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Dear Editor, 5 

Thanks for evaluating positively our manuscript. We  also thank  Reviewer  1, Reviewer 2 and David Sebag for  

their  stimulating  and  constructive  comments  on  our manuscript. 

We have now revised the manuscript according to the reviewers suggestions, we describe and explain below the 

different changes in the revised version of the manuscript. 

Our responses to reviewers are indicated in blue while the locations of changes in the revised manuscript are 10 

indicated in red. 

We also did some minor modifications in the processing of raw Rock-Eval 6 data (p.5 l.30–31 in the revised 

manuscript). All calculations (RE6 parameters, correlations, principal component analysis, random forests 

regression model) have been performed again with these modifications, marginally modifying the results that 

have all been updated in the text and in Fig. 3, Fig. 4, Fig. 5 and Table 2 of the revised manuscript. 15 

We are looking to hearing from you. 

Yours sincerely, 

Lauric Cécillon 
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Reviewer 1’s comments 

Major point 1: use of the concept of residence time in the manuscript 

(1) Comment from Referee 1 

One important source of confusion in this manuscript is the use of the concept residence time. Notice that in soils 

one must distinguish between the concepts of age and transit (residence) time (Bruun et al., 2004; Manzoni et al., 5 

2009; Derrien and Amelung, 2011).  What the authors are trying to estimate here is an indication of the age of the 

SOM, not the residence time. These should be more clearly treated in the introduction and the discussion. 

Currently, the use of these terms is ambiguous.  

(2) Response to Referee 1’s comment 

We agree with Reviewer 1 that it is important to distinguish between the concepts of age and residence time of 10 

organic carbon in soils.  However, our methodology does not focus on either the estimation of the age nor on the 

estimation of the residence time of soil organic carbon (SOC). Our methodology aims at estimating the size of the 

centennially persistent SOC (CPsoc) pool, a SOC pool whose mean age and mean residence  time  are  both  

assumed  to  be  high  (e.g.   several  centuries)  but  for  which precise definitions are not necessary. The only 

required property for defining the CPsoc pool is not its mean age or its mean residence time, but the non-15 

significant change in its size in periods inferior to the century.  Specifically, we defined the CPsoc pool (gC.kg-1 

soil) at each site as the constant term of an exponential plus constant model fitted on the temporal evolution of 

SOC under bare fallow treatment.  The only assumption that we made was that, given our data set (temporal 

evolution of SOC under 5 to 8 decades of bare fallow treatment or associated non-bare fallow treatment), the size 

of the CPsoc pool remained constant (i.e. did not change significantly, see also our response to major point 2 20 

below). 

(3) Proposed changes in manuscript 

Overall, we thus did not make any specific estimation of the age or the residence time of the CPsoc pool, but we 

propose to treat this point more clearly in a revised version of our manuscript (introduction and discussion 

sections) to avoid any confusion regarding the concepts of age and residence time of organic carbon in soils. (p.4 25 

l.31-33 in the revised manuscript)   

 

Major point 2: centennially persistent soil organic carbon is not inert 

(1) Comment from Referee 1 

The other important issue in this manuscript is also conceptual. The model presented in equ. 1 and used to 30 

compute the centennially persistent pool is, in my opinion, inappropriate.  It assumes that an amount of ‘inert’ 

carbon c is sitting there doing nothing and it will never decompose. This is highly unlikely, because there’s 
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always some small probability that carbon that is stabilized either by mineral association or protection in 

aggregates, would get consumed by microorganisms and respired as CO2. 

(2) Response to Referee 1’s comment 

We fully agree with Reviewer 1 that organic carbon is not biogeochemically inert in soils vis-à-vis microbial 

decomposition, and that the CPsoc pool is also (though very slowly) gaining and loosing carbon.  However, 5 

regarding the CPsoc pool, its high residence time (e.g. several centuries; not precisely defined here, see above) 

masks changes in its size at the time scale of our sample set (5 to 8 decades). We thus pragmatically and 

operationally considered the CPsoc pool to be mathematically inert (the constant term in an exponential plus 

constant model) given our data set, though we agree that the CPsoc pool is a biogeochemically stable but not inert 

SOC pool.  We argue that since all models are simplifications of reality, assuming an inert SOC pool is 10 

acceptable for a SOC pool with very low decomposition rate, as implemented in many widely used SOC models 

such as RothC. We have considered performing a double exponential (without constant) as suggested by 

Reviewer 1, but we think that a constant is mathematically the most appropriate way to model the CPsoc pool 

with our data (maximum 80 years of decomposition). Furthermore, we think that the argument that a double 

exponential model does not add parameters is not true:  y(t)=y0*a*exp(-k1*t) + y0*(1-a)*exp(-k2*t) has 3 15 

parameters – but y(t)= a + y0*(1-a)*exp(-k1*t) has only 2. Parsimony (Ockham’s razor) and equifinality of more 

complex model lead us to propose keeping a single exponential plus constant model to estimate the size of the 

CPsoc pool (gC.kg-1 soil) in the bare fallow treatments of each study site. 

(3) Proposed changes in manuscript 

We propose to revise the manuscript to clarify that the CPsoc pool is not biogeochemically inert in our view, but 20 

that it is mathematically more sound to mathematically simulate it as a constant on such a dataset. (p.4 l.31–33 

and p.5 l.1–2 in the revised manuscript)   

 

Reviewer 2’s comments 

Major point 1: Validation of the multivariate regression model to predict the size of the centennially persistent 25 

SOC (CPsoc) pool in “new” soils 

(1) Comment from Referee 2 

Machine learning is used to find the best regression model predicting the proportion of CPsoc.   A high R2 (0.91) 

in the calibration dataset is impressive and shows that the thermal stability (RE6) can be linked to 

biogeochemical stability, which has beenshown before. Now, the interesting thing is the validation: the authors 30 

report the same R2 for  the  validation  set  and  show  that  they  scatter  as  nicely  along  the  1:1  line  as the  

calibration  dataset  does:  Of  course,  this  is  the  case  because  the  dataset  was randomly split, although the 

samples were not independent but originated from only 4 experiments. So the question is, will the results we 

similarly good, if for example 3 sites are used to train the model and 1 site is used for validation?  This would 
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give a much more honest picture on the validity of the approach.  I guess that the prediction would not be as 

good: According to the Barre et al 2016 paper, at least the three presented thermal stability parameters HI, OI and 

T50CO2_ox which played an intermediate to important role also in the present study, varied considerably across 

sites.  Also Figure 3A indicates that the ‘thermal signature’ of the samples is really site dependent. So for me the 

question is: Can this product really hold what the authors are promising, e.g. in the last sentence of the abstract: 5 

‘This model can thus be used to predict...’? This has to be clarified and if not the case be discussed with much 

more caveats. Uncertainties are already huge and they would probably inflate if new samples shall be predicted. 

(2) Response to Referee 2’s comment 

We randomly split our sample set into a calibration and a validation set, therefore including soil samples from the 

four study sites in both the calibration and the validation set.  We thus agree with Reviewer 2 that the validation 10 

of the multivariate regression model is not based on truly independent soil samples, even though samples from 

the validation set were not used in the calibration set. As discussed in the manuscript, the good fit obtained for the 

current validation set (Figure 4 in the manuscript) indicates that the multivariate regression model can be used to 

predict the size of the CPsoc pool with a known uncertainty in soils with pedoclimates similar to those found in 

the four study sites (Versailles, Grignon, Rothamsted and Ultuna; Supplementary material S1). 15 

However, Reviewer 2 asks an important question: “will the results be similarly good, if for example 3 sites are 

used to train the model and 1 site is used for validation?” 

Since each site used in this study has a specific pedoclimate (even the two sites with a similar climate, Versailles 

and Grignon, have different soil mineralogy, with carbonate soils in Grignon and soils developed in loess in 

Versailles), we have to slightly rephrase Reviewer 2’s question regarding the specificity of our data set. In fact, 20 

Reviewer 2 asks if the multivariate regression model is able to predict the size of the CPsoc pool in soils with a 

different pedoclimate (i.e.   a pedoclimate not included in the calibration set). Or more generally, can the model 

predict the CPsoc proportion outside of the studied sites? 

We  agree  with  Reviewer  2  that  testing  the  multivariate  regression  model  sensitivity to pedoclimate (i.e.  by 

validating it on a site with a new pedoclimate) would provide useful information to the readers regarding its 25 

applicability on soils from different pedoclimates. 

We argue that a necessary prerequisite for applying the multivariate regression model on “new” soil samples 

from a different pedoclimate is the thermal similarity between the “new” soil samples and samples of the 

calibration set (i.e. similar range of values for the 30 Rock-Eval parameters that were used as predictors in the 

multivariate regression model). 30 

All soils from Grignon (carbonate site), and some samples from Versailles and Rothamsted show some important 

specificities regarding their thermal characteristics, while all soils from Ultuna had thermal characteristics similar 

to some samples from Versailles and Rothamsted (see the PCA plot in Figure 3 in the manuscript). 

