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Abstract 24 

The distribution and dynamics of dissolved organic carbon (DOC) and dissolved combined 25 

neutral sugars (DCNS) were studied across an increasing oligotrophic gradient (-18 to -22°N 26 

latitude) in the Tropical South Pacific Ocean, spanning from the Melanesian Archipelago (MA) 27 

area to the western part of the South Pacific gyre (WGY), in austral summer, as a part of the 28 

OUTPACE project. Our results showed DOC and DCNS concentrations exhibited no statistical 29 

differences between the MA and WGY areas (0-200 m: 47-81 µMC for DOC and 0.2-4.2 µMC 30 

for DCNS). However, due to a deepening of the euphotic zone, a deeper penetration of DOC was 31 

noticeable at 150 m depth at the WGY area. This finding was also observed with regard to the 32 

excess-DOC (DOCEX), which was determined as the difference between surface and deep-sea 33 

DOC values. Euphotic zone integrated stocks of both DOC and DOCEX were higher in the WGY 34 

than the MA area. Considering DOCEX as representative of the semi-labile DOC (DOCSL), its 35 

residence time was calculated as the DOCSL to bacterial carbon demand (BCD) ratio. This 36 

residence time was 176 ± 43 days (n = 3) in the WGY area, about three times longer than in the 37 

MA area (Tr = 51 ± 13 days (n = 8)), suggesting an accumulation of the semi-labile dissolved 38 

organic matter (DOM) in the surface waters of WGY. Average epipelagic (0-200 m) DCNS 39 

yields (DCNS x DOC-1), based on volumetric data, were roughly similar in both areas, 40 

accounting for ~2.8% of DOC. DCNS exhibited a longer residence time in WGY (Tr = 91 ± 41 41 

days, n = 3) than in MA (Tr = 31 ± 10days, n=8) further suggesting that this DCNS pool persists 42 

longer in the surface waters of the WGY. The accumulation of DOCEX in the surface waters of 43 

WGY is probably due to the very slow bacterial degradation due to nutrient/energy limitation of 44 

heterotrophic prokaryotes indicating that biologically produced DOC can be stored in the 45 

euphotic layer of the South Pacific gyre for a long period.  46 
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1. Introduction 47 

  48 

Gyres are oceanic deserts similar to those found in continental landscapes spanning an area  of 49 

several thousands of Km and are characterized by low nutrient content and limited productivity 50 

(Raimbault et al., 2008; D’Hondt et al., 2009; Bender et al., 2016; de Verneil et al., 2017, 2018). 51 

Moreover, gyres are now considered as the world’s plastic dumps (Law et al., 2010; Eriksen et al., 52 

2013; Cozar et al., 2014), whereas their study may us help to understand future climate changes (Di 53 

Lorenzo et al., 2008; Zhang et al., 2014) and marine ecosystem functioning (Sibert et al., 2016; 54 

Browing et al., 2017). Among the five well-known oceanic gyres the South Pacific gyre, although 55 

the world’s largest, has been less extensively studied mainly due to its remoteness from the main 56 

landmasses. Nonetheless, earlier studies indicated that Western Tropical South Pacific (WTSP) is a 57 

hot spot of N2 fixation (Bonnet et al., 2013; Bonnet et al., 2017; Caffin et al., 2018) and recent 58 

studies have shown that there is a gradient of increasing oligotrophy from WTSP to the western part 59 

of the Pacific gyre (Moutin et al., 2018). The ultra-oligotrophic regime is reached in the center of 60 

the gyre, and then it decreases within the eastern part of the gyre toward the Chilean coast (Claustre 61 

et al., 2008) with high residual phosphate concentrations in the center of the gyre (Moutin et al., 62 

2008). 63 

Recent studies indicated that efficient DOC export in the subtropical gyres is related with the 64 

inhibition of DOC utilization under low-nutrient conditions (Letscher et al., 2015; Roshan and 65 

DeVries, 2017). Similar patterns have been observed for the oligotrophic Mediterranean Sea 66 

(Guyennon et al., 2015). However, little information exists regarding dissolved organic matter 67 

(DOM) dynamics in the south Pacific gyre particularly for its semi-labile component (accumulation, 68 

export, fate), which is mainly represented by carbohydrates (Sempéré et al., 2008; Goldberg et al., 69 

2011; Carlson and Hansell, 2015).  70 

Among the three well-identified chemical families (amino acids, lipids and carbohydrates) in 71 
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seawater, carbohydrates are the major components of organic matter in surface and deep waters 72 

accounting for 5-10% and < 5% of dissolved organic carbon (DOC), respectively as shown by 73 

liquid chromatography (Benner, 2002; Panagiotopoulos and Sempéré, 2005 and references therein). 74 

The carbohydrate pool of DOC consists of free monosaccharides, oligosaccharides and 75 

polysaccharides. Major polysaccharides are constituted by dissolved combined neutral sugars 76 

(DCNS), which are generally measured as their monosaccharide constituents (sum of fucose, 77 

rhamnose, arabinose, galactose, glucose, mannose and xylose) after acid hydrolysis (McCarthy et 78 

al., 1996; Aluwihare et al., 1997; Skoog and Benner, 1997; Kirchman et al., 2001; Panagiotopoulos 79 

and Sempéré, 2005). Other minor carbohydrate constituents of DOC include the amino sugars 80 

(glucosamine, galactosamine and muramic acid; Benner and Kaiser, 2003), uronic acids (glucuronic 81 

and galacturonic acids; Hung et al., 2003; Engel and Handel, 2011), methylated and dimethylated 82 

sugars (Panagiotopoulos et al., 2013), heptoses (Panagiotopoulos et al., 2013) and sugar alcohols 83 

(Van Pinxteren et al., 2012).   84 

Free monosaccharide concentrations range from 10 to100 nM; they account < 10% of total 85 

dissolved neutral sugars (TDNS), and experiments have shown that they are rapidly utilized 86 

(minutes to hours) by bacterioplankton and as such they are considered as labile organic matter 87 

(Rich et al., 1996; Skoog et al., 1999; Kirchman et al., 2001). Polysaccharide or dissolved combined 88 

neutral sugars (DCNS) concentrations range from 200-800 nM; they account for 80-95% of TDNS 89 

and experiments have shown that they disappear within time scales of days to months and, as such, 90 

they are considered as labile and semi-labile organic matter (Aluwihare and Repeta, 1999; Carlson 91 

and Hansell, 2015 and references therein). Other studies have shown that this labile and/or semi-92 

labile organic matter accumulates in the surface ocean and may potentially be exported to depth 93 

contributing to the ocean carbon pump (Goldberg et al., 2010; Carlson and Hansell, 2015).  94 

In the frame of the OUTPACE project we studied DOM dynamics in terms of DOC and DCNS 95 

composition and tried to evaluate their residence time. The results are presented and discussed 96 
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along with heterotrophic prokaryotic production in order to better understand the bacterial cycling 97 

of DOM  in the region.  98 

 99 

2. Materials and Methods 100 

2.1 Sampling 101 

Sampling took place along a 5500 Km transect spanning from New Caledonia to French 102 

Polynesia in the WTSP aboard the R/V L’Atalante during the Oligotrophy to Ultraoligotrophy 103 

Pacific Experiment (OUTPACE) cruise (19 February-5 April, 2015). Samples were taken from 18 104 

different stations comprising three long duration stations (LDA, LDB, and LDC; about 7-8 days) 105 

and 15 short duration (SD1-15) stations (~8 h). Biogeochemical and physical characteristics of 106 

these sites are described in detail elsewhere (Moutin et al., 2017). Briefly, the cruise took place 107 

between 18-20°S covering two contrasted trophic regimes with increasing oligotrophy from west to 108 

east (Fig. 1).  109 

Discrete seawater samples were collected from 12 L Niskin bottles equipped with Viton O-rings 110 

and silicon tubes to avoid chemical contamination. For DOC and DCNS analyses, samples were 111 

filtered through two pre-combusted (450°C for 24 h) GF/F filters using a custom-made all-112 

glass/Teflon filtration syringe system. Samples for DOC (SD: 1-15 including LD: A, B ,C) were 113 

collected into precombusted glass ampoules (450°C, 6h) that were sealed after acidification with 114 

H3PO4 (85%) and stored in the dark at 4°C. Samples for DCNS (SD 1, 3-7, 9, 11, 13-15 including 115 

LD: C) were collected in 40-mL Falcon vials (previously cleaned with 10% of HCl and Milli-Q 116 

water) and frozen at -20°C until analysis.  117 

 118 

3. Chemical and microbiological analyses 119 

3.1. Dissolved organic carbon (DOC) determination 120 

DOC was measured by high temperature combustion on a Shimadzu TOC-L analyzer (Cauwet, 121 
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1999). Typical analytical precision was ± 0.1-0.5 µM C (SD) for multiple injections (3-4) of 122 

replicate samples. Consensus reference materials were injected every 12 to 17 samples to ensure 123 

stable operating conditions and were in the range 42-45 µM (lot # 07-14; 124 

(http://yyy.rsmas.miami.edu/groups/biogeochem/Table1.html). 125 

 126 

3.2. Dissolved combined neutral sugars (DCNS) determination 127 

3.2.1. Carbohydrate extraction and isolation 128 

Seawater samples were desalted using dialysis tubes with a molecular weight cut-off of 100-500 129 

Da (Spectra/Por® Biotech cellulose ester) according to the protocol of Panagiotopoulos et al. 130 

(2014). Briefly, the dialysis tube was filled with 8 mL of the sample and the dialysis was conducted 131 

into a 1 L beaker filled with Milli-Q water at 4°C in the dark. Dialysis was achieved after 4-5 h 132 

