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Abstract 18 
 19 
We develop and evaluate a method to estimate O3 deposition and stomatal O3 uptake across 20 
networks of eddy covariance flux tower sites where O3 concentrations and O3 fluxes have not 21 
been measured. The method combines standard micrometeorological flux measurements, which 22 
constrain O3 deposition velocity and stomatal conductance, with a gridded dataset of observed 23 
surface O3 concentrations. Measurement errors are propagated through all calculations to 24 
quantify O3 flux uncertainties. We evaluate the method at three sites with O3 flux measurements: 25 
Harvard Forest, Blodgett Forest, and Hyytiälä Forest. The method reproduces 83% or more of 26 
the variability in daily stomatal uptake at these sites with modest mean bias (21% or less). At 27 
least 95% of daily average values agree with measurements within a factor of two and, according 28 
to the error analysis, the residual differences from measured O" fluxes are consistent with the 29 
uncertainty in the underlying measurements. 30 
 31 
The product, called synthetic O3 flux or SynFlux, includes 43 FLUXNET sites in the United 32 
States and 60 sites in Europe, totaling 926 site-years of data. This dataset, which is now public, 33 
dramatically expands the number and types of sites where O3 fluxes can be used for ecosystem 34 
impact studies and evaluation of air quality and climate models. Across these sites, the mean 35 
stomatal conductance and O3 deposition velocity is 0.03-1.0 cm s-1. The stomatal O3 flux during 36 
the growing season (typically April-September) is 0.5-11.0 nmol O3 m-2 s-1 with a mean of 4.5 37 
nmol O3 m-2 s-1 and the largest fluxes generally occur where stomatal conductance is high, rather 38 
than where O3 concentrations are high. The conductance differences across sites can be 39 
explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land 40 
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management. These stomatal fluxes suggest that ambient O3 degrades biomass production and 41 
CO2 sequestration by 20-24% at crop sites, 6-29% at deciduous broadleaf forests, and 4-20% at 42 
evergreen needleleaf forests in the United States and Europe. 43 
 44 
1 Introduction 45 
 46 
Surface ozone (O3) is toxic to both people and plants. Present-day and recent historical O3 levels 47 
reduce carbon sequestration in the biosphere (Reich and Lassoie, 1984; Guidi et al., 2001; Sitch 48 
et al., 2007; Ainsworth et al., 2012), perturb the terrestrial water cycle (Lombardozzi et al., 2012, 49 
2015), and cause around $25 billion in annual crop losses (Reich and Amundson, 1985; Van 50 
Dingenen et al., 2009; Avnery et al., 2011; Tai et al., 2014). The basic plant responses to O3 51 
injury are well established from controlled exposure experiments (e.g. Wittig et al., 2009; 52 
Ainsworth et al., 2005, 2012; Hoshika et al., 2015) but few datasets are available to quantify O3 53 
fluxes and responses for whole ecosystems or plant functional types that are represented within 54 
regional and global biosphere and climate models. The eddy covariance method has been widely 55 
used to measure land-atmosphere fluxes of carbon, water, and energy and evaluate their 56 
representation in models (Baldocchi et al., 2001; Bonan et al., 2011), but few towers measure O3 57 
fluxes (Munger et al., 1996; Fowler et al., 2001; Keronen et al., 2003; Gerosa et al., 2004; 58 
Lamaud et al., 2009; Fares et al., 2010; Stella et al., 2014; Zona et al., 2014). A recent review 59 
identified just 78 field measurements of O3 fluxes over vegetation during the last 4 decades, 60 
many lasting just a few weeks (Silva and Heald, 2017). This paper demonstrates a reliable 61 
method to estimate O3 fluxes at 103 eddy covariance flux towers spanning over two decades to 62 
enable O3 impact studies on ecosystem scales.  63 
 64 
The land surface is a terminal sink for atmospheric O3 due to the reactivity of O3 with 65 
unsaturated organic molecules and the modest solubility of O3 in water. Surface deposition is 66 
20% of the total loss in tropospheric O3, making it an important control on air pollution (Wu et 67 
al., 2007; Young et al., 2013, Kavassalis and Murphy, 2017). This O3 deposition flux includes 68 
stomatal uptake into leaves, where O3 can cause internal oxidative damage, and less harmful 69 
non-stomatal deposition to plant cuticles, stems, bark, soil, and standing water (Fuhrer, 2000; 70 
Zhang et al., 2002; Ainsworth et al., 2012). O3 can also react with biogenic volatile organic 71 
compounds, particularly terpenoid compounds, in the plant canopy air and this process is 72 
commonly included in non-stomatal deposition (Kurpius and Goldstein, 2003). The deposition 73 
flux (mol O3 m–2 s–1) can be described as: 74 

𝐹$% = 𝑣(𝑛 𝜒 − 𝜒, = 𝑣(𝑛𝜒 1  75 
where 𝜒 and 𝜒0 are the O3 mole fractions (mol mol–1) in the atmosphere and at the surface, 76 
respectively, n is the molar density of air (mol m–3), and vd is a deposition velocity (m s–1) that 77 
expresses the net vertical O3 transport between the height where 𝜒 is measured and the surface. 78 
𝐹$% is defined positive for flux towards the ground. Eq. 1 reasonably assumes that 𝜒0 = 0 because 79 
terrestrial surfaces have abundant organic compounds that react with and destroy O3. The 80 
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deposition velocity can be decomposed into resistances (s m–1) for aerodynamic transport (ra), 81 
diffusion in the quasi-laminar layer (rb), stomatal uptake (rs), and non-stomatal deposition (rns) 82 
(Wesely, 1989): 83 

𝑣(./ = 𝑟1 + 𝑟3 + 𝑟4./ + 𝑟54./ ./. 2  84 
For stomatal and non-stomatal processes, the rates are often expressed as conductances (m s–1), 85 
which are the inverse of the resistances: 𝑔4 = 𝑟4./	and	𝑔54 = 𝑟54./. The sum of stomatal and non-86 
stomatal conductances is the vegetation canopy conductance, 𝑔= = 𝑔4 + 𝑔54. The stomatal O3 87 
flux is the portion of 𝐹$% that enters the stomata, and can be described as: 88 

