
1 

 

Interpreting eddy covariance data from heterogeneous Siberian 

tundra: land cover-specific methane fluxes and spatial 

representativeness 

Juha-Pekka Tuovinen
1
, Mika Aurela

1
, Juha Hatakka

1
, Aleksi Räsänen

2,3
, Tarmo Virtanen

2
, Juha 

Mikola
4
, Viktor Ivakhov

5
, Vladimir Kondratyev

6
, Tuomas Laurila

1
 5 

1
Finnish Meteorological Institute, Climate System Research, P.O. Box 503, FI-00101 Helsinki, Finland 

2
Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki 

Institute of Sustainability Science (HELSUS), P.O. Box 65, FI-00014 University of Helsinki, Finland 
3
Department of Geography, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway 

4
Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of 10 

Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland 
5
Voeikov Main Geophysical Observatory, St Petersburg, Russia 

6
Yakutian Service for Hydrometeorology and Environmental Monitoring, Tiksi, Russia 

Correspondence to: Juha-Pekka Tuovinen (juha-pekka.tuovinen@fmi.fi) 

Abstract. The non-uniform spatial integration, an inherent feature of the eddy covariance (EC) method, creates a challenge 15 

for flux data interpretation in a heterogeneous environment, where the contribution of different land cover types varies with 

flow conditions, potentially resulting in biased estimates in comparison to the areally averaged fluxes and land cover 

attributes. We modelled flux footprints and characterized the spatial scale of our EC measurements at Tiksi, a tundra site in 

northern Siberia. We used leaf area index (LAI) and land cover class (LCC) data, derived from very high spatial resolution 

satellite imagery and field surveys, and quantified the sensor location bias. We found that methane (CH4) fluxes varied 20 

strongly with wind direction (–0.09 to 0.59 μg CH4 m
-2

 s
-1

 on average) during summer 2014, reflecting the distribution of 

different LCCs. Other environmental factors had only a minor effect on short-term flux variations but influenced the 

seasonal trend. Using footprint weights of grouped LCCs as explanatory variables for the measured CH4 flux, we developed 

a multiple regression model to estimate LCC group-specific fluxes. This model showed that wet fen and graminoid tundra 

patches in locations with topography-enhanced wetness acted as strong sources (1.0 μg CH4 m
-2

 s
-1

 during the peak emission 25 

period), while mineral soils were significant sinks (–0.13 μg CH4 m
-2

 s
-1

). To assess the representativeness of measurements, 

we upscaled the LCC group-specific fluxes to different spatial scales. Despite the landscape heterogeneity and rather poor 

representativeness of EC data with respect to the areally averaged LAI and coverage of some LCCs, the mean flux was close 

to the CH4 balance upscaled to an area of 6.3 km
2
, with a location bias of 14 %. We recommend that EC site descriptions in a 

heterogeneous environment should be complemented with footprint-weighted high-resolution data on vegetation and other 30 

site characteristics. 
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1 Introduction 

Biosphere–atmosphere exchange of greenhouse gases (GHGs) is commonly measured using the micrometeorological eddy 

covariance (EC) method (Aubinet et al., 2012). This tower-based, non-intrusive technique provides spatially integrated flux 

data at the ecosystem scale with a typical integration domain of a few hectares. This is in stark contrast to flux chamber 

measurements that can be focused on homogeneous small-scale (< 1 m
2
) patches of an ecosystem or on individual plant 5 

communities (Livingston and Hutchinson, 1995; Virkkala et al., 2017). The spatial aggregation inherent in the EC data is a 

strong asset if one’s objective is to study functioning or GHG exchange of an extensive, relatively homogeneous ecosystem. 

Heterogeneous landscapes consisting of a mosaic of differing vegetation and land cover patches, however, may entail issues 

on the interpretation of the spatial representativeness of measurements. This stems from the fact that the EC integration 

process equals to non-uniform weighting of the upwind surface elements that influence the measured flux, thus potentially 10 

resulting in an unequal and temporally varying contribution from different land cover types (Schmid, 2002). Especially 

isolated zones of high source/sink density may bias the estimated average flux of the area surrounding the EC tower. The 

spatial distribution of relative weights, a function that Leclerc and Thurtell (1990) coined “footprint”, depends on the 

measurement height and strongly on wind direction. As the flux footprint is also affected by other properties of the 

atmospheric flow, e.g., hydrostatic stability, directional averaging does not guarantee an unbiased flux estimate either. 15 

 

Arctic tundra serves as a prime example of a surface that is heterogeneous with respect to biogeochemical processes. The 

vegetation, soil and land cover structure of tundra areas are fragmented, the landscape typically comprising patches of 

different plant communities, water bodies and other land cover types (Stow et al., 2004; Virtanen and Ek, 2014; Mikola et 

al., 2018). Such heterogeneity concerns both the composition and configuration of land cover properties. This is clearly 20 

manifested by the leaf area index (LAI), which shows a higher relative variation among sites in tundra than in any other 

biome (Asner et al., 2003), and there are pronounced spatial and temporal LAI patterns at the landscape scale (Marushchak 

et al., 2013; Juutinen et al., 2017). Surface heterogeneity also generates high variability in the ecosystem–atmosphere fluxes 

of GHGs, including methane (CH4) (Olefeldt et al., 2013). Tundra biomes are responsible for ca. 3 % of the total CH4 

emissions estimated at 560 Tg yr
-1

, 40 % of which is biogenic (McGuire et al., 2012; Saunois et al., 2016). The emissions 25 

from tundra are predicted to increase substantially, as a fraction of the vast reservoir of organic carbon in permafrost soils 

may be released into the atmosphere as a result of warming-induced thawing, creating a positive feedback to climate change 

(Schuur et al., 2015). 

 

The heterogeneity in the ecosystem–atmosphere CH4 flux originates from the multitude of biochemical and physical controls 30 

of the anaerobic production, bacterial oxidation and transport of CH4 (Whalen and Reeburgh, 1990; Lai, 2009; Bridgham et 

al., 2013). Methane can be released into the atmosphere through gradual diffusion in soil and water, in ebullition (bubbling) 

events and via plant-mediated advective transport. These processes involve different residence times and thus expose the 
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produced CH4 to different degree of oxidation. As a result of this complexity, field studies have identified a wide range of 

factors that are associated with the level and variation of observed fluxes. Of these, soil temperature and moisture (or water 

table level) typically constitute the key environmental controls (Olefeldt et al., 2013). As a general rule, wet carbon-rich soils 

emit substantial amounts of CH4, while dry tundra soils act as small net sinks (Lau et al., 2015). Even if lesser in magnitude, 

the uptake flux in dry areas may dominate the regional CH4 balance (Jørgensen et al., 2015; D’Imperio et al., 2017). Methane 5 

flux strongly depends on vegetation and soil characteristics, such as the abundance of vascular plants with aerenchyma tissue 

facilitating gas transport; other important variables include substrate availability, and soil acidity and redox potential (Lai, 

2009; Bridgham et al., 2013; Olefeldt et al., 2013). 

 

Landscape heterogeneity not only calls for further measurements of fluxes and their controls on multiple spatial scales, 10 

preferably including multiple EC towers for spatial replication (Hill et al., 2017), but also necessitates development of 

techniques for data interpretation, including down- and upscaling methods for generalization of observations. 

Micrometeorological models are available for estimating the flux footprint (Leclerc and Foken, 2014) and have been utilized 

in various ways when dealing with the representativeness of flux measurements. In its simplest form, such an analysis 

involves determination of footprint dimensions for typical flow conditions, to ensure that the expected “field of view” of EC 15 

measurements is sufficiently confined to the area of interest (e.g., Aurela et al., 2009). Averaged footprints, or footprint 

“climatologies”, can be calculated from time series of actual short-term (typically 30 min) meteorological data, thus 

providing a fuller view of the spatial extent of EC aggregation (e.g., Amiro, 1998). When combined with a land cover map, 

footprint time series can be used for data quality control by quantifying the contribution of different land cover types or, 

specifically, that of a certain ecosystem intended to be observed (Tuovinen et al., 1998; Rebmann et al., 2005; Göckede et 20 

al., 2008). The footprint function can also be used for a formal expression of the spatial, or more precisely the point-to-area 

(Nappo et al., 1982), representativeness of the EC measurements performed at a certain location. A suitable metric for this, 

termed the “sensor location bias” by Schmid and Lloyd (1999), can be defined by comparing the footprint-weighted average 

of a surface-related quantity, mapped across the study area, to the corresponding arithmetic average. 

