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Abstract. Modern Eddy Covariance (EC) systems collect high-frequency data (10-20 Hz) via instruments’ digital outputs.  

This is an important evolution with respect to the traditional and widely used mixed analog/digital systems, as fully-digital 

systems help overcome the traditional limitations of transmission reliability, data quality and completeness of the datasets.  

However, fully-digital acquisition introduces a new problem of guaranteeing data synchronicity when the clocks of the 

involved devices cannot themselves be synchronized, which is often the case with instruments providing data via serial or 15 

Ethernet connectivity in a streaming mode. In this paper, we suggest that, when assembling EC systems “in-house”, aspects 

related to timing issues need to be carefully considered to avoid significant flux biases.  

By means of a simulation study, we found that, in most cases, random timing errors can safely be neglected, as they do not 

impact fluxes significantly. At the same time, systematic timing errors potentially arising in asynchronous systems can act 

effectively as filters leading to significant flux underestimations, as large as 10%, by means of attenuation of high-frequency 20 

flux contributions. We characterized the transfer function of such ‘filters’ as a function of the error magnitude and found cutoff 

frequencies as low as 1 Hz, implying that synchronization errors can dominate high-frequency attenuations in open- and 

enclosed-path EC systems. In most cases, such timing errors cannot be either detected or characterized a-posteriori. Therefore, 

it is important to test the ability of traditional and prospective EC data logging systems to assure the required synchronicity 

and propose a procedure to implement such a test relying on readily available equipment. 25 

1 Introduction 

Eddy Covariance (EC) is the most direct and defensible technique to measure atmosphere-biosphere exchange fluxes of energy 

and matter to date (e.g. see Aubinet et al. 2000, Aubinet et al. 2012, Baldocchi et al. 2001).  The method is based on the Navier-

Stokes equations for mass and momentum conservation and relies on simplifying assumptions to describe the vertical turbulent 

flux in terms of the covariance of the vertical wind component (w) and of the scalar of interest.  30 

Calculating EC fluxes of a gaseous species requires collecting synchronous data of w and of the concentration c of the gas, 

which is typically performed, using a 3D ultrasonic anemometer and a gas analyser operating at suitable frequencies of 10 to 

20 Hz. After proper data treatment and time alignment, the covariance of the two time series is calculated, from which the flux 

is derived (e.g. Foken et al. 2012). In this context, synchronicity means that w and c values for any given timestamp (i.e., the 

data that is multiplied together in the covariance) describe the properties of the same air parcel.  35 

 Regardless of the level of integration and physical configuration of the instruments within an EC system, wind and 

concentration data are measured by two different instruments, an anemometer relying on the speed of sound measurements 
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between transducer pairs, and a gas analyzer relying on the light transformations measurements in the sampling path. In 

addition, data collection is performed by means of a variety of more or less engineered data acquisition systems. Delays in the 

data flows, digital clock drifts, required separation of the measuring devices and artefacts in the data acquisition strategy can 

lead to poor synchronicity, i.e. to misalignments of the time series, such that w and c values assigned to a given timestamp 

refer to properties of fully or partially different air-parcels. If not addressed, such misalignments can lead to significant flux 5 

errors of both random and systematic nature.  

Commercial solutions implementing sound engineering practices do exist for well-established EC measurements of CO2 and 

H2O fluxes to assure a sufficient level of data synchronicity per requirements of the EC method, for selected few anemometer-

analyzer pairs. However, most of such solutions are not scalable to other hardware models or gas species, because the required 

instrumentation doesn’t necessarily support the same connectivity technology and specifications. Therefore, it is generally 10 

very challenging, for example, to simply replace a gas analyser with another one from another manufacturer and keep the same 

synchronization performance. Furthermore, it is customary for many research groups to assemble EC systems “in-house”, 

especially when addressing gas species that haven’t been popular enough to grow strong commercial interest. Typically, in 

these systems, data collection is performed with industrial data loggers or computers via serial or Ethernet connectivity, using 

custom-built logging software. In such cases, it is particularly important to verify that various types of data misalignment are 15 

not being introduced by the data logging system and data collection strategy to assure minimal or no bias in resulted fluxes. 

In this paper, we discuss the types and sources of misalignment that can arise in poorly designed fully-digital EC systems and 

quantify their effects on resulting fluxes. In conjunction with site-specific characteristics, such as the typical co-spectral shapes, 

this information can help design appropriate data collection scheme for EC systems assembled “in-house”. Users of some 

commercially available industrial-grade EC systems can generally assume their systems not to be affected by significant timing 20 

errors, although this can and should be verified case-by-case. We also propose a strategy for evaluating prospective EC data 

collection systems from the point of view of data synchronicity before they are used in routine field activities.  

1.1 Analog vs. digital EC systems 

Traditionally, a combination of analog and digital transmission systems has been used to collect EC data (Eugster and Plüss, 

2010). For example, analog signals from the gas analyser were sent to an interface unit responsible for digitizing the data 25 

before merging it with anemometric data, itself coming from an A/D converter into the interface unit, typically from a sonic 

anemometer-thermometer (SAT). More recently, specular solutions, with the analog data from the SAT sent to an interface 

unit residing in the gas analyser system, became available and were widely adopted. With both of these approaches, the data 

was presented to the user for the flux calculation as single files with wind and gas time series merged and synchronized by the 

interface unit. 30 

Analog data output allows the data to easily cross clock domains. The clock that is used to sample the original signal does not 

need to be synchronized to the clock that samples the analog output. This makes it very convenient to merge data from systems 

with unsynchronized clocks and risks of misalignments are limited to small random errors that, as we will see later, have no 

significant effects on fluxes.  