(salinity dropped from 35 to 1-2 g L-1). Samples were transferred into 40 mL plastic vials (Falcon; 133 

previously cleaned with 10% HCl and Milli-Q water), frozen at -30 °C, and freeze dried. The 134 

obtained powder was hydrolyzed with 1M HCl for 20 h at 100°C and the samples were again freeze 135 

dried to remove the HCl acid (Murrell and Hollibaugh, 2000; Engel and Handel, 2011). The dried 136 

samples were diluted in 4 mL of Milli-Q water, filtered through quartz wool, and pipetted into 137 

scintillation vials for liquid chromatographic analysis. The vials were kept at 4°C until the time of 138 

analysis (this never exceeded 24 h). The recovery yields of the whole procedure (dialysis and 139 

hydrolysis) were estimated using standard polysaccharides (laminarin, and chondroitine sulfate) and 140 

ranged from 82 to 86% (n=3). Finally, it is important to note that the current desalination procedure 141 

does not allow the determination of the dissolved free neutral sugars (i.e., sugar monomers present 142 

in samples with MW ~ 180 Da) because these compounds are lost/poorly recovered during the 143 

dialysis step (Panagiotopoulos et al., 2014). 144 

 145 

3.2.2. Liquid Chromatography 146 

http://yyy.rsmas.miami.edu/groups/biogeochem/Table1.html
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Carbohydrate concentrations in samples were measured by liquid chromatography according to 147 

Mopper et al. (1992) modified by Panagiotopoulos et al. (2001, 2014). Briefly, neutral 148 

monosaccharides were separated on an-anion exchange column (Carbopac PA-1, Thermo) by 149 

isocratic elution (mobile phase 19 mM NaOH) and were detected by an electrochemical detector set 150 

in the pulsed amperometric mode (Panagiotopoulos et al., 2014). The flow rate and the column 151 

temperature were set at 0.7 mL min-1 and 17°C, respectively. Data acquisition and processing were 152 

performed using the Dionex software Chromeleon. Repeated injections (n = 6) of a dissolved 153 

sample resulted in a CV of 12-15% for the peak area, for all carbohydrates. Adonitol was used as an 154 

internal standard and was recovered at a percentage of 80-95%; however, we have chosen not to 155 

correct our original data. 156 

 157 

3.3. Bacterial production 158 

 159 

 Heterotrophic prokaryotic production (here abbreviated classically as “bacterial” production 160 

or BP) was determined onboard with the 3H-leucine incorporation technique to measure protein 161 

synthesis (Smith and Azam, 1992). Additional details are given in Van Wambeke et al. (2018). 162 

Briefly, 1.5 mL samples were incubated in the dark for 1-2 h after addition of 3H leucine, at a final 163 

concentration of 20 nM, with standard deviation of the triplicate measurements being on average 164 

9%. Isotopic dilution was checked and was close to 1 (Van Wambeke et al, 2018), and we therefore 165 

applied a conversion factor of 1.5 Kg C mol leucine-1 to convert leucine incorporation to carbon 166 

equivalents (Kirchman, 1993). BP was corrected for leucine assimilation by Prochlorococcus 167 

(Duhamel et al., 2018) as described in Van Wambeke et al. (2018). To estimate bacterial carbon 168 

demand (BCD) which is used to calculate semi-labile DOC residence time, we used a bacterial 169 

growth efficiency (BGE) of 8% as determined experimentally using dilution experiments during the 170 

OUTPACE cruise (Van Wambeke et al., 2018). BCD was calculated by dividing BP values at each 171 
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station by BGE.  Euphotic zone integrals were then computed from volumetric rates. 172 

 173 

4. Results  174 

 175 

4.1 General observations 176 

 177 

The OUTPACE cruise was conducted under strong stratification conditions (Moutin et al., 178 

2018) during the austral summer encompassing a longitudinal gradient starting at the oligotrophic 179 

Melanesian Archipelago (MA waters; stations SD1-SD12 including LDA and LDB stations) and 180 

ending in the ultra-oligotrophic western part of the South Pacific gyre (WGY waters; stations SD13-181 

SD15 including LDC station; Fig. 1). Additional information on the hydrological conditions of the 182 

study area (i.e temperature, salinity) including water masses characteristics is provided elsewhere 183 

(de Verneil et al., 2018; Moutin et al., 2018). Mixed layer depth ranged from 11 to 34 m with higher 184 

values recorded in the WGY (Moutin et al., 2018). The depth of the deep chlorophyll maximum 185 

ranged from 69 to 119 m and from 122 to 155 m for the MA and WGY areas, respectively. Two 186 

different trends can be noticed in a first approach: 187 

a. Most of the biogeochemical parameters examined in the OUTPACE cruise (chlorophyll α 188 

concentrations, primary production, BP, BCD, N2 fixation rates, and nutrient concentrations) 189 

showed significantly higher values in the MA area than in the WGY area (Moutin et al., 2018; Van 190 

Wambeke et al., 2018; Benavides et al., 2018; Caffin et al., 2018). These differences were also 191 

reflected by the distribution of the diazotrophic communities detected in both areas further 192 

highlighting the different dynamics across the oligotrophic gradient (Stenegren et al., 2018; Moutin 193 

et al., 2017, 2018). The net heterotrophic/autotrophic status of the MA and WGY areas has been 194 

discussed in previous investigations by comparing BCD and gross primary production (GPP) (Fig. 195 

2). By using propagation of errors, Van Wambeke et al. (2018) concluded that GPP minus BCD 196 

could not be considered different from zero at most of the stations investigated (11 out of 17) 197 
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showing a metabolic balance. For the other stations, net heterotrophy was shown at stations SD 4, 5, 198 

6 and LDB, and net autotrophy at station SD9 (Van Wambeke et al, 2018). 199 

b. The bulk of DOM as shown by DOC analysis did not follow the above biogeochemical 200 

pattern and showed little variability on DOC absolute concentrations although a deeper penetration 201 

of DOM was noticeable at 150 m depth in the WGY area (Fig. 3a; Table 1). As such, epipelagic (0-202 

200 m) DOC concentrations throughout the OUTPACE cruise ranged from 47 to 81 µM C (mean ± 203 

sd: 67 ± 10 µM; n = 136) except at LDB (~85 µM C) which is probably related to a decaying 204 

phytoplankton bloom (de Verneuil et al., 2018; Van Wambeke et al., 2018). Mesopelagic (200-1000 205 

m) DOC values varied between 36 to 53 µM C (mean ± sd: 46 ± 4 µM; n = 67) (Fig. 4a; Table 1) 206 

and are in agreement with previous studies in the South Pacific Ocean (Doval and Hansell, 2000; 207 

Hansell et al., 2009; Raimbault et al. 2008).    208 

DCNS concentrations closely followed DOC trends and fluctuated between 0.2-4.2 µM C 209 

(mean ± sd: 1.9 ± 0.8 µM; n = 132) in the epipelagic zone (Fig. 3b; Table 1). These values are in 210 

good agreement to those previously reported for the central and/or the eastern part of the South 211 

Pacific gyre (1.1-3.0 µM C; Sempéré et al., 2008) that were recorded under strong stratification 212 

conditions during austral summer (Claustre et al., 2008). Compared with other oceanic provinces 213 

our epipelagic DCNS concentrations fall within the same range of those reported in the BATS 214 

station in the Sargasso Sea (1.0-2.7 µM C) also monitored under stratification conditions (Goldberg 215 

et al., 2010). Mesopelagic DCNS concentrations ranged from 0.3 to 2.4 µMC (average ± sd: 1.2 ± 216 

0.6 µM; n = 68) (Fig. 4b; Table 1) and concur with previously reported literature values at the 217 

ALOHA station (0.2-0.8 µMC; Kaiser and Benner, 2009) or in the Equatorial Pacific (0.8-1 µMC; 218 

Skoog and Benner, 1997).  219 

 220 

4.2 DCNS yields and composition 221 

 222 
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The contribution of DCNS-C to the DOC pool is referred to here as DCNS yields and is 223 

presented as a percentage of DOC (i.e DCNS-C x DOC-1 %). Epipelagic (0-200 m) average DCNS 224 

yields, based on volumetric data, were similar between the WGY (range 0.3-5.1%; average ± sd: 2.8 225 

± 1.3%; n = 41) and MA (range 0.8-7.0%; average ±  sd: 2.8 ± 1.0%; n = 91) areas whereas deeper 226 

than 200 m they were 2.4 ± 1.0% (n = 23) and 2.7 ± 1.3% (n = 43)  for the WGY and MA, 227 

respectively (Table 1). These values are in good agreement to those reported for the eastern part of 228 

the gyre (Sempéré et al., 2008) and concur well with the range of values (2-7%) recorded in the 229 

Equatorial Pacific (Rich et al., 1996; Skoog and Benner, 1997).  230 

The molecular composition of carbohydrates revealed that glucose was the major 231 

monosaccharide at all depths in both the MA and WGY areas accounting on average for 53 ± 18% 232 

(n = 132) of the DCNS in epipelagic waters and 64 ± 21% (n = 68) in mesopelagic waters (Table 1). 233 

Epipelagic glucose concentrations (DCGlc-C) averaged 1.0 ± 0.6; n = 132 in both areas (Fig. 3c, 234 

Table 1), however, a significantly higher mol% contribution of glucose was recorded in the WGY 235 

than the MA especially at depths > 200 m (Fig. 5). Glucose was followed by xylose (9-12%), 236 

galactose (4-9%) and mannose (5-8%) whereas the other monosaccharides accounted for < 6% of 237 

