

An estuarine tuned Quasi-Analytical Algorithm for VIIRS (QAA-V): assessment and application to satellite estimates of SPM in Galveston Bay following Hurricane Harvey

Ishan D. Joshi¹, Eurico J. D'Sa^{1,*}

¹Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA

Supplementary S1

Chlorophyll-a profiles along with depth-dependent mass-specific IOPs are necessary to create Rrs using Hydrolight® four component case-2 models (Eq.1) (Mobley and Sundman 2013; Sathyendranath et al., 1989; Kirk 1994; Bukata et. al., 1995),

$$\begin{aligned} a_t(\lambda) &= a_w(\lambda) + a_\phi(\lambda) + a_{NAP}(\lambda) + a_g(\lambda) \\ b_{bt}(\lambda) &= b_{bw}(\lambda) + b_{b\phi}(\lambda) + b_{bNAP}(\lambda) \end{aligned} \quad (1)$$

Synthetic chlorophyll concentrations [Chl] (N=730) were obtained with 73 values and ranged between 1 to 40 mg m⁻³ with 10 repetitions to simulate random variability as observed in natural waters. A total of 730 phytoplankton absorption spectra (a_ϕ) were generated using six groups containing 83 in situ normalized a_ϕ spectra; random normalized spectrum selection among groups were based on modeled $a_\phi 440$, and the following bio-optical models (Bricaud et al., 1995; Fischer and Fell 1999; Mobley 1994) (Fig. 1; Table 1),

$$\begin{aligned} a_\phi^{\text{Normalized}}(\lambda) &= \frac{a_\phi(\lambda)}{a_\phi 440} \\ a_\phi 440 &= 0.06 \times [\text{Chl}]^{0.65} \times \mathcal{R}(1,2) \\ a_\phi^*(\lambda) &= \frac{a_\phi(\lambda)}{[\text{Chl}]} \end{aligned} \quad (2)$$

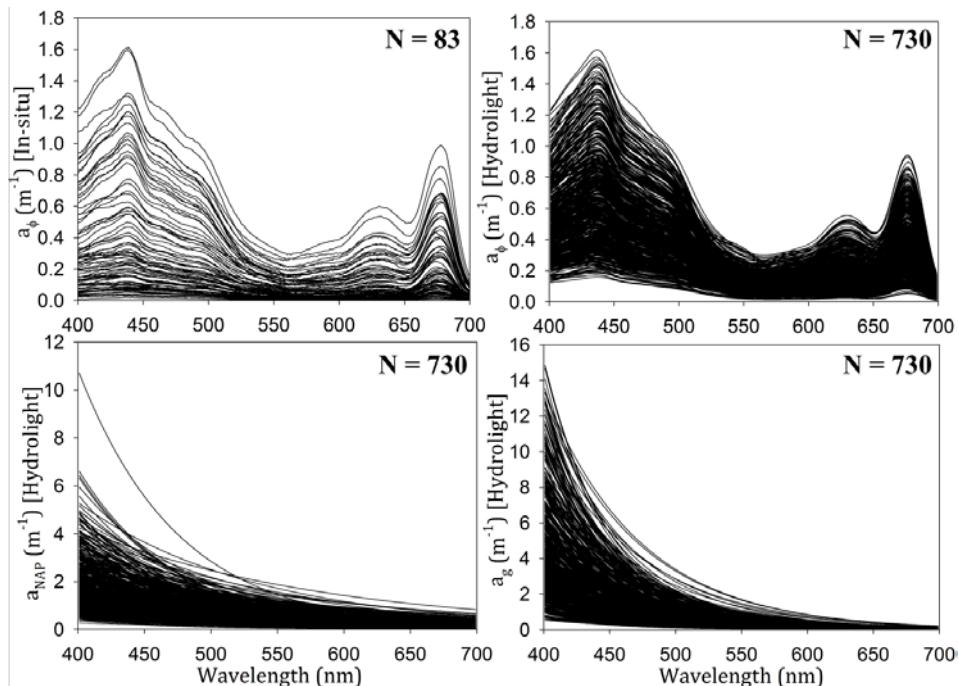


Figure 1. (a, b) *In situ* phytoplankton absorption spectra (N=83) were collected from CDOM-dominated Apalachicola Bay (USA) and sediment-dominated Barataria Bay (USA) to generate 730 simulated spectra for Hydrolight® 4-component Case-2 model using Eq. 2, (c) modeled non-algal particle absorption spectra (N = 730) using Eq. 3, and (d) modeled CDOM absorption spectra (N = 730) using Eq. 4.