However, collecting data in analog form has several limitations and risks. First, the number of analog channels available either 35 

as outputs from the instruments or as inputs to the interface unit is typically limited to 4 or 6, which dramatically reduces the 

number of variables that can be collected. In fact, historic EC raw datasets are comprised of 6 or maximum 7 variables: the 3 

wind components (u, v, w), the sonic temperature (Ts) and the concentration of the gases of interest (c, traditionally CO2 and 

H2O); more rarely, a diagnostic variable for the anemometric data was also collected. Critical information such as the full 

diagnostics of both instruments and their status (e.g. the temperature and pressure in the gas analyser cell or the signal strength) 40 

or the original raw measurement (speed of sound, raw data counts etc.) are not collected in most analog systems, limiting the 
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means for quality screening and limiting the possibility of future re-computation of the most fundamental raw measurements. 

Another problem with analog data collection is that signals are subject to degradation due to dissipation, electromagnetic noise 

and ageing of cables and connectors, which reduces the quality of collected data (Barnes, 1987). In addition, although all raw 

measurements are analog in nature, they are typically immediately digitized (native digital format provided by the 

manufacturer) and then - in case of analog data collection - they are re-converted to analog, sent to the interface unit and there 5 

converted back to digital; these A/D-D/A conversions potentially degrade the signal adding noise and dampening high-

frequency signal components (Eugster and Plüss, 2010). For these reasons, analog connectivity should nowadays be avoided 

whenever possible in favor of fully-digital solutions. 

 

In fully-digital EC acquisition systems both data streams are collected in their respective native digital format, i.e. without 10 

additional A/D conversions other than those implemented by the manufacturer to provide digital outputs. Fully digital systems 

largely or completely overcome both problems with mixed analog/digital systems, using more robust and less corruptible data 

transmission protocols, and providing the possibility of collecting all variables available from the individual instrument. 

However, combining digital data streams from different instruments brings new challenges, most notably with respect to data 

synchronization. While moving between clock domains is trivial in an analog system, it can be much more challenging with 15 

digital data when the involved clocks can be completely asynchronous to each other.  

 

1. 2 The problem of clock synchronization in digital systems 

Different strategies exist for collecting data digitally. First, instruments can perform the measurements according to their own 

scheduler or a trigger. In the scheduler case, data can then be collected by polling the instrument for the latest available data 20 

(polling mode) or by keeping an open channel where data is streamed to (streaming mode). In the trigger case, data is usually 

made available after a fixed or somewhat variable delay to the logging device. This delay is due to the acquisition time and 

could also include a delay due to filtering. However, the timestamp for the acquired data is assigned based on the occurrence 

of the trigger, therefore removing any timing error due to that delay. All modes have advantages and disadvantages. As 

described later, triggering and polling modes are less susceptible to timing errors, but they require the instrumentation to be 25 

designed for the particular triggering or polling system adopted. They are therefore best suited for EC systems built with 

components all from the same manufacturer. For the same reason, such systems are commonly not flexible enough to 

accommodate 3rd-party instrumentation. EC systems commercialized by Campbell Scientific Inc. (Logan, UT, USA, “CSI” 

hereafter) are examples of integrated systems using a data triggering strategy to collect data from instruments designed ad-

hoc. Data communication in these systems is realized via the SDM protocol (or its evolutions), which is a CSI proprietary 30 

protocol, implemented only in CSI instruments and some CO2/H2O gas analysers by LI-COR Biosciences Inc. (Lincoln, NE, 

USA, “LI-COR” hereafter). By contrast, most instrumentation available for fast wind and gas measurement provides data 

transmission options only in streaming mode. As a consequence, most data logging solutions developed by the scientific 

community or by commercial entities are designed to handle data provided in streaming mode and are therefore flexible to 

accommodate a wide variety of instrumentation. Examples of such logging systems developed by the community are PC-based 35 

software such as Huskerflux (https://github.com/Flux-Dave/HuskerFlux), EddyMeas (Kolle and Rebmann, 2007), EdiSol 

(EdiSol User Guide V0.39b https://epic.awi.de/29686/1/Mon2005d.pdf), or the already referenced system proposed Eugster 

and Plüss (2010) for EC measurement of methane. As for commercial solutions, LI-COR provides industrial-grade EC systems 

based on the SmartFlux® system, that can accommodate a wide variety of instrumentation using the data-streaming approach.  

However, collecting data in streaming mode exposes the risk of introducing significant timing errors, because of the number 40 

of asynchronous digital clocks involved.  
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Digital clocks are electronic oscillator circuits that use the mechanical resonance of a vibrating crystal of piezoelectric material 

to create an electrical signal with a precise frequency, which is then used to keep track of time. The number and quality of 

clocks involved in an EC system vary with the data collection strategy and technology. In systems based on data triggering or 

polling, there is only one critical clock (the one responsible for the timing of the triggering or polling signal, respectively), 

therefore there is no significant risk of introducing systematic timing misalignments between data from different instruments 5 

(see later). With these systems, the risk is limited to random and/or constant misalignments. As we will see later, random or 

constant misalignments do not entail large errors. For this reason, in the remainder of this section we consider more in details 

the situation with systems based on data streaming.  

In such systems the clocks potentially relevant are, in general: 

● The sampling clocks of the sensing instruments (in the typical EC system, the SAT and the gas analyser), responsible 10 

for sampling data at the prescribed rate with sufficient precision and accuracy; 

● For systems that transmit data serially (RS-232 or RS-485), the serial clock of the same sensing instrument, which 

may or may not be correlated to its sampling clock; 

● The clocks of the logging device(s) (data logger, PC, etc.), responsible for attaching a timestamp to the data. If a 

single logging device is used this is usually also responsible for merging data streams from the different instruments; 15 

in case dedicated logging systems are used for different instruments, merging is performed in post-processing and the 

clocks of the different loggers must, therefore, be aligned sufficiently frequently (e.g. every second, using a GPS 

signal). 