(3) Proposed changes in manuscript 
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We therefore propose to add a second validation scheme to test the sensitivity of the multivariate regression 

model to a different pedoclimate. Ultuna can be used as a truly independent validation site with similar thermal 

characteristics but a different pedoclimate than the calibration set. 

The  results  of  the  predictions  for  Ultuna  samples,  using  samples  from  Versailles, Grignon and Rothamsted 

for calibration of the multivariate regression model are shown in Figure 1 (see below).  As expected, the R2 5 

strongly decreases, yet the error of prediction of the model does not increase strongly (RMSEP = 0.09 vs. 0.07 in 

the previous validation scheme). 

Overall, these new results illustrate the sensitivity of the multivariate regression model to a very different 

pedoclimate (different climate and soil mineralogy), yet they clearly show the potential of the model based on 

Rock-Eval analysis for predicting the proportion of CPsoc in “new” soil samples. We thus propose to include and 10 

discuss them thoroughly in a revised version of the manuscript. 

(Abstract Section p.2 l.1–15, Material and Methods Section p.8 l.23–29, Results Section p.11 l.8–11 and l. 16–20, 

Discussion Section p.13 l.26–32 and new Figure 5 in the revised manuscript)   

 

 15 

Specific comments: 

(1) Comment from Referee 2 

P5, line 8: Why such a huge intercept in the regression (0.4)? 

(2) Response to Referee 2’s comment 

The relatively high value of the intercept may be linked to the fact that when estimating the total organic carbon 20 

content, a small amount of organic carbon is not taken into account by the commercial software of Rock-Eval 6 

(organic carbon being volatilized as  CO  or  CO2  at  high  temperatures,  that  may  be  inorganic  carbon  in  

carbonated soils). Underestimation of SOC concentration by RE6 has already been reported (e.g. Saenger et al., 

2013).  As soils from Grignon contain carbonates, we chose the same metric of SOC_RE6 for all samples, even if 

they are slightly biased towards lower values. 25 

(1) Comment from Referee 2 

P6, line 23: Fixed standard deviation for SOC concentration data? Why, and what is it exactly derived from? 

(2) Response to Referee 2’s comment 

We used a fixed value for the standard deviation for SOC concentration data obtained from elemental analyzer 

(SOC_EA; 0.75 gC.kg-1 soil). As stated in the manuscript, this value is a conservative estimate of the standard 30 
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deviation of SOC_EA data estimated by Barré et al.  (2010) for the same soils.  In the latter paper, the authors 

stated that “standard deviation [was] estimated from 15 replicate determinations of C in soil samples taken from 

the same plot in Grignon in 1959 (Barré et al., 2010).  The measured standard deviation was 0.3 gC.kg-1. As the 

C contents at the different LTBF sites were determined on composite samples from the same plot at each site, it 

was considered that the a priori error on measurements should be less than 0.5 gC.kg-1 for every site”. They 5 

finally applied a standard deviation of 0.5 gC.kg-1 for every site except Versailles, where the final standard 

deviation for SOC concentration data was 0.75 gC.kg-1 (Barré et al., 2010). 

(1) Comment from Referee 2 

P12, line 28: I thought it was 30 RE6 parameters, here it says it was 25? 

(2) Response to Referee 2’s comment 10 

We  have  indeed  used  a  total  of  30  RE6  parameters  in  the  multivariate  regression model,  but only 25 of 

them are RE6 temperature parameters (i.e. unit: ◦C). In this section of the manuscript (P12, line 28), we only 

discuss the outcomes of the 25 temperature parameters.  We discuss the outcomes of the remaining 5 RE6 

parameters (TLHC-index, I-index, R-index, HI and OIRE6) later in the manuscript (P13, lines 12-25). 

(1) Comment from Referee 2 15 

Discussion 1:  Is very technical and focused on the specific RE6 method and related papers. Authors miss the 

chance to broaden the perspective and discuss this approach to estimate CPsoc in comparison to other approaches 

or to establish a clear link tokinetic models. 

(2) Response to Referee 2’s comment 

Only one out of three sections of the discussion (section 4.2) is devoted to the discussion of the specific RE6 20 

method and related papers.  We agree that this section 4.2 is rather technical but we think that critically 

discussing some technical limitations of our approach is necessary.  Section 4.1 of the discussion already 

broadens the scope of our study and discusses different methodologies that have been used to produce estimates 

of the CPsoc concentration under various pedoclimatic conditions (i.e.  in other long term agronomic experiments 

or using other analytical techniques and/or models such as radiocarbon (14C) data and steady-state SOC turnover 25 

model). 

We agree with Reviewer 2 that discussing our approach to estimate CPsoc in comparison to other approaches 

may be useful to the reader. 

(3) Proposed changes in manuscript 

We propose to add some references to alternative techniques used for initializing the size of SOC kinetic pools in 30 

models of SOC dynamics (e.g.  Falloon et al., 1998; Zimmermann et al., 2007) in section 4.3 of the discussion. 

(Discussion Section p.15 l.25–28 in the revised manuscript)   
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 (1) Comment from Referee 2 

Discussion 2: Is very positive about the overall results (and sample set), and although uncertainty was a clearly 

stated focus of the study it is not really taken up here: Yes, the sample set is truly unique, but this is also the 

problem:  How uncertain will the CPsoc estimation in soils be, which do not have bare fallow treatments? 

(2) Response to Referee 2’s comment and (3) Proposed changes in manuscript 5 

Following our response to the major point raised by Reviewer 2 (see above), we propose to revise the manuscript 

to discuss in section 4.3 the new results regarding the multivariate regression model sensitivity to pedoclimate 

(i.e.  prediction on “new” soils from a different pedoclimate). 
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Abstract. Changes in global soil carbon stocks have considerable potential to influence the course of future climate change. 

However, a portion of soil organic carbon (SOC) has a very long residence time (> 100 years) and may not contribute 

significantly to terrestrial greenhouse gas emissions during the next century. The size of this persistent SOC reservoir is 15 
presumed to be large. Consequently, it is a key parameter required for the initialization of SOC dynamics in ecosystem and 

Earth system models, but there is considerable uncertainty in the methods used to quantify it. Thermal analysis methods 

provide cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC 

biogeochemical stability. The objective of this work was to build the first quantitative thermal analysis based model of the 

size of the centennially persistent SOC pool based on thermal analysis. We used a unique set of 118 archived soil samples 20 
from four agronomic experiments in Northwestern Europe with long-term bare fallow and non-bare fallow treatments (e.g. 

manure amendment, cropland and grassland), as a sample set for which estimating the size of the centennially persistent 

SOC pool is relatively straightforward. At each experimental site, we estimated the average concentration of centennially 

persistent SOC and its uncertainty by applying a Bayesian curve fitting method on the observed declining SOC concentration 

over the duration of the long-term bare fallow treatment. Overall, the estimated concentrations of centennially persistent 25 
SOC ranged from 5 to 11 gC.kg-1 soil (lowest and highest boundaries of four 95% confidence intervals). Then, by dividing 

site-specific concentrations of persistent SOC by the total SOC concentration of 118 archived soil samples from long-term 

bare fallow and non-bare fallow treatments, we could estimate the proportion of centennially persistent SOC in the 118 

archived soil samples and the associated uncertainty. The proportion of centennially persistent SOC ranged from 0.14 

(standard deviation of 0.01) to 1 (standard deviation of 0.15). Samples were subjected to thermal analysis by Rock-Eval 6 30 
that generated a series of 30 parameters reflecting their SOC thermal stability and bulk chemistry. We trained a non-

parametric machine learning algorithm (random forests multivariate regression model) to predict the proportion of 

centennially persistent SOC in new soils using Rock-Eval 6 thermal parameters as predictors. We evaluated the model 

predictive performance with two different strategies. We first used a calibration set (n = 88) and a validation set (n = 30) 

with soils rom all sites. Second, to test the sensitivity of the model to pedoclimate, we built a calibration set with soil 35 
samples from three out of the four sites (n = 84). The sample set was split into a calibration set (n = 88) and a validation set 

(n = 30). We trained a non-parametric machine learning algorithm (random forests multivariate regression model) that The 

multivariate regression model accurately predicted the size proportion of the centennially persistent SOC pool using Rock-

Eval 6 thermal parameters as predictors in the calibration set (pseudo-R² = 0.91, RMSEC = 0.06) and the validation set 

composed of soils from all sites (R² = 0.9192, RMSEP = 0.07, n = 30). The uncertainty of the model predictions obtained 40 
using the multivariate regression model was quantified by a Monte Carlo approach that produced conservative 95% 

prediction intervals across the 30 samples of the validation set. The predictive performance of the model decreased when 
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predicting the proportion of centennially persistent SOC in soils from one fully independent site with a different 

pedoclimate, yet the mean error of prediction only slightly increased (R² = 0.53, RMSEP = 0.10, n = 34). This model based 

on Rock-Eval 6 thermal analysis can thus be used to predict the proportion of centennially persistent SOC with known 

uncertainty in new soil samples from different pedoclimates, at least for sites that have similar Rock-Eval 6 thermal 

characteristics to those included in the calibration set. This model based on Rock-Eval 6 thermal analysis can thus be used to 5 
predict the proportion of centennially persistent SOC with known uncertainty in new soil samples from similar pedoclimates. 

