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Abstract. The FLUXNET dataset contains eddy covariance measurements from across the globe, and represents an invaluable

estimate of the fluxes of energy, water and carbon between the land surface and the atmosphere. While there is an expectation

that the broad range of site characteristics in FLUXNET result in a diversity of flux behaviour, there has been little exploration

of how predictable site behaviour is across the network. Here, 155 datasets with 30 minute temporal resolution from the Tier

1 of FLUXNET2015 were analysed in a first attempt to assess individual site predictability. We defined site uniqueness as the5

disparity in performance between multiple empirical models trained globally and locally for each site, and used this along with

the mean performance as measures of predictability. We then tested how strongly uniqueness was determined by various site

characteristics, including climatology, vegetation type, and data quality. The strongest determinant of predictability appeared to

be that drier sites tended to be more unique. We found very few other clear predictors of uniqueness across different sites, and

in particular little evidence that flux behaviour was well discretised by vegetation type. Data length and quality also appeared10

to have little impact on uniqueness. While this result might relate to our definition of uniqueness, we argue that our approach

provides a useful basis for site selection in LSM evaluation, and invite critique and development of the methodology.

1 Introduction

The land surface is a key component of the climate system, as it provides feedbacks to atmospheric conditions via the exchange

of heat, moisture, and carbon fluxes. These surface-atmosphere exchanges are contingent on the characteristics of the soil15

and vegetation. However, these interactions between the atmosphere and land are not uniform, for example in hot, mesic

environments net primary productivity (vegetation productivity) becomes less sensitive to the effect of climate (Bonan, 2015;

e.g. increasing precipitation Chapin III et al., 2011; Del Grosso et al., 2008; Gillman et al., 2015; Huston and Wolverton,

2009; Schuur, 2003). Across the globe, variability in the productivity-climate relationship suggests that the behaviour of some

ecosystems must be more predictable than others. Intuitively, the behaviour of ecosystems that experience marked stochasticity20

in precipitation (e.g. ecosystems that rely on monsoonal rains for growth), would likely be harder to predict than ecosystems that

experience relatively consistent year-to-year conditions (e.g., the boreal zone, the wet tropics or desert regions). Furthermore,

whilst vegetation patterns are broadly understood at global scales (e.g. the Köppen climate classification, Kottek et al., 2006;

and Whittaker’s biome classification, Whittaker, 1962), at local and regional scales, plants exhibit local scale adaptations to

their environment (e.g. soils and topography). Taken together, these relationships between climate and local factors point to a25
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spectrum of site predictability. Perhaps surprisingly, the predictability of a site is rarely considered explicitly when choosing

sites to evaluate models.

Modern land surface models (LSMs) attempt to describe the exchange of energy, water and, more recently, carbon, by

explicitly representing the soil-vegetation continuum (Pitman, 2003). Common to virtually all LSMs is an assumption that flux

behaviour variations between biomes, given similar driving conditions, can be explained by a small sample of structural and5

physiological parameters, grouped as plant functional types (PFTs). As a result, land modellers have sought observations from

locations characteristic of these broad PFTs to develop and evaluate models. However, the actual practical representativeness

of PFTs of the underlying vegetation properties has only recently begun to be investigated (e.g. Alton, 2011), and no explicit

empirical assessment of PFTs as a driver of predictability has been undertaken.

Land surface modellers often use FLUXNET data to evaluate their models, and to tease out weaknesses, with the goal of10

model improvement. In the 1990s and 2000s, when only a handful of flux tower site measurements were available, the LSM

community gravitated to these datasets, hence observations taken at Cabauw (The Netherlands), Harvard Forest (USA), and

near Manaus (Brazil) were widely used. Over the last two decades, direct measurement of land surface fluxes and meteorolog-

ical variables has rapidly expanded, as new flux towers are installed and existing towers continue to gather data. FLUXNET