DCNS (Fig. 5). The same suite of monosaccharides was also reported by Sempéré et al. (2008) 238 

although the latter author also found that arabinose was among the major monosaccharides. Finally, 239 

it is worth noting that the relative abundance of glucose increased with depth and sometimes 240 

accounted 100% of the DCNS (Table 1, Fig. 5).  241 

 242 

4.3 DOC and DCNS integrated stocks  243 

 244 

DOC stocks (euphotic zone integrated) were calculated at the same stations where carbohydrate 245 

(DCNS) data were available and were compared between the MA (stations: SD 1, 3, 4, 5, 6, 7, 9, 246 

11) and WGY (SD13-SD15; LDC) stations (Fig. 6). DOC stock values in the euphotic were 9111 ± 247 
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1159 (n = 8) and 13266 ± 821 (n = 4) mmol C m-2 for the MA and WGY areas, respectively. Excess 248 

DOC stock (DOCEX) was calculated by subtracting an average deep DOC value from the bulk 249 

surface DOC pool. This DOC value was 40 µMC and was estimated averaging all DOC values 250 

below 1000 m depth from all stations (39.6 ± 1.4 µMC, n = 36). DOCEX stock values averaged 251 

3717 ± 528 (n = 8) and 5265± 301 (n = 4) mmol C m-2 accounting about 40% of DOC in both areas. 252 

DCNS represented 6.7 and 7.1% of DOCex in the MA and WGY sites, respectively, further 253 

suggesting that only a small percentage of DOCEX can be attributed to DCNS (polysaccharides).  254 

 255 

5. Discussion 256 

 257 

5.1 DOC and DCNS stocks in relation with biological activity 258 

 259 

Euphotic zone integrated stocks of DOC, DOCEX and DCNS were respectively 46, 42 and 52% 260 

higher in the WGY than in the MA (Fig. 6), as opposed to BCD and GPP (Fig. 2). This is a 261 

consequence of the deepening of the euphotic zone, because the variability of the volumetric stocks 262 

was high, and not statistically different in the euphotic zone between MA and WGY areas. As 263 

indicated above DOCEX is calculated as the difference between the bulk surface DOC and deep 264 

DOC the latter assumed to be refractory. Thus, DOCEX is often described as “semi-labile” DOC or 265 

DOCSL with a turnover on time scales of weeks to months (Carlson and Hansell, 2015). DCNS 266 

belong to this semi-labile category of DOC (Biersmith and Benner, 1998; Aluwihare et Repeta, 267 

1999; Benner, 2002), and the results of this study showed that DCNS represented a low proportion 268 

(~7%) of DOCEX. Because the conditions of the HPLC technique employed in this study does not 269 

allow identification and quantification of all the carbohydrate components of DOC (methylated 270 

sugars, uronic acids, amino sugars etc) it is possible that the contribution of polysaccharides to the 271 

DOCEX is underestimated. Previous investigations on amino sugars and methylated sugars indicated 272 

that these monosaccharides account for < 3% of the carbohydrate pool (Benner and Kaiser; 273 



 

12 

 

Panagiotopoulos et al., 2013) while uronic acids may account for as much as 40% of the 274 

carbohydrate pool (Engel et al., 2012) indicating that the latter compounds should at least be 275 

considered in future DOM lability studies.  276 

Other semi-labile compounds that potentially may contribute to the DOCEX pool are proteins 277 

and lipids. Unfortunately, proteins (combined amino acids) were not measured in this study. 278 

Nonetheless, previous investigations indicated that total dissolved amino acids represent 0.7-1.1% 279 

of DOC in the upper mesopelagic zone of the north Pacific (Kaiser and Benner, 2012) further 280 

suggesting a relatively small contribution of amino acids to the DOCEX. During the OUTPACE 281 

cruise, assimilation rates of 3H- leucine using concentration kinetics were determined (Duhamel et 282 

al., 2018) and, based on the Wright and Hobbie (1966) protocol, the ambient concentration of 283 

leucine was determined. The results showed a lower ambient leucine concentration at the LDC 284 

(0.56 nM) than at the LDA (1.80 nM) stations (Duhamel et al., 2018).   285 

This result may suggest that single amino acid and perhaps proteins concentrations are very low 286 

at the LDC station, reflecting the ultra- oligotrophic regime of the WGY. On the other hand, DOM 287 

exhibited only slightly different C/N ratios between MA (C/N = 13) and WGY (C/N =14), which 288 

does not suggest differences in DON dynamics in relation with organic matter lability (data from 289 

integrated values of 0-70 m; Moutin et al., 2018). Clearly further investigations are warranted on 290 

combined and free amino acids distribution in relation with N2 fixation.  291 

The high stock of DOCEX measured in WGY was also characterized by an elevated residence 292 

time (Tr SL) calculated as the ratio of DOCEX / BCD. This ratio is calculated based on the 293 

assumption that DOCEX is representative of the DOCSL and the latter  pool turnover is at the scale 294 

of seasonal mixing (i.e weeks to months) whereas the BP,  as determined with leucine technique on 295 

short incubation times (1-2 hours), tracks only the ultra-labile to labile organic matter consumption 296 

and not DOCSL utilization. Biodegradation experiments (3 experiments, duration 10 days each) 297 

performed during the OUTPACE cruise showed that the labile DOC represented only 2.5 to 5% of 298 
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the DOC pool (Van Wambeke et al., 2018), confirming that the residence time calculated from 299 

DOCEX / BCD overestimates the residence time of ultra-labile DOC. The bacterial production and 300 

BGEs associated with the use of semi-labile DOC is currently not technically measurable due to 301 

long-term confinement artifacts.  Our results showed that Tr SL in the WGY was in the order of 176 302 

± 43 days (n = 3), i.e. about three times higher than in the MA region (Tr SL= 51 ± 13 days (n = 8)) 303 

indicating an accumulation of the semi-labile DOM in the surface waters of WGY (Fig. 7). As 304 

suggested by previous studies the accumulation of DOC in the surface waters of oligotrophic 305 

regimes may be related in biotic and/or abiotic factors. 306 

  Nutrient limitation can prevent DOC assimilation by heterotrophic bacteria and as such 307 

sources and sinks are uncoupled, allow accumulation (Thingstad et al., 1997; Jiao et al., 2010; Shen 308 

et al., 2016). Biodegradation experiments (Van Wambeke et al., 2018) focusing on the 309 

determination of the BGE and the degradation of the labile DOC pool (turning over 10 days) 310 

revealed a less biodegradable DOM fraction and lower degradation rates at the LDC (2.4% labile 311 

DOC; 0.012 d-1) than the LDA site (5.3% labile DOC; 0.039 d-1). Other experiments, focusing on 312 

the factors limiting BP by testing the effect of different nutrient additions, showed that over a short-313 

time period, BP is initially limited by the availability of labile carbon in the WGY (as tracked with 314 

glucose addition, Van Wambeke et al., 2018). This limitation on BP by labile carbon/energy was 315 

also the case at the center of the South Pacific gyre (Van Wambeke et al., 2008), while N limitation 316 

(as tracked by addition of ammonium+nitrate) was more pronounced in the MA area.  317 

Although extensive photodegradation may transform recalcitrant organic matter into labile, the 318 

low content in chromophoric DOM recorded in the surface waters of WGY (αCDOM(350) = 0.010-319 

0.015 m-1, 0-50 m; Dupouy et al. unpublished results from the OUTPACE cruise) points toward an 320 

already photobleached and thus photodegraded organic material (Tedetti et al., 2007; Carlson and 321 

Hansel, 2015). Notably, the 10% irradiance depths for solar radiations (Z 10%) clearly showed a 322 

higher penetration of UV-R and PAR radiations in the WGY area than in MA area (Dupouy et al., 323 
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2018). These results are in agreement with previous investigations reporting intense solar radiation 324 

in the South Pacific gyre highlighting an strong decrease of chromophoric dissolved organic matter 325 

(CDOM) in the gyre (Tedetti et al., 2007). Less energy available for heterotrophic prokaryotes 326 

should prevent them from degrading such recalcitrant, photo-degraded organic matter. 327 

The computation of the carbon, nitrogen, and phosphorus budgets in the upper 0-70 m layer by 328 

Moutin et al. (2018) suggested that at 70 m the environmental conditions remained seasonally 329 

unchanged during the OUTPACE cruise, forming an average wintertime depth of the mixed layer. 330 

These authors calculated seasonal (from winter to austral summer) net DOM and POM 331 

accumulation on the basis of such assumptions, and found a dominance of DOC accumulation in 332 

the MA area (391 to 445 mmol m-2 over 8 months). This DOC accumulation in the MA area was 333 

3.8 to 8.1 times higher than that of POC accumulation during the same time period. On the other 334 

hand, only DOC accumulated at WGY, although the amount was two times lower in magnitude 335 

than in the MA (391- 445 vs 220 mmol m-2). The accumulation of DOC and DOCEX (Fig. 6) in the 336 

WGY may have important implications with regard to the sequestration of this organic material in 337 

the mesopelagic layers. DOC appears to be the major form of export of carbon in the WGY area 338 

and this result agrees with the general feature observed in oligotrophic regimes (Roshan and 339 

Devries, 2017).  340 

 341 

5.2 DCNS dynamics across the South West Pacific 342 

 343 

Previous investigations have employed the DCNS yields along with mol% of glucose to assess 344 

the diagenetically “freshness” of organic matter (Skoog and Benner, 1997; Benner, 2002; Goldberg 345 

et al. 2010).  In general freshly produced DOM has DCNS yields >10% and mol% glucose between 346 