𝐹4,$% = 𝐹$%𝑔4 𝑔4 + 𝑔54
./ = 𝑣(𝑛𝜒𝑔4 𝑔4 + 𝑔54 ./. 3  89 

 90 
To construct the synthetic O3 flux, or SynFlux, we use measurements of O3 concentration and 91 
standard eddy covariance flux measurements to derive nearly all of the terms in Eqs. 1-3 from 92 
surface observations, using some additional information from remote sensing and models. This 93 
enables the estimation of 𝐹$% and 𝐹4,$%, as described in Sect. 2. Sect. 3 evaluates the method 94 
against observations at three sites that measure 𝐹$% and examines the importance of stomatal and 95 
non-stomatal deposition. Sect. 4 uses SynFlux to assess the spatial patterns of O3 uptake to 96 
vegetation and to compare flux-based metrics of O3 damage with concentration-based metrics. 97 
Finally, we discuss the strengths, limitations, and implications of our approach in Sect. 5. 98 
 99 
2 Data sources and methods 100 
 101 
2.1 SynFlux: synthetic O3 flux 102 
 103 
The FLUXNET2015 dataset (Pastorello et al., 2017) aggregates measurements of land-104 
atmosphere fluxes of CO2, H2O, momentum, and heat at sites around the world 105 
(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset, accessed 24 February 2017). Measurements 106 
are made with the eddy covariance method on towers above vegetation canopies (Baldocchi et 107 
al., 2001; Anderson et al., 1984; Goldstein et al., 2000) with consistent gap-filling (Reichstein et 108 
al., 2005; Vuichard and Papale, 2015) and quality control across sites (Pastorello et al., 2014). 109 
Flux and meteorological quantities are reported in half hour intervals. We analyze data from all 110 
sites in the United States and Europe in the FLUXNET2015 Tier 1 dataset. This analysis is 111 
restricted to the US and Europe because these regions have dense O3 monitoring networks, 112 
described below. There are 103 sites meeting these criteria, all listed in Table S1 with references 113 
to full site descriptions. Three of these sites—Blodgett Forest, Harvard Forest, and Hyytiälä 114 
Forest—measure O3 flux with the eddy covariance method, which we will use in Sect. 3 to 115 
evaluate our methods.  116 
 117 
SynFlux aims to constrain O3 deposition and stomatal uptake as much as possible from measured 118 
water, heat and momentum fluxes, in contrast to other methods (Finkelstein et al., 2000; Mills et 119 
al. 2011; Schwede et al., 2011; Yue et al., 2014) that rely more heavily on atmospheric models or 120 
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parameterizations of stomatal conductance. From the eddy covariance measurements, we derive 121 
the resistance components of Eq. 2 using methods similar to past studies (Kurpius and Goldstein, 122 
2003; Gerosa et al., 2005; Fares et al., 2010). The aerodynamic and quasi-laminar layer 123 
resistances (ra and rb, respectively) are derived from measured wind speed, friction velocity, and 124 
fluxes of sensible and latent heat every half hour using Monin-Obukhov similarity theory 125 
(Foken, 2017). The stomatal conductance for O3 (gs) is derived from the measured water vapor 126 
flux and meteorological data every half hour with the inverted Penman-Monteith equation 127 
(Monteith, 1981; Gerosa et al., 2007). Supplement S1 provides further details of the resistance 128 
and conductance calculations. Some studies instead calculate 𝑔4 from gross primary productivity 129 
(Lamaud et al., 2009; El-Madany et al., 2017), but that method is less widely used than the 130 
Penman-Monteith approach adopted here. The Penman-Monteith method of calculating stomatal 131 
conductance has been successfully applied across FLUXNET sites previously (Novick et al., 132 
2016; Knauer et al., 2017; Medlyn et al., 2017; Lin et al., 2018). Those studies and others caution 133 
that, since evapotranspiration measurements include evaporation from ground, the stomatal 134 
conductance could be overestimated. While there are methods for quantifying and removing the 135 
evaporative fraction of evapotranspiration from eddy covariance data (Wang et al., 2014; Zhou et 136 
al., 2016; Scott and Biederman, 2017), a more common approach is to restrict analysis to 137 
conditions when transpiration dominates. We follow this second approach, analyzing only 138 
daytime data during the growing season, and use filtering criteria similar to Knauer et al. (2017). 139 
We define daytime as sun elevation angle above 4° and the growing season as days when gross 140 
primary productivity (GPP) exceeds 20% of the annual maxima in GPP.  To avoid complications 141 
to the Penman-Monteith equation from wet canopies, we exclude times when dew may be 142 
present (RH > 80%), and days with precipitation (> 5mm). We also exclude the top and bottom 143 
1% of 𝑔4 values, which include many unrealistic outliers (e.g. 𝑔4 > 0.5	m	s./). Figure 1 shows 144 
the mean stomatal conductance during the growing season at all sites.  145 
 146 
The terms in Eqs. 1-3 that cannot be derived from FLUXNET2015 measurements are O3 mole 147 
fraction and non-stomatal conductance. The O3 mole fraction is taken from a gridded dataset of 148 
hourly O3 measurements that spans the contiguous United States and Europe (Schnell et al., 149 
2014). This dataset has 1° spatial resolution, so some differences from measured O3 abundances 150 
at individual sites are inevitable. Schnell et al. (2014) estimated these errors to be 6-9 ppb (rms) 151 
or about 15% of summer mean O3 in the US and similar in Europe. Figure 2 shows that the 152 
daytime gridded O3 concentrations correlate well with observations at three flux tower sites 153 
where O3 was measured (R2 = 0.63-0.87) and have modest negative bias (5-10 ppb, –12 to –154 
28%), consistent with the accuracy reported by Schnell et al. (2014). We use the Zhang et al. 155 
(2003) parameterization of non-stomatal conductance, which accounts for O3 deposition to leaf 156 
cuticles and ground and was developed from measurements in the eastern United States. The 157 
parameterization requires leaf-area index, which we take from satellite remote sensing (Claverie 158 
et al., 2014; 2016), snow depth, which we take from MERRA2 reanalysis (GMAO, 2015; Gelaro 159 
et al., 2017), and standard meteorological data provided by FLUXNET2015. Uncertainties in 160 
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these variables are described in Sect. 2.4. Performance of the non-stomatal parameterization is 161 
examined in Sect. 3.2. 162 
 163 
Figure 3 shows the stomatal O3 flux at each site calculated with Eq. 3, then averaged over the 164 
growing season. Figure S1 shows the corresponding total O3 flux (Eq. 1). We refer to these 165 
products as the “synthetic” total O3 flux (𝐹$%

EFG) and synthetic stomatal O3 flux (𝐹E,$%
EFG). Superscript 166 

“syn” distinguishes these synthetic quantities from the observed total O3 flux (𝐹$%
HIE) and 167 

observation-derived stomatal O3 flux (𝐹E,$%
HIE), which are only available at a few sites. Together, 168 

we refer to 𝐹$%
EFG and 𝐹E,$%

EFG as SynFlux. In total, the measurements required to calculate 𝐹E,$%
EFG are 169 

O3 mole fraction, sensible and latent heat fluxes, friction velocity, temperature, pressure, 170 
humidity, canopy height, and leaf area index. There are 43 sites in the US and 60 sites in Europe 171 
within the FLUXNET Tier 1 database with sufficient measurements to calculate 𝐹E,$%