2015 (Fluxdata.org, 2018), as a synthesis of these measurements, represents a rich source of information about the exchange of15

carbon, water and energy. The freely available release (Tier 1), encompasses over 150 sites and includes over 500 site-years of

high temporal, quality-controlled data. These data provide an unparalleled opportunity to improve our observationally-based

understanding of land-atmosphere exchanges of carbon, water and energy. They are also particularly useful for LSM evaluation

since both the necessary driving variables (meteorological variables) and prediction variables (energy, water and carbon fluxes)

are reported at a spatio-temporal scale relevant to LSMs. As a consequence, land surface modellers have developed tools to20

enable the FLUXNET 2015 data to be used routinely (e.g. Ukkola et al., 2017). However, with hundreds of site datasets now

freely available, site choice for model evaluation varies widely among the land surface community, with no common strategies

for site selection. FLUXNET sites differ in many ways: in data record length (from less than one to greater than twenty years);

in climate regime; and in soil and vegetation characteristics. Their similarity to each other also varies – FLUXNET is not evenly

distributed over the globe, and has higher density in more densely populated and wealthy regions, such as Western Europe, and25

the north-east of the United States, with particularly heavy representation of temperate forests.

Despite obvious distinctions between sites in FLUXNET defined by precipitation regime, temperature, seasonal snow cover

and indeed PFT type, it is not immediately clear which of the 150-plus freely available sites are most useful for model evalua-

tion. One might assume that given the diversity of sites, some are easier to simulate than others, and it seems sensible to assume

that the choice of sites could have an impact on insight gained from model evaluation at these sites. However, assumptions30

about the predictability of different sites have not been explicitly tested. The lack of quantification of predictability means that

site selection for evaluation is potentially susceptible to confirmation bias. That is, a modeller might unconsciously choose

sites that are easier for their model to simulate, rather than selecting sites based on their instructiveness for identifying flaws in

a model. For example, consider the implications of evaluating a model against ten FLUXNET sites that happen to be the least

predictable in comparison to evaluation against the ten most predictable sites. In the former case, a modeller might become35
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disillusioned with the apparent lack of skill of a potentially good model, while in the latter case a modeller might become

overconfident concerning the skill of a poor model.

This issue of site predictability has been ignored in historical flux-model comparisons, where modelling groups have gen-

erally not tried to explicitly justify their choice of sites, or have based their reasoning around issues such as data availability

or length of record. Chen et al. (1997) chose the Cabauw site for a multi model intercomparison because it was considered5

relatively easy to simulate. Several authors chose longer (multi-year) sites (Balsamo et al., 2009; Lawrence et al., 2011; Wang

et al., 2011). Some evaluation papers explicitly sought to sample a range of PFTs (Bonan et al., 2014; De Kauwe et al., 2015).

Many highlighted choices based on the availability of gap-filled data (Krinner et al., 2005; Slevin et al., 2015; Wang et al.,

2011). A few papers highlighted the high natural variability of a site (Balsamo et al., 2009), or a high degree of climate differ-

ences between sites (Wang et al., 2011). Others highlighted the quality of specific sites and some provided evidence for this10

decision based on energy closure (Napoly et al., 2017). In contrast to the often detailed explanation for why a specific model

or parameterisation is chosen, the defence of specific evaluation data sets often lacks a coherent rationale. Most commonly,

“high quality” or “longer” data sets are selected. A longer data set may sample more years, but a single month of data from

another site might provide more information regarding a specific phenomenon (e.g. the response to a drought or a heatwave).

Sampling more PFTs might be valuable, but might also bias results if the selected sites fall within a similar behavioural regime15

not well discretised by PFT. In short, it would be useful to be able to make clear, evidence-based statements about the relative

predictability of different sites, based on meteorological patterns or local site characteristics. This would allow modellers to

make informed site selection choices for model development/evaluation that maximise coverage of diverse site behaviours, and

ultimately help to reduce uncertainty in model projections. Whether or not any of the studies mentioned above are biased by a

lack of consideration for predictability is unknown, because this this was not part of the selection process for the sites chosen.20