 25 

While EC data from a heterogeneous environment are still commonly compared with plot-scale data without considering the 

differential weighting of the plots in the EC signal (e.g., Heikkinen et al., 2002; Sachs et al., 2010; Yu et al., 2013), footprint 

modelling has been successfully combined with land cover information in various studies for a representative upscaling of 

chamber-based fluxes (e.g., Marushchak et al., 2016), plot-scale model results (e.g., Budishchev et al., 2014), remotely 

sensed fluxes (e.g., Chen et al., 2009) and vegetation data for model input (e.g., Stoy et al., 2013). The temporally varying 30 

footprint weights of different land cover types can also be taken as a basis for constructing statistical models that unravel 

land cover-specific fluxes from the spatially aggregated EC data, but this depends on the quality of land cover data (Fan et 

al., 1992; Forbrich et al., 2011). The very high spatial resolution (VHSR) satellite imagery makes it possible to derive 

reliable land cover maps with as high as a 1 m resolution. By utilizing such a detailed vegetation map, Budishchev et al. 
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(2014) showed that footprint-weighting of modelled plot-scale CH4 emissions from permafrost tundra resulted in a good 

agreement with EC measurements, while areally averaged fluxes failed to reproduce the heterogeneity-induced temporal 

variability.  A similar conclusion was reached by Davidson et al. (2017), who upscaled chamber-based CH4 fluxes for four 

sites in Alaska by means of VHSR vegetation maps. 

 5 

The aims of the present study are threefold. First, we characterize the dimensions of the field of view and the point-to-area 

representativeness of the EC measurements carried out at a micrometeorological measurement station, located on permafrost 

tundra at Tiksi in northern Siberia, during summer 2014. We demonstrate and quantify the heterogeneity of this site, 

producing information that is essential for any further study exploiting these flux data. For this we combine a 

micrometeorological footprint model and detailed maps of ecosystem characteristics, including land cover classes (LCCs), 10 

LAI and topographic wetness index (TWI). These are based on VHSR satellite imagery and extensive field surveys, which 

still are scant for Siberian tundra. Second, we hypothesize that distinguishable mean fluxes can be determined for LCC 

groups that represent different CH4 source/sink capacities; this can be accomplished by developing a multiple regression 

model that links these fluxes to the EC measurements via footprint weighting. This approach was motivated by the findings 

of Davidson et al. (2016), who demonstrated that a simple vegetation classification could explain the variation in CH4 15 

emissions from Arctic tundra as accurately as a set of key environmental drivers. Furthermore, the flux chamber 

measurements made at Tiksi showed that the effect of LCC was much larger than that of environmental controls (Vähä, 

2016). Because of this objective, we limit our data to the growing season. Finally, the LCC group-specific fluxes obtained in 

this way offer us an opportunity to upscale the CH4 balance to the landscape scale and thus to evaluate the representativeness 

of EC measurements also with respect to CH4 exchange. We emphasize that the scope of this study is focused on the 20 

ramifications of the unavoidable non-uniform spatial sampling involved in EC measurements rather than on ecosystem 

processes. 

2 Material and methods 

2.1 Site and data 

2.1.1 Site description and meteorological conditions 25 

The study area covers the surroundings of the micrometeorological GHG flux measurement station at Tiksi in northeastern 

Russia, near the Tiksi Observatory operated by Yakutian Service for Hydrometeorology and Environmental Monitoring. The 

EC tower of the station is located at 71.5943°N, 128.8878°E, 7 m above sea level, ca. 500 m from the shoreline of the Laptev 

Sea and ca. 50 km from the Lena River delta. The flux measurements are run by the Finnish Meteorological Institute and 

constitute part of the International Arctic Systems for Observing the Atmosphere (IASOA) activities (Uttal et al., 2016). 30 
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Tiksi is located within the continuous permafrost zone, and the climate is arctic: the winters are long and cold, while the 

summers are cool. The mean annual temperature and precipitation at Tiksi in 1981–2010 were –12.7 °C and 323 mm, 

respectively; the year 2014 was somewhat warmer (–10.9 °C) and drier (249 mm) (AARI, 2018). Air temperature typically 

falls below 0 °C in the end of September, and the soil temperatures reach the freezing point at approximately the same time. 

During the winter, air temperatures are typically below –20 °C, and the soil temperatures are reduced to levels below –10 °C. 5 

Snow appears typically in October and melts in early June. After the snowmelt, the top (a few cm) layer of soil warms 

quickly, but the thawing rate of deeper layers varies depending on the soil type and vegetation (Mikola et al., 2018).   

 

The soil type ranges from mineral soil to peatlands with a high organic content (>60 % of dry soil mass) (Mikola et al., 

2018). The landscape around the EC tower represents the coastal tundra zone of eastern Siberia with a high diversity of plant 10 

species and community types, including fens, bogs, tundra heaths and meadows, but there are also areas of bare ground 

(Juutinen et al., 2017; Mikola et al., 2018). The terrain is relatively flat, sloping gently (2–3) towards the south. This 

generates a hydrological gradient, and a small brook runs through the site; there are also ponds and small lakes within the 

study area. Further details of vegetation and soil characteristics are presented in Sects. 2.1.3 and 2.1.4. 

 15 

The data analysed in this study cover the period of 5 July to 29 August 2014, which represents the thermal growing season of 

that year, using the daily mean air temperature of 5 C as the threshold (Fig. S1 in the Supplement). During this period, the 

mean air temperature was higher (10.2 °C) than the corresponding 1981–2010 mean (7.8 °C), which was also the case for the 

precipitation sum (116 mm vs. the long-term mean 86 mm). In 2014, the soil temperature at 10 cm depth, measured with a 

Pt100 sensor in dry fen soil, varied within the typical summertime range of 5 ± 2 C from early July to the end of August 20 

(Fig. S1 in the Supplement). The depth of the active soil layer mostly varied within 0.2–0.4 m in early July – mid-August 

2014 (Mikola et al., 2018). 

2.1.2 Flux measurements 

The CH4 and energy fluxes used in the present study were measured continuously with the micrometeorological eddy 

covariance method (Aubinet et al., 2012). The EC instrumentation consisted of a USA-1 (METEK GmbH, Elmshorn, 25 

Germany) sonic anemometer/thermometer, an LI-7000 (LI-COR, Inc., Lincoln, NE, USA) CO2/H2O analyser and an RMT-

200 (Los Gatos Research, Inc., San Jose, CA, USA) CH4 analyser. The measurement height was 3 m. The sampling 

frequency was 10 Hz, and the turbulent fluxes were calculated with the in-house PyBARFluxCalc program with 30 min 

block averaging according to standard procedures, including double coordinate rotation, lag determination and wet-to-dry 

mole fraction conversion where necessary (Aubinet et al., 2012). The high-frequency CH4 flux loss was corrected for using 30 

an empirical approach described by Laurila et al. (2005); for this a half-power frequency of 1.1 Hz was estimated from the 

data. The CH4 flux data were screened for instationarity by removing cases in which the relative non-stationarity of either 
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momentum or CH4 flux exceeded 30 % (Foken and Wichura, 1996). In addition, periods of weak turbulence (friction 

velocity <  0.12 m s
-1

) were discarded. In total, 911 half-hourly observations were included in the analysis. No gap-filling of 

the time series was necessary for the purposes of the present study. 

 

In addition to the EC technique, CH4 exchange was measured with a static flux chamber (Vähä, 2016). The surface area of 5 

this chamber was 0.25 m
2
 and its height 0.3 m. The sample air from the chamber was directed to a DLT-100 (Los Gatos 

Research, Inc., San Jose, CA, USA) CH4 analyser. The chamber closure time was either 4 or 10 min, depending on the LCC 

and the expected magnitude of CH4 flux. The measurements were carried out between 15 July and 16 August 2014. 

However, the number of chamber plots was modest and the reach of these measurements from the EC mast was limited due 

to the use of an online gas analyser; moreover, the measurement plots do not fully correspond to the land cover classification 10 

that was developed subsequently (Mikola et al., 2018) and used in the present study. Therefore, instead of aiming at a full 

analysis of the chamber data, we utilized them for a partial validation of the estimated LCC-specific fluxes, using four plots 

on dry fen, two plots on wet fen and one plot on bare soil, with 31 or 32 measurements taken on each plot. 

2.1.3 Mapping of landscape characteristics 

The land cover classification consists of nine classes visually distinguished according to their key characteristics (Table 1). 15 

The LCCs were identified within an area of 1 km
2
 around the EC tower on the basis of a vegetation and soil survey and 

verified using statistical ordination of the 92 established study plots according to plant species composition and functional 

plant and soil attributes (Mikola et al., 2018). To extrapolate the LCCs to the landscape scale (Fig. 1a, Fig. S2 in the 

Supplement), a supervised object-based classification with the random forest method was carried out using two VHSR 

multispectral satellite images (12 August 2012 and 11 July 2015; WorldView-2, DigitalGlobe, Inc., Westminster, CO, USA) 20 

and a digital elevation model (DEM) constructed from the 2015 WorldView-2 stereo pair (Fig. 1b). The internal (cross-

validation of training data) and external (validation data) classification accuracy of the land cover classification were 80 and 

49 %, respectively. For details, see Mikola et al. (2018). 