Typical open digital communication protocols used for EC instruments with data-streaming instrumentation are serial (RS-

232, RS-485) and packet-based data protocols (Ethernet). In devices that transmit data via serial communication, such as SATs, 20 

there are no means to synchronize the sampling clock of the device to that of the data logger. With such devices, the best that 

can be done is to assign a timestamp after transmission, based on the clock of the data logger (this last step should be performed 

carefully to avoid large inaccuracies due to serial port latencies, especially in PC-based systems). In addition, devices 

implementing serial communication have an asynchronous clock that drives those protocols (e.g. Dobkin et al., 2010). If this 

clock is correlated with the device’s sampling clock, the receiving data logger can - at least in principle - reconstruct the 25 

sampling clock. However, in devices that do not correlate sampling and serial clocks (such as those that output data in a 

software thread that is independent of an acquisition thread), the system scheduler then determines when data is transmitted, 

thereby completely isolating the serial clock from the sampling clock and making it impossible for the data logger to 

reconstruct the sampling clock. 

Packet-based data communications such as Ethernet even further isolate the sampling clock from the transmission clock. In 30 

devices using this protocol, it is therefore impossible to reconstruct a sampling clock. However, for Ethernet-based systems 

additional protocols are available, such as NTP or PTP, to actually synchronize all system clocks. The synchronized system 

clocks then allow the data to be correctly timestamped before transmission, eliminating any synchronization issue, provided 

that downstream software can align the various data streams based on their timestamps (e.g. Mahmood et al., 2014).  

1.3 Types of timing errors 35 

In typical EC data acquisition setups, time series collected by different instruments can show three distinct types of 

misalignments (Figure 1): 

Time lags: these are constant offsets in otherwise perfectly aligned time series. They can be the result of constant electronic 

delays or of fixed delays due to digital signal processing (DSP). More frequently, they result from a physical separation of the 

sampling volumes or from the delay due to the time needed for the passage of air in a sampling line. 40 
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Random timing errors (RTEs in the following) occur when the timestamps assigned to the data differ from the exact time 

dictated by the nominal sampling frequency, and such differences are randomly distributed so that, on average, the actual 

frequency is equal to the nominal one. In practice, in the EC context, it is more useful to consider the random differences in 

the timestamps assigned to data from one instrument with respect to that of the paired instrument. In fact, in the hypothetical 

case in which the two instruments would have the exact same sequence of random errors, that would not introduce any 5 

misalignment and hence no flux bias. 

Systematic timing errors (STEs) occur when the timestamps assigned to the data differ from the exact time dictated by the 

nominal sampling frequency, and such differences are systematic, e.g. the actual time step is slightly longer or shorter than the 

nominal one for time spans of the order of the flux averaging interval. Again, in EC we are only concerned with systematic 

relative errors, for identical errors in the two concerned instruments would entail no misalignment and hence no flux bias. 10 

Instances of each type of misalignment can, and typically will, be present at the same time to various degrees. 

1.4 Sources of misalignment and their effects on time series 

1.4.1 Spatial separation between sampling volumes 

In a SAT, the sampling volume is the volume of air between the upper and lower sets of transducers. Similarly, in an open-

path gas analyser such as the LI-7500 CO2/H2O analyser and the LI-7700 CH4 analyser (LI-COR Biosciences Inc., Lincoln, 15 

NE, USA), the sampling volume is the volume of air between the upper and lower mirrors. In a closed- or enclosed-path gas 

analyser such as the LI-7000, the LI-7200 (LI-COR Biosciences Inc.) and the EC155 (Campbell Scientific Inc., Logan, HT, 

USA), instead, the sampling volume can be identified with the volume of the intake device, e.g. a rain cup.  

Even in the hypothetical situation of perfectly synchronized timestamps for wind and gas data, if the respective instruments' 

sampling volumes have to be spatially separated to avoid presently intractable flow distortion issues in the anemometer, as is 20 

notably the case with open-path setups (see, for example, Wyngaard, 1988; Frank et al., 2016; Horst et al., 2016; Grare et al., 

2016 and Huq et al. 2017), the corresponding time series will be affected by misalignment, possibly to varying degrees. Indeed, 

assuming the validity of Taylor's hypothesis of frozen turbulence, wind and concentration data will be affected by a time-lag 

(the time air takes to travel between the two sampling volumes), which will be further modulated by wind intensity and 

direction. Additionally, modification of turbulence structure intervening while air parcels transit through the dislocated 25 

instrument volumes may introduce further uncertainty in flux estimates (Cheng et al., 2017). In case of co-located sensors (e.g. 

Hydra-IV, CEH; IRGASON, Campbell Scientific Inc.) this problem is not present but is replaced by the flow distortion issues 

mentioned above and not addressed in the present study. 

1.4.2 Spatial separation between measuring volumes 

In a SAT, the sampling volume coincides with the measuring volume, i.e. wind velocity is measured exactly where it is 30 

sampled. The same is true for open-path gas analysers. However, closed-path and enclosed-path analysers take the sampled 

air into a measuring cell via a sampling line that can be anywhere between 0.5 to 50 meters long, with its inlet usually placed 

very close to the SAT sampling volume. This implies a delay of the time series of gas concentrations with respect to the wind 

time series. Such delay can be more or less constant in time depending on the possibility of actively controlling the sampling 

line flow rate. In systems without flow controllers, the flowrate may vary significantly in response to power fluctuations or 35 

tube clogging and so would the corresponding time-lags. 
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1.4.3 Clock errors 

Quartz crystal clocks universally used in electronic devices are subject to two main types of error: periodic jitter and frequency 

drift (McParland, 2017). 

