in Fitzjarrald et al. (2008). Detailed information about the subsequent calculations of the synthetic 135 

precipitation data set and PAR drift correction are available in Longo (2014).  136 

Additionally, the Brazil National Institute of Meteorology (INMET) has a station at Belterra, located 25 km away from 137 

km67, with daily precipitation totals dating back to 1971, which were used to corroborate the seasonal and long-term trends at 138 

km67. Correlation between these two monthly datasets for the years 2001-2012 was R2=0.88. Altogether there were three data 139 

sets: the local tower-based meteorology, the mesoscale network meteorology data interpolated to km67, and the INMET 140 

meteorology. Further information regarding the robustness of these three datasets, and correlations amongst them, can be found 141 

in Longo (2014). The three datasets provided us with at least two redundant estimates for all meteorological variables at km67.  142 

2.5 Coarse Woody Debris and Mortality 143 

To assess how disturbance coincided with changes in NEE, we conducted surveys of coarse woody debris (CWD). 144 

These surveys capture the magnitude and dynamics of the respiring pool of dead tree biomass. Transect subplots were surveyed 145 

in 2001 for pieces greater than 10 cm in diameter (Rice et al., 2004). Bootstrapped confidence intervals were quantified by 146 

resampling subplots totals (n=321) with replacement. Additionally, in 2006, pieces only greater than 30 cm in diameter were 147 

surveyed. Lastly, we conducted an additional CWD survey in 2012 using the line-intercept method (Van Wagner, 1968) 148 

throughout all transects for a total length of 4 km to minimize sampling uncertainty. Bootstrap confidence intervals were 149 

quantified by resampling line segment totals (n=40) with replacement. These two different methodologies have previously 150 
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produced consistent simultaneous results within measurement uncertainties, which were 20% larger for line-intercept sampling 151 

than plot-based sampling (Rice et al., 2004). 152 

Because CWD surveys were conducted infrequently, we inferred mortality from aboveground biometry surveys in 153 

1999, 2001, 2005, 2008, 2009, 2010, and 2011. Trees larger than 10 cm diameter at breast height (DBH) were surveyed and were 154 

converted to biomass using non-species specific equations (Chambers et al., 2001a) based on sampling previously established 155 

protocols for this site (Rice et al., 2004; Pyle et al., 2008). Mortality biomass was inferred by tallying biomass of dead trees that 156 

were alive in the prior survey. Sometimes, trees were missed by the census surveyors before they could be confirmed dead or 157 

were found again. In 2012 we assigned missing trees that were not later found alive an equal probability of dying in all surveyed 158 

years they had been missing (Longo, 2014). We used tree mortality to model CWD over time using a simple box model with a 159 

first-order rate equation: 160 

€ 

dCWD
dt

= −k⋅ CWD+M        (1) 161 

where M is the mortality rate input to the CWD pool (MgC ha-1yr-1) and k is the decay loss rate of 0.124 yr-1. The loss rate is 162 

derived from measurements of respiring CWD in Manaus, Amazonas (Chambers et al, 2001b) and snag density measurements 163 

taken at km67 (Rice et al., 2004). The box model initial condition was the 2001 survey of total CWD. This model allowed us to 164 

assess whether disturbances after 2001 were sufficient to cause an increase in CWD or whether disturbances after 2001 were 165 

minimal and the CWD pool respired and depleted gradually. The final timestep of the model was validated against the second 166 

and final full measurement of CWD made in 2012. 167 

2.6 Empirical NEE Model 168 

Our low-parameter empirical model represents the mean response of NEE to hourly and seasonal changes in exogenous 169 

meteorology and seasonal changes in phenology throughout the decade. We used our model to diagnose interannual 170 

nonstationarity in model residuals, which correspond to endogenous ecosystem changes in photosynthesis and respiration rates 171 

between years, give or take random measurement error and unaccounted for model terms. We fit the model to the entire 7.5-year 172 

interrupted eddy covariance record of raw, u*-filtered hourly NEE (NEEobs): 173 

€ 

NEEModel = a0 + a1sR +
a2PAR
a3 +PAR

⋅ (1− kphenospheno)
   (2)

 174 

where NEEModel is the modeled hourly NEE. The models were fit in two steps: first, the two model parameters that represent RE, 175 

a0 and a1, were fit to nighttime data, then the remaining three GEP parameters were fit to daytime data. Parameter a0 is the wet 176 

season intercept for RE. Parameter a1 is an adjustment of the ecosystem respiration during the rainfall-defined dry season (factor 177 

variable sR, defined in detail below). Parameters a2 and a3 are the Michaelis-Menten light response parameters. We also include a 178 

simple scaling factor for endogenous changes in phenology: a time-varying binary factor variable spheno represents timing in 179 

changes to the intrinsic light use efficiency (LUE≡1-kpheno) within an average seasonal cycle. The purpose of this simplistic 180 

scaling factor was to determine when the timing of endogenous seasonal shifts in LUE that were not explained by light and 181 

moisture were most pronounced. 182 

 Atmospheric moisture and diffuse radiation, in addition to radiation, are also known to affect photosynthesis at tropical 183 

sites on short timescales (Kiew et al., 2018), by affecting stomatal closure hence controlling the degree to which photosynthetic 184 

uptake saturates at high PAR. We tested a higher-parameter model based on light and moisture model representing exogenous 185 
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changes to LUE from Wu et al. (2017) to examine whether these meteorological variables added explanatory power to our model 186 

at monthly and longer timescales. This model adjusts LUE by multiplying terms that account for effects of vapor pressure deficit 187 