Predictability can broadly be defined as the ability to reproduce a property of a system, given only knowledge of variables

that are causally related to that property. Predictability of a system should therefore also encompass the capacity to predict

changes in the property of interest, given changes in the drivers of the system, for example differing flux responses in wet and

dry periods. Differences in predictability between sites might be due to many factors, including, but not limited to:

– variability of meteorology (e.g. strong seasonality in precipitation compared with low variability, large seasonal cycles25

in incoming radiation compared to small seasonal cycles, and stochastic events);

– complexity or consistency of the site itself (e.g. orographic effects, managed land use including different irrigation and

cropping patterns, vegetation and soil structures);

– broader scale impacts (e.g. climate type, regional aridity, teleconnections to major oceanic drivers, landscape hetero-

geneity, geological basins);30

– technically sourced variance (quality of instrumentation, assumptions and application of eddy covariance methodology,

post-processing).
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In this context we might envisage predictability to be the degree to which a “perfect” model could accurately estimate

measured fluxes at a site, given appropriate meteorological variables and relevant site characteristic information. Of course,

we lack a perfect model, and the accuracy of our observational data is always limited by measurement error, and noise in the

system being measured. As such, any practical measure of predictability will be limited in accuracy, but this does not mean

that it cannot still be useful.5

Some predictability metrics do exist: Colwell (1974) defines a predictability metric based on constancy in time and contin-

gency on season but this metric only captures one aspect of performance – temporal correlation. Abbas and Arif (2006) also

proposed a number of time series predictability metrics, but these are only useful in univariate time-series prediction, where the

forecast is made only given knowledge about the predicted variable itself, rather than knowledge of other predictor variables,

as is the case with flux prediction from meteorological variables. Kaboudan (2000) provides another univariate predictability10

metric.

Since existing predictability metrics are not suitable to our problem, below we detail a new metric of site predictability

and analyse the FLUXNET 2015 sites according to their predictability. To do this, we applied a suite of empirical models

to predict fluxes at the 155 flux tower sites with half-hourly data included in the Tier 1 FLUXNET 2015 release. We also

investigate several hypotheses that might explain the variation in site predictability in different locations. Finally we attempt to15

provide a sound theoretical basis for site selection for LSM development and model intercomparison projects. This will allow

expectations of model performance to be better defined by providing a priori estimates of local predictability based on site

characteristics. We hope this can provide some mitigation of the potential for ad-hoc site selection to shape judgement of how

well LSMs perform.

2 Methods20

This study focuses on predictability of three key fluxes: net ecosystem exchange (NEE), sensible heat (Qh), and latent heat

(Qle). We focus predictability as a consequence of meteorological drivers only, and ask whether predictability at a specific site

can be understood in terms of the differences in flux behaviour given particular site and meteorological conditions, relative to

the flux behaviour that would be expected at other sites given the same conditions. We do this by training a suite of empirical

models to predict fluxes based on meteorology, twice for each FLUXNET site. First we train the empirical models using all of25

the available data from all of the available sites at once (“global training”), to characterise the general expected flux behaviour

given a specific set of meteorological conditions. Then we re-train the models using only data from the individual site in

question (“local training”). The globally and locally trained versions of the models are then used to make predictions at each

FLUXNET site, and their performances are compared, using a range of performance metrics. Any improvement in performance

by the locally trained model over the globally trained model is an indication of driver-flux relationships that are unique to the30

site in question (note that this may include systematic errors in measurement). Since such a site exhibits relationships between

drivers and fluxes that are not broadly shown at other sites, we argue this site has lower predictability than a site that acts more

similarly to the global behaviour.
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To quantify this, we plot the local and global metric values as Cartesian coordinates, then convert them to polar coordinates