Our study reinforces the evidence that there is a link betweenstrengthens the evidence for a link between the thermal and 

biogeochemical stability of soil organic matter, and demonstrates that Rock-Eval 6 thermal analysis can be used to quantify 

the size of the centennially persistent organic carbon pool in temperate soils. 

1 Introduction 10 

Soils exert a key regulation of the atmospheric greenhouse gas concentrations on a decadal timescale through the net carbon 

source and sink status of their organic carbon reservoir (Amundson, 2001; Eglin et al., 2010). However, a portion of the soil 

organic carbon (SOC) reservoir may not contribute significantly to the net exchange of CO2 and CH4 between atmosphere 

and land during the next century because its residence time exceeds 100 years and its rate of carbon inputs is low (Trumbore, 

1997; He et al., 2016). The size of theis centennially persistent SOC pool is presumed to be large (i.e. between one and two 15 
thirds of total SOC) and dependent on geochemical parameters such as soil texture and mineralogy (Buyanovsky and 

Wagner, 1998a; Trumbore, 2009; Mills et al., 2014; Mathieu et al., 2015). However, the amount of centennially persistent 

organic carbon in soils is highly uncertain as it cannot be estimated accurately by current analytical methods (Post and 

Kwon, 2000; von Lützow et al., 2007; Bruun et al., 2008). Physico-chemical procedures attempting to isolate SOC with high 

residence time from bulk SOC have proven unsatisfactory because of indications that such fractions are a mixture of ancient 20 
and recent SOC (von Lützow et al., 2007; Trumbore, 2009; Lutfalla et al., 2014). Even the well-established radiocarbon 

(
14

C) analytical technique cannot precisely determine the size of the centennially persistent SOC pool (Schrumpf and Kaiser, 

2015; Menichetti et al., 2016). The importance of better information on the size of the centennially persistent SOC pool has 

been emphasized recently (International Soil Carbon Initiative, 2011; Bailey et al., in press; Bispo et al., 2017; Bailey et al., 

2018; Harden et al., 2018in press), stressing the need for operational and standardized metrics or proxies to accurately 25 
quantify SOC persistent at the centennial timescale. The general lack of information on the size and turnover rate of 

measurable SOC pools hampers the initialization of SOC pools in dynamic models, questioning their predictions of the 

evolution of the global SOC reservoir (Falloon and Smith, 2000; Luo et al., 2014; Feng et al., 2016; He et al., 2016; 

Sanderman et al., 2016). Luo et al. (2016) and He et al. (2016) recently claimed that optimizing parameters estimation with 

global data sets on SOC pools and fluxes was the highest priority to reduce biases among Earth system models. 30 

During In the past decade, thermal stability of organic carbon has been proposed as a good surrogate for its biogeochemical 

stability in litter and soils (e.g. Rovira et al., 2008; Plante et al., 2009; Gregorich et al., 2015). Several studies using thermal 

analysis techniques such as thermogravimetry and differential scanning calorimetry during with ramped combustion have 

shown that the fast-cycling SOC pool determined as the amount CO2 respired in laboratory incubation experiments was 

thermally labile (Plante et al., 2011; Leifeld and von Lützow, 2014; Campo and Merino, 2016). Recently, studies using 35 
thermal analysis under oxidative or inert (pyrolysis) reaction atmosphere coupled with evolved gas analysis have shown a 

high and positive correlation between the thermally stable SOC and persistent SOC determined using 
14

C measurements 

(Plante et al., 2013), and between thermally stable SOC and mineral-associated SOC isolated by a classical SOC physical 

fractionation scheme (Saenger et al., 2015). Using long-term bare fallow (LTBF) soils kept free of vegetation for several 

decades (i.e. with negligible carbon inputs), Barré et al. (2016) recently showed that persistent SOC was low in energy and 40 
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thermally stable. While there appears to be strong qualitative links between thermal and biogeochemical stability of SOC, 

there is to date no established quantitative link between the size of the persistent SOC pool and SOC thermal characteristics. 

The objective of this work was to design a reliable, routine method based on a thermal analysis technique (Rock-Eval 6; 

RE6) to quantify centennially persistent SOC in a range of temperate soil types. First, we compiled a set of reference soil 

samples from four long-term agronomic experiments in Northwestern Europe with long-term bare fallow treatments. The 5 
SOC concentration of LTBF treatments can be used to estimate the size of the persistent SOC pool of a particular site, as 

proposed by Rühlmann (1999) and Barré et al. (2010). Here, we refined estimates of the persistent SOC concentration 

previously published by Barré et al. (2010) for the four sites used in this study. We then used these values to estimate the 

proportion of centennially persistent SOC in 118 archived soil samples (time series) from LTBF and non-LTBF treatments 

of these four sites. The last step consisted in analyzing these reference samples using RE6 thermal analysis, and building a 10 
multivariate regression model to relate RE6 information on SOC thermal stability and bulk chemistry to the estimated 

proportion of centennially persistent SOC. In this work, we aimed at delivering a model based on thermal analysis based 

model with reliable prediction intervals around the predicted values of the size of the centennially persistent SOC pool. We 

thus had a particular focusfocused on the uncertainty of the estimated proportion of centennially persistent SOC and its 

propagation in the multivariate regression model. 15 

2 Materials and methods 

2.1 Reference soil sample set with estimated size of the centennially persistent SOC pool 

The reference soil sample set was built using samples from four long-term agronomic experimental sites in Northwestern 

Europe (Versailles, France, Grignon, France, Rothamsted, United Kingdom, Ultuna, Sweden, Supplementary material S1). 

Each of the four sites includes a LTBF treatment, with bare fallow durations ranging from 48 years at Grignon to 79 years at 20 
Versailles. For all experimental sites, we also included non-LTBF treatments that have increased or maintained their total 

SOC concentrations over time, or sustained smaller losses than the LTBF treatment. The selected non-LTBF treatments 

included manure amendments (Versailles), straw or composted straw amendments (Grignon), continuous grassland 

(Rothamsted), and continuous cropland (Ultuna). Soil samples from each site and treatment have been regularly collected 

and archived since the initiation of the experiments. A total of 118 topsoil samples (0–20 to 0–25 cm depth, Supplementary 25 
material S1) samples were selected from the archives of LTBF and non-LTBF treatments to build the reference sample set. 

Samples were selected from two or three field replicate plots with a decadal frequencyin each decade from the initiation of 

the experiments up to 2007 (Grignon), 2008 (Versailles, Rothamsted) or 2009 (Ultuna) to obtain a sample set with the widest 

possible range of proportions of centennially persistent SOC. The non-LTBF treatments and multiple sites also added to the 

diversity of land-use, climate and parent material. For each sample, total SOC concentration was measured by dry 30 
combustion with an elemental analyzer (SOCEA, gC.kg

-1
 soil) after decarbonatation when necessary according to NF ISO 

10694 (1995). 

Based on the decline in total SOC concentration over the duration of the LTBF treatment, Barré et al. (2010) estimated the 

concentration of centennially persistent SOC at each site using a Bayesian curve fitting method applied to each LTBF field 

replicate plot. Here, we refined those site-specific estimates by (i) applying a similar Bayesian curve fitting method on 35 
combined SOC concentration data from all LTBF field replicate plots of each site (four field replicate plots for Ultuna and 

Rothamsted, six field replicate plots for Versailles and Grignon), and (ii) using new SOC concentration data up to 2014 for 

Rothamsted and 2015 for Ultuna, increasing their LTBF duration to 55 years for Rothamsted and 59 years for Ultuna.  
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For each site, we assumed that the temporal evolution of LTBF SOC concentration, γ(t), followed an exponential decay 

function: 

 

𝛾(𝑡) = 𝑎𝑒−𝑏𝑡 + 𝑐 ,           (1) 

where γ(t) (unit = gC.kg
-1

 soil) is the LTBF SOC concentration at time t, t (unit = year) is the time under bare fallow, and a, b 5 
and c are fitting parameters. Parameter a (unit = gC.kg

-1
 soil) corresponds to the amplitude of the decay and b (unit = y

-1
) is 

the characteristic decay rate. The parameter c (unit = gC.kg
-1

 soil) represents a theoretically inert portion of SOC. We 

considered this parameter as a site-specific metric of the centennially persistent SOC concentration. In our view, the 

centennially persistent SOC pool is not biogeochemically inert, it has a mean age and a mean residence time that are both 

assumed to be high (e.g. several centuries) though not precisely defined in this study. As a result, its small decline cannot be 10 
observed at the timescale of this study and we thus considered that it is mathematically more sound to simulate the 

centennially persistent SOC pool concentration at each experimental site as a constant. We used a Bayesian inference 

method to compute site-specific estimates of centennially persistent SOC concentration and associated uncertainties (detailed 

in the Section 2.3.1). 