Table 1: The conditions for allocating in-situ normalized-phytoplankton spectra ($a_{\phi}^{\text{normalized}}$) into 6 groups. $a_{\phi}440$ is phytoplankton absorption at 440 nm.

Groups (Total spectra = 83)	Condition
1 (n=18)	$a_{\phi}440 < 0.1$
2 (n=15)	$a_{\phi}440 \geq 0.1 \text{ & } a_{\phi}440 < 0.2$
3 (n=12)	$a_{\phi}440 \geq 0.2 \text{ & } a_{\phi}440 < 0.3$
4 (n=11)	$a_{\phi}440 \geq 0.3 \text{ & } a_{\phi}440 < 0.5$
5 (n=16)	$a_{\phi}440 \geq 0.5 \text{ & } a_{\phi}440 < 1.0$
6 (n=11)	$a_{\phi}440 \geq 1.0$

Mass-specific non-algal particle absorption coefficients ($a_{\text{NAP}}^*(\lambda)$) were obtained with an exponential model (Roesler et al. 1989; Bricaud et al. 1995), where slope (S_{NAP}) used a random value between 0.005 - 0.015 as observed in natural waters ranging from oceanic to estuarine environments (Kirk 1994). The required $a_{\text{NAP}}440$ was modeled using $a_{\phi}440$ based on a constant p_1 ($= a_{\text{NAP}}440 / a_{\phi}440$) which was set to lie between 1 and 3.5 as generally observed in the two bays, e.g., $p_1 = 1$ represents pigment/CDOM-rich waters and $p_1 = 3.5$ represents sediment/CDOM-rich waters (Eq. 3).

$$\begin{aligned}
 a_{\text{NAP}}(\lambda) &= a_{\text{NAP}}440 \times e^{-S_{\text{NAP}} \times (\lambda - 440)} \\
 p_1 &= 1 + \frac{2.5 \times a_{\phi}440 \times \mathcal{R}(0,1)}{0.05 + a_{\phi}440} \\
 a_{\text{NAP}}^*(\lambda) &= \frac{a_{\phi}(\lambda)}{[\text{NAP}]} \\
 [\text{NAP}] &= p_1 \times [\text{Chl}]
 \end{aligned} \tag{3}$$

CDOM absorption coefficient was modeled with an exponential model (Bricaud et al. 1981), where spectral slope (S_g) was chosen randomly between 0.01 to 0.025 as generally observed in various oceanic to productive estuarine environments (Kirk 1994; Babin et al., 2003) (Figure 1d). a_g440 was estimated from $a_{\phi}440$ and a constant p_2 ($= a_g440 / a_{\phi}440$). p_2 was set between 1 to 4.5 based on field data, e.g., $p_2 = 1$ represents phytoplankton/sediment dominated waters and $p_2 = 4.5$ represents CDOM-rich waters (Eq. 4).

$$\begin{aligned}
 a_g(\lambda) &= a_g440 \times e^{-S_g \times (\lambda - 440)} \\
 a_g440 &= p_2 \times a_{\phi}440 \\
 p_2 &= 1 + \frac{3.5 \times a_{\phi}440 \times \mathcal{R}(0,1)}{0.02 + a_{\phi}440} \\
 a_g^*(\lambda) &= \frac{a_g(\lambda)}{[\text{Chl}]}
 \end{aligned} \tag{4}$$