(VPD: 1-kVPD) and cloudiness index (CI: 1-1-kCI) a statistical proxy for diffuse radiation. To determine whether this model was 188 

parsimonious, we evaluated the Bayesian Information Criteria (BIC) of the data-model mean monthly residuals for the model in 189 

Eq. 2 and the higher-parameter light and moisture model. We found that the higher-parameter model was not parsimonious 190 

because the additional parameters did not improve the goodness of fit at monthly timescales. We explain these results further in 191 

Section 3.4.2 and discuss their implications further in Sections 4.1 and 4.2. 192 

This forest site has coincident deficits in rainfall and ecosystem RE during the dry season (Saleska et al., 2003; Goulden 193 

et al., 2004) due to desiccation of dead wood, leaf litter, and other substrates for heterotrophic respiration (Hutyra et al., 2008). 194 

To depict this reduced dry season RE, we set dry season sR≡1 and wet season sR≡0, fitting a1 to the mean dry season RE. We 195 

defined the dry season onset as the period during which rainfall is below 50 mm per half-month, consistent with previous 196 

definitions of tropical forest dry season as 100 mm month-1 (e.g. Saleska et al., 2016). We defined the wet season onset as the 197 

first in a series of 3 or more semi-monthly periods with rainfall greater than 50mm; this definition allows for sporadic dry season 198 

downpour whilst ensuring that there is not more than one dry season per year. Although a1 does not vary across years, our 199 

meteorologically-defined sR permits the duration of the dry season to vary interannually. A longer dry season in a given year 200 

would therefore result in less RE (more net uptake) when NEEExo is integrated over that full year.  201 

We tested three different seasonal timings for the phenology factor variable: (1) spheno ≡0 year-round (no phenology), (2) 202 

spheno ≡1 during the dry season and spheno ≡0 during the wet season, and (3) spheno ≡1 during the peak of leaf flush (June 15 to Sept 203 

14) (Hutyra et al., 2007) and spheno ≡0 all other times of the year. In scenario 2, the timing of phenology varies interannually, but 204 

in scenarios 1 and 3, modeled phenology does not differ between years and therefore does not influence interannual variability in 205 

modeled GEP or NEE. 206 

After subtracting hourly NEEModel from NEEobs, the annually integrated residuals reflect changes in the ecosystem’s 207 

efficiency irrespective of the aggregate response to meteorology, plus or minus random error and unaccounted for meteorological 208 

controls. Upper-level soil moisture, for instance, exerts seasonal controls upon NEE at various tropical sites differently 209 

depending on terrain (Hayek et al., 2018; Kiew et al., 2018) but is not included in the model because it was insignificantly 210 

associated with GEP (Wu et al., 2017) or RE at this site after we controlled for other variables, including wet and dry season 211 

onset, in our model. Examples of a change in intrinsic ecosystem efficiency may occur in the aftermath of a drought, during 212 

which leaf stomates close, causing the ecosystem to sequester less CO2 per unit incident PAR than average, or a storm inducing 213 

widespread mortality and a pulse of CWD during which RE would be higher than average for a given season or year. In both 214 

scenarios, we would expect residuals to be positive during or after the event, because the ecosystem would sequester less and 215 

emit more CO2 relative to other years. To assess which aggregated annual residuals were significantly different from zero, we 216 

quantified 95% confidence intervals in annual NEE residuals due to random error using bootstrapping (Section 2.3). 217 

We partitioned both NEEobs and NEEModel into RE and GEE (GEE = -GEP, to keep the same sign convention as eddy 218 

flux NEE) to determine which of the two components were more adequately represented by our model. For observations of NEE, 219 

RE, and GEE, we used hours during which a direct u* filtered measurement of NEE occurred. Observations of RE were 220 

nighttime hours during which NEE was measured; observations of GEE are daytime hours during which the 50-hour running 221 

average RE was subtracted from measured NEE. Partitioned GEE is not a direct observation, but represents the lowest-parameter 222 

approximation of a direct measurement (GEE = NEE - RE see Wu et al., 2017). Our GEE/RE results are limited by not 223 

accounting for partitioning bias. 224 



 7 

3 Results 225 

3.1 Eddy Covariance Measurements of CO2 Fluxes 226 

NEE has a large diurnal cycle relative to its mean seasonal cycle, with a mean diel range of 25.05 µmol m-2 s-1. The 227 

range of the mean seasonal cycle is 2.46 µmol m-2 s-1, or 10% of the mean diel range. Annual totals of NEE are presented in Fig. 228 