EFG.  172 
 173 
 174 
2.2 Observed O3 flux 175 
 176 
We evaluate SynFlux and its inputs at three sites where O3 flux measurements are available: 177 
Harvard Forest, Massachusetts, United States (Munger et al., 1996); Blodgett Forest, California, 178 
United States (Fares et al., 2010); and Hyytiälä Forest, Finland (Keronen et al., 2003; 179 
Mammarella et al., 2007; Rannik et al., 2009). These forest sites sample a range of 180 
environmental and ecosystem conditions summarized in Table 1. All three sites have at least 6 181 
years of half-hourly or hourly flux measurements. Two sites are evergreen needleleaf forests 182 
(Blodgett and Hyytiälä), while one is a deciduous broadleaf forest containing some scattered 183 
stands of evergreen needleleaf trees (Harvard). Climate also differs across these sites. Blodgett 184 
Forest has a Mediterranean climate with cool, wet winters and hot, dry summers. Hyytiälä and 185 
Harvard Forests have cold winters and wetter summers, with Harvard Forest being the warmer of 186 
the two.  187 
 188 
Harvard Forest water vapor flux measurements were recalibrated for this work based on 189 
matching water vapor mixing ratio measured by the flux sensor to levels calculated from ambient 190 
relative humidity and air temperature, resulting in a 30% increase in evapotranspiration during 191 
the 1990s and no change since 2006. In addition, we remove sub-canopy evaporation from the 192 
measured water vapor flux before the Penman-Monteith calculation. Based on past 193 
measurements at these sites, the sub-canopy fraction of evapotranspiration is 20% at Hyytiälä 194 
Forest, 10% at Harvard Forest in summer (Moore et al., 1996; Launiainen et al., 2005). We are 195 
unable to make this correction at all FLUXNET sites since water vapor flux is typically 196 
measured only above canopy. 197 
 198 
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At these three sites, observation-derived vd, gns, and 𝐹E,$% can be derived from the 𝐹$% 199 
measurements with methods that differ slightly from Sect. 2.1. O3 deposition velocity is inferred 200 
from measurements of O3 concentration and flux via 𝑣( = 𝐹$% 𝑛𝜒

./. Resistance or 201 
conductance terms ra, rb, and gs are calculated as described in Sect. 2.1, then both canopy and 202 
non-stomatal conductance are derived from observations via 𝑔= = 𝑣(./ − 𝑟1 − 𝑟3 ./ and 𝑔54 =203 
𝑔= − 𝑔4, respectively. With those values, Eq. 3 gives the observation-derived stomatal O3 flux. 204 
Synthetic and observation-derived stomatal O3 fluxes are both calculated with Eq. 3 and use the 205 
same observation-derived gs, ra, and rb, but different values of gns, vd, and O3 mole fraction. 206 
 207 
 208 
2.3 Gap filling for friction velocity 209 

 210 
The FLUXNET2015 dataset uses gap filling for most flux and meteorological measurements 211 
(Vuichard and Papale, 2015), but not for friction velocity (𝑢∗), which is required to calculate 𝑣( 212 
and 𝐹E,$%

EFG. Filling this one variable would significantly reduce the fraction of missing data in our 213 
analysis. Monin-Obukhov similarity theory predicts that friction velocity is proportional to wind 214 
speed in the surface layer, for a given roughness length and stability regime (Foken, 2017). On 215 
this basis, we regress the available friction velocity measurements against wind speed and net 216 
radiation (a proxy for stability) separately for each site and month (a proxy for vegetation 217 
roughness). This gap filling was possible at 91 sites that report net radiation measurements.  218 
 219 
The predicted friction velocities from the regression model are correlated with available 220 
observations (R2 > 0.5) and have minimal mean bias (±10%) at 85 out of 91 eligible sites (Fig. 221 
S3), with most sites (63 out of 91) showing strong correlations (R2 > 0.7). At the remaining 6 222 
sites with lower regression model performance (R2 < 0.5) we do not use 𝑢∗ gap-filling. The 223 
𝑢∗	gap filling increases the number of 𝐹E,$%

EFG estimates by 1-20%. Time periods with 𝑢∗ gaps have 224 
no significant bias in meteorological conditions (e.g. mean wind speed, radiation, energy fluxes) 225 
compared to periods with 𝑢∗	measurements. As a result, the differences in monthly mean 𝐹4,$%

EFG 226 
with and without gap filling are small (10% rms). So, although the 𝑢∗ gap filling is a potential 227 
source of uncertainty, the 𝐹4,$%

EFG estimates are robust. The following analysis will use the gap-228 
filled data, but our results do not change in any meaningful way if we use the unfilled data.  229 
 230 
2.4 Error analysis, averaging, and numerical methods 231 
 232 
We quantify the errors in 𝐹$%

EFG, 𝐹E,$%
EFG, and all other calculated variables from the measurement 233 

uncertainties using standard techniques for propagation of errors through all equations (see 234 
Supplement S2). This method provides the uncertainty, quantified as standard deviation, of each 235 
variable in each half hour interval. The error analysis reveals that 𝐹E,$%

EFGand other derived 236 
quantities have uncertainties that change from hour to hour by two orders of magnitude (Fig. S2). 237 
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In addition, many extreme values of 𝐹E,$%
EFG, 𝑔4, and other variables have very large uncertainties. 238 

We retain these outliers in our analysis and use the error analysis to appropriately reduce their 239 
influence on averages and other statistics, as described below, without discarding data.  240 
 241 
The FLUXNET2015 dataset contains error estimates for sensible and latent heat measurements. 242 
We use these reported values in the error analysis. Where uncertainties in these fluxes are 243 
missing, we fill the gaps using a linear regression of available flux errors against flux values for 244 
that site. For friction velocity, the uncertainty is the prediction error in the linear model used for 245 
gap filling (Sect. 2.3). Based on expert judgment, the standard deviation of O3 mole fraction is 246 
set to 20%, pressure to 0.5 hPa, temperature to 0.5 K, relative humidity to 5%, and canopy height 247 
to the lesser of 15% or 2 m. For remotely sensed leaf area index, the uncertainty is 1.1 m2 m-2 for 248 
all vegetation types (Claverie et al., 2013; 2016). Snow depth uncertainty in MERRA2 is 0.08 m 249 
(Reichle et al., 2017). The Zhang et al. (2003) 𝑔54 parameterization has 5 vegetation-specific 250 
parameters and all are assigned 50% standard deviation. Zero error is assumed for the flux tower 251 
height. Based on these inputs, the median relative uncertainty in 𝐹E,$%

EFG is 44%, but it rises to 252 
several hundred percent for some half-hour intervals. The error analysis shows that most of the 253 
uncertainty in 𝐹E,$%

EFG derives from uncertainty in the latent heat flux measurement.  254 
 255 
Daily and monthly averages of 𝐹E,$%

EFG and other quantities are constructed in stages. We first 256 
calculate a mean diurnal cycle for the day or month by pooling measurements during each hour 257 
in a maximum likelihood estimate, a weighted average that accounts for the uncertainty in each 258 
measurement. The maximum likelihood estimate is appropriate when combining values from the 259 
same distribution, which is expected to apply for measurements within a particular hour, but not 260 
across hours of the day. We then average across hours with an unweighted mean to calculate the 261 
daily or monthly value. For the daily averages, there are 1-2 observations within each hour. For 262 
the monthly averages, there are typically 30-60 in each hour of the day. We calculate seasonal 263 
averages with an unweighted mean of monthly values. Uncertainties are propagated through each 264 
stage of these averages, as detailed in Supplement S2. We compared averages with and without 265 
uncertainty weighting. The uncertainty-weighted averages tend to be smaller and less variable 266 
than unweighted averages because the error propagation identifies when outliers and large values 267 
have greater uncertainty. For example, the monthly values of 𝑔= derived from observations at 268 
Harvard Forest are 0.57 ± 0.11 cm s–1 with uncertainty weighting and 0.68 ± 0.17 cm s–1 without. 269 
Our discussion focuses on uncertainty-weighted daily averages of daytime data.  270 