Period jitter 

Period jitter in clock signals is the random error of the clock with respect to its nominal frequency. It is typically caused by 5 

thermal noise, power supply variations, loading conditions, device noise, and interference coupled from nearby circuits. Jitter 

is a source of RTE in time series. 

Frequency drift 

The oscillation frequency of a clock varies with temperature, leading to drifts of the measured time and hence to STEs. The 

drift of a clock can be expressed as the amount of time gained (or lost) as a result of the drift per unit of time, with suitable 10 

units being μs/s. For example, a drift of -30 μs/s means that a clock accumulates 30 μs of delay per second, or about 2.6 seconds 

over the course of one day (2.6 = 30	 ∙ 10%6 ∙ (24 ∙ 60 ∙ 60)). The dependence of crystal oscillation frequency on temperature 

varies, even dramatically, with the type and angle of crystal cut and can be modeled as quadratic (BT, CT, DT cuts) or cubic 

(AT cuts) (Hewlett Packard 1997). Figure 2 shows exemplary drift curves for different crystal cuts. Typically, the nominal 

frequency (e.g. 32 kHz) is specified at 20 or 25 °C. Apart from that temperature, the frequency can vary for example according 15 

to (for a BT cut): 

  

 (%(0
(0

= −𝛼(𝑇 − 𝑇0)2 ⋅ 10%6          (1) 

 

where 𝑓0 = 𝑓(𝑇0 = 25	°𝐶) and typical values of 𝛼	range 0.035-0.040.  20 

Clocks in EC systems can be exposed to large variations of temperature (day-night, seasonal cycles). Because we are concerned 

with relative drifts, we are interested in differences in the temperatures experienced by the instruments’ sampling/logging 

clock as well as with differences in their temperature responses. Clocks experiencing similar temperatures and with similar 

temperature responses, would minimize relative drift. On the contrary, clocks with opposite responses to temperature will 

result in relative drifts that are close to the sum of the individual drifts, e.g. in the case of AT-cut crystals with different angles 25 

of rotation at relatively high temperatures (i.e. above 30 degC, see Figure 2) 

It is also to be noted that temperature-compensated clocks do exist, which have accuracies of around ±2 μs/s. As we will show 

later, such drifts can be safely neglected, as long as clocks are synced sufficiently often (e.g. once a day). For completeness, 

we note that clock drifts also occur due to the ageing of components. However, the absolute values of typical ageing rates (< 

1 μs/year) are of no concern in EC applications. Because STEs in EC systems are caused primarily or exclusively by clock 30 

drifts, in the rest of the paper we will use the terms STE and drift interchangeably.  

1.4.4 Further sources of timing errors in digital asynchronous systems 

Connectivity 

Ethernet connectivity available in commercial loggers and industrial PCs (e.g. SmartFlux 2 and 3 by LI-COR Biosciences Inc., 

CR3000 and CR6 by Campbell Scientific Inc.) can be used for data acquisition in EC systems. The acquisition is usually done 35 

using the Transmission Control Protocol (TCP), a packet-based protocol specifically designed to preserve the accuracy of the 

data during transmission. TCP is however not designed to preserve the temporal aspect of the packets. The TCP receiving 

system must buffer up packets and signal the sender if an error occurs in any packet. This can cause packets to even arrive out 
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of order, even though they are always delivered to the application in order. Therefore, TCP-based systems are subject to 

significant RTEs and, potentially, to STEs. 

Serial communication devices typically use a first-in-first-out (FIFO) policy to buffer data, on both the sending and the 

receiving sides. The FIFO increases the efficiency and throughput by reducing the number of interrupts the CPU has to handle 

(e.g. Park et al., 2003). Without a FIFO buffer, the CPU has to interrupt for every data unit. With a FIFO, the CPU is interrupted 5 

only when a FIFO is full, or a programmed amount of data is ready. However, the FIFO can become a problem on a system 

where it’s desired to correlate the serial clock to the sampling clock. If not properly handled, the FIFO introduces timing jitter 

on both the transmitter and the receiver, hence inducing RTEs in the system. 

Time response 

In a streaming-based system, an instrument with a time response (irrespective of the supported output rate) slower than the 10 

sampling rate will lead to RTEs even in the absence of any clock errors, because the measurement cannot in general be 

performed at the required moment in time. In the general case, such an instrument will be oversampled (i.e. the same measured 

value will appear multiple times in the final time series). Eugster and Plüss (2010) discuss in detail the consequences of such 

occurrence with a CH4 gas analyser with a time response of 5.7 Hz in a system sampling data at 20 Hz, concluding that the 

flux errors are negligible in most applications. 15 

For completeness, we note that in virtually all EC instruments the native measurement is time-discrete. For example, in non-

dispersive infrared (NDIR) gas analyser, the presence of a rotating filter used to multiplex the desired infrared bands makes 

the gas concentration measurement frequency dependent on the wheel rotational frequency, which leads to RTEs. Nonetheless, 

if the rotational speed is high enough (e.g. > 100 Hz) the resulting errors are minimal. 