1. For period 1, the first four years, annual NEE is similar to that reported previously by Hutyra et al. (2007) despite using 229 

slightly modified gap-filling procedures here (Section 2.3). The previously reported trend remains: a moderate source in 2002 of 230 

2.7 MgC ha-1 yr-1 (±0.5 95% bootstrap confidence intervals) tapering off to nearly carbon neutral totals in the following years, 231 

within confidence limits, of 0.5 (±0.6) MgC ha-1yr-1 in 2004 and 0.2 (±0.6) MgC ha-1yr-1 in 2005. During the three subsequent 232 

years that comprise period 2, 2009-2011, the forest returned to a moderate source of carbon, with a range of 1.8 ± 0.6 MgC ha-233 
1yr-1 in 2010 to 2.5 ± 0.5 MgC ha-1yr-1  in 2009. We examined measurements of rainfall, coarse woody debris (CWD), and 234 

aboveground biomass (AGB) for indications of drought or other disturbance during 2002-2011 to explain these patterns seen in 235 

annual NEE totals. 236 

3.2 Meteorological Measurements and Drought 237 

We examined our distance-weighted interpolated estimate of km67 rainfall for trends and droughts. Our precipitation 238 

estimate was consistent with previous estimates of precipitation for this site and region, with a minimum of 1595 mm in 2005 239 

and maximum of 2137 mm in 2011 (Saleska et al., 2003; Nepstad et al., 2007). While 2005 annual precipitation was a minimum, 240 

no previous groundwater deficits in carbon exchange, latent heat flux, or sensible heat fluxes were observed during this year 241 

(Hutyra et al, 2007). Our measurements did not indicate that any drought occurred during or immediately preceding period 2 of 242 

NEE measurements.  In fact, period 2 annual rainfall totals increased on average by 20% relative to period 1. The dry season in 243 

2009 was longer than average, lasting 6 months (Fig. 2a). Mean annual radiation was expectedly anti-correlated with annual 244 

rainfall. Accordingly, period 2 experienced 4% less mean annual PAR than period 1.  245 

Our synthetic decade-long rainfall record corresponded closely with the nearby INMET Belterra measurements, 246 

although INMET Belterra had on average 220 mm of rainfall more per year, likely due to differences in circulation and 247 

convection between the km67 forest and Belterra pasture land surface (Fitzjarrald et al., 2008). Annual rainfall totals throughout 248 

the decade of eddy flux measurements 2002-2011 lay well within the historical variability of annual rainfall since 1972, which 249 

experienced a range of 974 to 3057 mm of annual precipitation (Fig. 2b). The second and third lowest annual precipitation totals 250 

occurred during 1997-1998, which were 1391 and 1218 mm respectively, during a major El Niño event, which persisted from 251 

June of 1997 to June of 1998 (Ross et al., 1998) and corresponded with a 9 month long dry season, the longest in the historical 252 

record. 253 

3.3 Coarse woody debris and mortality 254 

We examined measurements of CWD over time to assess whether a disturbance might have impacted the period 2 255 

carbon balance. Compared to CWD stocks in 2001 of 48.6 (± 5.9) MgC ha-1, CWD stocks in 2012 were significantly lower at 256 

30.5 MgC ha-1 (± 7.4) (Fig. 3). Errors in the 2012 pool were 25% larger. The larger magnitude of error is consistent with higher 257 

uncertainty for line-intercept sampling relative to area-based sampling at the TNF (Rice et al., 2004). Because CWD 258 

measurements were sparse in time, we included an additional measurement in 2006 of large CWD, with diameter greater than or 259 

equal to 30 cm, totaling 20.8 ± 12.8 MgC ha-1. We compared this measurement with similarly sized CWD from other surveys 260 
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(Fig. 3). Total large CWD was 25.7 ± 11.4 MgC ha-1 in 2001, and 19.8 ± 11.9 MgC ha-1 in 2012.  Differences in large CWD 261 

between 2001 and 2006 and between 2006 and 2012 are small relative to their uncertainties, but they still show a qualitative 262 

downward trend over time. 263 

A box model of CWD (Eq. 2) allowed us to estimate the transient behavior of the CWD pool throughout years in which 264 

it was not directly measured (Fig. 3). The CWD mortality input rates M were derived from forest inventory surveys. The box 265 

model shows no large spikes from mortality events outweighing the respiration rate, and its derivative is negative throughout 266 

time, predicting a continuously depleting CWD pool.  The box model estimate for 2012 CWD is 26.2 MgC ha-1, and lies well 267 

within the uncertainty of the concurrent 2012 measurement. We see no evidence via increased CWD that disturbance has 268 

occurred since the start of measurements. 269 

Assuming that the large initial CWD pool arose from a past disturbance, hypothetically following the 1997-1998 El 270 