 

Using non-linear regression, the LAI of vascular plants was estimated from the normalized difference vegetation index 25 

(NDVI) calculated from the reflectance data of the 2012 WorldView-2 image (Fig. 1c). This map represents the period of 

maximum LAI in 2012; for the estimated development of the LAI of different LCCs in 2014, see Juutinen et al. (2017) and 

Fig. S1 (in the Supplement). The topographic wetness index (TWI) was calculated from the DEM using the method of 

Böhner and Selige (2006) (Fig. 1d). TWI is defined as a function of the upslope contributing area and the local terrain slope 

and thus serves as a proxy for potential soil moisture. For details of the DEM and TWI data, see Mikola et al. (2018). All 30 

maps have a 2 m pixel size, and in this study they were limited to a circle with a radius of 1.4 km from the EC tower, which 

defines the domain of the present study. For upscaling to a regional scale, we also considered the LCCs determined within a 

larger area of 35.8 km
2
 (Fig. S2 in the Supplement). 
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2.1.4 Main features of the land cover classes 

The LCCs employed in the present study are described by Juutinen et al. (2017) and in greater detail by Mikola et al. (2018); 

a summary of observed vegetation characteristics is provided in Table 1. Briefly, the dry fen, wet fen and bog classes 

represent peat-forming environments, while the other LCCs refer to environments with no discernible peat layer. The 

vascular plant vegetation of fens, i.e. the wetter peatlands, is characterized by sedges (Carex spp.). In 2014, the LAI of this 5 

vegetation reached its maximum in early August, estimated at 1.1 and 0.5 for wet and dry fens, respectively (Fig. S1 in the 

Supplement; Juutinen et al., 2017). Sphagnum mosses are abundant in the dry fens, while in the wet fens the moss cover is 

sparse and water pools are common. The bogs are drier and show microtopographic variation; their vegetation consists 

mainly of dwarf shrubs, dwarf birch (Betula nana) and Sphagnum and other mosses. The vegetation of flood meadows and 

graminoid tundra is dominated by graminoids (sedges and grasses), which yield a relatively high maximum vascular-plant 10 

LAI of 0.9 and 0.7, respectively, for these LCCs during the study period (Juutinen et al., 2017). The areas defined as shrub 

tundra have an abundant coverage of feather mosses and dwarf shrubs. In addition, lichen tundra patches with lesser biomass 

alternate with stony bare-ground areas. 

 

In terms of soil properties of the vegetated areas, the dry fen, wet fen, bog and graminoid tundra LCCs stand out with their 15 

high organic matter (on average 38 % of soil dry mass) and water concentration (on average 73 % of fresh mass) in the top 

10 cm soil layer, while the lowest concentrations (4 and 22 %, respectively) were found in the soils of the lichen tundra 

LCC, as measured on 9–14 August 2014 (Mikola et al., 2018). The soil temperature at a depth of 15 cm was clearly highest 

in the lichen tundra sampling plots, and flood meadow and wet fen soils mostly had a higher temperature than those of the 

other remaining LCCs. The depth of the biologically active soil layer approximately doubled from early July to mid-August 20 

2014 (the period when weekly measurements were taken). In mid-August, the active layer depth was highest, ca. 40 cm, at 

the wet fen and flood meadow plots and lowest, ca. 25 cm, at the shrub tundra and lichen tundra plots (Mikola et al., 2018). 

2.2 Application of footprints 

2.2.1 Footprint-weighted averaging and sensor location bias 

In this Section, we first present an exposition of the footprint-weighting of continuous variables and LCC maps and then 25 

define the sensor location bias, which are needed for the heterogeneity assessment and regression modelling. The footprint 

function (Horst and Weil, 1992) specific to a certain measurement configuration (𝑓) is expressed here in polar coordinates as 

〈𝐹〉 = ∫ ∫ 𝑓(𝜃, 𝑟)𝐹(𝜃, 𝑟)
2𝜋

0

∞

0

𝑑𝜃𝑑𝑟,          (1) 

where 𝐹 is the surface flux density distribution, 〈𝐹〉 is the vertical flux density at the measurement point above the surface, 

and 𝜃 and 𝑟 are the horizontal direction and distance with respect to this location. Equation (1) postulates that the flux at a 

certain location above the ground represents a spatial weighting of the surface flux distribution, where the weighting is 30 
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defined by the footprint function 𝑓 , 𝑓 ∈ [0,1), ∀𝜃, 𝑟 & ∫ ∫ 𝑓(𝜃, 𝑟)
2𝜋

0

∞

0
𝑑𝜃𝑑𝑟 = 1 , that describes the turbulent transport 

between each surface element and the reference point. In the context of EC measurements, 𝑓  can be estimated by 

micrometeorological modelling, and 〈𝐹〉 denotes the measured flux, while 𝐹(𝜃, 𝑟) is unknown. 

 

Based on 𝑓(𝜃, 𝑟), we define, analogously to Eq. (1), footprint-weighted averages of other quantities. For a continuous 5 

variable 𝑋, such as LAI and terrain elevation, we write this average, or the “effective” value of 𝑋  related to a certain 

footprint 𝑓, as 

〈𝑋〉 = ∫ ∫ 𝑓(𝜃, 𝑟)𝑋(𝜃, 𝑟)
2𝜋

0

∞

0

𝑑𝜃𝑑𝑟.         (2) 

We apply a similar averaging operation to an LCC map, in which each location (in practice, a pixel) is allocated to a single 

LCC. We denote the LCC map by Λ(𝜃, 𝑟) = 𝑗, where the integer 𝑗 = 1 … 𝑁 specifies the LCC at (𝜃, 𝑟), and define the 

weighted LCC corresponding to 𝑓 as 10 

〈Λ〉𝑗 = ∫ ∫ 𝑓(𝜃, 𝑟)𝛿(Λ, 𝑗)
2𝜋

0

∞

0

𝑑𝜃𝑑𝑟,         (3a) 

where 

𝛿(Λ, 𝑗) = {
0,   Λ(𝜃, 𝑟) ≠ 𝑗

1,   Λ(𝜃, 𝑟) = 𝑗
.           (3b) 

This provides the proportion of each LCC within the footprint, which can be calculated for a footprint climatology as well as 

a single footprint distribution. If the variable 𝑋 in Eq. (2) is LCC-specific but otherwise does not depend on location, i.e., we 

can specify constants 𝑋𝑗 , 𝑗 = 1 … 𝑁, then we combine Eqs. (2) and (3) to obtain the footprint-weighted 𝑋 as 

〈𝑋〉 = ∑ ∫ ∫ 𝑓(𝜃, 𝑟)𝛿(Λ, 𝑗)𝑋𝑗

2𝜋

0

∞

0

𝑑𝜃𝑑𝑟.
𝑁

𝑗=1
         (4) 

To describe the point-to-area representativeness of the flux measurements with respect to a variable related to a surface 15 

property or exchange, we follow Schmid and Lloyd (1999) and define a metric that quantifies how well the measurement at a 

certain location reflects the actual conditions averaged over the area of interest. The sensor location bias for 𝑋 is calculated 

here as 

∆𝑋=
〈𝑋〉 − �̅�

�̅�
,            (5) 

where �̅� denotes the mean 𝑋 within the study area. This definition differs from the one introduced by Schmid and Lloyd 

(1999), who expressed the sensor location bias as ∆𝑋
2 . As 〈𝑋〉 depends on the footprint and thus varies with time, ∆𝑋 is not 20 

temporally invariant either. 
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We calculated the sensor location bias with Eqs. (2) and (5) for terrain elevation, the maximum LAI and TWI that were 

mapped across the study area (Fig. 1). In addition, to investigate the effect of landscape heterogeneity, this bias was 

calculated for the mean CH4 flux, for which the areal reference was obtained from LCC group-specific fluxes. These fluxes 

were estimated with a multiple regression model derived from Eq. (4) (to be described in Sect. 2.3), in which the LCC group 

proportions calculated with Eq. (3) were used as explanatory variables. 5 

2.2.2 Footprint modelling 

We calculated the flux footprints 𝑓 for each 30 min flux averaging period in a horizontal 2 m × 2 m grid by using the 

analytical footprint model developed by Kormann and Meixner (2001) (here “KM model”). The KM model is based on a 

stationary gradient diffusion formulation, building on the classical solution of the two-dimensional advection–diffusion 

equation with vertical power law profiles assumed for the mean wind speed and eddy diffusivity (Pasquill and Smith, 1983). 10 

As a novel feature, these profiles are related to the corresponding Monin–Obukhov similarity (MOS) profiles. The crosswind 

diffusion is assumed to be Gaussian and height-independent. 