28-71% (Biersmith and Benner, 1998; Hama and Yanagi, 2001). Elevated mol% glucose (> 25%) 347 

does not necessarily mirror fresh material because such values have also been reported for deep 348 



 

15 

 

DOM and low molecular weight DOM that are considered as a diagenetically altered material 349 

(Skoog et al., 1997).  350 

Our results showed that epipelagic DCNS yields were about similar (~2.8%) in both WGY and 351 

MA areas (Table 1) further indicating a similar contribution of DCNS to the DOC pool despite the 352 

major differences observed for the other biochemical parameters (e.g. deepening of the nitraclines 353 

and deep chlorophyll maximum etc) between MA and WGY. As expected, DCNS yields decreased 354 

by depth but were always comparable between WGY and MA areas (Table 1). By analogy to the 355 

DOCSL, we tried to estimate a DNCS residence time assuming that (a) the ectoenzymatic hydrolysis 356 

is a rate-limiting step for bacterial production, ii) the mean contribution of polysaccharides 357 

hydrolysis to bacterial production is 11%, based on Pointek et al. (2011), and iii) this 11% 358 

correction factor can be propagated to BCD. On the basis of these assumptions, we estimated a 359 

DCNS residence time as DCNS/(11% x BCD). The results showed that DCNS exhibited a higher 360 

residence time in the WGY (Tr DCNS-C= 91 ± 41 days, n = 3) than the MA area (Tr DCNS-C = 31 ± 10 361 

days, n = 8) which clearly shows that the DCNS pool persist longer in the surface waters of the 362 

WGY (Fig. 7). Moreover, because carbohydrates do not absorb light these polysaccharides (DCNS) 363 

do not seem to be impacted by the high photochemistry in WGY and potentially may be exported in 364 

the Ocean interior during a non-stratification period (e.g. winter  time) considering their high 365 

residence time at the WGY area. In addition, their slow utilization could also be related to energy 366 

limitation by heterotrophic prokaryotes in the WGY area.  367 

Glucose accounted for ~50% of DCNS in the MA surface waters which most likely reflects the 368 

high abundance of Trichodesmium species in that area (Dupouy et al., 2018; Rousset et al., 2018). A 369 

roughly similar percentage of glucose was also recorded in surface WGY waters (Fig. 5a) which is 370 

probably due to the low utilization of semi-labile organic matter in the form of exopolysaccharides. 371 

These exopolysaccharides are probably hydrolyzed by bacteria, but not taken up due to limited 372 

nutrient availability. At 200 m depth, glucose accounted for 75% and 50% of DCNS in the WGY 373 
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and MA areas, respectively (200 m depth), and this percentage increased considerably with depth in 374 

both areas (76% for MA and 96% for WGY at 2000 m depth) indicating a preferential removal of 375 

the other carbohydrates relative to glucose (Fig. 5b; Fig. 5c). The low DCNS yields (~1%) at 2000 376 

m depth along with the high % mol abundance of glucose clearly suggests the presence of 377 

diagenetically altered DOM and is consistent with previous investigations (Skoog and Benner, 378 

1997; Goldberg et al. 2010; Golberg et al., 2011).  379 

 380 

6. Conclusions 381 

 382 

This study showed a rather uniform distribution of DOC and DCNS concentrations in surface 383 

waters across an increasing oligotrophic gradient in the South West Pacific Ocean during the 384 

OUTPACE cruise.  Nevertheless, our results showed that DOC and DOCEX stocks were by ~40% 385 

in WGY than the MA area, accompanied with higher residence times in the WGY area suggesting 386 

an accumulation of semi-labile material in the euphotic zone of WGY. Although DCNS accounted a 387 

small fraction of DOCSL (~7%) our results showed that DCNS or polysaccharides also exhibited a 388 

higher residence time (Tr DCNS-C) in the WGY than in the MA area indicating that DCNS persist 389 

longer in the WGY. This Tr DCNS-C is calculated on the basis of many assumptions on DNCS 390 

hydrolysis rates that were not practically determined, showing the need to estimate such fluxes in 391 

order to better estimate the dynamics of carbohydrates. Glucose was the major monosaccharide in 392 

both areas (51 - 55%) and its relative abundance increased with depth along with a decrease of the 393 

DCNS yields indicating a preferential removal of the other carbohydrates relative to glucose. 394 

Clearly further investigations are warranted to better characterize the semi-labile DOC pool in terms 395 

of combined and free amino acids distribution in relation with N2 fixation.  396 

 397 
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Figure and Table captions:  616 

 617 

Figure 1: Sampling stations during the OUTPACE cruise.  The  white  line  shows  the  vessel  618 

course (data  from  the  hull-mounted  ADCP positioning system). Stations and their respective 619 

names (SD1-SD15 including LDA, LDB and LDC) are depicted in grey. Figure courtesy of T. 620 

Wagener. 621 

 622 

Figure 2:  Integrated stocks of bacterial carbon demand (BCD) and gross primary production (GPP) 623 

(mmol C m-2 d-1) over the euphotic zone. Data from Van Wambeke et al. (2018). Error bars 624 

https://www.biogeosciences.net/15/2669/2018/
https://www.biogeosciences.net/15/2669/2018/


 

26 

 

correspond to standard deviation of the different stations. * BCD and GPP were statistically 625 

different between MA and WGY areas (Man-Whitney test, p<0.05).  626 

 627 

Figure 3: Distribution of A: dissolved organic carbon (DOC); B: dissolved combined neutral sugars 628 

(DCNS); and C: dissolved combined glucose (DCGlc) in the upper surface layer (0-200 m) of the 629 

study area. DCNS and DCGlc concentration is given in carbon equivalents in order to have the 630 

same unit as DOC. Long duration stations (LDA, LDB and LDC) are also indicated in each graph. 631 

White and red circles indicate the mixed layer depth and deep chlorophyll maximum, respectively 632 

for each station.  633 

 634 

Figure 4: Depth profiles of A: DOC; B: DCNS; and C: DCGlc in the 0-2000 m layer of the study 635 

area.  636 

 637 

Figure 5: Average Mol percentage (mol %) of dissolved monosaccharides at A: surface; B: 200 m; 638 

and C: 2000 m depth for MA and WGY areas. Monosaccharides abbreviations: Fuc.: Fucose; 639 

Rha.:Rhamnose; Ara.: Arabinose; GlcN.: Glucosamine; Gal.: Galactose; Glc.: Glucose; Man.: 640 

Mannose and Xyl.: Xylose.  641 

 642 

Figure 6:  Integrated carbon stocks (mmol C m-2) over the euphotic zone carbon in terms of DOC, 643 

DOCEX and DCNS-C. * DOC and DOCSL were statistically different between MA and WGY areas 644 

(Man-Whitney test, p<0.05).  645 

 646 

Figure 7:  Residence time (days) of semi labile DOC (Tr SL) and DCNS-C (Tr DCNS-C) for MA and 647 

WGY areas. * Tr SL and Tr DCNS-C were statistically different between MA and WGY areas (Man-648 

Whitney test, p<0.05).  649 
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Table 1: Range and mean values (0-200 m and 200-1000 m) of DOC (µMC), DCNS-C (µMC), 650 

DCGlc-C (µMC), DCNS-C/DOC (%) and DCGlc-C/DCNS-C (%) recorded during the OUTPACE 651 

cruise. MA comprises the SD2-SD12 stations and WGY comprises the LDC and SD13-SD15.  652 

Means of MA and WGY were not statistically different for any of the parameters presented (Man-653 

Whitney test, p > 0.05). 654 

 655 

 656 



Table 1: Range and mean values (0-200 m and 200-1000 m) of DOC, DCNS-C, DCGlc-C, DCNS-C/DOC and DCGlc-C/DCNS-C recorded during the OUTPACE 
cruise. MA comprises the SD2-SD12 stations and WGY comprises the LDC and SD13-SD15. Means of MA and WGY were not statistically different for any of the 
parameters presented (Man-Whitney test, p >0.05).  
                                          All data                                       MA                                      WGY 

 Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) 

DOC (µM) 47-81 67±10 (136) 36-53 46±4 (67) 51-79 66±9 (94) 39-52 46±3 (43) 47-81 68±10 (42) 36-53 46±4 (24) 

Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCNS-C (µM) 0.2-4.2 1.9±0.8 (132) 0.3-2.4 1.2 ±0.6 (68) 0.6-4.2 1.8±0.7 (91) 0.3-2.4 1.2±0.6 (45) 0.2-3.8   1.9±1.0 (41) 0.3-2.0 1.0±0.4 (23) 

Depth (m)                  0-200                200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCGlc-C (µM)     0.2-3.0   1.0±0.6 (132)     0.2-1.6   0.7±0.3 (68)      0.3-3.0    1.0±0.6 (91)       0.2-1.6  0.7±0.4 (45)       0.2-2.7    1.1±0.7 (41)       0.3-1.4  0.7±0.3 (23) 

Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCNS-C/DOC (%)    0.3-7.0  2.8±1.1 (132)    0.56-5.4   2.6±1.2 (66)      0.8-7.0    2.8±1.0 (91)      0.6-5.4   2.7±1.3 (43)       0.3-5.1    2.8±1.3 (41)       0.6-4.7   2.4±1.0 (23) 

Depth (m)                 0-200                 200-1000                    0-200                 200-1000                     0-200                 200-1000 

       

DCGlc-C/DCNS-C (%)      19-100  53±18 (132)    35-100 64±21 (68)     28-100   54±17 (91)     36-100   63±22 (45)      19-100  58±20 (41)      35-100      66±20 (23) 

        Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 
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Abstract 24 