Niño drought, we ran the CWD box model (Eq. 2) backward in time to estimate the magnitude of such a disturbance. We 271 

assumed that the disturbance occurred in 1998 because 1999 and 2000 were not characterized by below-average rainfall. Severe 272 

drought events have been accompanied by increased mortality and canopy turnover rates in intact Amazon forests (Leitold et al., 273 

2018). Because the CWD measurement was made in July of 2001, we calculated the box model CWD value to the end of the El 274 

Niño drought in June 1998 using the same respiration rate, k, and the mean mortality, M, for all surveys, and applied this rate to 275 

the mean and 95% bootstrapped confidence intervals of the 2001 measurement (48.6 ± 5.9 MgC ha-1). Our estimate of the CWD 276 

pool immediately following the drought was thus 63.7 ± 8.1 MgC ha-1. Subtracting the 2012 measurement of 30.2 ± 7.3 MgC ha-277 
1 from this number, which is our best estimate of equilibrium CWD that may have existed before the 1997-1998 El Niño drought, 278 

we estimate drought-induced mortality to be 33.5 ± 15.4 MgC ha-1, or 12-31% of present AGB. 279 

3.4 Empirical NEE Model 280 

3.4.1 Hourly variability in NEE  281 

Optimized parameter values for our model are included in Table 1. Our model predicted 81% of the variance in 282 

observed hourly NEE, and captured 94% of the amplitude of the diurnal cycle. The only hourly independent variable in the 283 

model was PAR; hourly NEE in our model was therefore predominantly driven by changes in sunlight. Modeled hourly 284 

variability frequently captured the difference in magnitude in NEE between high and low uptake events (example time series 285 

shown in Fig. 4).  286 

3.4.2 Seasonal variability in NEE 287 

In our best-fitting model parameterization, phenology was asychnronous with the dry season (Table 2). Over the mean 288 

seasonal cycle, removing this seasonal phenology parameterization resulted in positive residual NEE from June 15 to September 289 

14, hence over-predicting uptake during this time (Fig. 5a). Our final model, however, simplistically corrects for this positive 290 

anomaly, adjusting NEE by 16% (Fig. 5b; Table 2). Although this seasonal transition appears to be more gradual over the season, 291 

our simplistic, low-parameter phenology representation was chosen for parsimony. While the seasonal timing of respiration, sR, 292 

varied by meteorological inputs (semi-monthly total rainfall <50 mm), we could not identify a similar seasonal meteorological 293 

trigger for phenology and therefore used set calendar dates.  294 

Our model predicted monthly mean NEE well (R2=0.59 across all months). Hourly changes in PAR integrated over 295 

monthly and seasonal time periods. Therefore, seasonal variability in our model was controlled by precipitation, sunlight, and a 296 

simplistic parametric representation of phenology (Eq. 2; Table 1). 297 
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Part of the remaining seasonal variability was explained by random measurement error: bootstrap 95% confidence 298 

intervals representing hourly measurement errors in monthly mean NEE had an average range of 1.07 µmol m-2s-1, 47% of the 299 

mean NEE seasonal cycle’s range. The model slightly over-predicted the mean seasonal cycle’s magnitude, although well within 300 

the model and measurement interannual variability (Fig. 6). The model attributed the greatest sink to October, because (1) 301 

October rainfall was low enough each year to be classified as part of the dry season, (2) PAR was consistently high due to sunny 302 

conditions after the dry season onset, and (3) the phenology scaling factor (1 - kpheno*spheno) returned to 1 after Sept 14, increasing 303 

the October LUE and pushing the carbon balance further towards a sink. 304 

A higher-parameter model with VPD and diffuse radiation from Wu et al. (2017) explained additional variance in 305 

hourly NEE but not in monthly NEE (Table S1). The BIC score for this model (-31.4) was greater than (more negative) than that 306 

from our main model (-35.6; Eq. 2), because it did not improve the goodness of fit but contained additional parameters. The BIC 307 

results imply that VPD and diffuse radiation do not explain significant additional variance relative to our model (Eq. 2) at 308 

monthly and greater timescales. 309 

3.4.3 Interannual Variability in NEE  310 

Hourly changes in PAR and seasonal changes in precipitation integrated annually to determine yearly sums of modeled 311 

NEE. Therefore, interannual variability was controlled by precipitation and sunlight. Phenology did not vary interannually, 312 

therefore it did not affect interannual variability in modeled NEE.  313 

We disaggregated the meteorological influence on NEE, represented by our model (Eq. 2), from long-term changes in 314 

forest’s ecological efficiency by examining the annually integrated hourly model residuals. In 2002, there were a total of 1.2 315 