Analyses are performed in Python 3.5 with NumPy, Pandas, PySolar, and Statsmodels (Reda and 271 
Andreas, 2005; Van Der Walt et al., 2006; McKinney, 2010; Seabold et al., 2010). We quantify 272 
linear relationships between variables using the coefficient of determination (R2), a parametric 273 
slope estimator (standard major axis or SMA, Warton et al. 2006) and a non-parametric slope 274 
estimator (Thiel-Sen slope, Sen, 1968), which is more robust against outliers.  275 
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 276 
2.5 Data availability 277 
 278 
The SynFlux dataset produced in this work is available at 279 
https://doi.org/10.5281/zenodo.1402054. The dataset includes synthetic stomatal and total O3 280 
fluxes, O3 concentrations, O3 deposition velocity, canopy conductance, stomatal conductance, 281 
and all of their propagated uncertainties. Monthly mean values are provided with and without 𝑢∗ 282 
gap filling, for 103 sites totaling 926 site-years. 283 
 284 
 285 
3 SynFlux evaluation  286 
 287 
3.1 Evaluation of synthetic fluxes 288 
 289 
Figure 4 compares daily daytime averages of synthetic 𝐹E,$%

EFG to observation-derived 𝐹E,$%
HIE. 𝐹4,$%

EFG 290 

and 𝐹4,$%
HIE  are calculated from the same observation-derived stomatal conductance (𝑔4) and 291 

aerodynamic resistances (𝑟1 and 𝑟3) but differ in the O3 mole fraction and non-stomatal 292 
conductance (𝑔54) that they use (see Sect. 2.1 and 2.2). At all three sites, 𝐹E,$%

EFG is strongly 293 
correlated with measured values (R2 = 0.83-0.93). The mean and median biases are –16 to –21% 294 
and at least 95% of 𝐹E,$%

EFGvalues agree with measurements within a factor of 2. The majority of 295 

𝐹E,$%
EFG values lie near the 1:1 line with 𝐹E,$%

HIE and the slopes (0.71 to 0.85) reflect this. The half-296 
hourly or hourly measured and synthetic flux still have some outliers (Fig. S2), but the error 297 
analysis reveals that many of the outlying points have large uncertainties. For 98% of points, the 298 
differences between 𝐹E,$%

EFG and 𝐹E,$%
HIE are less than the 95% confidence interval derived from the 299 

error analysis (two-sided t test). Thus, the errors in 𝐹E,$%
EFG are consistent with the propagated 300 

uncertainty in the observations. The half hourly 𝐹E,$%
EFG values perform similarly well against 301 

observations (Fig. S4), but our analysis focuses on averages. The performance of daily 𝐹4,$%
EFG is 302 

partially due to resolving the seasonal cycle. If we subtract the mean seasonal cycle from both 303 
synthetic and observation-derived daily	𝐹4,$%, the residual correlation is R2 = 0.5-0.7 (versus 0.9 304 
with seasonal cycle included). This represents the skill of SynFlux at reproducing within-month 305 
and interannual variability. Overall, these results suggest that synthetic 𝐹E,$%

EFG is a reliable estimate 306 
of stomatal O3 uptake into plants that can be used at flux tower sites without O3 measurements. 307 
 308 
The measurements also enable us to evaluate synthetic total deposition, 𝐹$%

EFG, and synthetic O3 309 

deposition velocity, 𝑣(
EFG, although these are less relevant to ecosystem impacts than stomatal 310 

uptake, 𝐹E,$%
EFG. For daily averages, Figure S5 shows that 𝐹$%

EFG	bias (–13 to +65%), slope (0.3-1.4), 311 

and 𝑅N (0.05-0.43) are all worse than for 𝐹E,$%
EFG. The daily 𝑣(

EFG performance is similar (Fig. S6, 312 



 

 9 

bias: –26 to +41%, slope: 0.3-1.1, 𝑅N: 0.16-0.37). Monthly averages of 𝑣(
EFG and 𝐹$%

EFG both 313 
improve the correlation to observations (𝑅N	~ 0.12-0.54). The reasons for the better performance 314 
of 𝐹4,$%

EFG compared to 𝐹$%
EFGcan be derived from Eq. 3. The canopy resistance for O3 is normally 315 

much greater than the quasi-laminar layer and aerodynamic resistances, meaning 𝑟= ≫316 
𝑟1	and	𝑟= ≫ 𝑟3, often by a factor of 3-10. Therefore, the O3 deposition velocity is approximately 317 
𝑣( ≈ 𝑟=./ = 𝑔=. Under these conditions, Eq. 1 simplifies to 𝐹$% ≈ 𝑛𝜒(𝑔4 + 𝑔54) and Eq. 3 318 
simplifies to 𝐹4,$% ≈ 𝑛𝜒𝑔4. While 𝑔4 is calculated from measured H2O fluxes, 𝑔54 comes from a 319 
parameterization, which inevitably introduces error into 𝑔54 and 𝐹$%

EFG. However, 𝐹E,$%
EFG has little 320 

sensitivity to 𝑔54 regardless of whether stomatal or non-stomatal conductance is larger. We 321 
confirm this insensitivity in tests where the parameterized 𝑔54 value is doubled at ten sites. The 322 
hourly 𝐹4,$%

EFG values change only 3-8%. Since 𝐹E,$%
EFG has little sensitivity to 𝑔54 or its errors, it can 323 

be calculated more accurately than 𝐹$%
EFG, as seen when comparing Figures 4 and S4. Despite its 324 