 

Our EC measurements provide the necessary input data for the KM model, including mean wind direction () , mean 

horizontal wind speed at anemometer height (𝑈), friction velocity (𝑢∗), hydrostatic stability (𝐿−1) and the standard deviation 15 

of lateral wind velocity (𝜎𝑣). When matching the wind and diffusivity power laws to the MOS profiles at the measurement 

height, the KM model does not require an explicit definition of roughness length (𝑧0), since the input data (i.e., 𝑈, 𝑢∗, 𝐿−1) 

implicitly specify 𝑧0 according to the MOS profile of the horizontal wind speed. In the case of a heterogeneous surface, this 

simplifies the computations significantly as compared to models that require additional flux aggregation procedures for 

estimating the effective 𝑧0 (Göckede et al., 2006). 20 

 

Independent of the flow conditions, a part of each footprint distribution formally extends beyond any finite target area. 

Therefore, in those footprint calculations that involve a surface property distribution such as the LCC map, we normalize the 

footprint integrated over the map area to 1, unless indicated otherwise. This means that the upper distance of radial 

integration in Eqs. (2)–(4) is set to a finite limit of 𝑟m  and the footprint-weighted averages are scaled by dividing by 25 

∫ ∫ 𝑓(𝜃, 𝑟)
2𝜋

0

𝑟m

0
𝑑𝜃𝑑𝑟, where 𝑟m (≈ 1.4 km) is the radius of the present land cover maps. 

2.2.3 Examples of flow conditions 

To demonstrate how the EC flux measurement at Tiksi is affected by surface heterogeneity, we calculated the footprint-

weighted averages of the surface attributes LAI, terrain elevation and TWI using Eq. (2) and the data illustrated in Figs. 1b–d 

as the continuous variable 𝑋, while Eq. (4) was used for the footprint-weighted LCC areas of the nine classes shown in Fig. 30 

1a. For this demonstration, we defined three flow situations in terms of the variables that affect the footprint in a given , i.e., 
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𝑈, 𝑢∗, 𝐿−1 and 𝜎𝑣 (Table 2). These cases represent differing stability conditions, for which typical parameter combinations 

were derived from the measurement data employed in this study. The 𝑈– 𝑢∗– 𝐿−1 combination was constrained by 𝑧0 = 0.01 

m as calculated from the MOS profile of the horizontal wind speed (Pasquill and Smith, 1983). For lateral wind velocity 

fluctuations, which only affect turbulent diffusion in the crosswind direction, we used the scaling 𝜎𝑣 𝑢∗⁄ =  2.3. This 

corresponds to the median of our data and, for simplicity, was adopted here for all stabilities.  5 

2.3 Statistical model 

2.3.1 Land cover class aggregation and upscaling of CH4 fluxes 

We hypothesize that mean CH4 fluxes can be determined for LCC groups, each composed of LCCs of similar expected 

source/sink capacity. This grouping was based on the documented vegetation and soil characteristics, reported in detail by 

Mikola et al. (2018) and Nyman (2015), and summarized here in Sect. 2.1.4. In addition, we utilized the TWI map and 10 

defined areas of potentially wet soils as those with TWI > 4 (Fig. 1d). Using these data and syntheses of CH4 production and 

fluxes in similar ecosystems (Olefeldt et al., 2013; Nicolini et al., 2013; Turetsky et al., 2014; Lau et al., 2015; Petrescu et 

al., 2015; Treat et al., 2015) as background information, we defined four aggregated classes (Table 3, Fig. 2), for which the 

LCC group-specific fluxes were determined with the statistical model described below (Sect. 2.3.2).  

 15 

The data sources listed above suggest that wet fens typically are strong CH4 emitters, and thus the pixels of the wet fen LCC 

with TWI > 4 were selected for the first LCC group (“Strong source”; Table 3). We also assumed that the pixels of the 

graminoid tundra LCC in the potentially wet locations should be included in this category as the graminoids at the site are 

dominated by aerenchymatous Carex spp. and Eriophorum spp. (e.g., E. vaginatum), i.e., plants known to be associated with 

substantial CH4 emissions. The drier fens within the study area likely act as weaker emitters, so these were combined into 20 

another LCC group (“Moderate source”), together with the bodies of freshwater (water LCC above the sea level). The 

syntheses cited above also justify an assumption that mineral soils, i.e., here the bare ground and lichen tundra LCCs, act as 

weak CH4 sinks (“Sink”). The proportional areas of these three LCC groups were used as the explanatory variables in the 

regression model. The remaining pixels were allocated to the fourth group consisting of the LCCs that either are expected to 

have a very small CH4 flux on average or cover only a limited area in flux footprints (“Neutral”). This group is included as 25 

an intercept in the regression model, and we hypothesize that its estimated value is not statistically different from zero. 

 

The CH4 fluxes determined for the aggregated LCCs defined above were upscaled by a simple mosaic approach, i.e., by areal 

weighting of the group-specific fluxes. To illustrate how the upscaled flux depends on land cover heterogeneity at different 

spatial scales, the upscaling was performed for different sub-domains as a function of the distance from the EC tower, and 30 

also for a larger area of 35.8 km
2
 (Fig. S2 in the Supplement). 
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2.3.2 Model formulation and validation 

Assuming that the CH4 flux does not vary among the LCC-map pixels attributed to a certain LCC, we applied Eq. (4) and 

expressed each flux measurement as a weighted arithmetic mean of the LCC-specific fluxes 𝐹𝑗 , 𝑗 = 1 … 𝑁  (number of 

LCCs), 

〈𝐹〉 = ∑ 〈Λ〉𝑗𝐹𝑗,
𝑁

𝑗=1
           (6) 

where these fluxes are unknown, and the weights 〈Λ〉𝑗 (Eq. 3) are the fractional areas of the corresponding LCCs. Assuming 5 

further that the LCC-specific fluxes remain constant within a data set of 𝑀 observations but the proportional LCC areas vary 

with the temporally changing footprint, we obtained a set of linear algebraic equations, from which a solution could be 

sought for 𝐹𝑗. We applied this idea by first defining aggregated LCC groups according to the expected CH4 source/sink 

capacity of each LCC (Sect. 2.3.1) and formulated a linear regression problem as 

𝑨𝒒 = 𝒎 + 𝒆,            (7) 

where the matrix 𝑨 [𝑀 × (𝑁A + 1)] consists of the proportional LCC areas of the aggregated LCCs for each observation, 10 

𝒒 [(𝑁A + 1) × 1] is a vector of the unknown parameters, 𝒎 [𝑀 × 1] denotes the measurement vector, and 𝒆 [𝑀 × 1] is the 

error term. 𝑁A  (= 3 here) denotes the number of those aggregated LCCs whose proportional area was included as an 

explanatory variable. This does not cover all the LCCs, and we included an intercept term in this regression equation so as to 

represent the remaining LCCs and the proportion of footprint extending beyond the study area; i.e., we did not scale the sum 

of 〈Λ〉𝑗 to 100 %. 15 

 

We estimated 𝒒 with the ordinary least square (OLS) estimator. Before calculating the standard errors of these estimates, we 

tested the model residuals for heteroskedasticity and serial correlation. Heteroskedasticity was tested with the White test that 

is based on an auxiliary regression, where squared residuals are regressed on original  explanatory variables and their squares 

and cross products, and the inference is based on a Lagrange multiplier (LM) test statistic (Greene, 2012). Serial correlation 20 

was tested with the Breusch–Godfrey test, which is based on a similar LM principle where the OLS residuals are regressed 

on the original explanatory variables augmented by lagged residuals. If heteroskedasticity and serial correlation could not be 

ruled out, the standard errors for the model parameters were calculated with the Newey–West estimator, which is a robust 

estimator for the asymptotic covariance matrix of the OLS estimator (Greene, 2012). This would result in wider confidence 

intervals than the traditional OLS-based standard errors. We assume that these confidence intervals reflect the overall 25 

uncertainty emerging from measurement data, LCC classification and footprint modelling; therefore no “bottom-up” error 

analysis addressing individual error sources was attempted. 

 



12 

 

The agreement between the model and the observations was evaluated on the basis of the coefficient of determination (𝑅2), 

root mean squared error (RMSE) and mean absolute error (MAE). The agreement was also examined as a function of wind 

direction, to verify that we can replicate the pronounced directional dependency of the observed CH4 fluxes (Aurela et al., 

2015). The performance of the statistical model against independent data was assessed with 10-fold cross-validation (James 

et al., 2013). The random error of the measured mean CH4 flux was estimated as 𝜎 √𝑀⁄ , where 𝜎 is the standard deviation of 5 

flux and 𝑀 = 911. To minimize the wind direction dependency of fluxes, 𝜎  was calculated relative to a varying mean 

obtained from the data binned as a function of wind direction into 50 groups of similar size. 

 

To investigate the temporal trend of the fluxes, we performed the statistical modelling and upscaling separately for weekly 

periods in addition to the full eight-week data set. These results also shed light on the performance of the statistical method 10 

when the number of input data is limited and the coverage of different wind directions may be incomplete. 