The proportion of centennially persistent SOC (CPSOC) in each soil sample was then calculated as the ratio of the site-specific 15 
CPSOC concentration to the total SOC concentration of the sample: 

 

CPSOC proportion [sample] =  
CPsoc concentration [site]

SOC concentration [sample]
 ,       (2) 

where the unit of CPSOC concentration [site] and SOC concentration [sample] is gC.kg
-1

 soil. The CPSOC proportions of five 

samples that were slightly above 1 were set to 1. In these calculations, we assumed that at each site, the concentration of 20 
CPSOC was the same in the LTBF and non-LTBF treatments and was constant with time. The details related to the estimation 

of the uncertainty on the CPSOC proportion of each sample are reported in the Section 2.3.2. 

2.2 Thermal analysis of soil samples by Rock-Eval 6 

The 118 soil samples from the reference set were analyzed with a RE6 Turbo device (Vinci Technologies) using the basic 

set-up for the analysis of soil organic matter (Behar et al., 2001; Disnar et al., 2003). The RE6 technique provided 25 
measurements from the sequential pyrolysis and oxidation of ca. 40 mg of finely ground (< 250 µm) soil per sample (Fig. 1). 

Volatile hydrocarbon effluents from pyrolysis were detected and quantified with flame ionization detection (FID), while the 

evolution of CO and CO2 gases were was quantified by infrared detection during both pyrolysis and oxidation stages. 

Pyrolysis was carried out from 200 °C to 650 °C in a N2 atmosphere with a heating rate of 30 °C minute
-1

, while the 

oxidation was carried out from 300 °C to 850 °C in a laboratory air atmosphere (with O2) with a heating rate of 20 °C 30 
minute

-1
. The RE6 technique generated five thermograms per sample (Fig. 1, i.e. volatile hydrocarbon (HC) effluents during 

pyrolysis, CO2 during pyrolysis, CO2 during oxidation, CO during pyrolysis, and CO during oxidation). On average, the 

organic carbon yield of the RE6 analysis was greater than 96.5% of SOCEA for the soils of the reference sample set (SOCRE6 

= 0.966 × SOCEA+ 0.403, R² = 0.97, n = 118). 

For each RE6 thermogram, we determined the temperatures corresponding to each incremental proportion of the amount of 35 
gases evolved during the pyrolysis and oxidation stages. Upper temperatures of 850 °C (CO oxidation thermogram), 650 °C 
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(HC pyrolysis thermogram), 611 °C (CO2 oxidation thermogram) and 560 °C (CO and CO2 pyrolysis thermograms) were 

chosen for signal integration (Fig. 1), thereby excluding any interference of soil carbonates (Behar et al., 2001). Thermal 

decomposition of carbonates was indeed observed beyond 560 °C (CO and CO2 pyrolysis thermograms) and 611 °C (CO2 

oxidation thermogram) for the site of Grignon (data not shown). For each RE6 thermogram, signal integration was 

performed on the offset-corrected thermogram, using sample-specific offset values estimated by the RE6 Turbo device. For 5 
the three pyrolysis thermograms, signal integration started after an isotherm step of 200 s at 200 °C. Finally, we retained 5 of 

these temperature parameters per thermogram: T10, T30, T50, T70, T90 which respectively represent the temperatures 

corresponding to the evolution of 10, 30, 50, 70, and 90% of the amount of evolved gases for each sample and for each of the 

five different thermograms (HC, CO2 pyrolysis, CO2 oxidation, CO pyrolysis, CO oxidation). 

For the HC pyrolysis thermogram we also determined three parameters reflecting a proportion of thermally resistant or labile 10 
hydrocarbons: a parameter representing the proportion of hydrocarbons evolved between 200 °C and 450 °C (thermo-labile 

hydrocarbons, TLHC-index, modified from Saenger et al., 2015), the I-index representing the preservation of thermally 

labile immature hydrocarbons (after Sebag et al., 2016), and the R-index representing the proportion of hydrocarbons 

thermally stable at 400°C (after Sebag et al., 2016). Those three RE6 parameters were calculated as follows: 

 15 

TLHC-index =  
Area of HC pyrolysis thermogram [200 °C−450 °C]

Total area of HC pyrolysis thermogram
 ,         (3) 

 

I-index = log10 (
proportion of HC pyrolysis thermogram [200 °C−400 °C]

proportion of HC pyrolysis thermogram [400 °𝐶−460 °𝐶]
) ,      (4) 

 

R-index =  
Area of HC pyrolysis thermogram [400 °C−650 °C] 

Total area of HC pyrolysis thermogram
 ,       (5) 20 

 

Using the HC pyrolysis thermogram, we determined a parameter reflecting SOC bulk chemistry, the hydrogen index (HI, 

mgHC.g
-1

C), that corresponds to the quantity of pyrolyzed hydrocarbons relative to SOCRE6. Using the CO and CO2 

pyrolysis thermograms, we determined another parameter reflecting SOC bulk chemistry, the oxygen index (OIRE6, mgO2.g
-

1
C) corresponding to the oxygen yield as CO and CO2 during thermal pyrolysis of soil organic matter divided by the total 25 

SOC (SOCRE6) of the sample. The HI correlates with the elemental H:C atomic ratio of SOC and the OIRE6 correlates with 

the elemental O:C atomic ratio of SOC (Espitalié et al., 1977).  

Overall, we thus calculated for each soil sample a series of 30 RE6 parameters reflecting SOC thermal stability and bulk 

chemistry to be used in subsequent statistical and modelling analyses. 

Signal integration of the RE6 thermograms and calculation of the RE6 temperature parameters were performed with R 30 
v.3.4.3 (R Core Team, 2017) and the hyperSpec (Beleites and Sergo, 2014), pracma (Borchers, 2015) and stringr (Wickham, 

2015) packages. 
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2.3 Statistical analysis 

2.3.1 Bayesian inference of site-specific CPSOC concentrations and uncertainties 

At each site, the CPSOC concentration was estimated as the model parameter c of the exponential decay function described in 

Eq. (1). To estimate the value of this parameter and assess its uncertainty, we sampled the posterior Probability Density 

Function (PDF) of the model parameters in Eq. (1), which is given by Bayes’ theorem as a function of the prior  PDF (i.e. 5 
what we know before collecting data) and the likelihood (i.e. how likely is it to predict the data given a set of parameters). 

The posterior PDF is the combination of our prior knowledge and of the information carried by the data, including 

measurement uncertainties. For a model vector m (containing the parameters a, b and c) and a data vector d of all the 

measurements of SOC concentrations, the posterior PDF, P(d | m), is P(𝐝 | 𝐦)  ∝ P(𝐦)P(𝐦 | 𝐝), with P(𝐦) the prior PDF 

on the model parameters and P(𝐦 | 𝐝) the likelihood.  10 

We chose uniform PDFs for the model parameters, a, b, and c to be as uninformative as possible. We use the Gaussian form 

of the likelihood function, such as P(𝐦 | 𝐝)  ∝ e−
1

2
(𝐝 – γ(𝐭))

𝐓
𝐂d

−1(𝐝 – γ(𝐭))
, where t is the vector of all observation times and Cd 

is the data covariance matrix describing the uncertainties on the SOC measurements. We consider a conservative standard 

deviation for SOC concentration data (0.75 gC.kg
-1

 soil) estimated by Barré et al. (2010) for the same soils. We use a 

Metropolis algorithm to draw 3 × 10
4
 samples from the posterior PDF with a burning phase of 3.7 × 10

5
 steps. We can then 15 

derive the mean and standard deviation for the parameter c from the posterior PDF. 

2.3.2 Estimating the uncertainty of CPSOC proportion in each sample 

Based on our assessment of the uncertainties on SOC concentration data and site-specific CPSOC concentrations (see above), 

we propagated these errors to estimate the uncertainty on the CPSOC proportion in each soil sample. This was estimated by 

calculating the standard deviation (sd) of the CPSOC proportion for each sample as follows:   20 

 

sd (CPSOC proportion [sample]) =  

CPsoc proportion [sample]   × √(
sd(CPsoc concentration [site])

CPsoc concentration [site]
) ² + (

sd(SOC concentration [sample])

SOC concentration [sample]
) ² ,  

 (6) 

where abbreviation sd stands for standard deviation. 25 

2.3.3 Statistical relationships between RE6 parameters and CPSOC proportion 

The reference sample set was randomly split into a calibration set (n = 88 samples) and a validation set (n = 30 samples). The 

correlations between the 30 RE6 parameters and the CPSOC proportion were assessed with a non-parametric Spearman's rank 

correlation test on the calibration set (n = 88). A principal component analysis (PCA) of the 30 centered and scaled RE6 

parameters was performed for the calibration set to (i) summarize the variance of SOC thermal stability and bulk chemistry 30 
on a single factorial map, and (ii) illustrate the correlations among RE6 parameters. Correlations between the CPSOC 

proportion in calibration soils and their principal component scores were determined using Spearman's rank correlation tests, 

and its relationships with the 30 RE6 parameters were further illustrated by projecting the CPSOC proportion variable in the 
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PCA correlation plot. The RE6 data of the soils from the validation set were projected on the same PCA factorial map to 

check that the validation set was representative of the calibration set. 