The distribution and dynamics of dissolved organic carbon (DOC) and dissolved combined 25 

neutral sugars (DCNS) were studied across an increasing oligotrophic gradient (-18 to -22°N 26 

latitude) in the Tropical South Pacific Ocean, spanning from the Melanesian Archipelago (MA) 27 

area to the western part of the South Pacific gyre (WGY), in austral summer, as a part of the 28 

OUTPACE project. Our results showed DOC and DCNS concentrations exhibited no statistical 29 

differences between the MA and WGY areas (0-200 m: 47-81 µMC for DOC and 0.2-4.2 µMC 30 

for DCNS). However, due to a deepening of the euphotic zone, a deeper penetration of DOC was 31 

noticeable at 150 m depth at the WGY area. This finding was also observed with regard to the 32 

excess-DOC (DOCEX), which was determined as the difference between surface and deep-sea 33 

DOC values. Euphotic zone integrated stocks of both DOC and DOCEX were higher in the WGY 34 

than the MA area. Considering DOCEX as representative of the semi-labile DOC (DOCSL), its 35 

residence time was calculated as the DOCSL to bacterial carbon demand (BCD) ratio. This 36 

residence time was 176 ± 43 days (n = 3) in the WGY area, about three times longer than in the 37 

MA area (Tr = 51 ± 13 days (n = 8)), suggesting an accumulation of the semi-labile dissolved 38 

organic matter (DOM) in the surface waters of WGY. Average epipelagic (0-200 m) DCNS 39 

yields (DCNS x DOC-1), based on volumetric data, were roughly similar in both areas, 40 

accounting for ~2.8% of DOC. DCNS exhibited a longer residence time in WGY (Tr = 91 ± 41 41 

days, n = 3) than in MA (Tr = 31 ± 10days, n=8) further suggesting that this DCNS pool persists 42 

longer in the surface waters of the WGY. The accumulation of DOCEX in the surface waters of 43 

WGY is probably due to the very slow bacterial degradation due to nutrient/energy limitation of 44 

heterotrophic prokaryotes indicating that biologically produced DOC can be stored in the 45 

euphotic layer of the South Pacific gyre for a long period.  46 
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1. Introduction 47 

  48 

Gyres are oceanic deserts similar to those found in continental landscapes spanning an area  of 49 

several thousands of Km and are characterized by low nutrient content and limited productivity 50 

(Raimbault et al., 2008; D’Hondt et al., 2009; Bender et al., 2016; de Verneil et al., 2017, 2018). 51 

Moreover, gyres are now considered as the world’s plastic dumps (Law et al., 2010; Eriksen et al., 52 

2013; Cozar et al., 2014), whereas their study may us help to understand future climate changes (Di 53 

Lorenzo et al., 2008; Zhang et al., 2014) and marine ecosystem functioning (Sibert et al., 2016; 54 

Browing et al., 2017). Among the five well-known oceanic gyres the South Pacific gyre, although 55 

the world’s largest, has been less extensively studied mainly due to its remoteness from the main 56 

landmasses. Nonetheless, earlier studies indicated that Western Tropical South Pacific (WTSP) is a 57 

hot spot of N2 fixation (Bonnet et al., 2013; Bonnet et al., 2017; Caffin et al., 2018) and recent 58 

studies have shown that there is a gradient of increasing oligotrophy from WTSP to the western part 59 

of the Pacific gyre (Moutin et al., 2018). The ultra-oligotrophic regime is reached in the center of 60 

the gyre, and then it decreases within the eastern part of the gyre toward the Chilean coast (Claustre 61 

et al., 2008) with high residual phosphate concentrations in the center of the gyre (Moutin et al., 62 

2008). 63 

Recent studies indicated that efficient DOC export in the subtropical gyres is related with the 64 

inhibition of DOC utilization under low-nutrient conditions (Letscher et al., 2015; Roshan and 65 

DeVries, 2017). Similar patterns have been observed for the oligotrophic Mediterranean Sea 66 

(Guyennon et al., 2015). However, little information exists regarding dissolved organic matter 67 

(DOM) dynamics in the south Pacific gyre particularly for its semi-labile component (accumulation, 68 

export, fate), which is mainly represented by carbohydrates (Sempéré et al., 2008; Goldberg et al., 69 

2011; Carlson and Hansell, 2015).  70 

Among the three well-identified chemical families (amino acids, lipids and carbohydrates) in 71 



 

4 

 

seawater, carbohydrates are the major components of organic matter in surface and deep waters 72 

accounting for 5-10% and < 5% of dissolved organic carbon (DOC), respectively as shown by 73 

liquid chromatography (Benner, 2002; Panagiotopoulos and Sempéré, 2005 and references therein). 74 

The carbohydrate pool of DOC consists of free monosaccharides, oligosaccharides and 75 

polysaccharides. Major polysaccharides are constituted by dissolved combined neutral sugars 76 

(DCNS), which are generally measured as their monosaccharide constituents (sum of fucose, 77 

rhamnose, arabinose, galactose, glucose, mannose and xylose) after acid hydrolysis (McCarthy et 78 

al., 1996; Aluwihare et al., 1997; Skoog and Benner, 1997; Kirchman et al., 2001; Panagiotopoulos 79 

and Sempéré, 2005). Other minor carbohydrate constituents of DOC include the amino sugars 80 

(glucosamine, galactosamine and muramic acid; Benner and Kaiser, 2003), uronic acids (glucuronic 81 

and galacturonic acids; Hung et al., 2003; Engel and Handel, 2011), methylated and dimethylated 82 

sugars (Panagiotopoulos et al., 2013), heptoses (Panagiotopoulos et al., 2013) and sugar alcohols 83 

(Van Pinxteren et al., 2012).   84 

Free monosaccharide concentrations range from 10 to100 nM; they account < 10% of total 85 

dissolved neutral sugars (TDNS), and experiments have shown that they are rapidly utilized 86 

(minutes to hours) by bacterioplankton and as such they are considered as labile organic matter 87 

(Rich et al., 1996; Skoog et al., 1999; Kirchman et al., 2001). Polysaccharide or dissolved combined 88 

neutral sugars (DCNS) concentrations range from 200-800 nM; they account for 80-95% of TDNS 89 

and experiments have shown that they disappear within time scales of days to months and, as such, 90 

they are considered as labile and semi-labile organic matter (Aluwihare and Repeta, 1999; Carlson 91 

and Hansell, 2015 and references therein). Other studies have shown that this labile and/or semi-92 

labile organic matter accumulates in the surface ocean and may potentially be exported to depth 93 

contributing to the ocean carbon pump (Goldberg et al., 2010; Carlson and Hansell, 2015).  94 

In the frame of the OUTPACE project we studied DOM dynamics in terms of DOC and DCNS 95 

composition and tried to evaluate their residence time. The results are presented and discussed 96 
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along with heterotrophic prokaryotic production in order to better understand the bacterial cycling 97 

of DOM  in the region.  98 

 99 

2. Materials and Methods 100 

2.1 Sampling 101 

Sampling took place along a 5500 Km transect spanning from New Caledonia to French 102 

Polynesia in the WTSP aboard the R/V L’Atalante during the Oligotrophy to Ultraoligotrophy 103 

Pacific Experiment (OUTPACE) cruise (19 February-5 April, 2015). Samples were taken from 18 104 

different stations comprising three long duration stations (LDA, LDB, and LDC; about 7-8 days) 105 

and 15 short duration (SD1-15) stations (~8 h). Biogeochemical and physical characteristics of 106 

these sites are described in detail elsewhere (Moutin et al., 2017). Briefly, the cruise took place 107 

between 18-20°S covering two contrasted trophic regimes with increasing oligotrophy from west to 108 

east (Fig. 1).  109 

Discrete seawater samples were collected from 12 L Niskin bottles equipped with Viton O-rings 110 

and silicon tubes to avoid chemical contamination. For DOC and DCNS analyses, samples were 111 

filtered through two pre-combusted (450°C for 24 h) GF/F filters using a custom-made all-112 

glass/Teflon filtration syringe system. Samples for DOC (SD: 1-15 including LD: A, B ,C) were 113 

collected into precombusted glass ampoules (450°C, 6h) that were sealed after acidification with 114 

H3PO4 (85%) and stored in the dark at 4°C. Samples for DCNS (SD 1, 3-7, 9, 11, 13-15 including 115 

LD: C) were collected in 40-mL Falcon vials (previously cleaned with 10% of HCl and Milli-Q 116 

water) and frozen at -20°C until analysis.  117 

 118 

3. Chemical and microbiological analyses 119 

3.1. Dissolved organic carbon (DOC) determination 120 

DOC was measured by high temperature combustion on a Shimadzu TOC-L analyzer (Cauwet, 121 
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1999). Typical analytical precision was ± 0.1-0.5 µM C (SD) for multiple injections (3-4) of 122 

replicate samples. Consensus reference materials were injected every 12 to 17 samples to ensure 123 

stable operating conditions and were in the range 42-45 µM (lot # 07-14; 124 

(http://yyy.rsmas.miami.edu/groups/biogeochem/Table1.html). 125 

 126 

3.2. Dissolved combined neutral sugars (DCNS) determination 127 

3.2.1. Carbohydrate extraction and isolation 128 

Seawater samples were desalted using dialysis tubes with a molecular weight cut-off of 100-500 129 

Da (Spectra/Por® Biotech cellulose ester) according to the protocol of Panagiotopoulos et al. 130 

(2014). Briefly, the dialysis tube was filled with 8 mL of the sample and the dialysis was conducted 131 

into a 1 L beaker filled with Milli-Q water at 4°C in the dark. Dialysis was achieved after 4-5 h 132 