(see Figure 1). The origin represents the best possible performance metric value, so distance to the origin represents the mean

site performance across the global and local simulations. The degree to which each point drops below the 1:1 line will be

our definition of uniqueness. To illustrate, imagine a model that perfectly represented all relevant process and fully utilised

all of the available information in the input data to make the best possible prediction. This model could be used to assess5

site predictability based on the residual sum of squares against observations, and this metric value could be compared across

different sites. No such model exists of course, and we therefore use empirical models to assess the predictability of the data

while minimising assumptions about the functional form of any relationships between variables. For further discussion of why

empirical models are suitable for estimating the information available in FLUXNET data, see Best et al. (2015) and Haughton

et al. (2016).10

This procedure is model-agnostic, and we have used models in the framework developed in Best et al. (2015) and Haughton

et al. (2018), because they are conceptually simple, but able to fit complex functional relationships. These models (listed in

Table 1) include some simple linear regressions, as well as cluster-plus-regression models. The cluster-plus-regression models

consist of a K-means clustering over meteorological driving data, and then an independent linear regression between drivers and

fluxes at each cluster. These cluster-plus-regression models can fit arbitrary functional forms between predictor and response15

variables, when using a high enough cluster count (k), and given enough data. The models are not perfectly deterministic,

since K-means convergence is dependent on cluster initialisations, but the variance in the results is small (see supplementary

material, Haughton et al., 2018), and unlikely to substantially affect our results substantially. Our use of an ensemble of models

at each site further mitigates this problem. The ensemble also allows us to overcoming the problems of the simpler models

failing to capture behavioural nuances, and of the more complex models failing to train at some sites due to insufficient data20

(described below).

Models used various combinations of meteorological driving variables: down-welling shortwave radiation (S), surface air

temperature (T), relative humidity (H), wind speed (W), and precipitation (P). Models also used a number of derived variables,

including difference in air temperature and specific humidity since dawn (dT and dQ, respectively), as well as lagged averages

of each meteorological forcing (e.g. lH10d indicates a 10-day lagged average of H), where the lags were chosen pseudo-25

optimally. Haughton et al. (2018) showed that each of these driving variables we use here added predictive power to the

models, and had relatively low correlation, avoiding problems of collinearity. Models referenced below follow a standard

naming scheme that indicates the structure of the model, for example, S_lin indicates a linear regression using only shortwave

down, while STHdT_lS30d_km243 would indicate a cluster-plus-regression model with 243 clusters, with shortwave down, air

temperature, relative humidity, temperature difference since dawn, and a 30-day lagged average of shortwave down as inputs.30

None of the models are provided with site characteristic data (e.g. geographic, soil, or vegetation information) as we want to

use the models to test the effects of these characteristics on predictability. A complete list of the empirical models is shown in

Table 1.

To run the models, we converted the raw FLUXNET 2015 Tier 1 data (only sites with half-hourly data, 155 in total), using

the FluxnetLSM tool developed by Ukkola et al. (2017). In all cases, the empirical models are trained only on high-quality35
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Successful simulations Negative uniqueness

model name global NEE Qh Qle rmse corr overlap

S_lin 155 155 155 155 2 0 120

ST_lin 155 155 155 155 1 20 117

STH_km27 152 152 152 152 3 4 49

STH_km81 152 146 150 149 3 4 39

STH_km243 152 108 133 131 3 3 25

STHW_km81 152 142 148 147 2 3 23

STHW_km243 152 88 126 123 2 2 11

short_term243 (STHWdTdQ_lT6hM_km243)

152 65 98 97 1 1 9

long_term243 (STHWdTdQ_lS30d_lR30d_lH10d_lT6hM_km243)

152 3 12 12 0 0 1
Table 1. number of sites that models ran successfully at, for global training (columns 1), the number successful local simulations for each

variable (columns 2-4), and the number of cases of negative uniqueness, indicating that the local model performed worse than the global

model, for each of the three metrics (columns 5-7). Three sites (CA-Man, DE-RuR, and DE-RuS) did not include relative humidity, and so

all models including that variable failed, including the global model. The uniqueness calculations are sometimes, particularly in the case of

correlation, prone to numerical error, and so the threshold we use here is -1e-8 instead of zero.

non-gap-filled data, according to Quality Control (QC) flags from FLUXNET 2015 and FluxnetLSM. The models are then run

on all available data (including gap-filled data, to maximise the time coverage of empirical models with time-lagged drivers),

and evaluated only on time steps with non-gap-filled data. We then plotted each metric value for each site in a scatter plot, with

the global value on the x-axis, and the local value on the y-axis. We decomposed that information into:

1. Mean performance: the arithmetic mean of the local and global metric at each site, defined by distance from the origin.5

Higher is worse in most metrics, including root mean square error (RMSE), but lower is worse in the case of Pearson’s

correlation coefficient (Corr) and Perkins’ distribution overlap metric (Overlap, Perkins et al., 2007).