larger errors, the means of 𝐹$%
EFG and 𝑣(

EFG are within 50% of the observed value at two sites and 325 
within a factor of 2 at all, which may be useful for some applications, given the scarcity of prior 326 
𝐹$% measurements and observation-derived estimates of 𝑣(. 327 
 328 
 329 
3.2 Stomatal and non-stomatal deposition 330 
 331 
Figure 5 shows the seasonal cycles of observation-derived O3 deposition velocity and its 332 
important components at the three study sites with O3 flux measurements. For low or moderately 333 
reactive gases like O3, canopy resistance is typically greater than aerodynamic or quasi-laminar 334 
layer resistance, so it controls the overall deposition velocity. At these three sites, deposition 335 
velocity is lowest in winter (0.1-0.2 cm s–1) and highest in summer (0.5–0.6 cm s–1). Stomatal 336 
conductance peaks during warm and wet months, which explains most of this seasonal variation, 337 
except at Blodgett Forest as discussed below. Traditionally, stomatal conductance was thought to 338 
exceed non-stomatal conductance during the growing season at most vegetated sites (Wesely, 339 
1989; Zhang et al., 2003), although this has been challenged more recently (Altimir et al., 2006; 340 
Stella et al., 2011; Wolfe et al., 2011; Plake et al., 2015). At both Harvard and Hyytiälä Forests, 341 
the mean stomatal conductance (0.2-0.6 cm s–1) is 1.5-6 times larger than non-stomatal 342 
conductance (0.08-0.2 cm s–1) during the growing season, so about 60-90% of O3 deposition 343 
occurs through stomatal uptake. At Blodgett, non-stomatal conductance slightly exceeds stomatal 344 
conductance in summer (0.4 vs. 0.3 cm s–1). The fast non-stomatal deposition is explained by O3 345 
reacting with biogenic terpenoid emissions below the flux measurement height (Kurpius and 346 
Goldstein, 2003; Fares et al., 2010). As documented in past work, these biogenic emissions 347 
depend strongly on temperature and light and have a large seasonal cycle with maxima in 348 
summer and minima in winter, so stomatal uptake is generally < 50% of O3 deposition at 349 
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Blodgett in the summer but > 70% in winter (Kurpuis and Goldstein, 2003; Fares et al., 2010; 350 
Wolfe et al. 2011). 351 
 352 
A recent analysis of O3 flux measurements at Harvard Forest suggests that non-stomatal 353 
deposition averages 40% of daytime O3 deposition during summer months, with a range of 20-354 
60% across years (Clifton et al., 2017). Our analysis of the same site does not support such a 355 
large role for non-stomatal deposition at this site in summer. For each year, we calculate summer 356 
daytime means of 𝑔4 and 𝑔= by averaging the June-September values, then calculate the non-357 
stomatal fraction of deposition (1 − 𝑔4/𝑔=). Averaged across years 1993-2000, we find that 8% 358 
of daytime O3 deposition is non-stomatal during the summer, with a range of –33% to 34% 359 
across years. Negative fractions mean that stomatal conductance is large enough to explain all O3 360 
deposition. A large negative non-stomatal fraction (–33%) occurs in only one year (1996) and no 361 
other year is less than –11%, which is within uncertainty of 0% (2𝜎) according to the error 362 
propagation. Despite the small or zero non-stomatal fraction found here, our results continue to 363 
support the large year-to-year variability of this fraction reported by Clifton et al. (2017). The re-364 
calibrated latent heat flux measurements are the main reason that our results differ from prior 365 
work and Supplement S3 provides further details. At Hyytiälä Forest, our results are consistent 366 
with prior work that found that the non-stomatal deposition is 26% to 44% of daytime O3 367 
deposition during the growing season (Rannik et al., 2012). Nevertheless, non-stomatal 368 
deposition equals or exceeds stomatal uptake where there are large terpene emissions (e.g. 369 
Blodgett) and at some other temperate sites that probably lack large biogenic emissions (Fowler 370 
et al., 2001; Cieslik, 2004; Lamaud et al., 2009; Stella et al., 2011; El-Madany et al., 2017). We 371 
also examined interannual variation in O3 deposition velocity. We find that the mean summer 372 
daytime 𝑣( is 0.40-0.68 cm s-1 at Harvard Forest, 0.42-0.65 cm s-1 at Blodgett Forest, and 0.43-373 
0.51 cm s-1 at Hyytiälä. This range for Harvard Forest is somewhat smaller than other recent 374 
work (0.5-1.2 cm s-1; Clifton et al., 2017) because of the uncertainty-weighted averages used here 375 
(Sect. 2.4). 376 
 377 
The data here also provide an opportunity to evaluate the parameterization of non-stomatal 378 
conductance (Zhang et al., 2003). The parameterized 𝑔54 has similar mean to observation-379 
derived values in summer at Harvard Forest (0.16 vs. 0.12 cm s–1) and Hyytiälä (0.15 vs. 0.25 cm 380 
s–1). At Blodgett Forest, the parameterized 𝑔54 is about half of observation-derived 𝑔54 in 381 
summer, but this is not surprising since the parameterization does not account for O3 reactions 382 
with biogenic volatile organic compounds (BVOC), which are known to be important at this site 383 
(Fares et al., 2010). In winter, however, the parameterized 𝑔54 values at Blodgett Forest are 384 
similar to observations (0.10 vs. 0.08 cm s–1). The parameterization is therefore able to roughly 385 
predict mean non-stomatal conductance in the absence of major BVOC emissions. Nevertheless, 386 
the parameterization reproduces almost none of the daily variability of 𝑔54 at any site (R2 < 0.1, 387 
Fig. S7). This corroborates the recent field assessment that non-stomatal conductance is a weak 388 
point of most current dry deposition algorithms (Wu et al., 2018). We attempted, unsuccessfully, 389 
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to use BVOC emissions from the MEGAN biogenic emission model (Guenther et al., 2012) to 390 
improve the 𝑔54 parameterization, but the correlations between compounds that react fastest with 391 
O3 (monoterpenes and sesquiterpenes) and the observation-derived daily mean 𝑔54 were poor (R2 392 
≤ 0.15). On that basis, 𝐹$%

EFG may also underestimate total O3 deposition at other sites with high 393 

monoterpene and sesquiterpene emissions, such as warm-weather pine forests, but 𝐹4,$%
EFG should 394 

retain its quality everywhere. 395 
 396 
4 SynFlux applications 397 
 398 
4.1 Spatial patterns of synthetic fluxes 399 
 400 
Across the 43 sites in the US shown in Fig. 3, mean 𝐹E,$%

EFG during the growing season ranges from 401 

0.5 to 11.0 nmol O3 m-2 s-1 with an average of 4.4 nmol O3 m-2 s-1. The highest 𝐹E,$%
EFG generally 402 

occurs in the Midwest (5-9 nmol O3 m–2 s–1 in Wisconsin, Michigan, Nebraska, Ohio) due to its 403 
moderate O3 concentrations (Fig. S6) and moisture levels, which promotes stomatal conductance 404 
(Fig. 1). The Western US has higher average O3 concentrations, but generally lower moisture 405 
and stomatal conductance, especially the Southwest US, so 𝐹E,$%

EFG (0-4 nmol O3 m–2 s–1) is mostly 406 
lower than the Midwest. Land cover, land management, and plant types can drive large 407 
differences in 𝐹E,$%

EFG between nearby sites, even when O3 concentrations and meteorology are 408 
similar. For example, three Nebraska sites are all crop fields and O3 concentrations are nearly 409 
identical, but two irrigated fields have higher stomatal conductance and higher 𝐹E,$%

EFG than the 410 
nearby rainfed field (6.2 vs. 4.8 nmol O3 m-2 s-1). Two sites in central California have high gs and 411 
𝐹E,$%
EFG compared to surrounding sites due to irrigation and naturally wet soil in the California 412 

Delta. A combination of topography and climate is also an important factor in California: forest 413 
sites in the Sierra Nevada mountains have lower gs and 𝐹E,$%

EFG than the lowland crops and wetland 414 

grasses. In Oregon, an evergreen needleleaf site regrowing after a fire has higher gs and 𝐹E,$%
EFG 415 

than two older forest stands nearby. The differences between 9 Wisconsin forest sites, however, 416 
are mostly due to different years of data at each site combined with interannual variability in 417 
𝐹E,$%
EFG; fluxes at these sites are similar in overlapping years.  418 