3 Results and discussion 

3.1 Demonstrating surface heterogeneity 

Our footprint analysis shows that those surface elements that had the greatest influence on the EC measurements at Tiksi 

were typically located within a distance of 10–200 m (Table S1 in the Supplement). However, the actual range depended 15 

strongly on atmospheric stability, as expected (Horst and Weil, 1992). The distance of maximal influence in a single 

footprint varied from 18 to 35 m depending on stability, and the estimated far end of the source area ranged from 200 to 

3500 m for the 90 % flux contribution, for instance. The 1.4 km radius of the circle centred at the EC tower, which defines 

our primary study area, was selected to result in a 95 % footprint coverage within this area in the neutral case. About 15 % of 

the footprint calculated for the stable flow example extended beyond the limits of this area, while in the unstable case 99.7 % 20 

of the footprint was confined to the target circle (Fig. 3). 

 

The variation of the footprint-weighted LCC contributions, calculated with Eq. (4), as a function of wind direction 

demonstrates how the heterogeneity inherent in tundra landscape manifests itself in the EC measurement data (Fig. 3; see 

also Fig. S3 in the Supplement). As is obvious from the LCC map (Fig. 1a), the distribution of contributing LCCs varied a 25 

lot among different wind directions (Fig. 3). In the neutral case, for example, there were seven different LCCs dominating at 

least in one sector. Turbulent mixing also played a substantial role in the magnitude of relative LCC contributions, as the 

weighting of longer distances increases with increasing stability. In some directions, the contribution of the most common 

LCCs was highly sensitive to atmospheric stability. In the north-east-to-east sector, for example, the relatively small dry fen 

patch located within a few tens of metres from the EC tower (Fig. 1a) contributed 45 % in the unstable case, but only 13 % 30 
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in the stable case (Fig. 3). Similarly, the relative importance of the extensive bare-ground area between the west and the 

north-east strongly depended on atmospheric stability. 

 

The footprint-weighted surface characteristics, calculated with Eq. (2) for the cases detailed in Table 2, further demonstrate 

the landscape heterogeneity-induced variations. The effective LAI originating from the footprint-weighting of the LAI map 5 

showed a strong dependency on wind direction: in the neutral case, for example, 〈LAI〉 ranged from 0.19 to 0.64 m
2
 m

-2
 (Fig. 

4a). In the unstable case, the direction dependency was similar; however, 〈LAI〉 was up to 0.12 m
2
 m

-2
 lower than in neutral 

conditions due to the dominance of bare ground in the vicinity of the EC tower in the north-western sector (Fig. 1a). As 

averaged over all directions, here assumed equally frequent, 〈LAI〉 was in all stability cases somewhat higher than the 

arithmetic areal average (Fig. 4a). Due to the directional variations in 〈LAI〉, the maximum sensor location bias (∆LAI, Eq. 5) 10 

may exceed 90 % in the direction of the maximum 〈LAI〉.  

 

Based on a corresponding footprint-weighting, an effective mean value could also be determined for terrain elevation (Fig. 

4b). This shows that, even though the topographic variability within the flux footprint was small, slightly different terrain 

elevation patterns are associated with each flux measurement depending on both wind direction and stability. The sensor 15 

location bias for elevation was negative in almost all flow conditions, as the elevation is on average lower within the area 

that typically dominates the flux footprint (Figs. 1b and 4b). The area of predominantly bare ground was also apparent in the 

effective TWI (Fig. 4c). In the east-to-south sector, the differences between the stability classes are due to the higher TWI 

values determined along the coast (Fig. 1d) that gain in importance in stable conditions. Between the south-west and the 

north-west, in contrast, 〈TWI〉 was higher in unstable conditions, which results from the more pronounced influence of the 20 

brook running nearby the EC tower. The footprint-weighted TWI averaged over all directions was, in all cases, close to the 

arithmetic area average, with the magnitude of the corresponding ∆TWI being lower than 30 % (Fig. 4c). 

 

In addition to the examples presented above, we demonstrated the heterogeneity of the Tiksi landscape by calculating the 

mean LAI and LCC contributions from the time series of EC measurements adopted for the present analysis. Fig. 1a shows 25 

the footprint climatology for the growing season 2014, depicted as the smallest bounded region containing the surface 

elements that contribute to EC measurements by a certain fraction (Eq. S1 in the Supplement). This source area is clearly 

asymmetric, and comparison with the data in Table S1 (in the Supplement) indicates that the source area is more limited than 

the corresponding area in typical neutral conditions; i.e., it effectively reflects slightly unstable conditions. Weighting the 

LAI distribution by the mean footprint resulted in a bias of ∆LAI= 20.2 %. For comparison, this is much larger than the bias 30 

in the normalized vegetation difference index (NDVI) estimated for EC sites in northern China: at the 1 km
2
 scale, ∆NDVI 

ranged from –6.9 to 4.2 % at eight sites with low vegetation, and even at a land model scale of 300 km
2
 the mean absolute 

∆NDVI was not more than 6.5 % (Wang et al., 2016). Notwithstanding such a high degree of agreement, one of the sites was 
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considered “disturbed”. In another study, the EC measurements at two sites with a ∆NDVI of less than 4 % reported for the 1 

km
2
 scale were considered unbiased, while a ∆NDVI of 28 % determined for a grassland site was judged as problematic; the 

mean NDVI, and hence ∆NDVI, was very similar up to the maximum scale of 4 km
2
 investigated  (Kim et al., 2006). 

 

For most of the LCCs at Tiksi, the field of view of the EC sensors averaged over the growing season clearly differed from 5 

the areal coverage of the LCCs within the study area (Table 4; see also Fig. S4 in the Supplement for the effect of wind 

direction and stability). Here we have excluded the large marine areas, which have a minor weight in the EC data. The 

difference is still largest for the water LCC, as the freshwater bodies are concentrated on the fringes of the study area, and for 

the flood meadow category with a limited coverage. However, there were also major differences among the dominating 

terrestrial classes, such as shrub tundra and wet fen: the surface elements attributed to these LCCs contributed to the EC 10 

observations less (by 40 %) than their total areal coverage would suggest. 

 

If the areal LCC proportions were calculated within the non-circular area defined by the 90 % cumulative footprint (Fig. 1a), 

some of these proportions changed dramatically (Table 4). We also included in the comparison the LCC distributions for a 

35.8 km
2
 area (Fig. S2 in the Supplement). Compared to this, the study area has a similar coverage of fens, bare ground and 15 

lichen tundra, whereas the water and shrub tundra LCCs are under-represented and bogs and graminoid tundra over-

represented. Overall, these results demonstrate the multiscale heterogeneity of the site and indicate that here the 

representativeness cannot be described as a proportional coverage of a single target LCC in the footprint climatology, as is 

the case for most EC sites (Göckede et al., 2008). 

3.2 Land cover group-specific CH4 fluxes 20 

The parameters of the regression model introduced in Sect. 2.3.2 were estimated with OLS for the LCC aggregation 

presented in Sect. 2.3.1. As this produced model residuals that exhibited both heteroscedasticity and autocorrelation (White 

LM test statistic 𝑀𝑅2 = 92 > 𝜒0.99(9)
2 , Breusch–Godfrey LM test statistic (𝑀 − 1)𝑅2 = 117 > 𝜒0.99(1)

2 ), the confidence 

intervals were based on the Newey–West estimator. Even when these (larger) confidence intervals were introduced, all the 

estimated parameters except for the constant, i.e., those representing aggregated LCCs with expected CH4 exchange, proved 25 

to be statistically different from zero (𝑝 < 0.05; Table 5). The results were also in perfect accord with our qualitative 

hypothesis on CH4 flux variability among the LCCs: the model could differentiate between the high emitters, moderate 

emitters and sinks without any explicit prior information on this pattern. Concerning the quantitative differences, Treat et al. 

(2018) reported the same degree of spatial variation (standard deviation/mean = 155 %) in the modelled annual CH4 fluxes 

on low Arctic tundra, highly heterogeneous similarly to Tiksi, and showed that the differences among LCCs clearly 30 

dominate over the interannual variation in the regional CH4 fluxes. 
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The temporal variation of the estimated 30 min ecosystem-scale CH4 fluxes was consistent with observations, even though it 

is obvious that the full range of variability, most notably the peak values, could not be reproduced (𝑅2 = 0.797,  RMSE = 

0.0994 μg CH4 m
-2

 s
-1

, MAE = 0.0686 μg CH4 m
-2

 s
-1

; Fig. S5 in the Supplement). However, part of this variation arose from 

measurement noise, and in this context it is crucial that the mean fluxes were modelled accurately also when considering the 

strong wind direction dependence of observations (Fig. 5). Estimated from the mean fluxes of binned data shown in Fig. 5, 5 

the variance related to wind direction accounted for up to 80 % of the total variance of measured fluxes. This dependence, 

obviously generated by the systematic LCC variations within the flux footprint (Fig. 3), is a key pattern in this data set and 

must be taken into consideration when calculating representative CH4 balances (Aurela et al., 2015). The model residuals 

differed significantly ( 𝑝 <  0.05) from zero only in a narrow southeastern wind sector, where the model slightly 

overestimated the fluxes. The 10-fold cross-validation statistics show that the model performed against independent data 10 

only marginally worse than the fit to the full data set (𝑅2 = 0.794, RMSE = 0.1000 μg CH4 m
-2

 s
-1

, MAE = 0.0691 μg CH4 m
-

2
 s

-1
). 