MgC ha-1yr-1 of excess emissions unaccounted for by the modeled mean response to meteorology (Fig. 7a). The correlation 316 

between modeled and measured yearly NEE was low and insignificant (R2 = 0.17; p = 0.37) owing to the 2002 anomaly; if 2002 317 

is excluded as an outlier, the correlation is high and significant (R2 = 0.81; p = 0.014). All other years were not significantly 318 

different from zero within random measurement error, represented by 95% bootstrap confidence intervals, indicating that these 319 

years are well predicted by meteorological variability, including the relatively higher emission/lower uptake in period 2 (Fig. 1).  320 

On average, period 2 saw a 20% increase in annual precipitation relative to period 1. Abbreviated dry season lengths 321 

and lack of radiation from increased cloudiness in period 2 resulted in less modeled net uptake relative to period 1. 322 

We partitioned observed and modeled NEE into RE and GEE. Interannual variations in RE were accurately represented 323 

as changes in wet and dry season length (Fig. S1).  The range in annual residual RE is therefore small compared to that of annual 324 

residual GEE (Fig. 7b). In 2002, mean model GEE had 0.85 µmol m-2s-1 more uptake than observations. Therefore, the 1.2 MgC 325 

ha-1y-1 residual emissions in 2002 were more likely due to anomalously low photosynthesis rather than high RE. 326 

4 Discussion  327 

4.1 Hourly and Seasonal Changes in NEE and Implications for Modeling Phenology 328 

 Hourly changes in NEE were due predominantly to changes in sunlight (Fig. 4). Phenology only played a small role in 329 

modeled hourly variability, improving the fit of our model by only 1% relative to a model that only used meteorology and lacked 330 

a phenology parameterization (Table 2).  331 

Seasonal changes, on the other hand, were due to a combination of sunlight, rainfall inputs, and phenology (Fig. 6). The 332 

model parameterization contained a seasonal decrease in respiration (a1) that was synchronous with the dry season, a timing that 333 
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was consistent with other tropical forest sites, but can exert the opposite influence depending on terrain, drainage, and inundation 334 

(Kiew et al., 2018). A phenological LUE decrease in GEP (1-kpheno) was asynchronous with the dry season (Eq. 5; Table 2). 335 

Modeled phenology explained 26% of the variability in observed monthly NEE (Table 2).  336 

VPD and diffuse radiation do not explain significant additional variance in NEE relative to our model (Eq. 2) at 337 

monthly timescales (Table 1; Table S1). The relative importance of phenology at monthly timescales, compared to that of VPD 338 

and diffuse radiation, is consistent with other findings regarding GEP at our research site: moving from finer to coarser temporal 339 

resolution, the influence of exogenous meteorology becomes outweighed by that of exogenous ecosystem changes such as those 340 

in phenology (Wu et al. 2017). 341 

Seasonal changes in LUE are well explained by canopy leaf age and demography both at this site and at a comparatively 342 

wetter forest site in Manaus, showing good agreement with a model informed by camera and trap-based observations of leaf 343 

flushing and shedding (Wu et al., 2016). Our single mid-year parameter simplistically up-shifts the trough in a more continuous 344 

seasonal oscillation between low and high LUE (Fig. 5) because we lacked independent variables explaining the seasonal 345 

oscillation. 346 

The seasonally asynchronous nature of phenology-mediated LUE establishes a middle ground in debates over whether 347 

the Eastern Amazon canopy is enhanced or “greens up” during the dry season (Huete et al., 2006; Myneni et al, 2007; Samanta et 348 

al., 2012; Morton et al., 2014; Bi et al., 2015; Guan et al., 2015; Saleska et al., 2016). Changes to the canopy’s LUE do indeed 349 

occur, but not synchronously with the dry season at our site (Fig. 5). Evidence from previous studies at the TNF suggests that 350 

changes in phenological LUE result from carbon allocation shifting from stem allocation to the turnover and production of new 351 

leaves (Goulden et al., 2004) supporting the prevailing hypothesis that tropical trees have been selected to coordinate new leaf 352 

production ahead of dry seasonal peaks of irradiance (Wright and van Schaik, 1994).  The GEP seasonal cycles at additional 353 

evergreen Amazon forest sites are not well described by sunlight alone (Restrepo-Coupe et al., 2013). Averaging over seasonal 354 

windows is therefore likely to miss a potential inter-seasonal depletion and enhancement of canopy LUE if additional regions of 355 

evergreen Amazon forest similarly exhibit seasonally asynchronous phenology. 356 

Interannual variation in phenology is represented mechanistically in phenology and LUE sub-models, which have been 357 

optimized using km67 eddy flux data, but nonetheless fail to reproduce the observed mid-year GEP decrease at this site. Kim et 358 

al. (2012) present a light-triggered phenology scheme, which assumes higher modeled leaf turnover rates and higher maximum 359 

leaf photosynthesis during the dry season, and hence produced higher dry season GEP. Their model produced leaf flushing rates 360 

that lagged behind observations, and contradicted observations that light-controlled GEP decreases mid-year at km67 (Fig. 5). 361 