Mass-specific phytoplankton backscattering ($b_{b\phi}^*$) and non-algal particle back-scattering ($b_{b\text{NAP}}^*$) coefficients were obtained based on the oceanic models (IOCCG 2006; please see references therein) with no change, as insufficient observations were available for estuarine environments. Subsequently, these coefficients were then converted to respective back-scattering coefficients by multiplying phase function dependent values “0.005” and “0.0183” (Eqs. 5 and 6) (Mobley 1994; Mobley and Sundman 2013),

$$b_{b\text{NAP}}^*(\lambda) = \frac{b_{\text{NAP}}(\lambda) \times 0.0183}{[\text{NAP}]} \tag{5}$$

$$b_{b\phi}^*(\lambda) = \frac{b_{\phi}(\lambda) \times 0.005}{[\text{Chl}]} \tag{6}$$

Hydrolight® simulations were then run with a case-2 model to generate Rrs using mass-specific IOPs, chlorophyll concentrations, dark bottom sediments, finite depth of 5 meters, sun zenith angle of 30°, no Raman scattering, and no chlorophyll fluorescence. A total of 169 erroneous spectra were suspected possibly due to atypical combinations of CDOM, non-algal particles, and bottom reflectance; these were not used in further analysis.

References

IOCCG (2006). *Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications*. Lee, Z.-P. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada.

IOCCG report 5. http://www.ioccg.org/groups/lee_data.pdf

Supplementary S2

Table 2: Comparison statistics between the QAA-V and QAA-v6 algorithms based on simulated Hydrolight® dataset (HL) and in-situ estuarine and near-shore dataset (IES). N= number of observations, RMSE=Root mean square error, MRE= mean relative error.

	N	Bias _{log10} (m ⁻¹)		RMSE _{log10} (m ⁻¹)		MRE (%)		R ²	
		QAA-V	QAA-v6	QAA-V	QAA-v6	QAA-V	QAA-v6	QAA-V	QAA-v6
Synthetic data									
a_{tnw}411	561	-0.028	-0.088	0.074	0.117	12.7	19.7	0.92	0.92
a_{tnw}443	561	-0.006	-0.071	0.071	0.106	12.7	17.7	0.91	0.90
a_{tnw}489	561	-0.003	-0.076	0.072	0.110	13.0	18.0	0.91	0.89
a_{tnw}555	561	-0.020	-0.118	0.096	0.149	16.3	23.9	0.87	0.87
b_{tnw}411	561	-0.041	-0.159	0.097	0.173	15.5	28.9	0.95	0.95
b_{tnw}443	561	-0.025	-0.130	0.086	0.152	14.4	25.3	0.95	0.94
b_{tnw}489	561	-0.017	-0.119	0.082	0.146	14.1	23.9	0.95	0.94
b_{tnw}555	561	-0.018	-0.121	0.089	0.153	14.9	23.9	0.94	0.93
IES dataset (Testing set: N = 219)									
a_{tnw}443	209	-0.023	-0.091	0.142	0.180	22.7	25.8	0.83	0.76
a_{tnw}555	209	-0.029	-0.124	0.190	0.249	34.3	47.5	0.72	0.63
b_{tnw}532	89	0.038	-0.049	0.173	0.174	26.0	34.6	0.70	0.67

Supplementary S3

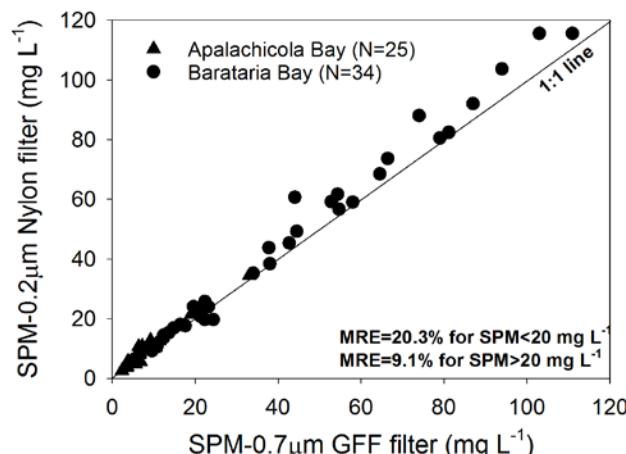


Figure 2: A comparison of SPM concentration obtained with 0.2 μm Nylon filter and 0.7 μm GFF filters.