2. “Uniqueness”: the angle below the 1:1 line. Uniqueness is calculated as 4
πarctan(

x−y
x+y ), such that if, for example, RMSE

is 0 locally and some positive value globally, uniqueness will be 1.

Note that because the best possible result for some metrics is 1 (e.g. Corr and Overlap), in those cases we subtract the value10

from 1 such that the best result is 0 before calculating the uniqueness, so that it can be interpreted the same way across metrics

- that positive numbers indicate better local performance. We avoid transforming metrics for mean performance, so that metrics

are in their standard units.

In general, this definition of uniqueness ranges from -2 to 2, and is strictly between -1 and 1 for metrics that only have values

on one side of “best” (e.g. RMSE is positive definite, Corr is always less than or equal to 1), but in most cases should lie between15
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0 and 1. A model’s uniqueness is 0 if the local and global simulations perform equally well, between 0 and 1 if the local model

performs better than the global model, and negative if the local model performs worse that the global. Negative values are

unusual, and indicate that the local meteorological forcing provides insufficient useful information to increase performance,

and that the local model has failed in a spurious way (discussed in more detail below). The number of negative uniqueness

values for each metric and each model is shown in the last three columns of Table 1, out of a maximum of 10 x 155 = 15505

cases. We note that ST_lin Corr has a relatively large number of negative uniquenesses, which can be accounted for by better

estimates of the S and T variable coefficients in the global model. There are also negative Overlap uniquenesses in the linear

models, which is likely due to the global model training resulting in a stronger trend, and thus a higher variance, counteracting

the fact that empirical models are generally smoothers.

The uniqueness and mean performance metrics are shown for RMSE in Figure 1 for the S_lin and short_term243 models to10

illustrate how to interpret later figures: uniqueness is the angle measured clockwise from the origin (the optimal metric value)

and the 1:1 line (equal local and global performance), and mean performance is the average performance of the local and

global simulations, given by the distance of each point from the origin. Each point is a different site. Figure 1 also illustrates

the differences between the results when the local training data is identical to the testing data, and when it differs due to

mismatch between the meteorological and flux QC flags between training and testing. In each panel, the blue points indicate15

the local and global RMSE values used for the simulation in the remainder of the study. The tail from each point indicates

where these values would have been if the same QC data that was used for training was used for evaluation (meteorological +

flux QC, instead of just Flux QC. The tail points are strictly at or below the 1:1 line (as the empirical fit is optimised for RMSE

locally, but not globally). The flux-only QC evaluated blue points can shift, and some lie very slightly above the 1:1 line. Tails

pointing towards the origin indicate that these simulations’ mean RMSE is worse than it would be using the training QC. Tails20

pointing clockwise indicate the these simulations appear to be less unique under RMSE than they would be using the training

QC. Perhaps surprisingly, the differences for the simpler model appear much more variable, but we also note that most of the

larger discrepancies result in similar changes using the global and local evaluation, meaning the bias is mostly in the mean

performance, and less so in the uniqueness metric. We considered the option of using the training QC flags for the evaluation

period, however this would result in different models having very different evaluation periods.25

Best et al. (2015) used the concept of ranking over multiple performance metrics, and then aggregating over rankings to

arrive at a single value that represented a broad concept of performance for each model. This methodology is extremely useful

for model evaluation using FLUXNET site datasets. However, due to the very different distributions of results for the different

metrics (discussed below), we avoided aggregating over metrics and instead examined a set of key metrics separately for their

ability to capture independent aspects of performance. The metrics we chose were RMSE, as it provides an overview of model30

accuracy in relevant units, Pearson correlation (Corr) as a measure of temporal correlation, and Perkins’ distribution overlap

metric (Overlap), as it gives a measure of the match between the observed and modelled distributions.
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Figure 1. RMSE values for the global (x-axis) and local (y-axis) model simulations. Columns show the three fluxes, the first row shows data

for S_lin, the second row for short_term243. The tails of each point show where the local and global RMSE values would be if the same