 419 
Variability across the 60 sites in Europe is controlled by similar factors. Stomatal uptake ranges 420 
from 1.4 to 9.6 nmol O3 m-2 s-1, with an average of 4.7 nmol O3 m-2 s-1 (Fig. 3). The 421 
Mediterranean region has high O3 concentrations (Fig. S8), but generally low stomatal 422 
conductance due to the dry climate (Fig. 1). Within this region, vegetation type explains broad 423 
patterns. Shrub sites in Spain, France, and Sardinia have very low 𝑔4 (~0.15 cm s-1) so 𝐹E,$%

EFG is 424 
low (1-3 nmol O3 m-2 s-1), while most of the sites in mainland Italy are broadleaf and evergreen 425 
forests that have slightly greater 𝑔4 (~0.2-0.4 cm s-1) and 𝐹E,$%

EFG (3-6 nmol O3 m-2 s-1), despite 426 
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similar climate and O3. In central and northern Europe, temperate climate promotes higher 427 
stomatal conductance while O3 concentrations remain modest throughout the growing season. 428 
The largest 𝐹E,$%

EFG is 9.8 nmol O3 m-2 s-1 at a deciduous broadleaf forest in Switzerland, while 429 
nearby evergreen forests, cereal crops, and grasslands all have lower fluxes (6-8 nmol O3 m-2 s-1). 430 
While Finland has generally low 𝐹E,$%

EFG of 2-5 nmol O3 m-2 s-1, the high end of this range is similar 431 
to rural sites in Germany, illustrating that O3 can impact remote ecosystems with high stomatal 432 
conductance, even where O3 concentrations are low. 433 
 434 
Table 2 quantifies SynFlux, O3

 deposition velocity, and conductance for each plant functional 435 
type. Wetlands, crops, and forests have the highest average 𝐹E,$%

EFG, which is about two times 436 

higher than woody savanna or shrublands, the vegetation types with the lowest 𝐹E,$%
EFG. At wetland 437 

sites, 𝑔4 and	𝐹E,$%
EFG could be overestimated due to evaporation of surface water (Sect. 2.1), but any 438 

error is likely modest because our estimates of stomatal conductance at these sites (0.48 ± 0.16 439 
cm s–1; Table 2) are reasonable for wetland vegetation (up to 1 cm s–1; Drake et al., 2013). The 440 
vegetation types rank in the same order for stomatal conductance, again showing stomata as the 441 
main control on O3 uptake into vegetation. Stomatal uptake exceeds non-stomatal uptake for all 442 
plant functional types except woody savanna and shrubland. O3 deposition velocities reported in 443 
Table 2 fall within the ranges of past literature, as reviewed by Silva and Heald (2017). 444 
However, while Silva and Heald found that the mean deposition velocity was greater over 445 
deciduous forests than coniferous forests, crops, or grass, we do not. Rather, we find that 446 
variability between sites within each of these categories is large, having a standard deviation 447 
about 30% of the multi-site mean.  448 
 449 
4.2 Metrics for O3 damage to plants 450 
 451 
Since O3 injures plants mainly by internal oxidative damage after entering the leaves through 452 
stomata, the most physiological predictor of plant injuries is the cumulative uptake of O3 (CUO, 453 
Reich, 1987; Fuhrer, 2000; Karlsson et al., 2004; Cieslik, 2004; Matyssek et al., 2007). CUO is 454 
defined as the cumulative stomatal O3 flux exceeding a threshold flux Y that can be detoxified by 455 
the plant, integrated over a period of time: 456 

CUOY = 𝐻(𝐹4,$%,Y − 𝑌)(𝐹4,$%,Y − 𝑌)	Δ𝑡Y
Y

. 457 

Here, 𝐻(𝑥) is the Heaviside step function and Δ𝑡Y is the time elapsed during measurement of 458 
𝐹4,$%,Y. The sum is carried out over time i in the growing season, which we define based on GPP 459 
(Sect 2.1), The detoxification threshold varies across vegetation types, even among related 460 
species (Karlsson et al., 2004, Büker et al., 2015), and thresholds for specific FLUXNET sites 461 
are generally unknown. As a compromise, we calculate CUO, with Y=0, and also CUO3, with Y 462 
= 3 nmol O3 m–2 s–1, which has been suggested as a reasonable generic threshold (Mills et al., 463 
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2011). CUO is always greater than CUO3, but the sites with high CUO tend to also have high 464 
CUO3, so their spatial patterns are similar (Fig. S8). 465 
 466 
While CUO is a physiological dose, concentration-based metrics remain common for assessing 467 
ozone impacts because they are easier to measure. Concentration-based metrics quantify O3 in 468 
ambient air irrespective of whether that O3 enters leaves. These metrics follow the general form 469 

𝑀 = 𝑤 𝜒Y 	 𝜒Y − 𝜒= 	Δ𝑡Y
Y

 470 

where w(𝜒) is a weighting function applied to the O3 mole fraction 𝜒, and 𝜒= is a constant. Like 471 
CUO, the sum is usually over time i during the growing season. Three of the most common 472 
concentration-based O3 metrics are the mean O3 concentration, the accumulated concentration 473 
over a threshold of 40 ppb (AOT40; UNECE, 2004), and the sigmoidal-weighted index (W126; 474 
Lefohn and Runeckles, 1987). For mean, 𝑤 𝜒 = Δ𝑡Y ./ and 𝜒= = 0. For AOT40, 𝑤(𝜒) =475 
𝐻(𝜒 − 𝜒=)	 and 𝜒= = 40 ppb. For W126, 𝑤 𝜒 = 1 + 4403 exp − 126	ppb./ 𝜒 ./ and 𝜒= = 476 
0. Both AOT40 and W126 use only daytime (8am-8pm) measurements and W126 also takes the 477 
maximum value over all 3-month periods during the growing season. The weighting functions 478 
for AOT40 and W126 give little or no weight to O3 concentrations below 40 ppb. In addition, 479 
W126 gives increasing weight to concentrations up to about 110 ppb and full weight for higher 480 
concentrations based on the understanding that exposure to high O3 concentrations is more 481 
injurious than moderate or low concentrations. Other concentration-based metrics (e.g. SUM60) 482 
use other thresholds or weighting functions, but many are strongly correlated with AOT40 or 483 
W126 or otherwise qualitatively similar (Paoletti et al., 2007).  484 
 485 
The spatial patterns of AOT40 and W126 closely resemble that of mean O3 concentration in the 486 
US and Europe despite their different weighting functions (Fig. S9). AOT40 and W126 are well 487 
correlated with each other across sites (R2 = 0.87) and with mean O3 mole fraction (R2 = 0.76 and 488 
R2 = 0.52 for mean O3 vs. AOT40 and W126, respectively) despite their different weighting 489 
functions. As a result, all of these concentrations-based metrics have similar spatial patterns in 490 
the US and Europe. The CUO and CUO3 spatial patterns, however, are similar to 𝐹E,$%