1.5 Dealing with timing errors in EC practice 20 

The fundamental difference between time-lags on one side and RTE/STE on the other side is that constant time-lags can, at 

least in principle, be addressed a posteriori during data processing. The topic of correctly estimating and compensating time-

lags has long been discussed in the EC literature (Vickers & Mahrt 1997; Ibrom et al., 2007; Massman and Ibrom, 2008; 

Langford et al, 2015), and corresponding algorithms are available in EC processing software. We will therefore not further 

discuss time-lags in this paper. 25 

Random and systematic timing errors, instead, are not identifiable and therefore it is not possible to correct them. However, 

their effect on flux estimates, as we will see, can become significant. For this reason, the only viable strategy to reduce flux 

biases is to design the data acquisition system in a way that prevents or minimizes the possibility of their occurrence.  

The focus of this paper is, therefore, the quantification of flux underestimations as a function of RTE and STE, so as to derive 

quantitative specifications for a data acquisition system that minimizes EC flux losses. We further propose a simple scheme 30 

for evaluating existing data acquisition systems with respect to data synchronization. 

2 Materials and Methods 

2.1 Simulation design 

In order to accurately quantify how time-alignment errors affect flux estimates, we performed a simulation study. As a 

reference, we used the covariance estimated from high-frequency data of vertical wind speed (w) and sonic temperature (Ts) 35 

which are by definition perfectly synchronized since they are computed starting from the same raw data (the travelling time of 

sound signals between pairs of transducers in a SAT). We also assumed that high-frequency time series are provided at 

perfectly constant time steps of 0.1 (10 Hz) or 0.05 (20 Hz) seconds. Subsequently, we manipulated the array of timestamps 

at which the sonic temperature data was sampled in order to simulate realistic ranges of RTEs and STEs. Values of sonic 
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temperature in correspondence to the new, simulated timestamps were estimated by linearly interpolating the closest data 

points in the original series (Figure 3).  

Before calculating covariances, standard EC processing steps were applied such as spike removal (Vickers and Mahrt, 1997), 

tilt correction by double rotation method (Wilczak et al., 2001) and fluctuations estimation via block-averaging. Covariance 

estimates obtained with the new versions of Ts were then compared with the reference to quantify the effect of simulated timing 5 

errors. Flux biases would be almost identical to biases in covariances, weakly modulated by corrections intervening between 

covariance and flux computation, such as spectral corrections and consideration of WPL effects (e.g. Fratini et al. 2012). The 

simulation study was implemented in the source code of EddyPro v6.2.1 (LI-COR Biosciences Inc, Lincoln, NE; Fratini and 

Mauder, 2014). 

For the present analysis, we simulated RTEs ranging ±1 to ±100 ms, that is, up to the same order of the sampling interval. As 10 

an example, with a simulated ±10 ms RTE using 10 Hz data (nominal time step = 100 ms), simulated time steps for Ts varied 

randomly between 90 and 110 ms, with an average of 100 ms. We note that RTEs of 10-100 ms won’t usually be caused by 

clock jitter, which is typically several orders of magnitude smaller but can easily be caused by acquisition systems based on 

serial or Ethernet communication not specifically designed to collect synchronous time series, as described above. 

For STEs, we simulated relative drifts ranging 10 to 180 μs/s (specifically 10, 30, 60, 90, 120, 150 and 180 μs/s). For example, 15 

to simulate a STE of 60 μs/s we kept the original w time series (time step equal to 100 ms) and modified the time step of Ts to 

be 100.006 ms. This may seem a negligible difference, which however accumulates a difference of 108 ms between w and Ts 

within 30 minutes and manifests itself as a difference of one row in the length of the time series (i.e. 18000 value for w and 

17999 for Ts @ 10 Hz). Similarly, systematic errors of 120 and 180 μs/s would lead to 2 and 3 row differences, respectively. 

Systematic timing errors such as frequency drifts essentially act as low-pass filters, which can be described by characterizing 20 

their transfer function, provided that the drift is known, as in our simulation. Here, for each 30-min period and for each STE 

amount, we calculated an in-situ transfer function as the frequency-wise ratio of drifted and original w-Ts cospectra: 

 

𝑇𝐹���(𝑓1) =
2345,7�

89:	|	(<=

23(5,7	|	(<)
, 𝑓𝑜𝑟	𝑆𝑇𝐸	 = 	 [10, . . . ,180]	𝜇𝑠/𝑠        (2) 

 25 

where 𝑇�G7H(K) is the simulated sonic temperature for each STE value, 𝑓� (Hz) is the natural frequency and 𝑇𝐹���(𝑆𝑇𝐸|𝑓1) is 

the in-situ transfer function for STE. We repeated this calculation for a number of cospectra ranging 1000-2000 (depending 

on data availability). The ensemble of all transfer functions so obtained and for each STE amount was then fitted with the 

following function, that was found to reasonably approximate the data obtained for all drifts at all sites in the most relevant 

frequency range (0.01 – 5 Hz): 30 

 

𝑇𝐹(𝑓��|𝑓1) = (1+ 𝛽)	 1

1	K	L M�M��
N
O − 	𝛽          (3) 

where: 

𝑓�� (Hz) is the transfer function cutoff frequency and 𝛼 and 𝛽 are fitting parameters whose values were found to vary very 

little around 𝛼 = 2.65 and 𝛽 = 0.25. 35 

2.2 Datasets 

We performed simulations on 4 datasets acquired from EC sites representative of various ecosystem types and climatic regimes 

and characterized by the different height of measurement and height of the canopy: 
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● IT-Ro2: a deciduous forest of Turkey Oak (Quercus cerris L.) in Italy. Eddy covariance measurements were carried out 

from 2002 to 2013 and the period used for the simulations was May 2013, when the canopy height was 15 m and the 

measurement height 18 m (Rey et al., 2002). 