 

Forbrich et al. (2011) have shown that the footprint variations dominate the short-term (hourly to daily) variations in the CH4 

flux on a boreal fen with a pronounced flark–lawn–hummock structure, while soil temperature only explains the seasonal 15 

trend. As 80 % of the CH4 flux variance at Tiksi was explained by the variation in the proportions of the LCCs contributing 

to the measurement, we can expect a similar pattern, i.e., a limited role of other environmental controls in the short-term 

variability (30 min data). The linear correlation between CH4 flux and soil temperature (at 10 cm depth) was indeed weak 

(𝑅2 = 0.101) and did not get any stronger for an exponential fit or if one considered the model residual, i.e. the unexplained 

part of observation. For 𝑢∗, this correlation was even weaker (𝑅2 = 0.053); 𝑢∗ acts as a measure of turbulence that affects 20 

surface diffusion and ebullition and has been found to explain a major part of the CH4 flux variance observed on polygonal 

tundra (Sachs et al., 2008). Our results also contrasted with the findings of Parmentier et al. (2011) who, similarly to our 

study, observed a major effect of wind direction on the CH4 flux measured on Siberian tundra but were also able to relate the 

short-term flux variation to environmental variables, including atmospheric stability. In that study, however, the LCC 

proportions were not used as an explanatory factor, but the data were grouped according to the wind sector characterized by 25 

qualitative soil wetness (“wet”, “dry” and “ mixed”), and environmental responses were determined separately for these 

groups. On the other hand, Tagesson et al. (2012) found that the only significant factor controlling the CH4 flux on a wet 

tundra ecosystem in north-east Greenland was the relative contribution of fen areas, indicating that the controls are site-

specific and that any turbulence-related dependency may partly reflect footprint variations, in addition to the actual control 

of surface exchange processes. 30 

 

Chamber-based CH4 flux measurements would constitute the most logical means for validating the estimated LCC-specific 

fluxes. As explained in Sect. 2.1.2, some chamber data were available for the period of the EC data but their temporal and 

spatial coverage were limited. Despite the limitations, these measurements lend support to our EC-based results shown in 
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Table 5: the two wet fen plots were strong CH4 emitters with observed fluxes of 0.56 and 3.8 μg CH4 m
-2

 s
-1

, while the mean 

CH4 emission from dry fen plots ranged from 0.06 to 0.67 μg CH4 m
-2

 s
-1

 (mean 0.25 μg CH4 m
-2

 s
-1

) (Vähä, 2016). The LCC 

group-specific fluxes (Table 5) were also in accordance with the extensive synthesis of chamber-based CH4 flux 

measurements across permafrost zones conducted by Olefeldt et al. (2013). Their database indicates that the mean flux at 

peatland sites during the growing season ranges from 0.03 μg CH4 m
-2

 s
-1

 on dry tundra to 0.75 μg CH4 m
-2

 s
-1

 on wet tundra 5 

(medians of site-specific fluxes), while the mean flux at the sites classified as permafrost fen is within 0.48–1.70 μg CH4 m
-2

 

s
-1

 at 50 % of the sites. The micrometeorological measurements that integrate over the heterogeneity of tundra landscape 

typically show lower CH4 fluxes. For example, Sachs et al. (2008) and Wille et al. (2008) measured a mean emission of 0.22 

μg CH4 m
-2

 s
-1

 from polygonal tundra in the Lena River delta in July–August (in 2004 and 2006), which is close to our mean 

flux (0.21 μg CH4 m
-2

 s
-1

 in July–August 2014). Seven other comparable Arctic tundra sites in Siberia, Alaska and Greenland 10 

had a mean summer flux within the range of 0.13–1.05 μg CH4 m
-2

 s
-1

 (Fan et al., 1992; Friborg et al., 2000; Zona et al., 

2009; Parmentier et al., 2011; Tagesson et al., 2012; Castro-Morales et al., 2018). These data also show that variation among 

sites can be much larger than the interannual variation at a site. 

 

The sink efficiency estimated for the mineral soil LCCs at Tiksi (–0.131 ± 0.042 μg CH4 m
-2

 s
-1

, 95 % confidence interval) 15 

seems high in comparison to previous data (Turetsky et al., 2014; Lau et al., 2015; Jørgensen et al., 2015; D’Imperio et al., 

2017). However, this estimate is consistent with the measured EC fluxes and thus not an artefact of the modelling procedure. 

This can be observed by inspecting the cases in which the proportion of the assumed sink LCCs in the flux footprint exceeds 

80 % (within the wind direction sector of 330–360). By ignoring the other LCCs, we obtained an apparent mean CH4 flux 

of –0.109 μg CH4 m
-2

 s
-1

 for these cases, while the corresponding modelled (for all LCCs) and measured fluxes were –0.093 20 

and –0.094 μg CH4 m
-2

 s
-1

, respectively. Furthermore, the chamber measurements conducted on bare ground at the site in 

summer 2014 yielded a consistent mean of –0.12 μg CH4 m
-2

 s
-1

 (Vähä, 2016). 

 

So far, our discussion has been based on fluxes averaged over the whole study period of eight weeks. The weekly resolved 

LCC group-specific fluxes, however, indicate that there was temporal variation in CH4 emissions that was not generated by 25 

footprint dynamics (Fig. 6). Most notably, the drier fens (dry fen LCC, and wet fen LCC with a low TWI) showed only weak 

emissions in the beginning of the period. The maximum emissions occurred during the two-week period around mid-August 

(9–22 August); these emissions were on average 0.44 ± 0.14 μg CH4 m
-2

 s
-1

 for the “Moderate source” LCC group and 1.00 ± 

0.10 μg CH4 m
-2

 s
-1

 for the “Strong source” LCC group. The weekly averages of model residuals during the whole study 

period were positively correlated with the corresponding soil temperatures, but the correlation was not statistically 30 

significant (𝑅2 = 0.444, 𝑝 = 0.102). However, the maximum emissions occurred when soil temperatures were highest, ca. 5 

C (at 10 cm depth), in 9–22 August. During this period, the LAI of vascular plants on the fens and graminoid tundra was 

still high, even though already declining on the fens (Juutinen et al., 2017). The positive correlation between the vascular 

LAI of graminoid tundra and the weekly model residuals (𝑅2  = 0.556, 𝑝  = 0.054) points to the role of both primary 
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production and plant-mediated CH4 transport, associated with the close relationship between LAI and the maximum 

photosynthesis rate (Laurila et al., 2001; Street et al., 2007) and the dominance of aerenchymatous plants (Bridgham et al., 

2013). However, the depth of the active layer also increased during the study period in some soils, especially in dry fens, but 

the data are too limited for statistical analysis of this effect (Mikola et al., 2018). 

3.3 Upscaled CH4 fluxes 5 

By upscaling the mean CH4 fluxes estimated for the LCC groups, we estimated the effect of the EC tower location on the 

spatial representativeness of the mean CH4 flux observed during the growing season of 2014 (0.208 μg CH4 m
-2

 s
-1

). In other 

words, adopting the data shown in Table 5 as a reference for the CH4 flux averaged over the study area, we could calculate 

the sensor location bias for CH4 flux (Fig. 5) similarly to the results shown in Sect. 3.1 for LAI, terrain elevation, TWI and 

LCC proportions. As the relative area of the coastal waters is significant within the study area but minor in the average flux 10 

footprint (Fig. 1, Table 4), these areas were excluded from the upscaling domain. 

 

Calculating the sensor location bias for CH4 flux equals to a linear transformation of the observed fluxes. Thus the 

pronounced directional dependence of CH4 fluxes translates into an equally pronounced variation in this bias estimate, which 

ranged approximately from –200 to 400 % for individual data points and from –170 to 230 % on average (Fig. 5). The bias 15 

was smallest in eastern and western wind directions. However, the effective LCC composition is very different in these 

directions, with a much smaller coverage of fens in the west (Fig. 3). 