Another phenology scheme has been developed by De Weirdt et al. (2012), which attributes excess leaf allocation to the turnover 362 

of new, more efficient leaves, but nevertheless over-predicted mid-year GEP at km67 relative to their prior model. Wu et al. 363 

(2016), on the other hand, successfully represent the GEP seasonal cycle using their model of leaf age and demography, but 364 

relied on observations of canopy leaf fluxes. Their model, however, does not provide a meteorologically-triggered mechanism 365 

for seasonal leaf shedding and flushing. Therefore, until such a trigger can be identified, models that mechanistically represent 366 

phenology are primed to make erroneous predictions about the interannual and long-term consequences of changing seasonal 367 

lengths for the Amazon carbon balance. 368 

4.2 Interannual variability in NEE 369 

Annual totals of measured NEE exhibited an unpredicted trend: despite previous hypotheses that the years after period 1 370 

would continue to trend downward towards more uptake (Hutyra et al., 2007; Pyle et al., 2008), the ecosystem returned to a 371 

moderate carbon source in all three years of period 2 (Fig. 1). We examined whether the reversal of the period 1 trend throughout 372 
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period 2 could be explained by exogenous changes in climate or an endogenous biophysical change. We developed the model 373 

selection framework to partition these two sources of variability. 374 

Our model represented NEE well across a variety of timescales (Figs. 4, 5, 7). On yearly timescales, interannual 375 

differences in NEEModel were due to exogenous meteorology, as phenology did not vary interannually. The model predicted 376 

annual NEE accurately within 95% confidence limits of random measurement error for 6 out of 7 years (Fig. 7a), including 377 

period 2, during which the forest returned to a carbon source (Fig. 1). The model representation of the period 2 source was due to 378 

lower radiation and higher rainfall relative to period 1, consistent with findings of light-limitation in Amazon forests derived 379 

from satellite observations of climate and vegetation activity (Nemani et al., 2003).  380 

The overall magnitude of the carbon source/sink, however, was highly sensitive to the choice of u* filter, consistent with 381 

previous findings (Saleska et al., 2003; Miller et al., 2004; Hayek et al., 2018). We therefore applied a novel correction to the 382 

long-term magnitude of NEE that is independent of the u* filter (Hayek et al., 2018), which indicated that the ecosystem may in 383 

fact be a slight sink, but that the interannual variability, which our model represents, remained the same (Fig. S2). The overall 384 

magnitude of the carbon source/sink therefore does not affect or results concerning the variability between years. The least net 385 

uptake still occurred in 2002, from which NEE remained insignificantly different in 2009 and 2011. 386 

We examined the possibility that a systematic high bias in 2002 PAR could result in an over-prediction of 2002 GEP 387 

and erroneously cause a positive 2002 residual. We found that PAR was appropriately drift-corrected by corroboration with Rnet, 388 

which was not affected by drifts. Additionally, we note that rainfall was not atypical in 2002 relative to 2003-2005 (Fig. 2).  389 

Additional meteorological variables such as the vapor pressure deficit (VPD) and diffuse radiation did not appear to 390 

explain residual NEE in 2002. A model including these variables did not explain the positive NEE/GEE anomaly in 2002 (Fig. 391 

S3). The annual means of both VPD and CI in 2002 lied within their decadal range, making high VPD or low diffuse radiation 392 

unlikely explanations for low photosynthetic uptake. These meteorological factors did not appear to significantly impact 393 

interannual changes in NEE, consistent with previous findings regarding GEP at this site  (Wu et al., 2017). 394 

We cannot rule out that the 2002 source may be a measurement artifact, caused for example by disturbance following 395 

tower construction. We note, however, that tower construction was completed almost a year before the measurements we used, 396 

with preliminary data collection occurring during 2001 (Saleska et al., 2003). We examine the possibility that 1998 drought-397 

based disturbance impacted forest GEP through 2002 in section 4.2.2. 398 

4.2.1 Temporal and spatial heterogeneity of droughts 399 

Our multiple records of meteorology adjacent to our research site (Fig. 2), which we used to inform our simple model of 400 

NEE, can also shed light on the larger discussion of recent droughts in the Amazon. Previous reports of 21st century droughts in 401 

this region are inconsistent. For the 2010 Amazon drought, Lewis et al. (2011) show that water deficits during were minimal in 402 

the Eastern Amazon region, consistent with our findings. However, Doughty et al. (2015) report ubiquitous detrimental effects of 403 

the 2010 drought basin-wide, including a -3 MgC ha-1 GEP anomaly overlying the TNF. Our results contradict these findings: we 404 

did not find anomalously low water inputs, nor a concurrent GEP or NEE anomaly (Fig. 7b), in 2010. For the 2005 Amazon 405 

drought, Zeng et al. (2008) claim that North Tropical Atlantic warming in the dry Jul-Oct quarter led to rainfall reductions 406 

everywhere in the Amazon, a result not borne out by our precipitation analysis. The two supposedly basin-wide droughts in 2005 407 

and 2010 did not appear to affect the region in which this particular site lies. Measurements and empirical modeling of CWD 408 

over time support this finding because no interim disturbances were detected between 2001 and 2011 (Fig. 3). The spatial extent 409 

and severity with which a more recent 2015-2016 El Niño drought impacted Amazon forests, however, remains to be quantified. 410 
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4.2.2 Legacy impacts of drought on ecosystem function 411 