● IT-Ro4: located at about 1 km from IT-Ro2, this site is a rotation crop where EC measurements have been carried out 

from 2008 to 2014. Data used for the simulations include 43 days in 2012 when crimson clover (Trifolium incarnatum 5 

L.) was cultivated (maximum canopy height 60 cm, measurement height of 3.7 m) 

● DK-Sor: evergreen forest near Sorø, DK. EC measurements are performed since 1997: during the period used for the 

simulation (the entire 2015) the forest was 25 m tall and the EC system placed at 60 m a.g.l. (Pilegaard et al., 2011). 

● IT-CA3: fast-growing, short-rotation coppice (SRC) of poplar clones planted in 2010, located in Castel d’Asso, Viterbo, 

Italy. The EC tower was installed at the end of 2011, and measurements were taken until mid-2015. The period used for 10 

the simulation included 9 months over the period 2012-2015, with a canopy height ranging 0-5.3 m, and the measurement 

height between 3 and 5.5 m (Sabbatini et al., 2016). 

2.3 Validation of the simulation design 

Although the proposed simulation design enables the evaluation of resulting errors using readily available EC data, we note 

that interpolating data sampled at 10 or 20 Hz frequency can potentially introduce artefacts (due to the lack of information at 15 

higher frequencies) such as, for example, an undue reduction of the sonic temperature variance, which would result in artificial 

reduction of the w-Ts covariance. In order to detect any such effects, we preliminarily implemented a validation procedure, 

making use of one week of sonic data from a Gill HS (Gill Instruments, Lymington, UK) collected at 100 Hz. The validation 

involved the following steps: 

1. Subsampling at 10 Hz and simulating timing errors as described above, i.e. interpolating starting from the subsampled data. 20 

2. Subsampling at 10 Hz and simulating timing errors by interpolating the original 100 Hz data. 

3. Comparing w-Ts covariances obtained in 1 and 2. 

The timing errors simulated interpolating the original 100 Hz measurements (option 2 above) are much less prone to artefacts 

because interpolation occurs between data that are 0.01 seconds apart, an interval too short for any significant flux signal to 

occur. Using this procedure, we could verify that there is no detectable difference between results obtained with 100 Hz and 25 

10 Hz data (not shown), which implies that the interpolation procedure is not introducing significant artefacts in the estimation 

of variances and covariances and therefore the simulation can be performed with virtually any historic EC dataset using the 

available code. 

3 Results and discussion 

Figure 4 compares covariances w-Ts obtained with increasing amounts of RTE against the reference covariance obtained with 30 

the original, perfectly synced, time series. Reduction in covariance estimates is fairly negligible provided that RTE is of the 

same order of magnitude of the sampling interval or less. Largest discrepancies were observed for the IT-CA3 and IT-Ro4 

sites with a covariance underestimation of 3% for RTE of amplitude 100 ms. As mentioned earlier, such large timing errors 

are never the result of electronic clock jitter and may instead be caused by a data transmission system not designed for time 

synchronization, such as TCP. 35 

Conversely, flux biases induced by systematic timing errors are both more significant and more variable. Figure 5 shows that 

a STE of 60 μs/s (1 row of difference in a 30-minute file with data collected at 10 Hz) can lead to errors anywhere between 0 

– 4%, increasing to 1 – 8% for a STE of 120 μs/s (2 rows of difference) and to 1 – 11% for a STE of 180 μs/s (3 rows of 

difference).  
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Figure 6A shows an example of the transfer functions derived using the procedure described in Sect 2.1. The Figure refers to 

the site IT-CA3, but the filters obtained for the other sites had very similar characteristics, as illustrated in Fig. 6B using the 

mean cutoff frequencies computed for all sites at each STE amount: the tight ±3.5σ range merely demonstrates that the low-

pass filter properties of the STE are independent from the data used to derive it, and only vary with the error amount.  

Nonetheless, in Figure 5 we showed how the same STE leads to very different flux underestimations at a different site. For 5 

example, a systematic error of 180 μs/s led to flux biases of 1% and 11% at IT-Ro2 and IT-Ro4, respectively. 

The reason is related to the distribution of the flux contributions across the frequency domain. The more the flux cospectrum 

is shifted towards higher frequencies, the more it will be dampened by any given low-pass filter and the higher the resulting 

flux bias will be. In other words, systematic timing errors are a source of high-frequency spectral losses, not dissimilar to the 

ones traditionally considered in EC (Moncrieff et al. 1997; Massmann, 2000; Ibrom et al. 2007). Figure 7 depicts the low-pass 10 

filtering effects of several STEs as applied to three different hypothetical EC systems, characterized by different “initial” cutoff 

frequencies (caused by other sources of attenuation such as e.g. length of the sampling line) deployed in two contrasting 

scenarios (high vs low measurement height). It is evidenced that at high measurement heights effects are negligible irrespective 

of the “original” cutoff frequency of the system (a-c). The reason is that the STE filters act on cospectra that are shifted to low-

frequencies and have therefore very low high-frequency content. At low measurement height, instead, STEs significantly 15 

increase spectral losses if the system has a high initial cutoff frequency (e-f), while if the system as a poor initial spectral 

response (d), STEs are irrelevant because, again, high-frequency co-spectral content is minimal to start with. 