2.3.4 Random forests regression model to predict CPSOC proportion from RE6 parameters 

A multivariate regression model was built to relate CPSOC proportion in the reference samples from the calibration set 

(response vector or dependent variable y, n = 88) to their SOC thermal stability and bulk chemistry, summarized by a matrix 5 
of predictor variables (X) made of the 30 centered and scaled RE6 parameters. The non-parametric and non-linear machine 

learning technique of random forests (RF, Breiman, 2001; Strobl et al., 2009) was used to build this model. The random 

forests regression model was based on a forest of 1000 diverse regression trees made of splits and nodes. A random forests 

learning algorithm combines bootstrap resampling and random variable selection. Each of the 1000 regression trees was thus 

grown on a bootstrapped subset of the calibration set (i.e. containing about two thirds of “in-bag” calibration samples) by 10 
randomly sampling 10 out of the 30 RE6 parameters as candidates at each split of the tree, and using a minimum size of 

terminal tree nodes of five soil samples. The random forests regression model was then used to predict the proportion of 

CPSOC in the validation set (n = 30), a prediction corresponding to the mean of the predicted values across the 1000 

regression trees.  

The performance of the random forests regression model for predicting CPSOC proportion was assessed by statistics 15 
comparing the RF-predicted vs. reference (estimated) values of the sample set. The performance statistics were calculated 

on: (i) the “out-of-bag” soil samples of the calibration set and (ii) the soil samples of the validation set. Out-of-bag samples 

are observations from the calibration set not included in the learning sample set for a specific tree that can be used as a 

“built-in” test set for calculating its prediction accuracy (Strobl et al., 2009). The performance statistics included the 

coefficient of determination (pseudo-R² for the calibration set or R² for the validation set) and the root-mean-square error of 20 
calibration or prediction (RMSEC for the calibration set or RMSEP for the validation set). The ratio of performance to 

deviation (RPD) and the bias of the random forests regression model were additionally calculated for the validation set. The 

relative importance (i.e. ranking) of each of the 30 RE6 parameters for the prediction of the proportion of CPSOC in the RF 

regression model was computed as the unscaled permutation accuracy (Strobl et al., 2009).  

Additionally, the sensitivity of the RF regression model to pedoclimate was assessed by examining its predictive 25 
performance for a calibration set based on soils from three sites (Versailles, Grignon, Rothamsted, n = 84) and a fully 

independent validation set based on soils from a different pedoclimate (Ultuna, n = 34) but with similar RE6 thermal 

characteristics to those of the calibration set (see Section 3.2). Soils from Ultuna have indeed a higher clay content (from 

11% to 20% more clays), and experience a lower mean annual temperature (from 4 °C to 5.2 °C lower temperature), and a 

lower mean annual precipitation (from 116 mm to 179 mm lower precipitation) than the soils of the three other sites 30 
(Supplementary material S1). 

2.3.5 Error propagation in the random forests regression model 

Since our objective was to deliver a model based on thermal analysis based model with reliable prediction intervals around 

the predicted values of the CPSOC proportion, we estimated the prediction uncertainty of the random forests model for new 

soil samples. We used a methodology recently published by Coulston et al. (2016) to approximate prediction uncertainty for 35 
random forests regression models, and adapted it to explicitly take into account the uncertainty on reference values of CPSOC 

proportion (Eq. (6)) that were used to build the model (Supplementary material S2).  
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Briefly, we sampled with replacement (i.e. bootstrapped) the calibration set (y, X) 2000 times to obtain 2000 bootstrap 

samples (y
*b

, X
*b

) that were used to parametrize 2000 random forest models (RF
*b

). To incorporate the uncertainty on 

reference values of CPSOC proportion, each of the 2000 bootstrapped vectors (y
*b

) contained values of CPSOC proportion that 

were randomly sampled from normal distributions with means and standard deviations of the CPSOC proportion of the 

corresponding soil samples from the calibration set (Eq. (6)). For each bootstrap sample of the calibration set, resampling 5 
discarded approximatively 37% of the data (y

*-b
, X

*-b
) that were used for prediction. We obtained an error assessment dataset 

made of 2000 vectors of observed (reference) values y
*-b

, predicted values ŷ̅*-b
 (mean of the predictions across 1000 

regression trees for each observation), and var(ŷ)
*-b

 (variance of the predictions across 1000 regression trees for each 

observation). For each observation of the 2000 bootstrap samples, we calculated a metric τ allowing to scale between var(ŷ) 

that can be calculated for any soil sample by the random forests regression model, and the squared prediction error (y – ŷ̅)² 10 
that is only available for the reference sample set. The metric τ was calculated as follows (Coulston et al., 2016): 

τ = √
(y− ŷ̅)²

𝑣𝑎𝑟(ŷ)
 ,            (7) 

A Monte Carlo approach was used to estimate 𝜏̂, the 95
th

 percentile of all calculated τ values for all out-of-bag observations 

of the 2000 bootstraps (Supplementary material S2). This 𝜏̂ value was such that 95% of the predictions of the CPSOC 

proportion lie within 𝜏̂ × sd(ŷ) of the true value of CPSOC proportion (i.e. 95% prediction intervals). As sd(ŷ), the standard 15 
deviation of the predictions of the CPSOC proportion across 1000 regression trees, can be calculated by the random forests 

regression model for any soil sample, this approach allows the calculation of 95% prediction intervals on any new soil 

sample for which only X data (30 RE6 parameters) are available. We calculated the 95% prediction intervals (ŷ̅ ± 𝜏̂ × sd(ŷ)) 

for the validation set (n = 30) to examine whether those intervals included the true (estimated) values of CPSOC proportion. 

More details on the procedure to approximate prediction uncertainty for random forests regression models are provided in 20 
Coulston et al. (2016). We finally checked how the error on CPSOC proportion propagated into the random forests regression 

model by (i) comparing the value of 𝜏̂ with or without incorporating the uncertainty on reference values of CPSOC proportion 

in the algorithm, and (ii) by comparing the sizes of the 95% prediction intervals calculated for the validation soil samples 

with their respective 95% confidence intervals (determined by multiplying their standard deviation calculated in Eq. (6) by 

1.96). 25 

The Bayesian inference method was performed with Python 2.7 and the PyMC library (Patil et al., 2010). All other statistical 

analyses were performed with R v.3.4.3 (R Core Team, 2017) and the factoextra package for running PCA (Kassambara, 

2015), the randomForest package for running the random forests regression models (Liaw and Wiener, 2002) and the boot 

package for bootstrapping (Davison and Hinkley, 1997; Canty and Ripley, 2015). 

3 Results 30 

3.1 CPSOC concentration at each site and CPSOC proportion in reference soil samples 

The Bayesian inference of the parameter c of the exponential decay function (Eq. (1)) yielded site-specific estimates of the 

CPSOC concentration with 95% confidence intervals (Eq. (1), Table 1, Fig. 2). Estimated CPSOC concentrations ranged from 

6.22 gC.kg
-1

 soil at Versailles to 10.46 gC.kg
-1

 soil at Rothamsted. The uncertainty on CPSOC concentration was lower at 

Rothamsted (standard deviation of 0.27 gC.kg
-1

 soil) and Versailles (standard deviation of 0.31 gC.kg
-1

 soil) than at Ultuna 35 
(standard deviation of 0.88 gC.kg

-1
 soil) and Grignon (standard deviation of 1.00 gC.kg

-1
 soil). 
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Overall, the wide range in total SOC concentrations within and across sites (from 5 to 46 gC.kg
-1

 soil, Table 1) combined 

with an assumed constant CPSOC concentration within each site, resulted in a reference sample set with a wide spectrum of 

CPSOC proportions ranging from 0.14 to 1 (Eq. (2), Table 1). The uncertainty (standard deviation) on the values of CPSOC 

proportion ranged from 0.01 to 0.15 for the reference sample set (Eq. (6), Supplementary material S3). High uncertainties 

were found for high values of CPSOC proportion (i.e. samples with longer time periods under bare fallow treatment), with a 5 
modulation by the site-specific CPSOC concentration uncertainty (Grignon > Ultuna > Versailles > Rothamsted, Table 1), as 

expected from Eq. (6) (Supplementary material S3).  

The random splitting of the reference sample set generated calibration and validation sample sets with similar mean values, 

range of values and standard deviations for both total SOC concentration and CPSOC proportion (Table 1). 

3.2 Relationships between RE6 parameters and CPSOC proportion 10 

The 30 RE6 parameters showed contrasted correlations with the CPSOC proportion in the calibration set (Table 2). Most RE6 

temperature parameters showed positive correlations with the CPSOC proportion, with Spearman’s ρ above 0.8 for four of 

them (the RE6 temperature parameter corresponding to 50% of CO2 gas evolution during the pyrolysis stage, T50_CO2_PYR, 

and the RE6 temperature parameters corresponding to 30%, 50% and 70% of CO2 gas evolution during the oxidation stage, 

T30_CO2_OX, T50_CO2_OX, T70_CO2_OX, Table 2). 15 

Conversely, five RE6 temperature parameters showed significant negative correlations with the CPSOC proportion 

(T10_HC_PYR, T10_CO_PYR, T30_CO_PYR, T50_CO_PYR, T70_CO_PYR, Table 2). Out of tThe three RE6 parameters reflecting a proportion 

of thermally resistant or labile hydrocarbons (, only the TLHC-index,  showed a weakly significant negative Spearman’s ρ 

with the CPSOC proportion, the I-index, and the R-index) showeding no correlations with the CPSOC proportion (Table 2). The 

two RE6 parameters reflecting SOC bulk chemistry showed highly significant correlations with the CPSOC proportion (Table 20 
2), the HI being negatively correlated and the OIRE6 being positively correlated. 