(salinity dropped from 35 to 1-2 g L-1). Samples were transferred into 40 mL plastic vials (Falcon; 133 

previously cleaned with 10% HCl and Milli-Q water), frozen at -30 °C, and freeze dried. The 134 

obtained powder was hydrolyzed with 1M HCl for 20 h at 100°C and the samples were again freeze 135 

dried to remove the HCl acid (Murrell and Hollibaugh, 2000; Engel and Handel, 2011). The dried 136 

samples were diluted in 4 mL of Milli-Q water, filtered through quartz wool, and pipetted into 137 

scintillation vials for liquid chromatographic analysis. The vials were kept at 4°C until the time of 138 

analysis (this never exceeded 24 h). The recovery yields of the whole procedure (dialysis and 139 

hydrolysis) were estimated using standard polysaccharides (laminarin, and chondroitine sulfate) and 140 

ranged from 82 to 86% (n=3). Finally, it is important to note that the current desalination procedure 141 

does not allow the determination of the dissolved free neutral sugars (i.e., sugar monomers present 142 

in samples with MW ~ 180 Da) because these compounds are lost/poorly recovered during the 143 

dialysis step (Panagiotopoulos et al., 2014). 144 

 145 

3.2.2. Liquid Chromatography 146 

http://yyy.rsmas.miami.edu/groups/biogeochem/Table1.html
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Carbohydrate concentrations in samples were measured by liquid chromatography according to 147 

Mopper et al. (1992) modified by Panagiotopoulos et al. (2001, 2014). Briefly, neutral 148 

monosaccharides were separated on an-anion exchange column (Carbopac PA-1, Thermo) by 149 

isocratic elution (mobile phase 19 mM NaOH) and were detected by an electrochemical detector set 150 

in the pulsed amperometric mode (Panagiotopoulos et al., 2014). The flow rate and the column 151 

temperature were set at 0.7 mL min-1 and 17°C, respectively. Data acquisition and processing were 152 

performed using the Dionex software Chromeleon. Repeated injections (n = 6) of a dissolved 153 

sample resulted in a CV of 12-15% for the peak area, for all carbohydrates. Adonitol was used as an 154 

internal standard and was recovered at a percentage of 80-95%; however, we have chosen not to 155 

correct our original data. 156 

 157 

3.3. Bacterial production 158 

 159 

 Heterotrophic prokaryotic production (here abbreviated classically as “bacterial” production 160 

or BP) was determined onboard with the 3H-leucine incorporation technique to measure protein 161 

synthesis (Smith and Azam, 1992). Additional details are given in Van Wambeke et al. (2018). 162 

Briefly, 1.5 mL samples were incubated in the dark for 1-2 h after addition of 3H leucine, at a final 163 

concentration of 20 nM, with standard deviation of the triplicate measurements being on average 164 

9%. Isotopic dilution was checked and was close to 1 (Van Wambeke et al, 2018), and we therefore 165 

applied a conversion factor of 1.5 Kg C mol leucine-1 to convert leucine incorporation to carbon 166 

equivalents (Kirchman, 1993). BP was corrected for leucine assimilation by Prochlorococcus 167 

(Duhamel et al., 2018) as described in Van Wambeke et al. (2018). To estimate bacterial carbon 168 

demand (BCD) which is used to calculate semi-labile DOC residence time, we used a bacterial 169 

growth efficiency (BGE) of 8% as determined experimentally using dilution experiments during the 170 

OUTPACE cruise (Van Wambeke et al., 2018). BCD was calculated by dividing BP values at each 171 
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station by BGE.  Euphotic zone integrals were then computed from volumetric rates. 172 

 173 

4. Results  174 

 175 

4.1 General observations 176 

 177 

The OUTPACE cruise was conducted under strong stratification conditions (Moutin et al., 178 

2018) during the austral summer encompassing a longitudinal gradient starting at the oligotrophic 179 

Melanesian Archipelago (MA waters; stations SD1-SD12 including LDA and LDB stations) and 180 

ending in the ultra-oligotrophic western part of the South Pacific gyre (WGY waters; stations SD13-181 

SD15 including LDC station; Fig. 1). Additional information on the hydrological conditions of the 182 

study area (i.e temperature, salinity) including water masses characteristics is provided elsewhere 183 

(de Verneil et al., 2018; Moutin et al., 2018). Mixed layer depth ranged from 11 to 34 m with higher 184 

values recorded in the WGY (Moutin et al., 2018). The depth of the deep chlorophyll maximum 185 

ranged from 69 to 119 m and from 122 to 155 m for the MA and WGY areas, respectively. Two 186 

different trends can be noticed in a first approach: 187 

a. Most of the biogeochemical parameters examined in the OUTPACE cruise (chlorophyll α 188 

concentrations, primary production, BP, BCD, N2 fixation rates, and nutrient concentrations) 189 

showed significantly higher values in the MA area than in the WGY area (Moutin et al., 2018; Van 190 

Wambeke et al., 2018; Benavides et al., 2018; Caffin et al., 2018). These differences were also 191 

reflected by the distribution of the diazotrophic communities detected in both areas further 192 

highlighting the different dynamics across the oligotrophic gradient (Stenegren et al., 2018; Moutin 193 

et al., 2017, 2018). The net heterotrophic/autotrophic status of the MA and WGY areas has been 194 

discussed in previous investigations by comparing BCD and gross primary production (GPP) (Fig. 195 

2). By using propagation of errors, Van Wambeke et al. (2018) concluded that GPP minus BCD 196 

could not be considered different from zero at most of the stations investigated (11 out of 17) 197 
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showing a metabolic balance. For the other stations, net heterotrophy was shown at stations SD 4, 5, 198 

6 and LDB, and net autotrophy at station SD9 (Van Wambeke et al, 2018). 199 

b. The bulk of DOM as shown by DOC analysis did not follow the above biogeochemical 200 

pattern and showed little variability on DOC absolute concentrations although a deeper penetration 201 

of DOM was noticeable at 150 m depth in the WGY area (Fig. 3a; Table 1). As such, epipelagic (0-202 

200 m) DOC concentrations throughout the OUTPACE cruise ranged from 47 to 81 µM C (mean ± 203 

sd: 67 ± 10 µM; n = 136) except at LDB (~85 µM C) which is probably related to a decaying 204 

phytoplankton bloom (de Verneuil et al., 2018; Van Wambeke et al., 2018). Mesopelagic (200-1000 205 

m) DOC values varied between 36 to 53 µM C (mean ± sd: 46 ± 4 µM; n = 67) (Fig. 4a; Table 1) 206 

and are in agreement with previous studies in the South Pacific Ocean (Doval and Hansell, 2000; 207 

Hansell et al., 2009; Raimbault et al. 2008).    208 

DCNS concentrations closely followed DOC trends and fluctuated between 0.2-4.2 µM C 209 

(mean ± sd: 1.9 ± 0.8 µM; n = 132) in the epipelagic zone (Fig. 3b; Table 1). These values are in 210 

good agreement to those previously reported for the central and/or the eastern part of the South 211 

Pacific gyre (1.1-3.0 µM C; Sempéré et al., 2008) that were recorded under strong stratification 212 

conditions during austral summer (Claustre et al., 2008). Compared with other oceanic provinces 213 

our epipelagic DCNS concentrations fall within the same range of those reported in the BATS 214 

station in the Sargasso Sea (1.0-2.7 µM C) also monitored under stratification conditions (Goldberg 215 

et al., 2010). Mesopelagic DCNS concentrations ranged from 0.3 to 2.4 µMC (average ± sd: 1.2 ± 216 

0.6 µM; n = 68) (Fig. 4b; Table 1) and concur with previously reported literature values at the 217 

ALOHA station (0.2-0.8 µMC; Kaiser and Benner, 2009) or in the Equatorial Pacific (0.8-1 µMC; 218 

Skoog and Benner, 1997).  219 

 220 

4.2 DCNS yields and composition 221 

 222 
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The contribution of DCNS-C to the DOC pool is referred to here as DCNS yields and is 223 

presented as a percentage of DOC (i.e DCNS-C x DOC-1 %). Epipelagic (0-200 m) average DCNS 224 

yields, based on volumetric data, were similar between the WGY (range 0.3-5.1%; average ± sd: 2.8 225 

± 1.3%; n = 41) and MA (range 0.8-7.0%; average ±  sd: 2.8 ± 1.0%; n = 91) areas whereas deeper 226 

than 200 m they were 2.4 ± 1.0% (n = 23) and 2.7 ± 1.3% (n = 43)  for the WGY and MA, 227 

respectively (Table 1). These values are in good agreement to those reported for the eastern part of 228 

the gyre (Sempéré et al., 2008) and concur well with the range of values (2-7%) recorded in the 229 

Equatorial Pacific (Rich et al., 1996; Skoog and Benner, 1997).  230 

The molecular composition of carbohydrates revealed that glucose was the major 231 

monosaccharide at all depths in both the MA and WGY areas accounting on average for 53 ± 18% 232 

(n = 132) of the DCNS in epipelagic waters and 64 ± 21% (n = 68) in mesopelagic waters (Table 1). 233 

Epipelagic glucose concentrations (DCGlc-C) averaged 1.0 ± 0.6; n = 132 in both areas (Fig. 3c, 234 

Table 1), however, a significantly higher mol% contribution of glucose was recorded in the WGY 235 

than the MA especially at depths > 200 m (Fig. 5). Glucose was followed by xylose (9-12%), 236 

galactose (4-9%) and mannose (5-8%) whereas the other monosaccharides accounted for < 6% of 237 