EFG and 491 
distinct from the concentration-based metrics. This illustrates that locations with high AOT40 or 492 
W126, like the Southwest US or Mediterranean Europe, can have low CUO. 493 
 494 
Even though concentration-based metrics do not measure the physiological O3 dose to plants, 495 
they can be useful if the metric is proportional to the flux-based dose and injuries. Indeed, many 496 
controlled experiments and observational studies have documented correlations between both 497 
AOT40 and W126 and either uptake or plant injuries (e.g. Fuhrer et al., 1997; Cieslik, 2004; 498 
Musselman et al., 2006; Matyssek et al., 2010). However, many of these studies were carried out 499 
at a single site or under conditions where stomatal conductance was relatively steady while O3 500 
concentrations varied, for example by maintaining well-watered soil. When stomatal 501 
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conductance varies widely, such as between arid and humid climates or seasons, concentration-502 
based metrics may not correlate with stomatal O3 flux (Mills et al., 2011).    503 
 504 
Figure 6 shows that all of the concentration-based metrics are poorly correlated with CUO across 505 
the sites (AOT40: R2 = 0.05, W126: R2 = 0.03, mean O3: R2 = 0.04). Humidity helps explain some 506 
of the scatter in Figure 6. The sites with high concentration-based metrics and low CUO have 507 
high vapor pressure deficit (VPD), low stomatal conductance, and are mostly in the western US 508 
and Mediterranean Europe. Restricting the analysis to humid sites (VPD < 1.5 kPa) does not 509 
improve the correlation (R2  ≈ 0.05) and at the arid sites (VPD > 1.6 kPa) the concentration-based 510 
metrics are modestly anti-correlated with CUO (AOT40: R2 = 0.19, W126: R2 = 0.05, mean O3: 511 
R2 = 0.37). This result reinforces that concentration-based metrics can misrepresent CUO and 512 
plant injuries (Mills et al., 2011). 513 
 514 
From the CUO values in Table 2, we can estimate the range of O3 impacts on biomass 515 
production at the FLUXNET sites. Although species vary in their sensitivity to O3 (Lombardozzi 516 
et al., 2013), several studies suggest that the biomass production of broadleaf and needleleaf 517 
trees decreases 0.2 to 1% per mmol O3 m-2 of CUO (Karlsson et al., 2004; Wittig et al., 2007; 518 
Hoshika et al., 2015). Combining the mean CUO for each plant functional type (Table 2) with 519 
these sensitivities, our work implies that O3 reduces the biomass production at these FLUXNET 520 
sites by 6-29% for deciduous broadleaf forests and 4-20% for needleleaf forests. The range 521 
represents the spread of reported dose-response sensitivities within each plant type, meaning the 522 
least and most O3-sensitive species. Several broadleaf crops are more sensitive to O3, with 523 
biomass reductions of 1.3-1.6% per mmol O3 m–2 of CUO3 (Mills et al., 2011). That sensitivity 524 
implies 20-24% drop in biomass production at FLUXNET crop sites. Some studies have 525 
quantified O3 dose-response relationships with other thresholds Y = 1.6 to 6 nmol O3 m–2 s–1 (e.g. 526 
Karlsson et al., 2007; Pleijel et al., 2004, 2014), but the sensitivities have similar magnitude. 527 
Fares et al. (2013) also demonstrated 12-19% reduction in gross primary production due to O3 at 528 
some of the same crop and forest FLUXNET sites. Using prognostic models of O3 529 
concentrations and stomatal uptake, several past studies have also suggested that O3 reduces 530 
biomass production and CO2 sequestration by 4-20% in the US and Europe (Sitch et al., 2007; 531 
Wittig et al., 2007; Mills et al., 2011; Yue et al., 2014, 2016; Lombardozzi et al., 2015). Our 532 
results support this range of impacts, although some FLUXNET sites and species likely 533 
experience greater O3 injury, but here the CUO is highly constrained from observations and 534 
therefore avoids the additional uncertainties of atmosphere-biosphere models. 535 
 536 
 537 
5 Conclusions 538 
 539 
We have demonstrated a method to estimate O3 fluxes and stomatal O3 uptake at eddy 540 
covariance flux towers wherever regional O3 monitors exist. The method, called SynFlux, 541 
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derives stomatal conductance and O3 deposition velocity from standard eddy covariance 542 
measurements and combines them with gridded O3 concentrations from air quality monitoring 543 
networks. We apply this method to the FLUXNET2015 dataset and derive synthetic flux 544 
estimates at 43 sites in the United States and 60 sites in Europe, totaling 926 site-years of 545 
observations. O3 deposition measurements have previously only been sporadically available for a 546 
few sites around the world, so this work dramatically increases the flux data available for 547 
understanding O3 impacts on vegetation and for evaluating air quality and climate models.  548 
 549 
Three sites with long-term O3 flux measurements provide an independent test of SynFlux. These 550 
comparisons show that daily averages of synthetic stomatal 𝐹E,$%

EFG correlate well with observation-551 

derived 𝐹E,$%
HIE (R2 = 0.83-0.93) and have a mean bias under 22% at all sites. At all three sites 95% 552 

of the synthetic 𝐹E,$%
EFG values differ from measurements by a factor of 2 or less. The differences 553 

between 𝐹E,$%
EFGand 𝐹E,$%

HIE are also consistent with propagated uncertainty in the underlying 554 

measurements. Synthetic total deposition, 𝐹$%
EFG, is sensitive to errors in the parameterized non-555 

stomatal conductance, but mean values are still with a factor of 2 of observations. The errors in 556 
this dataset are modest compared with differences between observations and regional and global 557 
atmospheric chemistry models that are frequently a factor of 2 or more (Zhang et al., 2003; 558 
Hardacre et al., 2015; Clifton et al., 2017; Silva and Heald, 2017), illustrating the utility of this 559 
dataset for evaluating models and O3 impacts.  560 
 561 
Across flux tower sites in the US and Europe, 𝐹E,$%

EFG ranges from 0.5 to 11.0 nmol O3 m–2 s–1 562 

during the summer growing season. The spatial pattern of 𝐹E,$%
EFG is mainly controlled by stomatal 563 

conductance rather than O3 concentration. Patterns of stomatal conductance and 𝐹E,$%
EFG in turn are 564 

explained by climate, especially atmospheric and soil moisture, vegetation types, and land 565 
management, such as irrigation. O3 concentration-based metrics (AOT40, W126, mean O3) have 566 
been widely used to evaluate O3 damages to plants because they are easier and cheaper to 567 
measure than the cumulative uptake of O3 (CUO) into leaves. However, these metrics have very 568 
little correlation with CUO (R2 ≤ 0.05) across FLUXNET sites. Using dose-response 569 
relationships between CUO and biomass reduction, we estimate that O3 reduces biomass 570 
production and carbon uptake by 4-29%, depending on the site and plant type. Unlike most past 571 
estimates, which have used prognostic models of O3 uptake, our assessment of biomass reduction 572 
is based on O3 fluxes that are tightly constrained by observations. To promote further 573 
applications in ecosystem monitoring and modeling, the SynFlux dataset is publicly available as 574 
monthly averages of 𝐹E,$%