The PCA of the centered and scaled RE6 parameters illustrates the correlations among those 30 variables in the calibration 

set (Fig. 3). A continuum of CPSOC proportion values was observed in the reference samples along the first two principal 

components (Fig. 3A), and projecting the CPSOC proportion in the PCA correlation circle further highlighted the relationships 

between this variable and the 30 RE6 parameters (Fig. 3B). The CPSOC proportion variable had a strongly negative projected 25 
loading score on PC1 (Fig. 3B), as well as negative projected loadings on PC2 (Fig. 3B) and PC3 (data not shown). The 

scores of the calibration soils on the first three principal components were indeed significantly and negatively correlated with 

the CPSOC proportion (ρ = -0.671, p-value < 0.001 for PC1, ρ = -0.4936, p-value < 0.001 for PC2, ρ = -0.25, p-value < 0.05 

for PC3), such that a large part (82%) of the variance of the 30 RE6 parameters was linked to the CPSOC proportion in the 

calibration set.  30 

The random splitting of the reference sample set generated calibration and validation sample sets with similar RE6 thermal 

characteristics as illustrated by their similar distribution on the factorial map of the first two principal components of the 

PCA (Fig. 3A). Soils from the site of Grignon (with carbonates) showed specific RE6 thermal characteristics (Fig. 3A). 

Some soils from the sites of Rothamsted and Versailles with high CPSOC proportions also showed specific RE6 thermal 

signatures (Fig. 3A). Conversely, all soils from the site of Ultuna showed similarities regarding their RE6 thermal 35 
characteristics with certain soil samples from other sites (Versailles and Rothamsted, Fig. 3A).  
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3.3 Performance of the regression model using RE6 parameters to predict CPSOC proportion 

The random forests regression model performed very well in predicting the CPSOC proportion in the reference sample set 

using the 30 RE6 parameters as predictors (Fig. 4). Both performance statistics on the calibration set (pseudo-R² = 0.9189, 

RMSEC = 0.0607, n = 88) and on the validation set (R² = 0.9192, RMSEP = 0.07, n = 30) demonstrated the good predictive 

power of the regression model based on RE6 thermal analysis. The predictive performance of the random forests model 5 
based on RE6 thermal analysis (RE6-RF) was altered when soil samples from a pedoclimate different (site of Ultuna, n = 34) 

to the calibration set (Versailles, Rothamsted, Grignon), but with similar RE6 thermal characteristics (see Section 3.2), were 

used for validation (Fig. 5). The coefficient of determination of the model decreased (R² = 0.53), yet its mean error of 

prediction did not increase strongly (RMSEP = 0.10, Fig. 5). 

Propagating the estimated uncertainties on the values of CPSOC proportion increased the size of the prediction intervals of 10 
RE6-RF regression model. Indeed, the value of 𝜏̂ increased from 1.72 83 to 2.10 12 when the uncertainty on CPSOC 

proportion was integrated in the algorithm described at Section 2.3.5. The horizontal and vertical error bars on Fig. 4 

illustrate the global error propagation on the CPSOC proportion estimates in the RE6-RF regression model for the validation 

soil sample set. The values of the total width of the 95% confidence interval (reference estimations of CPSOC proportion, 

horizontal error bars in Fig. 4) were 0.03 (minimum total width), 0.58 (maximum total width) and 0.24 (mean total width) 15 
for the soil samples of the validation set (n = 30). For the 95% prediction intervals (RE6-RF predictions of CPSOC proportion, 

vertical error bars in Fig. 4), the uncertainties increased to 0.14 11 (minimum total width), 0.67 66 (maximum total width) 

and 0.35 37 (mean total width). The thirty 95% prediction intervals for RE6-RF predictions of CPSOC proportion in the 

validation set all included their respective reference estimation of CPSOC proportion (Fig. 4). 

Out of the 30 RE6 parameters tested by the random forests model as possible predictor variables of the CPSOC proportion in 20 
the calibration set, the RE6 temperature parameters corresponding to 50% and 70% of CO2 gas evolution during the 

pyrolysis stage (T50_CO2_PYR, T70_CO2_PYR) and to 30% of CO2 gas evolution during the oxidation stage (T30_CO2_OX) showed the 

highest importance scores (based on permutation accuracy importance calculations, Table 2). The twelve eight most 

important RE6 parameters for predicting the CPSOC proportion were temperature parameters calculated on the five different 

RE6 thermograms (Table 2). The two RE6 parameters reflecting SOC bulk chemistry (OIRE6 and HI) were of medium 25 
importance to predict the CPSOC proportion, while the RE6 parameters reflecting a proportion of thermally resistant or labile 

hydrocarbons (I-index, R-index and TLHC-index) were of weak importance (Table 2). 

4 Discussion 

4.1 A unique soil sample set with accurate and contrasted values of CPSOC 

Adding new SOC concentration data for Rothamsted (up to 2014) and Ultuna (up to 2015), and combining SOC 30 
concentration data from all LTBF field replicate plots of each site decreased the uncertainty on the site-specific estimates of 

the CPSOC concentration (Fig. 2), compared with the previous estimations published by Barré et al. (2010). Indeed, the total 

width of the 95% confidence interval around the estimation of the site-specific CPSOC concentration slightly decreased from 

1.4 to 1.2 gC.kg
-1

 soil at Versailles and from 4.96 to 3.92 gC.kg
-1

 soil at Grignon, and strongly decreased from 7.24 to 3.46 

gC.kg
-1

 soil at Ultuna and from 5.98 to 1.06 gC.kg
-1

 soil at Rothamsted (Table 1, Fig. 2, Barré et al., 2010). The mean 35 
estimated values of the CPSOC concentration were marginally changed at Versailles (6.22 vs. 6.12 gC.kg

-1
 soil in Barré et al., 

2010) and Grignon (7.12 vs. 6.80 gC.kg
-1

 soil in Barré et al., 2010), but strongly modified (increased) at Ultuna (6.95 vs. 3.90 

gC.kg
-1

 soil in Barré et al., 2010) and Rothamsted (10.46 vs. 2.72 gC.kg
-1

 soil in Barré et al., 2010, Table 1). 
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Our results obtained under four contrasted pedoclimates of Northwestern Europe indicate a minimum value of 5 gC.kg
-1

 soil 

(lowest boundary of the four 95% confidence intervals, Table 1)
 
and a maximum value of 11 gC.kg

-1
 soil

 
(highest boundary 

of the four 95% confidence intervals, Table 1) for CPSOC concentration in topsoils (0–20 to 0–25 cm depth). These estimates 

are close, yet below the CPSOC concentration value of 12 gC.kg
-1

 soil estimated by Buyanovsky and Wagner (1998b) for the 

topsoil (0–20 cm depth) of the Sanborn long-term (100 years) agronomic experiment (Columbia, Missouri, USA). Our 5 
estimates of topsoil CPSOC concentration are also well below the value of 16 gC.kg

-1
 soil estimated by Franko and Merbach 

(2017) in the topsoil (0–30 cm depth) of the long-term (28 years) bare fallow experiment of Bad Lauchstädt (Central 

Germany). The soil type in Bad Lauchstädt (Haplic Chernozem) and its high concentration of slow-cycling black carbon 

(estimated at 2.5 gC.kg
-1

 soil, Brodowski et al., 2007) may explain this difference, as well as the relatively short time period 

under bare fallow (higher uncertainty on the inferred CPSOC concentration). 10 

Among the wide range of CPSOC proportions (0.14 to 1) of our reference sample set, high values of CPSOC proportions (> 0.6) 

were obtained only for soils which had been under bare fallow for a long period of time: after several years or decades with 

negligible C inputs and sustained SOC decomposition (Table 1). Similarly, the low values of CPSOC proportions (< 0.25) of 

our reference sample set were obtained for soils without vegetation but receiving high amounts of manure amendments at 

Versailles (Table 1). It could be argued that CPSOC proportion values obtained for bare soils with or without organic matter 15 
amendments may not be representative of CPSOC proportions of soils under conventional management practices. However, it 

is interesting to notice that soils of the reference sample set with vegetation and experiencing classical management practices 

(grassland at Rothamsted, cropland at Ultuna) also showed a wide range of CPSOC proportions, from 0.25 to 0.56 (Table 1). 