DCNS (Fig. 5). The same suite of monosaccharides was also reported by Sempéré et al. (2008) 238 

although the latter author also found that arabinose was among the major monosaccharides. Finally, 239 

it is worth noting that the relative abundance of glucose increased with depth and sometimes 240 

accounted 100% of the DCNS (Table 1, Fig. 5).  241 

 242 

4.3 DOC and DCNS integrated stocks  243 

 244 

DOC stocks (euphotic zone integrated) were calculated at the same stations where carbohydrate 245 

(DCNS) data were available and were compared between the MA (stations: SD 1, 3, 4, 5, 6, 7, 9, 246 

11) and WGY (SD13-SD15; LDC) stations (Fig. 6). DOC stock values in the euphotic were 9111 ± 247 
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1159 (n = 8) and 13266 ± 821 (n = 4) mmol C m-2 for the MA and WGY areas, respectively. Excess 248 

DOC stock (DOCEX) was calculated by subtracting an average deep DOC value from the bulk 249 

surface DOC pool. This DOC value was 40 µMC and was estimated averaging all DOC values 250 

below 1000 m depth from all stations (39.6 ± 1.4 µMC, n = 36). DOCEX stock values averaged 251 

3717 ± 528 (n = 8) and 5265± 301 (n = 4) mmol C m-2 accounting about 40% of DOC in both areas. 252 

DCNS represented 6.7 and 7.1% of DOCex in the MA and WGY sites, respectively, further 253 

suggesting that only a small percentage of DOCEX can be attributed to DCNS (polysaccharides).  254 

 255 

5. Discussion 256 

 257 

5.1 DOC and DCNS stocks in relation with biological activity 258 

 259 

Euphotic zone integrated stocks of DOC, DOCEX and DCNS were respectively 46, 42 and 52% 260 

higher in the WGY than in the MA (Fig. 6), as opposed to BCD and GPP (Fig. 2). This is a 261 

consequence of the deepening of the euphotic zone, because the variability of the volumetric stocks 262 

was high, and not statistically different in the euphotic zone between MA and WGY areas. As 263 

indicated above DOCEX is calculated as the difference between the bulk surface DOC and deep 264 

DOC the latter assumed to be refractory. Thus, DOCEX is often described as “semi-labile” DOC or 265 

DOCSL with a turnover on time scales of weeks to months (Carlson and Hansell, 2015). DCNS 266 

belong to this semi-labile category of DOC (Biersmith and Benner, 1998; Aluwihare et Repeta, 267 

1999; Benner, 2002), and the results of this study showed that DCNS represented a low proportion 268 

(~7%) of DOCEX. Because the conditions of the HPLC technique employed in this study does not 269 

allow identification and quantification of all the carbohydrate components of DOC (methylated 270 

sugars, uronic acids, amino sugars etc) it is possible that the contribution of polysaccharides to the 271 

DOCEX is underestimated. Previous investigations on amino sugars and methylated sugars indicated 272 

that these monosaccharides account for < 3% of the carbohydrate pool (Benner and Kaiser; 273 
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Panagiotopoulos et al., 2013) while uronic acids may account for as much as 40% of the 274 

carbohydrate pool (Engel et al., 2012) indicating that the latter compounds should at least be 275 

considered in future DOM lability studies.  276 

Other semi-labile compounds that potentially may contribute to the DOCEX pool are proteins 277 

and lipids. Unfortunately, proteins (combined amino acids) were not measured in this study. 278 

Nonetheless, previous investigations indicated that total dissolved amino acids represent 0.7-1.1% 279 

of DOC in the upper mesopelagic zone of the north Pacific (Kaiser and Benner, 2012) further 280 

suggesting a relatively small contribution of amino acids to the DOCEX. During the OUTPACE 281 

cruise, assimilation rates of 3H- leucine using concentration kinetics were determined (Duhamel et 282 

al., 2018) and, based on the Wright and Hobbie (1966) protocol, the ambient concentration of 283 

leucine was determined. The results showed a lower ambient leucine concentration at the LDC 284 

(0.56 nM) than at the LDA (1.80 nM) stations (Duhamel et al., 2018).   285 

This result may suggest that single amino acid and perhaps proteins concentrations are very low 286 

at the LDC station, reflecting the ultra- oligotrophic regime of the WGY. On the other hand, DOM 287 

exhibited only slightly different C/N ratios between MA (C/N = 13) and WGY (C/N =14), which 288 

does not suggest differences in DON dynamics in relation with organic matter lability (data from 289 

integrated values of 0-70 m; Moutin et al., 2018). Clearly further investigations are warranted on 290 

combined and free amino acids distribution in relation with N2 fixation.  291 

The high stock of DOCEX measured in WGY was also characterized by an elevated residence 292 

time (Tr SL) calculated as the ratio of DOCEX / BCD. This ratio is calculated based on the 293 

assumption that DOCEX is representative of the DOCSL and the latter  pool turnover is at the scale 294 

of seasonal mixing (i.e weeks to months) whereas the BP,  as determined with leucine technique on 295 

short incubation times (1-2 hours), tracks only the ultra-labile to labile organic matter consumption 296 

and not DOCSL utilization. Biodegradation experiments (3 experiments, duration 10 days each) 297 

performed during the OUTPACE cruise showed that the labile DOC represented only 2.5 to 5% of 298 
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the DOC pool (Van Wambeke et al., 2018), confirming that the residence time calculated from 299 

DOCEX / BCD overestimates the residence time of ultra-labile DOC. The bacterial production and 300 

BGEs associated with the use of semi-labile DOC is currently not technically measurable due to 301 

long-term confinement artifacts.  Our results showed that Tr SL in the WGY was in the order of 176 302 

± 43 days (n = 3), i.e. about three times higher than in the MA region (Tr SL= 51 ± 13 days (n = 8)) 303 

indicating an accumulation of the semi-labile DOM in the surface waters of WGY (Fig. 7). As 304 

suggested by previous studies the accumulation of DOC in the surface waters of oligotrophic 305 

regimes may be related in biotic and/or abiotic factors. 306 

  Nutrient limitation can prevent DOC assimilation by heterotrophic bacteria and as such 307 

sources and sinks are uncoupled, allow accumulation (Thingstad et al., 1997; Jiao et al., 2010; Shen 308 

et al., 2016). Biodegradation experiments (Van Wambeke et al., 2018) focusing on the 309 

determination of the BGE and the degradation of the labile DOC pool (turning over 10 days) 310 

revealed a less biodegradable DOM fraction and lower degradation rates at the LDC (2.4% labile 311 

DOC; 0.012 d-1) than the LDA site (5.3% labile DOC; 0.039 d-1). Other experiments, focusing on 312 

the factors limiting BP by testing the effect of different nutrient additions, showed that over a short-313 

time period, BP is initially limited by the availability of labile carbon in the WGY (as tracked with 314 

glucose addition, Van Wambeke et al., 2018). This limitation on BP by labile carbon/energy was 315 

also the case at the center of the South Pacific gyre (Van Wambeke et al., 2008), while N limitation 316 

(as tracked by addition of ammonium+nitrate) was more pronounced in the MA area.  317 

Although extensive photodegradation may transform recalcitrant organic matter into labile, the 318 

low content in chromophoric DOM recorded in the surface waters of WGY (αCDOM(350) = 0.010-319 

0.015 m-1, 0-50 m; Dupouy et al. unpublished results from the OUTPACE cruise) points toward an 320 

already photobleached and thus photodegraded organic material (Tedetti et al., 2007; Carlson and 321 

Hansel, 2015). Notably, the 10% irradiance depths for solar radiations (Z 10%) clearly showed a 322 

higher penetration of UV-R and PAR radiations in the WGY area than in MA area (Dupouy et al., 323 
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2018). These results are in agreement with previous investigations reporting intense solar radiation 324 

in the South Pacific gyre highlighting an strong decrease of chromophoric dissolved organic matter 325 

(CDOM) in the gyre (Tedetti et al., 2007). Less energy available for heterotrophic prokaryotes 326 

should prevent them from degrading such recalcitrant, photo-degraded organic matter. 327 

The computation of the carbon, nitrogen, and phosphorus budgets in the upper 0-70 m layer by 328 

Moutin et al. (2018) suggested that at 70 m the environmental conditions remained seasonally 329 

unchanged during the OUTPACE cruise, forming an average wintertime depth of the mixed layer. 330 

These authors calculated seasonal (from winter to austral summer) net DOM and POM 331 

accumulation on the basis of such assumptions, and found a dominance of DOC accumulation in 332 

the MA area (391 to 445 mmol m-2 over 8 months). This DOC accumulation in the MA area was 333 

3.8 to 8.1 times higher than that of POC accumulation during the same time period. On the other 334 

hand, only DOC accumulated at WGY, although the amount was two times lower in magnitude 335 

than in the MA (391- 445 vs 220 mmol m-2). The accumulation of DOC and DOCEX (Fig. 6) in the 336 

WGY may have important implications with regard to the sequestration of this organic material in 337 

the mesopelagic layers. DOC appears to be the major form of export of carbon in the WGY area 338 

and this result agrees with the general feature observed in oligotrophic regimes (Roshan and 339 

Devries, 2017).  340 

 341 

5.2 DCNS dynamics across the South West Pacific 342 

 343 

Previous investigations have employed the DCNS yields along with mol% of glucose to assess 344 

the diagenetically “freshness” of organic matter (Skoog and Benner, 1997; Benner, 2002; Goldberg 345 

et al. 2010).  In general freshly produced DOM has DCNS yields >10% and mol% glucose between 346 