To put this new source of high-frequency losses in perspective quantitatively, we note that for EC systems based on an 

enclosed-path gas analyser (LI-7200), cutoff frequencies ranging 1.1 Hz (for less optimized) up to 7-8 Hz (for systems with 

optimized intake rain cup and heated sampling line) were reported in literature (e.g. Fratini et al. 2012; De Ligne et la., 2014; 20 

Metzger et al. 2016). Similar values are usually found in systems based on open-path setups. Significant STEs can thus easily 

become leading sources of flux biases in modern EC systems deployed at low measurement heights and/or very limited spectral 

losses due to other causes, with the additional complication that they are hard to detect and quantify. In fact, once acquired 

and stored in files, it is generally not possible to establish whether a drift between data streams occurred. Missing lines in one 

data stream could be either filled in by the data acquisition software (e.g. by means of the “last observation carried forward” 25 

technique) or could be compensated by dropping one line in the paired, longer series. In both cases, one would be unable to 

detect the problem, which is however obviously not solved by these solutions, meant only to build a complete rectangular 

dataset. On the contrary, a mismatch of one or two lines in the length of the time series is not necessarily the sign of an 

occurring STE, as it could also be the result of an imperfect timing in opening/closing a data stream, or some combination of 

the two factors. For these reasons, it is very difficult, if not practically impossible, to detect STEs, distinguish them from other 30 

timing errors or artefacts and, more importantly, to infer the type and amount of error that is being introduced in the 

covariances. The only sign of a potential timing problem is an attenuated cospectrum, as evaluated with respect to an available 

reference or model. But from the cospectra attenuation alone, it is impossible to establish the presence of a timing error and, 

even more, disentangle it from other sources of attenuation. The only possibility is thus to estimate an ensemble spectral 

correction based on cospectra, which would correct only sources of errors without the ability to discriminate them, which is 35 

less than ideal (e.g. Ibrom et al., 2007). It is therefore advised to evaluate the performance of a data acquisition system before 

it is put in operation.  

 

Evaluating synchronicity of an EC data acquisition system 

If both EC instruments can receive analog inputs, a possible way to evaluate synchronicity in the data logging system is to 40 

connect a signal generator to both EC instruments (SAT and gas analyser) and collect the data via the data logging system in 

the configuration that would be adopted in normal operation (Figure 8). The result is 2 replicates of the known signal data, 
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whose timestamps will in general not be synchronized, in the sense that the same nominal timestamp will be attached to two 

different pieces of data. The two datasets can then be compared to calculate the phase difference between the clocks and hence 

assess RTEs and STEs. For example, a cross-correlation of the time series yields the phase difference. It’s important to test 

the time series at different time intervals, e.g. ½ hour for several days, in actual field conditions that undergo significant 

temperature variations. The two instruments are synchronized if the cross-correlation yields the same result every time. If this 5 

constant phase offset (time-lag) is different from zero, this measurement quantifies signal delays in a system, which can be 

addressed either by optimizing the data logging system or by taking this offset into account while setting up the time-lag 

automatic computation in post-processing. A cross-correlation that changes over time, instead, is a strong indication of 

occurring STEs. It is very difficult to anticipate the evolution in time of the phase change as it depends on the clock’s crystal 

cuts, quality and temperature sensitivity. In general, we may expect a linear trend in the phase if temperatures don’t vary 10 

strongly (see also later) or a trend modulated by a diurnal pattern if temperature plays a role.  

A simpler (though less controlled) option, in case a signal generator is not accessible, is to use the analog outputs from at least 

one of the EC instruments. In this case the test involves transmitting (at least) one of the analog outputs to the analog input of 

the companion instrument (e.g. w sent via analog output of the SAT to an analog input channel of the gas analyser). In this 

way the raw-data files contain 2 replicates of that variable, each collected according to the timing of the respective instrument: 15 

the timestamps of the digital version is logged according to timing of the sending instrument (SAT, in the example), while 

those of its analog version are logged according to the timing of the receiver (gas analyser). The same cross-correlation analyses 

described above can then be performed.  

In both versions of the tests, results may be affected by minor RTEs if the various A/D or D/A tasks are not accurately 

synchronized with the measurement and serial output tasks. However, such RTEs should not affect the ability to detect and 20 

quantify occurring STEs. 

Note also that, in both versions of the test, the way raw data is stored may have a strong impact on how to interpret the results. 

For instance, depending on the specifics of the data acquisition system, collecting a unique file with 3 days’ worth of data or 

collecting 30-min files for three days, can provide different results, e.g. because the act of closing a file and opening a new 

one can cause the data streams to be partially or completely “realigned”.  25 

To exemplify the test, we collected about 3 days of 20Hz wind data from a SAT (HS-100, Gill Instruments Ltd., Lymington, 

UK) both in native digital format (via a RS-232 port, indicated with the subscript d in the following) and in analog format via 

the A/D of a LI-7550 Analyser Interface Unit (LI-COR Biosciences Inc.) which was then collected via a second RS-232 port 

(indicated with subscript a), using an industrial-grade PC running Windows XP. Thus, the data logging system under testing 

was “a Windows PC collecting EC instruments via RS-232, which were setup to transmit data in streaming mode”. The two 30 

data streams were completely independent to each other, and we attached timestamps to the records based on the Operating 

System clock as the data was made available from the serial port to the application collecting the data. We then merged the 

two datasets based on timestamps and split the resulting 3-day file into 30 minutes. Finally, we calculated time-lags between 

pairs of homologous variables (e.g. ud vs ua, but results were identical for all anemometric variables), which are shown in 

Figure 9. The linearity of the data suggests that the system is affected by a fairly constant STE of about 50 μs/s, as quantified 35 

by the slope of the line. 

Using the same setup, we further collected 2 days of data directly stored as 30-min files and again computed time-lags between 

homologous variables. The acquisition system was able to realign the two series at the beginning of each half hour resetting 

the time-lag between them to roughly zero. Nevertheless, calculating time-lags on overlapping 5 min periods, we found that 

within each half-hourly period the time-lags increased of 0.05 s (32% of the times) and of 0.1 s (68% of the times), which 40 

again indicates an STE ranging 30-60 μs/s which, as shown above (Fig. 5), can lead to detectable flux biases. We stress that 
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the system used in this experiment was not optimized for data acquisition and the aim was solely that of evaluating the proposed 

test. 