Moreover, other studies have shown the high variability of CPSOC proportion in soils. For instance, Falloon et al. (1998) 

listed a series of published values of CPSOC proportions ranging from 0.13 to 0.59. More recently, Mills et al. (2014) 20 
published a large dataset of CPSOC proportions in uncultivated topsoils (ca. 15 cm depth). They estimated CPSOC proportions 

using a global dataset of topsoil radiocarbon (
14

C) data and a steady-state SOC turnover model with a fixed mean residence 

time of 1000 years for persistent SOC. Their estimates of CPSOC proportions varied greatly from 0.03 to 0.98 (mean = 0.48, 

standard deviation = 0.22, n = 232, soils with inconsistent negative modeled SOC pools values were removed), with 

significantly higher CPSOC proportions in non-forest than in forest uncultivated ecosystems (Mills et al., 2014). 25 

Overall, those combined results illustrate the wide range of CPSOC concentrations and proportions in topsoils that may 

depend upon pedoclimate, land-use and management practices. Additionally, these results show the value of LTBF 

experiments to investigate the long-term dynamics of SOM. 

4.2 A quantitative link between the long-term biogeochemical stability of SOC and its thermal stability and bulk 

chemistry 30 

This work reinforces the evidence that there is a link betweenstrengthens the existence of a link between SOC persistence in 

ecosystems and its thermal stability, providing evidence of the first quantitative link between thermal and in-situ long-term 

(> 100 years) biogeochemical SOC stability (Fig. 4). The regression model yields accurate RE6-RF predictions of CPSOC 

proportions with 95% prediction intervals that fully propagate the uncertainties originating from the calibration set that was 

used to build the model. Predictions on the validation set illustrate that the error propagation scheme provides highly 35 
conservative 95% prediction intervals of the CPSOC proportion in new samples, all intervals including their respective 

reference estimate of CPSOC proportion (Fig. 4). Despite rather large prediction intervals, the RE6-RF regression model 

clearly discriminates soils with small CPSOC proportions from samples with large CPSOC proportions (Fig. 4). This model 

based on RE6 thermal analysis can thus be used to predict the size of the CPSOC pool with known uncertainty in new soil 

samples from similar pedoclimates and with thermal characteristics (i.e. RE6 predictor variables) similar to those of the 40 
reference sample set.  
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Our results also highlight the sensitivity of the RE6-RF regression model to pedoclimate. Decreased predictive performance 

of the model (as assessed by the coefficient of determination) was indeed observed when predicting the CPSOC proportion in 

new soils with similar RE6 thermal characteristics but from a different pedoclimate (Fig. 5). However, the mean error of 

prediction of the model only slightly increased when predicting the CPSOC proportion in soils from the fully independent site 

of Ultuna (Fig. 5). Overall, those results illustrate the potential of the model based on RE6 thermal analysis to predict the 5 
proportion of CPSOC in new soil samples from different pedoclimates, at least for sites that have similar RE6 thermal 

characteristics to those of the calibration set. 

Our results also illustrate the complex relationships between thermal analysis- based parameters of SOC stability and the 

CPSOC proportion. The hypothesis behind the use of SOC thermal stability as a proxy of its biogeochemical stability implies 

positive correlations between the size of the CPSOC pool and temperature parameters derived from thermal analysis such as 10 
the 25 RE6 temperature parameters calculated in this study. Significant positive correlations with the CPSOC proportions were 

indeed found for the majority (15 14 out of 25) of RE6 temperature parameters, with very high and positive Spearman’s ρ 

values for some of them (Table 2). This was notably the case of the RE6 temperature parameter corresponding to 50% of 

CO2 gas evolution during the oxidation stage, T50_CO2_OX that had been previously shown to systematically increase with bare 

fallow duration on the same soils by Barré et al. (2016). This study extends the results of Barré et al. (2016) towards a 15 
quantitative link between RE6 temperature parameters and SOC persistence (direct correlations and predictions of the size of 

the CPSOC pool rather than time under bare fallow treatment). It also extends those results to non-bare fallow soils: bare soils 

receiving organic amendments (at Grignon and Versailles), cropland soils (Ultuna) and grassland soils (Rothamsted). 

Conversely, ten 11 RE6 temperature parameters showed no significant correlation or significant negative correlations with 

the CPSOC proportion. Weak or negative correlations occurred principally for temperature parameters calculated on 20 
thermograms of the pyrolysis stage of the RE6 analysis: for all parameters of the HC and CO thermograms (except 

T90_HC_PYR) and lowest temperature parameters of the HC and CO2 thermograms (Table 2). Negative correlations contradict 

the above-mentioned hypothesis, with the evolution of a similar proportion of the total amount of gases (HC pyrolysis 

effluents or CO) occurring at lower temperatures for samples with high CPSOC proportions than for soils with low CPSOC 

proportions. A possible explanation for this unexpected observation could be that the pyrolysis of SOC in samples with high 25 
proportion of CPSOC may undergo an enhanced pyrolysis catalyst effect by soil minerals (Auber, 2009), which are relatively 

more abundant in those samples generally characterized by low total SOC concentrations.  

Despite the fact that three RE6 parameters used here, i.e. the TLHC-index, the I-index, and the R-index, had originally been 

proposed as useful qualitative metrics of soil carbon dynamics, reflecting a proportion of thermally resistant or labile 

hydrocarbons (Disnar et al., 2003; Sebag et al., 2006; Saenger et al., 2013, 2015; Sebag et al., 2016), those parameters were 30 
weakly correlated (TLHC-index) or not correlated (I-index, R-index) to the CPSOC proportion. Furthermore, they also had a 

weak importance in the random forests model predictions of the CPSOC proportion (Table 2). The poor link between those 

three RE6 parameters and the CPSOC proportion may be explained by the high residence time of CPSOC (> 100 years). Indeed, 

so far those parameters have been related to the proportion of SOC present in the particulate organic matter fraction (size > 

50 µm, density <1–1.6), a SOC pool characterized by a residence time in soils generally below 20 years (Saenger et al., 35 
2015; Soucémarianadin et al., 2018). 

The two RE6 parameters reflecting SOC bulk chemistry showed highly significant correlations with the CPSOC proportion. 

This confirms, and extends to vegetated soils, the observed decreasing trend for HI and increasing trend for OIRE6 (except at 

Versailles where soils have high pyrogenic C contentwhich has high proportions of pyrogenic carbon) with bare fallow 

duration observed by Barré et al. (2016) on the bare fallow treatments of the same experimental sites. Soils with high 40 
proportions of CPSOC are thus characterized by an oxidized and H-depleted organic matter. 
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4.3 Perspectives to improve and foster RE6 thermal analysis based predictions of the size of the CPSOC pool 

Future developments of this work must extend the Rock-Eval 6 thermal analysis regression model to a wider range of 

pedoclimates and to other biomes. As sites with LTBF treatments are not widespread, complementing the reference sample 

set may be achieved by using soils that have different soil forming factors (e.g. climate, parent material) and (i) which are 

sampled from long-term (> 50 to 100 years) experiments with contrasted SOC inputs, enabling the estimation of their CPSOC 5 
concentration (Buyanovsky and Wagner, 1998a; 1998b), or (ii) for which the mean SOC age is known from radiocarbon 

data, enabling the estimation of the size of their persistent SOC pool (Trumbore, 2009; Mills et al., 2014). 

Another development of this work will involve elucidating the fundamental mechanisms linking the biogeochemical stability 

of SOC with its thermal stability (see e.g. Leifeld and von Lützow, 2014). This was beyond the scope of this work, yet it 

remains constitutes an exciting field of research that should be addressed in the future, as highlighted by the unexpected 10 
observations discussed in Section 4.2 and by other recent works that found no relationships between the thermal oxidation of 

SOC between 200 °C and 400 °C and the size of SOC pools with shorter residence times in soils (below or above ca. 18 

years, Schiedung et al., 2017). 

Overall, this work demonstrates the value of Rock-Eval 6 as a routine method for quantifying the size of the centennially 

persistent SOC pool with known uncertainty in temperate soils. The relatively low cost of the Rock-Eval 6 technique and the 15 
robustness of the thermal analysis regression model makes it possible to apply it to soil monitoring networks across a 

continuum of scales, as a reliable proxy of SOC persistence. This may be part of the framework proposed by O’Rourke et al. 