Our model over-predicted photosynthetic uptake in 2002, but predicted RE well (Fig. 7b; Fig. S1), suggesting that a 412 

drought-disturbance in 1998 persistently affected forest GEP, not RE, through 2002. These findings contradict a previously 413 

established hypothesis that legacy effects of a prior drought disturbance increased RE in 2002 via increased CWD respiration 414 

(RCWD) and related pathways of decomposition (Saleska et al., 2003; Rice et al, 2004; Hutyra et al., 2007; Pyle et al., 2008). 415 

CWD measurements from the km67 site suggest that there was major disturbance before measurements of CO2 eddy 416 

fluxes began. Three years after the 1998 drought, there was a large pool of CWD (48.6 MgC ha-1 in 2001), implying that a 417 

drought-based disturbance had occurred in the past. By 2012, the CWD pool respired faster than it could accrue additional 418 

necromass from mortality (Fig. 3), implying that no additional impactful disturbance occurred at this site between 2002 and 419 

2012. Although RCWD was in fact higher in 2002 than 2005, this difference accounted for only 0.2 µmol m-2 s-1 (Fig. 3) of 420 

respiration. Changes in RCWD therefore explain the small differences in annual RE (Fig. S1), but inadequately account for the full 421 

1.3 µmol m-2 s-1 (2.4 MgC ha-1 yr-1) difference in NEE between these years (Fig. 1; Fig. 7).  422 

 Identifying the cause of the reduced 2002 GEP is beyond the scope of this statistical modeling study. It is possible that 423 

the 1997-1998 El Niño drought not only killed entire trees, but also damaged living trees through hydraulic failure and partial 424 

limb death, affecting canopy photosynthesis for subsequent years. An analysis of over 1000 temperate forest census sites 425 

suggests that recovery of live tree biomass accumulation may be delayed by up to four years after drought (Anderegg et al., 426 

2015). Following the 2005 and 2010 western droughts, findings from forest inventories (Brienen et al., 2015) and remote sensing 427 

(Saatchi et al., 2013), suggested that legacy effects from tropical forest droughts can also persist for four years or more. Drought 428 

cavitation due to xylem embolisms reduces hydraulic conductivity leading to whole tree mortality (Choat et al., 2012), initiating 429 

a classic disturbance-recovery scenario in which felled trees generate canopy gaps for early successional seedlings and saplings 430 

to immediately capitalize on newly available light, causing CO2 sources to approximately balance sinks (Chambers et al., 2004). 431 

However, cavitation is also known to cause branch dieback in still living trees (Koch et al., 2004), reducing canopy foliage 432 

partially but not completely forfeiting light resources to the understory. Drought-induced limb diebacks therefore potentially 433 

prolong forest recovery relative to immediate disturbances such as windfall. We hypothesize that partial drought damage to 434 

surviving trees can persistently affect whole-forest photosynthesis. Our findings, that a 1997-1998 drought-disturbance was 435 

followed by reduced photosynthesis in 2002, emphasize the need to better mechanistically understand multi-year legacy impacts 436 

following droughts in evergreen Amazon forests. 437 

5 Conclusions 438 

The decade-long record of eddy flux at km67 in the TNF demonstrated unpredicted trends in 7.5 years of measured 439 

NEE. Our simple, low-parameter empirical model could represent interannual differences in NEE as integrated continuous 440 

responses to changes in meteorology, with exception to the first year, suggesting that increased moisture and decreased sunlight, 441 

not an interim disturbance, were responsible for the elevated period 2 carbon source. Although overall magnitude of the carbon 442 

source/sink was highly sensitive to the specific choice of u* filter, the interannual variability, which was predicted by the model, 443 

remained the same. Contrary to some reports, no major drought was apparent in concurrent rainfall records, nor was a major 444 

concurrent disturbance apparent in biometry surveys of this site from 2001 through 2011.  445 

Our model represented a seasonal mid-year decline in GEP. Our representation of phenology follows set calendar dates, 446 

and cannot distinguish between various hypotheses concerning the environmental trigger for seasonal leaf shedding and flushing. 447 
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DVGMs and other numerical simulation ecosystem models that represent phenology as a response to light-triggered leaf flushing 448 

or root water constraints do not tend to represent the seasonal cycle of GEP accurately and are therefore in danger of over-449 

predicting the future response of photosynthesis to longer dry seasons resulting from climate change. 450 