 

The areally averaged CH4 flux depended on the upscaling domain in a non-monotonous manner (Fig. 7). The uncertainty of 

the mean measured CH4 flux (Sect. 2.3.2) was small (0.007 μg CH4 m
-2

 s
-1

) due to a large number of observations and was 20 

ignored in Fig. 7b. Defining the reference area as a function of the radius of a circular area centred at the EC tower, the 

magnitude of sensor location bias was less than 10 % for the distances of ca. 640–1350 m. Acknowledging the statistical 

uncertainty in the upscaled fluxes, determined from the LCC group-specific uncertainty estimates (Table 5), the measured 

mean flux was within the 95 % confidence interval for distances larger than ca. 600 m. For the primary study area, the mean 

bias during the growing season was 13.9 % and the corresponding 95 % confidence interval was [–0.3 %, 32.9 %] (Table 6). 25 

While formally the overestimation of EC measurements of the CH4 flux averaged over the study area was not statistically 

significant (𝑝 > 0.05), the estimated sensor location bias would be lower if the study area were originally defined by a radius 

of 800–1000 m (Fig. 7). Here we do not suggest that the study area should be defined post hoc but advocate a footprint-based 

analysis to assess the representativeness of measurements at different spatial scales. Adopting the regional upscaling area of 

35.8 km
2
 as the reference results in a sensor bias of 30 % [12 %, 55 %] for the CH4 flux (Table 6). 30 

 

Even though the coverage of our nine basic LCCs clearly differed from their footprint-weighted contributions (Table 4), the 

four LCC groups aggregated according to the assumed CH4 emission potential of LCCs covered areas rather similar to those 
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within the original study domain (Table 6). Within the regional upscaling area of 35.8 km
2
, the strong emitters were less 

common, but the total flux was only 13 % lower than within the original study area. On the other hand, freshwater bodies 

occupy a larger relative area (Table 4). These were included here in the “Moderate source” LCC group, but the actual 

emissions from these ecosystems could not be estimated as their total area within the flux footprint is minute. Nevertheless, 

there is increasing evidence that Arctic lakes and ponds emit significant amounts of CH4 (Wik et al., 2016). At all scales, it 5 

was necessary to allow for the sink areas that play a significant role in the upscaled balance. However, the agreement of CH4 

fluxes between different scales may be considered somewhat fortuitous and implies little about carbon dioxide and other 

scalar fluxes that have different spatial patterns. 

3.4 Methodological issues 

Our results obviously depend on the quality of the land cover classification. The LCC accuracy assessment indicates that 10 

especially the flood meadow LCC is poorly classified (Mikola et al., 2018); however, this LCC only appears along the brook 

and has a very limited coverage. More importantly, the dry fen, wet fen and graminoid tundra pixels may be partly mixed up. 

The field data and multivariate data analysis of Mikola et al. (2018) indicate that the variation in plant functional type 

composition within these LCCs indeed overlap, which impairs the classification of the “Strong source” and “Moderate 

source” LCC groups and effectively precludes modelling that resolves individual LCCs. On the other hand, the large areas of 15 

bare ground and lichen tundra with low organic soil content, i.e., the assumed CH4 sink areas, can be identified reliably 

(Mikola et al., 2018).  

 

Despite the uncertainties, the land cover classification allowed us to meaningfully group the surface elements according to 

their CH4 exchange potential. This relationship shows that the LCC reflects the integrated effect of a range of processes that 20 

control net production and efflux of CH4, such as the availability of substrates and gas transport routes (Davidson et al., 

2016, 2017). Thus a vegetation classification based on VHSR satellite imagery provided us with a straightforward means of 

upscaling the average LCC group-specific fluxes. As the predominant part of CH4 flux variance resulted from the varying 

contributions of different LCCs, we did not consider additional environmental controls. Such simplicity is welcome since 

statistically robust EC-based flux estimates for scales exceeding the flux footprint would require spatial replication with 25 

multiple EC towers (Hill et al., 2017). Our approach serves as an alternative to a common method of deriving LCC-specific 

data from (a typically more limited set of) flux chamber measurements and upscaling these either directly (e.g., Schneider et 

al., 2009; Davidson et al., 2017) or by first modelling their temporal variation (e.g., Marushchak et al., 2016). Matthes et al. 

(2014) showed that more nuanced insights into the spatial drivers can be achieved by the use of multiple EC towers and 

periodic remote sensing images and by examination of both the abundance and spatial fractal structure of vegetation. 30 

 

Even though the KM model constitutes an appropriate tool for describing turbulent transport over an aerodynamically 

smooth surface such as tundra, any footprint estimate involves both structural and input-related modelling uncertainties. The 
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KM model has been tested by Kljun et al. (2003), Marcolla and Cescatti (2005), Neftel et al. (2008) and Arriga et al. (2017) 

against experimental data and more complex footprint models. All these studies conclude that the KM model performs well, 

but we note here that there may be a tendency for too smooth footprint distributions in the along-wind direction. As pointed 

out in Sect. 2.3.1, we did not try to explicitly estimate the errors related to the flux footprints but assumed that the confidence 

intervals determined for the LCC group-specific fluxes reflect the overall uncertainty contained in any data employed in the 5 

statistical model. Because of this approach, the uncertainty of the results shown in Figs. 3 and 4 could not be quantified. 

Overestimation of footprint distribution in larger distances would mean that the contribution of graminoid tundra might be 

slightly underestimated and that of shrub tundra overestimated as the proportions of these LCCs have a rather systematic 

dependency on the distance from the EC mast. If the overall LCC heterogeneity of a site became more apparent when 

viewing it as a function of distance rather than direction, our statistical method would be more dependent on the footprint 10 

model and the results would probably be more uncertain. 

 

We obtained statistically significant estimates for the LCC group-specific fluxes when employing the whole data set of eight 

weeks, but the performance of the model was observed to deteriorate as the number of data was reduced. This can be 

observed from the weekly results (Fig. 6), in which the confidence intervals are temporally varying and larger than those for 15 

the whole data set; in some cases, the results were not consistent with the original flux hypotheses (at the chosen significance 

level). As wind direction is the primary control of the flux footprint, and consequently the LCC proportions associated with 

EC measurements (Fig. 3), it is necessary that the variation in wind directions during each period sufficiently covers all the 

relevant LCCs. This obviously depends on the degree and nature of LCC heterogeneity at the site in question. In our weekly 

results for Tiksi, the directional coverage was clearly incomplete during 16–22 August 2014, when there were few 20 

observations for the sector extending from the north-west to the south-east, leading to uncertain flux estimates for that 

particular period (Fig. 6). Nevertheless, the LCC group-specific fluxes estimated on a weekly basis improved the overall 

model performance during the whole study period (𝑅2 = 0.836, RMSE = 0.0894 μg CH4 m
-2

 s
-1

, MAE = 0.0619 μg CH4 m
-2

 

s
-1

). 

 25 

While the weekly results indicated that there is temporal variation in the LCC group-specific fluxes, the longer-term 

upscaling was rather insensitive to temporal resolution of these data. The weekly values produced an upscaled flux of 0.162 

± 0.063 μg CH4 m
-2

 s
-1

 for the original study area, i.e., only slightly lower (by 11 %) but much more uncertain estimate than 

the one obtained for the whole data set (Table 6). 

 30 

We suggest that estimation of LCC-specific fluxes, accomplished here with a regression model, provides a new avenue to 

filling the inevitable gaps in the measurement data time series. This proposition is supported by the good out-of-sample 

validation statistics obtained (Sect. 3.2), as holding the validation data out during parameter estimation is equivalent to 

generating missing data that need to be gap-filled. This kind of an approach is potentially applicable to those data gaps that 
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are related to the gas concentration measurement, for example due to malfunctioning of the gas analyser, i.e., gaps that 

appear in the CH4 flux data but not in the momentum and sensible heat fluxes. 

 

Another methodological implication of our results concerns the definition of a study area. It is customary to report a “site 

description” that documents the key ecological characteristics of the area of interest. Within a homogeneous environment, 5 

collating the necessary site data is straightforward in terms of statistical representativeness because the outcome is 

insensitive to the spatial sampling design. Furthermore, the representativeness of EC measurements can be simply assessed 

by considering the coverage of a single target LCC within the flux footprints. In heterogeneous environments, however, there 

is a risk for a serious mismatch between the EC flux measurements and the site data, even in cases of an unbiased description 

of the study area. Our results show that the land cover type composition sampled by the EC measurement was significantly 10 

different from the actual LCC coverage within our study area, which as such was originally chosen to be consistent with the 

dimensions of a typical flux footprint and considered characteristic of the landscape. 

4 Conclusions 

The eddy covariance flux measurement technique is commonly considered to have an advantageous spatial averaging 

property, sometimes to the extent that it is assumed to “provide an accurate integration of the overall flux from the 15 

[heterogeneous] ecosystem” (Turner and Chapin III, 2006). However, this notion is limited and potentially misleading as a 

universal premise, since this integration process involves differential weighting within a temporally varying flux footprint, a 

well-known but frequently overlooked feature of EC measurements, which we in the present study demonstrated and 

quantified for a heterogeneous tundra site in northeastern Russia. The CH4 fluxes measured at Tiksi were highly variable due 

to the variation in vegetation composition and soil wetness within the landscape around the EC tower. During summer 2014, 20 

the bias of observations with respect to the upscaled flux varied strongly with wind direction, ranging from –170 to 230 % on 

average. 