Conclusions 

Undoubtedly, modern EC systems should log high-frequency data in a native digital format, so as to collect all possible 

measurement, diagnostic and status information from each instrument and assure the creation of robust, self-documented 5 

datasets, which are essential to the long-term research goals of climate and greenhouse gases science.  

Commercial data acquisition solutions exist, that one can legitimately expect to ensure a proper data synchronization, such as 

the SmartFlux® system by LI-COR or the SDM-based system by CSI. There exist also applications developed by research 

institutions that specifically address the synchronization issue. In all these cases it is however possible to test the 

synchronization in order to confirm the expected performances. 10 

When dealing with novel gas species, however, assembling EC systems from instrumentation that is not necessarily designed 

to be integrated is often the only choice available to the researcher and “in-house” solutions become necessary. In such cases, 

extreme care and expertise must be put in the handling of different digital data formats and transmission mode, in a context 

where data synchronicity is essential. We have shown that failure to do so can result in significant biases for the resulting 

fluxes, which depend on the type of timing error (random or systematic) and its amplitude, as well as on the co-spectral 15 

characteristics at the site. We have also explained how such errors are virtually impossible to detect and quantify in historic 

time series. It is, therefore, necessary to avoid them upfront, via proper design and evaluation of the data logging system. 

Deploying a simple testing setup that makes use of equipment usually available to the EC experimentalists, we demonstrated 

how, for example, a naïve data collection performed asynchronously on a Windows XP industrial-PC leads to significant 

relative drifts among the time series, which is bound to generate flux underestimations. With minor ad hoc adjustments, the 20 

same testing setup can be used to evaluate any EC data logging system. While evaluation of existing systems was beyond the 

scope of our work and we do expect synchronization issues to be more of a risk for “in-house” solutions, the proposed testing 

setup for evaluating data synchronization applies equally to “in-house” and to commercial solutions and we do invite 

researchers and companies to test their systems. 

With this in mind, we recommend the scientific community to promote collaboration and synergy among manufacturers of EC 25 

equipment, for technological solutions that guarantee sufficient synchronicity do exist - such as Ethernet connectivity 

deploying the PTP protocol - but, in order to be utilized, they require all instrumentation to be compatible with those 

technologies, which is yet not still the case. 

A final note on the data collected until now and largely shared and used in publications. As stated above it is impossible to 

detect the presence of a synchronization issue on archived dataset. However fully-digital acquisition in streaming mode started 30 

to be largely adopted only recently and this limits the potential impact of the issue on historical data. In addition, as also 

explained in the results, the effect of a STE acts as a spectral loss and hence it may be (at least partially) compensated for and 

corrected by in-situ spectral corrections based on cospectra. 
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Figure 1: Schematic of the three types of misalignments common in EC data. Given a reference time series (e.g. w, 
blue), the ideal paired gas concentration time series is perfectly aligned (green). The three red time series exemplify 
(from left to the right): a constant offset (time-lag), random variations around the perfect alignment (random error) 
and a systematically larger time step (systematic error). Real data is typically affected by a mix of all error types in 5 
varying amounts. 
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Figure 2: Exemplary temperature dependence curves for clocks with AT (a), BT (b), CT (c) and DT (d) cuts. In (a) the 
3 curves refer to different angles of rotations of the crystal. Reproduced and adjusted from Hewlett Packard (1997). 5 
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Figure 3: Sketch of the timing error simulation via linear interpolation. Green dots represent original Ts data points, 
equally spaced at the prescribed (nominal) time steps. In the upper panel, RTEs are simulated as time steps randomly 5 
varying around the nominal value. In the lower panel, STEs are simulated as a time step larger than the nominal one, 
whereby the difference between the assigned and correct timestamps always increase in time. 
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Figure 4: Simulation of RTEs. Covariances w-Ts obtained with a set of simulated random errors of different amplitudes 
(y-axes) are compared to the covariances w-Ts computed with the original time series (x-axes), for the four sites. All 
regressions had offset equal to zero and r2 > 0.99. 
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Figure 5: Simulation of STE. Covariances w-Ts obtained with a set of simulated systematic errors of different 
amplitudes (y-axes) are compared to the covariances w-Ts computed with the original time series (x-axes), for the four 
sites. All regressions had offset equal to zero and r2 > 0.98. 

  5 
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Figure 6: Transfer function for the STE at different error amounts, as derived using Eqs. 2 and 3, using data from site 5 
IT-CA3 (a). Mean values and 3.5σ ranges of the transfer function cutoff frequencies across the fours sites, as a function 
of the error amount (b).  
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Figure 7: Effect of adding artificial STEs to three EC systems characterized by different cutoff frequencies (0.1, 3.0 
and 6.0 Hz, from left to right) and by different measurement height and mean wind speed (top to bottom).  5 
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Figure 8: Schematic of possible setups to evaluate the ability of a data logging system to synchronise EC data. In setup 
A the same (known) analog signal (solid red lines) is sent to the analog inputs of the EC instruments where it is digitized. 
In setup B analog wind data (dashed red line) is sent to the gas analyser, where it is digitized. In both setups, the 2 5 
digital data streams are then collected by the data logging system. The clocks involved and how timestamps are attached 
to data depend on the specifics of the system under consideration. 
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Figure 9: Evolution of time-lags between two replicates of the same variable (u wind component, but identical results 
were obtained with v and w), one collected with the SAT native digital format and one collected via analog outputs from 
the SAT. Data were collected in two files roughly 70 hours long and then split into 30-min chunks for the computation 5 
of time-lags. 
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