28-71% (Biersmith and Benner, 1998; Hama and Yanagi, 2001). Elevated mol% glucose (> 25%) 347 

does not necessarily mirror fresh material because such values have also been reported for deep 348 
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DOM and low molecular weight DOM that are considered as a diagenetically altered material 349 

(Skoog et al., 1997).  350 

Our results showed that epipelagic DCNS yields were about similar (~2.8%) in both WGY and 351 

MA areas (Table 1) further indicating a similar contribution of DCNS to the DOC pool despite the 352 

major differences observed for the other biochemical parameters (e.g. deepening of the nitraclines 353 

and deep chlorophyll maximum etc) between MA and WGY. As expected, DCNS yields decreased 354 

by depth but were always comparable between WGY and MA areas (Table 1). By analogy to the 355 

DOCSL, we tried to estimate a DNCS residence time assuming that (a) the ectoenzymatic hydrolysis 356 

is a rate-limiting step for bacterial production, ii) the mean contribution of polysaccharides 357 

hydrolysis to bacterial production is 11%, based on Pointek et al. (2011), and iii) this 11% 358 

correction factor can be propagated to BCD. On the basis of these assumptions, we estimated a 359 

DCNS residence time as DCNS/(11% x BCD). The results showed that DCNS exhibited a higher 360 

residence time in the WGY (Tr DCNS-C= 91 ± 41 days, n = 3) than the MA area (Tr DCNS-C = 31 ± 10 361 

days, n = 8) which clearly shows that the DCNS pool persist longer in the surface waters of the 362 

WGY (Fig. 7). Moreover, because carbohydrates do not absorb light these polysaccharides (DCNS) 363 

do not seem to be impacted by the high photochemistry in WGY and potentially may be exported in 364 

the Ocean interior during a non-stratification period (e.g. winter  time) considering their high 365 

residence time at the WGY area. In addition, their slow utilization could also be related to energy 366 

limitation by heterotrophic prokaryotes in the WGY area.  367 

Glucose accounted for ~50% of DCNS in the MA surface waters which most likely reflects the 368 

high abundance of Trichodesmium species in that area (Dupouy et al., 2018; Rousset et al., 2018). A 369 

roughly similar percentage of glucose was also recorded in surface WGY waters (Fig. 5a) which is 370 

probably due to the low utilization of semi-labile organic matter in the form of exopolysaccharides. 371 

These exopolysaccharides are probably hydrolyzed by bacteria, but not taken up due to limited 372 

nutrient availability. At 200 m depth, glucose accounted for 75% and 50% of DCNS in the WGY 373 
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and MA areas, respectively (200 m depth), and this percentage increased considerably with depth in 374 

both areas (76% for MA and 96% for WGY at 2000 m depth) indicating a preferential removal of 375 

the other carbohydrates relative to glucose (Fig. 5b; Fig. 5c). The low DCNS yields (~1%) at 2000 376 

m depth along with the high % mol abundance of glucose clearly suggests the presence of 377 

diagenetically altered DOM and is consistent with previous investigations (Skoog and Benner, 378 

1997; Goldberg et al. 2010; Golberg et al., 2011).  379 

 380 

6. Conclusions 381 

 382 

This study showed a rather uniform distribution of DOC and DCNS concentrations in surface 383 

waters across an increasing oligotrophic gradient in the South West Pacific Ocean during the 384 

OUTPACE cruise.  Nevertheless, our results showed that DOC and DOCEX stocks were by ~40% 385 

in WGY than the MA area, accompanied with higher residence times in the WGY area suggesting 386 

an accumulation of semi-labile material in the euphotic zone of WGY. Although DCNS accounted a 387 

small fraction of DOCSL (~7%) our results showed that DCNS or polysaccharides also exhibited a 388 

higher residence time (Tr DCNS-C) in the WGY than in the MA area indicating that DCNS persist 389 

longer in the WGY. This Tr DCNS-C is calculated on the basis of many assumptions on DNCS 390 

hydrolysis rates that were not practically determined, showing the need to estimate such fluxes in 391 

order to better estimate the dynamics of carbohydrates. Glucose was the major monosaccharide in 392 

both areas (51 - 55%) and its relative abundance increased with depth along with a decrease of the 393 

DCNS yields indicating a preferential removal of the other carbohydrates relative to glucose. 394 

Clearly further investigations are warranted to better characterize the semi-labile DOC pool in terms 395 

of combined and free amino acids distribution in relation with N2 fixation.  396 
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Figure and Table captions:  616 

 617 

Figure 1: Sampling stations during the OUTPACE cruise.  The  white  line  shows  the  vessel  618 

course (data  from  the  hull-mounted  ADCP positioning system). Stations and their respective 619 

names (SD1-SD15 including LDA, LDB and LDC) are depicted in grey. Figure courtesy of T. 620 

Wagener. 621 

 622 

Figure 2:  Integrated stocks of bacterial carbon demand (BCD) and gross primary production (GPP) 623 

(mmol C m-2 d-1) over the euphotic zone. Data from Van Wambeke et al. (2018). Error bars 624 

https://www.biogeosciences.net/15/2669/2018/
https://www.biogeosciences.net/15/2669/2018/
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correspond to standard deviation of the different stations. * BCD and GPP were statistically 625 

different between MA and WGY areas (Man-Whitney test, p<0.05).  626 

 627 

Figure 3: Distribution of A: dissolved organic carbon (DOC); B: dissolved combined neutral sugars 628 

(DCNS); and C: dissolved combined glucose (DCGlc) in the upper surface layer (0-200 m) of the 629 

study area. DCNS and DCGlc concentration is given in carbon equivalents in order to have the 630 

same unit as DOC. Long duration stations (LDA, LDB and LDC) are also indicated in each graph. 631 

White and red circles indicate the mixed layer depth and deep chlorophyll maximum, respectively 632 

for each station.  633 

 634 

Figure 4: Depth profiles of A: DOC; B: DCNS; and C: DCGlc in the 0-2000 m layer of the study 635 

area.  636 

 637 

Figure 5: Average Mol percentage (mol %) of dissolved monosaccharides at A: surface; B: 200 m; 638 

and C: 2000 m depth for MA and WGY areas. Monosaccharides abbreviations: Fuc.: Fucose; 639 

Rha.:Rhamnose; Ara.: Arabinose; GlcN.: Glucosamine; Gal.: Galactose; Glc.: Glucose; Man.: 640 

Mannose and Xyl.: Xylose.  641 

 642 

Figure 6:  Integrated carbon stocks (mmol C m-2) over the euphotic zone carbon in terms of DOC, 643 

DOCEX and DCNS-C. * DOC and DOCSL were statistically different between MA and WGY areas 644 

(Man-Whitney test, p<0.05).  645 

 646 

Figure 7:  Residence time (days) of semi labile DOC (Tr SL) and DCNS-C (Tr DCNS-C) for MA and 647 

WGY areas. * Tr SL and Tr DCNS-C were statistically different between MA and WGY areas (Man-648 

Whitney test, p<0.05).  649 



 

27 

 

Table 1: Range and mean values (0-200 m and 200-1000 m) of DOC (µMC), DCNS-C (µMC), 650 

DCGlc-C (µMC), DCNS-C/DOC (%) and DCGlc-C/DCNS-C (%) recorded during the OUTPACE 651 

cruise. MA comprises the SD2-SD12 stations and WGY comprises the LDC and SD13-SD15.  652 

Means of MA and WGY were not statistically different for any of the parameters presented (Man-653 

Whitney test, p > 0.05). 654 

 655 

 656 



Table 1: Range and mean values (0-200 m and 200-1000 m) of DOC, DCNS-C, DCGlc-C, DCNS-C/DOC and DCGlc-C/DCNS-C recorded during the OUTPACE 
cruise. MA comprises the SD2-SD12 stations and WGY comprises the LDC and SD13-SD15. Means of MA and WGY were not statistically different for any of the 
parameters presented (Man-Whitney test, p >0.05).  
                                          All data                                       MA                                      WGY 

 Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) Range mean±sd (n) 

DOC (µM) 47-81 67±10 (136) 36-53 46±4 (67) 51-79 66±9 (94) 39-52 46±3 (43) 47-81 68±10 (42) 36-53 46±4 (24) 

Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCNS-C (µM) 0.2-4.2 1.9±0.8 (132) 0.3-2.4 1.2 ±0.6 (68) 0.6-4.2 1.8±0.7 (91) 0.3-2.4 1.2±0.6 (45) 0.2-3.8   1.9±1.0 (41) 0.3-2.0 1.0±0.4 (23) 

Depth (m)                  0-200                200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCGlc-C (µM)     0.2-3.0   1.0±0.6 (132)     0.2-1.6   0.7±0.3 (68)      0.3-3.0    1.0±0.6 (91)       0.2-1.6  0.7±0.4 (45)       0.2-2.7    1.1±0.7 (41)       0.3-1.4  0.7±0.3 (23) 

Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 

       

DCNS-C/DOC (%)    0.3-7.0  2.8±1.1 (132)    0.56-5.4   2.6±1.2 (66)      0.8-7.0    2.8±1.0 (91)      0.6-5.4   2.7±1.3 (43)       0.3-5.1    2.8±1.3 (41)       0.6-4.7   2.4±1.0 (23) 

Depth (m)                 0-200                 200-1000                    0-200                 200-1000                     0-200                 200-1000 

       

DCGlc-C/DCNS-C (%)      19-100  53±18 (132)    35-100 64±21 (68)     28-100   54±17 (91)     36-100   63±22 (45)      19-100  58±20 (41)      35-100      66±20 (23) 

        Depth (m)                  0-200                 200-1000                     0-200                 200-1000                     0-200                 200-1000 
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