EFG, 𝐹$%
EFG, O3 deposition velocity, stomatal conductance, and related 575 

variables. 576 
 577 
 578 
 579 
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Table 1. Description of sites that measure O3 flux and their daytime growing season conditions a 1369 
 1370 
 Blodgett Forest, 

California, USA 
Hyytiälä Forest, Finland Harvard Forest, 

Massachusetts, USA 
Latitude, Longitude 38.8953, –120.6328  61.8475, 24.2950 42.5378, –72.1715 
Plant functional type Evergreen needleleaf  Evergreen needleleaf  Deciduous broadleaf  
Years of data 2001-2007 2007-2012 1993-1999 
Days of observations  1281 1098 1281 
Canopy height, m 8 15 24 
GPP, µmol m-2 s-1 9.22 ± 3.55  11.1 ± 5.02  12.4 ± 7.62 
ET, mmol m-2 s-1 3.25 ± 1.23 1.71 ± 0.82  2.95 ± 1.70  
PAR, µmol m-2 s-1 875 ± 149  690 ± 203  876 ± 222  
Air Temperature, °C 19.1 ± 5.36  13.3 ± 5.99  17.65± 5.75  
VPD, kPa 1.51 ± 0.61  0.73 ± 0.32  0.90 ± 0.34  
O3, ppb 55.4 ± 13.4  32.2 ± 8.68  48.8 ± 15.8 
𝐹4,$%, nmol O3 m-2 s-1 5.18 ± 2.11  4.35 ± 1.66  7.23 ± 4.87  
Precipitation, mm day-1 0.09 ± 0.49  0.42 ± 0.89  0.28 ± 0.82 

 1371 
a Values are mean ± standard deviation of daily averages, using daytime observations only. GPP is gross 1372 
primary productivity. ET is evapotranspiration. PAR is photosynthetically active radiation. VPD is vapor 1373 
pressure deficit. 𝐹4,$% is observation-derived stomatal O3 flux.  1374 
 1375 
 1376 
 1377 
Table 2. Mean O3 SynFlux, deposition velocity and its conductance components during daytime 1378 
in the growing season, grouped by plant functional type (PFT).a 1379 
 1380 

PFTb Sites Site-
Years 

gs gns gc vd 𝐹$%
EFG 𝐹E,$%

EFG CUO CUO3 

CRO 18 148 0.42±0.17 0.28±0.09 0.68±0.18 0.53±0.12 7.66±1.96 4.77±1.52 24.8±12.4 14.9±9.3 
ENF 25 254 0.37±0.10 0.25±0.06 0.60±0.11 0.54±0.10 7.37±1.33 4.61±1.16 20.0±5.69 11.9±6.30 
EBF 3 31 0.21±0.02 0.15±0.02 0.36±0.03 0.33±0.03 5.02±0.65 2.90±0.28 12.1±0.81 5.12±0.45 
DBF 16 158 0.41±0.14 0.20±0.09 0.60±0.18 0.53±0.15 7.87±2.28 5.37±1.69 28.6±13.8 15.7±6.66 
MF 5 83 0.44±0.17 0.19±0.01 0.62±0.15 0.56±0.14 7.82±1.91 5.53±2.15 24.9±10.5 15.9±8.90 
WSA 2 25 0.10±0.02 0.31±0.06 0.39±0.04 0.36±0.04 6.14±0.20 1.47±0.31 6.46±1.43 2.54±1.72 
OSH 4 14 0.19±0.07 0.29±0.10 0.47±0.10 0.41±0.09 5.69±1.33 2.23±0.87 8.60±3.27 2.27±1.54 
CSH 2 15 0.27±0.11 0.29±0.01 0.57±0.09 0.49±0.05 6.78±0.95 3.34±1.24 14.3±5.30 7.62±5.49 
GRA 18 136 0.40±0.30 0.24±0.11 0.64±0.26 0.47±0.15 7.04±7.04 4.12±2.45 18.3±10.7 9.90±6.98 
WETc 10 53 0.48±0.16 0.27±0.09 0.74±0.21 0.58±0.14 8.80±2.74 5.77±2.08 25.1±9.65 19.4±15.6 

 1381 
a Values are the mean ± standard deviation across sites within each PFT. Units are cm s–1 for gs, gns, gc, 1382 
and vd; nmol O3 m–2 s–1 for 𝐹$%

EFG and 𝐹E,$%
EFG; and mmol O3 m–2 for CUO and CUO3. 1383 

b CRO = crop, ENF = evergreen needleleaf forest, EBF = evergreen broadleaf forest, DBF = deciduous 1384 
broadleaf forest, MF = mixed forest, WSA = woody savanna, OSH = open shrubland, CSH = closed 1385 
shrubland, GRA = grassland, WET = wetland 1386 
c Fluxes may be overestimated at wetland sites due to evaporation of surface water affecting the 1387 
calculation of 𝑔4, but any errors are likely modest because the 𝑔4 values here are reasonable (Drake et al., 1388 
2013). 1389 
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 1390 

 1391 
 1392 
Figure 1. Mean stomatal conductance for O3 (gs) during daytime in the growing season at 1393 
FLUXNET2015 sites in the United States and Europe. Symbols of some sites have been moved 1394 
slightly to reduce overlap and improve legibility. 1395 
 1396 
 1397 

 1398 
 1399 
Figure 2. Gridded and observed daily daytime O3 concentrations at Blodgett, Harvard, and 1400 
Hyytiälä Forests. Inset numbers provide the coefficient of determination (𝑅N), mean and median 1401 
bias, the standard major axis (SMA) slope, the Thiel-Sen (Sen) slope, and the 68% confidence 1402 
interval of the slopes. Black arrow points towards outliers that are not shown. 1403 
  1404 
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  1405 

 1406 
Figure 3. Mean synthetic stomatal O3 flux (𝐹E,$%

EFG, Sect. 2.1) during the daytime growing season at 1407 
FLUXNET2015 sites in the United States and Europe. Symbols of some sites have been moved 1408 
slightly to reduce overlap and improve legibility.  1409 
 1410 

 1411 
Figure 4. Synthetic and observation-derived daily daytime stomatal O3 flux. See Sect. 2.1 for 1412 
definition of 𝐹E,$%

EFG and Fig. 2 for explanation of lines and inset text.  1413 
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 1414 
Figure 5. Observed O3 deposition velocity and its in-canopy components at sites with O3 flux 1415 
measurements. Lines show the multi-year mean and multi-year standard deviation calculated 1416 
from the monthly averages described in Sect. 2.4. Dashed lines on the stomatal conductance 1417 
panel show the stomatal fraction of total canopy conductance (𝑔4	𝑔=./) and dashed lines on the 1418 
non-stomatal conductance panel show the parameterized 𝑔54 value. 1419 
  1420 
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 1421 

 1422 
Figure 6. Comparison of cumulative uptake of O3 (CUO) to concentration-based metrics of O3 1423 
exposure during the daytime growing season at 103 sites: mean O3 concentration (left), AOT40 1424 
(center), and W126 (right). There is one value (dot) per site per year. Colors show mean vapor 1425 
pressure deficit during the growing season.  1426 
 1427 
 1428 