 

By combining VHSR satellite imagery and footprint modelling, we could statistically estimate the contribution of the main 

land cover types to EC measurements. Methane emissions mainly originated from wet fen and graminoid tundra patches in 25 

locations with topography-enhanced soil wetness, where conditions are favourable for CH4 production and efflux (mean flux 

1.0 μg CH4 m
-2

 s
-1

 during the two-week peak period). Another noteworthy feature is that the areas of bare soil and lichen 

tundra acted as strong CH4 sinks (–0.13 μg CH4 m
-2

 s
-1

 during the summer). Despite the ecosystem heterogeneity and 

directional variations in the point-to-area representativeness of EC measurements, the mean CH4 flux measured during this 

season can be considered unbiased, and even more so if the present area of interest were halved, i.e., considered to extend up 30 

to 1 km from the EC tower. On the other hand, the measured fluxes overestimate the regional (35.8 km
2
) balance by 30 %. 
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Even though the EC-sampled LCC distribution proved to be representative in terms of the mean CH4 flux during a growing 

season, the small-scale heterogeneity at the site was so high as to result in rather unfavourable representativeness metrics for 

key land cover features such as LAI and LCC fractions. This suggests that it would generally be beneficial to present a more 

integrated site and flux data description than what has been considered standard, i.e., to also include data on footprint-

weighted surface attributes and point-to-area representativeness. 5 

 

In a follow-up study, we will investigate longer-term CH4 flux data from Tiksi to better understand the seasonal and 

interannual variations and their environmental controls. These data will also make it possible to further assess the statistical 

method suggested here, including its use as a gap-filling tool. Furthermore, we anticipate that flux sites with more than one 

EC tower provide new opportunities for the estimation of LCC-specific fluxes (e.g., Matthes et al., 2014; Hill et al., 2017); 10 

more advanced inverse modelling techniques should be explored for this. 
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Table 1. Land cover classes and their dominating vegetation and other characteristics, derived from Juutinen et al. (2017) 

and Mikola et al. (2018). 

Class Peat layer Mosses and lichens Vascular plants Other 

     

Wet fen yes sparse wet brown 

moss cover 

sedge-dominated high water table, water pools 

     

Dry fen yes dense Sphagnum 

cover, some wet 

brown mosses 

some sedges and dwarf 

shrubs 

water table below moss layer 

     

Bog yes Sphagnum-dominated dwarf shrubs, Betula nana hummock-hollow surface pattern 
     

Graminoid tundra no some feather mosses graminoid-dominated; other 

vascular plants may occur 

 

     

Flood meadow no some wet brown 

mosses, no 

Sphagnum 

graminoid-dominated; herbs, 

willows 

brookside spring flooding area 

     

Shrub tundra no feather moss cover, 

no Sphagnum; some 

lichens 

dwarf shrubs, Betula nana  

     

Lichen tundra no lichen-dominated; 

some feather mosses 

some herbs and dwarf shrubs alternates with bare ground  

     

Bare ground no   non-vegetated 
     

Water no   sea, freshwater bodies 
     

  5 
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Table 2. Flow conditions assumed for the example calculations. 

Case 𝐿−1 (m
-1

) 𝑢∗ (m s
-1

) 𝜎𝑣 (m s
-1

) 𝑈 (m s
-1

) 

     

Unstable –0.2 0.15 0.35 1.8 

Neutral 0 0.40 0.92 5.7 

Stable 0.1 0.10 0.23 1.8 

     

 

 5 

 

Table 3. Aggregated land cover classes for the regression model. 

LCC group description LCCs included 

  

Strong source Wet fen, TWI > 4 

Graminoid tundra, TWI > 4 

  

Moderate source Wet fen, TWI ≤ 4 

Dry fen 

 Water, above sea level 

  

Sink Bare ground 

 Lichen tundra 

  

Neutral Other 
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Table 4. Proportions (%) of different land cover classes as weighted by the mean footprint function during the growing 

season (“Weighted”) and their areal coverages within the study area (“Area”), within the source area defined by the 90 % 

cumulative footprint (“Area, 90 %”, Fig. 1a) and within a 35.8 km
2
 region (“Region”, Fig. S2 in the Supplement). The 5 

marine areas are excluded, and the integrated footprint within the study area is scaled to 100 %. 

Land cover class Weighted Area Area, 90 % Region 

Wet fen 9.0 17.7 15.1 16.4 

Dry fen 17.0 12.8 10.3 11.6 

Bog 17.8 12.8 23.0 9.1 

Graminoid tundra 11.7 6.6 11.6 3.4 

Flood meadow 3.3 0.7 1.4 0.4 

Shrub tundra 12.8 21.1 18.2 27.4 

Lichen tundra 15.1 12.4 10.9 11.1 

Bare ground 13.0 13.6 8.0 15.3 

Water 0.2 2.3 1.4 5.3 

     

Total 100.0 100.0 100.0 100.0 

 

 

 

Table 5. Estimated CH4 fluxes for the aggregated land cover classes. 10 

LCC group description CH4 flux (μg CH4 m
-2

 s
-1

) 95 % confidence interval (μg CH4 m
-2

 s
-1

) 

   

Strong source   0.949 [0.871, 1.028] 

   

Moderate source   0.264 [0.180, 0.348] 

   

Sink –0.131 [–0.172, –0.089] 

   

Neutral –0.007 [–0.035, 0.021] 
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Table 6. Upscaling of CH4 fluxes (μg CH4 m
-2

 s
-1

) based on the LCC group-specific flux data shown in Table 5. 

 

LCC group Study area
a
 

(6.3 km
2
) 

  Region
a
 

(35.8 km
2
) 

 Coverage
b
 (%) Flux

c
   Coverage (%) Flux 

Strong source 17.7 0.168 

(91.8 %) 

  15.1 0.144 

(89.8 %) 

       

Moderate source 19.5 0.052 

(28.3 %) 

  20.3 0.054 

(33.5 %) 

       

Sink 26.0 –0.034 

(–18.6 %) 

  26.4 –0.035 

(–21.6 %) 

       

Neutral 36.8 –0.003 

(–1.4 %) 

  38.1 –0.003 

(–1.7 %) 

     

Upscaled flux
d
 0.183 

[0.156, 0.209] 
  

0.160 

[0.134, 0.186] 

 

a “Study area” refers to the circle with a radius of 1.4 km centred at the EC mast; “Region” is shown in Fig. S2 (in the Supplement). 5 

b Marine areas are excluded from upscaling. c Calculated as LCC group-specific flux × relative coverage. The value in parentheses equals 

this flux divided by the upscaled flux. d The values in square brackets indicate the 95 % confidence interval. 
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Figure 1. Land cover classes and the mean cumulative footprint during the growing season of 2014 (a), maximum leaf area 5 

index (on 12 August 2012) (b), terrain elevation (c) and topographic wetness index for terrestrial surfaces (d). The isophlets 

in (a) indicate the areas with a 25, 50, 75 and 90 % contribution to the measured flux (only the further distance visible). The 

plus sign indicates the location of the EC tower.  
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Figure 2. Distribution of the aggregated land cover classes (excluding marine areas). 

  5 
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Figure 3. Proportion of different land cover classes in the flux footprint as a function of wind direction for the three flow 5 

condition cases specified in Table 2. The rightmost panel shows the relative coverage of these classes within the study area 

(%).  
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 5 

Figure 4. The footprint-weighted and areally averaged leaf area index (a), terrain elevation (b) and topographic wetness 

index (c) as a function of wind direction for the three flow condition cases specified in Table 2. The right-hand ordinate 

indicates the corresponding sensor location bias. 
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Figure 5. Measured and modelled CH4 fluxes as a function of wind direction (left axis). The averaged data were calculated in 

50 direction classes. The right axis indicates the sensor location bias of the measured data shown (both individual points and 5 

the mean) with respect to the mean upscaled flux within the study area (0.183 μg CH4 m
-2

 s
-1

). 
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Figure 6. Estimates of the LCC group-specific fluxes calculated from weekly data (1 = 5–11 July; 2 = 12–18 July; 3 = 19–25 

July, data missing; 4 = 26 July –1 August; 5 = 2–8 August; 6 = 9–15 August; 7 = 16–22 August; 8 = 23–29 August). The 5 

vertical bars indicate the 95 % confidence intervals. 
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Figure 7. Upscaled CH4 flux within a circular area as a function of the distance from the EC tower (left) and the 

corresponding sensor location bias according to Eq. (5) (right). The red line indicates the mean measured flux. The shaded 5 

areas represent the 95 % confidence intervals. 