(2015) to better understand SOC processes at the biosphere to biome scales, and should be added to the soil carbon cycling 

proxies recently listed by Bailey et al. (in press2018). Mapping persistent SOC at large scales may allow the identification of 

regional hotspots of centennially persistent SOC that may contribute little to climate change by 2100. It may also provide 20 
information on the sustainability of additional SOC storage from soil carbon sequestration strategies such as those promoted 

by the international 4 per 1000 initiative in agriculture and forestry (https://www.4p1000.org/; Dignac et al., 2017; Minasny 

et al., 2017; Soussana et al., in press). A global map of centennially persistent SOC based on this empirical RE6 thermal 

analysis model could also be useful for improving the parameterization of models simulating SOC dynamics in Earth system 

models (Falloon and Smith, 2000; Luo et al., 2014; He et al., 2016). Indeed, this model based on RE6 thermal analysis 25 
appears as a robust and operational alternative to existing techniques used to initialize the size of the CPSOC pool in models of 

SOC dynamics (such as the methods of Falloon et al. (1998) or Zimmermann et al. (2007) that estimate the size of the inert 

SOC pool in the RothC model). The integration of large-scale information on the size of SOC kinetic pools may indeed 

provide an adequate complement to the global data sets on SOC fluxes that are currently under development and 

restructuration (Hashimoto et al., 2015; Luo et al., 2016; Harden et al., in press2018). 30 
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Figure 1: Detail of the sequential pyrolysis and oxidation stages of Rock-Eval 6 (RE6) thermal analysis, and of the five 5 
thermograms used to derive the 30 RE6 parameters reflecting SOC thermal stability and bulk chemistry. The grey area under 

each RE6 thermogram represents the portion of the signal unaffected by soil carbonates that was used to calculate RE6 

temperature parameters (modified after Behar et al., 2001; Saenger et al., 2013). 
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Figure 2: Evolution of SOC concentration (gC.kg-1 soil) with time for the bare fallow plots of each experimental site, and 

representation of the 3 × 104 fitted exponential decay functions (Bayesian curve fitting method) from which a site-specific CPSOC 

concentration (model parameter c) and its 95% confidence interval were determined (histogram in the upper right side of each 

scatter plot). At each site, the 95% confidence interval around the CPSOC concentration was determined as c ± 1.96 sd(c), where c is 5 
the model parameter c in Eq. (1) and sd(c) is its standard deviation calculated in Eq. (6). 
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Figure 3: Principal component analysis (PCA) of the 30 RE6 parameters of the calibration soil sample set (n = 88). A: the scores of 

the calibration samples on the first two principal components are represented in the factorial map, as well as the projected 

principal component scores of the validation samples (n = 30). A color scale is used to represent the CPSOC proportion (determined 5 
using Eq. (2)) in all samples. B: PCA loadings of the 30 RE6 parameters and projection of the CPSOC proportion variable in the 

PCA correlation circle. Note that despite some of the 30 RE6 parameters are significantly correlated, all parameters are included 

in the analysis. 
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Figure 4: Performance of the random forests regression model based on Rock-Eval 6 thermal analysis (RE6-RF) for predicting the 

CPSOC proportion. The performance statistics on the calibration set (n = 88) and on the validation set (n = 30) of the RE6-RF 

multivariate regression model are shown. Horizontal bars represent the estimated uncertainty (95% confidence intervals) on the 

reference CPSOC proportion values of the validation set, calculated as: CPSOC proportion [sample] ± 1.96 × sd(CPSOC proportion 5 
[sample]). Vertical bars represent the propagated errors (95% confidence intervals) on the RE6-RF predicted CPSOC proportion 

values of the validation sample set, calculated as ŷ̅ ± 𝝉̂ × sd(ŷ) (see Section 2.3.5), with a 𝝉̂ value of 2.10 12 (Fig. S1Supplementary 

material S2). Abbreviations: RMSEC, root-mean-square error of calibration; RMSEP, root-mean-square error of prediction; RPD, 

ratio of performance to deviation; sd, standard deviation. 
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Figure 5: Performance of the random forests regression model based on Rock-Eval 6 thermal analysis (RE6-RF) for predicting the 

CPSOC proportion, for a calibration set based on soils from three sites (Versailles, Rothamsted, Grignon; n = 84) and a validation 

set based on soils from a different pedoclimate but with similar RE6 thermal characteristics than those of the calibration set 5 
(Ultuna; n = 34). 
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Table 1: Measured total SOC concentrations, estimated site-specific CPSOC concentrations, and resulting CPSOC proportions in four long-term 

agronomic experimental sites used to generate calibration and validation soil sample sets. Abbreviations: LTBF, long-term bare fallow; min, minimum; 

max, maximum; sd, standard deviation; CI, confidence interval. 

 

Site 
Treatments 

(number of samples) 

SOC concentration 

(gC.kg
-1

 soil) 

mean (min, max, sd) 

CPSOC concentration 

(gC.kg
-1

 soil) 

mean (95 % CI) 

CPSOC proportion 

 

mean (min, max, sd) 

Versailles 
Manure (n = 20) 27.9 (17.1, 45.5, 8.2) 

6.22 (5.62–6.82) 
0.24 (0.14, 0.36, 0.07) 

LTBF (n = 20) 10.5 (5.4, 19.7, 4.4) 0.67 (0.32, 1.00, 0.24) 

Rothamsted 
Grassland (n = 8) 36.8 (31.8, 42.6, 4.8) 

10.46 (9.93–10.99) 
0.29 (0.25, 0.33, 0.04) 

LTBF (n = 12) 17.7 (9.7, 30.5, 7.5) 0.68 (0.34, 1.00, 0.25) 

Ultuna 
Cropland (n = 23) 15.8 (12.4, 20.3, 2.2) 

6.95 (5.22–8.68) 
0.45 (0.34, 0.56, 0.06) 

LTBF (n = 11) 12.0 (9.1, 16.3, 2.4) 0.60 (0.43, 0.76, 0.12) 

Grignon 

Straw or composted 

straw (n = 12) 
12.9 (11.7, 14.2, 0.8) 

7.12 (5.16–9.08) 
0.55 (0.50, 0.60, 0.03) 

LTBF (n = 12) 11.8 (8.4, 14.7, 1.9) 0.62 (0.48, 0.85, 0.11) 

Calibration set (n = 88) 18.0 (5.5, 45.5, 9.5)  0.50 (0.14, 1.00, 0.21) 

Validation set (n = 30) 16.1 (5.4, 38.8, 7.9)  0.53 (0.16, 1.00, 0.23) 

All samples (n = 118) 17.5 (5.4, 45.5, 9.1)  0.51 (0.14, 1.00, 0.21) 

 5 
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Table 2: Spearman's rank correlation coefficient test between the 30 RE6 parameters and the CPSOC proportion, and variable 

importance (ranking) of the 30 RE6 parameters to predict CPSOC proportion in the random forests model based on Rock-Eval 6 

thermal analysis (RE6-RF, calibration soil sample set, n = 88). Symbols for p-values: *** p < 0.001; ** p < 0.01; * p < 0.05; NS p > 

0.05 = not significant.  

RE6 parameter 

Spearman's ρ 

with CPSOC 

proportion 

p-value 

Variable importance to predict 

CPSOC proportion in the RE6-RF 

regression model (rank) 

T10_HC_PYR -0.36 *** 20 

T30_HC_PYR -0.12 NS 30 

T50_HC_PYR 0.00 NS 29 

T70_HC_PYR 0.09 NS 21 

T90_HC_PYR 0.55 *** 18 

T10_CO_PYR -0.21 * 7 

T30_CO_PYR -0.39 *** 12 

T50_CO_PYR -0.33 ** 14 

T70_CO_PYR -0.23 * 23 

T90_CO_PYR -0.09 NS 22 

T10_CO2_PYR 0.07 NS 13 

T30_CO2_PYR 0.71 *** 4 

T50_CO2_PYR 0.80 *** 1 

T70_CO2_PYR 0.78 *** 2 

T90_CO2_PYR 0.66 *** 17 

T10_CO_OX 0.50 *** 5 

T30_CO_OX 0.71 *** 16 

T50_CO_OX 0.64 *** 28 

T70_CO_OX 0.42 *** 27 

T90_CO_OX 0.14 NS 25 

T10_CO2_OX 0.72 *** 10 

T30_CO2_OX 0.83 *** 3 

T50_CO2_OX 0.82 *** 6 

T70_CO2_OX 0.80 *** 8 

T90_CO2_OX 0.54 *** 19 

I-index 0.04 NS 26 

R-index -0.01 NS 24 

TLHC-index -0.02 NS 15 

HI -0.78 *** 9 

OIRE6 0.42 *** 11 
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Supplementary material S1: Basic characteristics of the four long-term agronomic experimental sites used for the reference soil sample set. 

Abbreviation: LTBF, long-term bare fallow. 

Site 
Latitude, 

longitude 

Mean annual 

temperature 

(°C) 

Mean annual 

precipitation 

(mm) 

Land use 

before 

experiment 

Sampling 

depth (cm) 
Soil texture 

(%, clay/silt/sand) 

Versailles, France 48°48N, 2°08E 10.7 628 grassland 25 17/57/26 

Rothamsted, 

United Kingdom 
51°82N, 0°35E 9.5 712 grassland 

23 
25/62/13 

Ultuna, Sweden 59°49N, 17°38E 5.5 533 arable 20 36/41/23 

Grignon, France 48°51N, 1°55E 10.7 649 grassland 25 16/54/30 
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Supplementary material S2: Error propagation scheme in the random forests regression model (adapted from 

Coulston et al. (2016) and modified). 
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Supplementary material S3: Standard deviation of the CPSOC proportion as a function of the CPSOC proportion in the 

reference soil sample set (n = 118). 

 

Supplementary reference 

Coulston, J.W., Blinn, C.E., Thomas, V.A., and Wynne, R.H.: Approximating prediction uncertainty for random 

forest regression models. Photogramm. Eng. Remote Sens., 82, 189–197, 2016. 

 

 