Our finding that reduced photosynthesis, not increased respiration, contributed to the high NEE source in 2002 modifies 451 

the previous hypothesis that the 1997-1998 El Niño drought disturbance affected NEE via respiration. Our findings support a 452 

corollary hypothesis that partial drought-induced damage to still-living trees can impact whole-ecosystem photosynthesis 453 

adversely for multiple years, which is consistent with findings from regional and global-scale forest biometric studies (Anderegg 454 

et al., 2015; Brienen et al., 2015). In order to understand how drought-disturbance uniquely impacts forest recovery, 455 

observational studies and plot-based manipulation experiments are needed in conjunction with models. Such future research is 456 

needed to determine the return times for droughts at which persistent forest biomass loss and collapse may occur. 457 
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 691 

Tables and Figures 692 

Model Parameters 

a0 a1 a2 a3 kpheno 
hourly R2 monthly R2 

9.43 
(9.30, 9.56) 

-1.32 
(-1.49, -1.15) 

-39.2 
(-39.8, -38.6) 

760.9 
(733.2, 788.6) 

0.164 
(0.156, 0.171) 

0.81 0.59 

Table 1. Model parameter values (95% confidence intervals in parentheses) and R2 fit. Parameters have the following units: a0, a1, and 693 
a2: µmol-CO2 m-2 s-1; a3: µmol-photons m-2 s-1; kpheno: unitless. 694 

spheno timing kpheno hourly R2 monthly R2 

None - 0.80 0.33 

Dry Season 0.117 (0.109, 0.125) 0.80 0.32 

June 15 to Sept 14* 0.164 (0.156, 0.171) 0.81 0.59 

Table 2. kpheno parameter values (95% confidence intervals in parentheses) and hourly and monthly model fit associated with various 695 
seasonal timings of the phenology factor variable spheno. *Final model parameterization. 696 

 697 
Figure 1. Annual sums of NEE in kg/ha/year. Error bars are 95% confidence intervals. Positive values indicate a source of CO2 to the 698 
atmosphere. Net emission of carbon to the atmosphere during every year in the time series was possibly due to choice of u*

Th (Fig. S2 699 
for annual NEE time series derived from an alternative choice of flux bias correction). 700 
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 701 
Figure 2. (a) Semi-monthly dry season rainfall totals for wet season (black) and dry season (orange). Hourly rainfall was estimated by 702 
objective analysis (Eq. 1) from meteorology stations nearby km67. The horizontal dashed line shows the dry season threshold of 50 mm 703 
per half-month. (b) Yearly totals of rainfall from Belterra INMET station (black), 25 km away from km67, and km67 rainfall 704 
estimated by objective analysis (blue). Recent El Niño anomalies (grey shaded areas) coincide with droughts in the 1990s but not in the 705 
2000s (blue points) at this site, when annual rainfall was within the long-term historical variability. 706 

 707 

Figure 3. Measurements of total CWD (black squares with 95% bootstrapped CI error bars) and subsets of CWD ≥30 cm diameter 708 
(black crosses) show a decrease over time. CWD box model (grey line) also shows a gradual decrease in CWD over time. The initial 709 
condition is the 2001 measurement of CWD; source is input from mortality inferred by biometry census (census times represented by 710 
grey circles); sink is an empirical respiration rate of 0.124 yr-1 [Pyle et al., 2008]. Left axis shows the CWD respiration flux (RCWD) 711 
corresponding to the equivalent amount of CWD on the right axis. 712 
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 713 
Figure 4. Example time series of NEEobs and NEEModel for 9 days of the wet season in 2008. Pearson correlation coefficient between 714 
NEEobs and NEEModel is R=0.90 over the entire 7.5 year time series.  715 

 716 

 717 

 718 
Figure 5. Mean daily data-model residuals averaged over all 7.5 years: (a) lacks an adjustment for phenological change in LUE. Leaf-719 
flush period only partially overlaps the dry season (grey shaded area). (b) The best-fitting parameterization of the model contained a 720 
mid-year phenology scaling factor (1-kpheno⋅spheno = 0.84; Table 2), which was asynchronous with the dry season (red points). 721 
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 722 
Figure 6. (a) Mean seasonal cycle of NEEobs (black dots) and NEEModel (red triangles). Grey shaded areas are standard deviations of 723 
interannual variability for the mean NEEobs for each respective month. Error bars are standard deviations of the interannual 724 
variability in monthly mean NEEModel.  725 

 726 
Figure 7. (a) Annually summed model residuals. Error bars are 95% bootstrapped confidence intervals. Annual residual NEE in 2002 727 
is statistically different from 0 within random NEE measurement error; all other years are not. (b) Residuals of model representation 728 
of partitioned GEE (gray circles) and RE (black triangles). 729 
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