QC flags were used for training and evaluating (the intersection of meteorological and flux QC flags). Tails pointing toward the zero in each

axis indicate the model would have performed better using these QC flags. In other words, a tail pointing towards the origin means that our

evaluation method has a bias toward worse mean RMSE, and a tail pointing clockwise from the origin indicates that our method has a bias

towards lower uniqueness.
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2.1 Caveats

In an idealised experiment, even if we exclude the possibility of over-fitting, the locally-trained model should always perform

better than the globally trained model to some degree. This is because the local model is predicting the same data that it is

trained on, and should capture any behaviour that is site-specific (that is, it is being tested in-sample). However, there are a

number of factors that might prevent this from happening.5

First, a model may require a substantial amount of data to avoid over-fitting, and some sites may not provide enough data

to train the model locally. For example, very few sites had enough data to adequately train the long_term243 model from

Haughton et al. (2018), which has 10 input variables (S, T, H, W, dT, dQ, lS30d, lP30d, lH10d, lT6hM) and 243 clusters. This

model potentially requires hundreds of non-gap-filled data samples at each cluster to obtain a reliable linear regression estimate

(so ~104 samples in total). The more complex models often fail to run locally, or run successfully but produce erroneous results10

(e.g. due to too few samples to obtain reliable regression results for a K-means cluster - this problem is described in detail in

the Supplementary Material in Haughton et al., 2018). To mitigate this problem, we modified the models from Haughton et

al. (2018) to ensure that each cluster always contained a number of samples at least 5 times greater than the number of input

variables. When clustering failed, it was re-attempted a further 9 times, and if that was not successful, the model was excluded.

See Table 1 for details on how many models ran successfully for each variable.15

Second, as noted above, the training and testing data for the local model are in practice nearly always different, because the

QC flags for the flux variables being evaluated against do not correspond perfectly with the meteorological forcing variable

QC flags. Models are trained only on data that has good meteorological and flux QC flags for all relevant variables. However,

simulations are evaluated on a larger subset of all data – those time steps marked as good QC for the flux variable alone. The

motivation for doing this is to ensures that all of the different empirical models are evaluated on the same number of time steps.20

So, for instance, with the S_lin model predicting Qle at a particular site, the number of time steps with good S and good Qle

QC flags might be only 80% of the time steps with good Qle QC flags only. Consequently, the model will be trained only on

the 80% of period that it is tested on. This problem is exacerbated for models with more inputs and for models with lagged

average inputs, which will usually be trained on substantially smaller subsets of data than they are evaluated on.

Lastly, “performance” is dependent on metric, and so performance will only be strictly better locally for metrics that are25

optimised by the regression-based structure used in the empirical models. For instance, ordinary least squares linear regression

optimises RMSE in the training dataset, so assuming the training and evaluation datasets are identical, then the RMSE of the

local model will be strictly not worse than the RMSE of the global model. However, metrics which assess model performance

in terms of distribution, such as the distribution overlap metric or temporal correlation, may occasionally show that the local

model performs worse than the global model, even when the local model is clearly better under RMSE. This is particularly30

pertinent in the context of a generally useful predictability metric.

These caveats are worth keeping in mind, but in the majority of the results below, they do not play a particularly large role.

We are confident that our predictability metrics are satisfactory for a first attempt to estimate site predictability.
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2.2 Hypothesis testing

Once we have a predictability metric, we can generate a number of hypotheses about what might determine predictability at

different sites. Below we list several hypotheses, many of which intersect, and so in some of these cases we also mapped some

predictability metrics against two hypothetical predictability sources.

Mean annual temperature and precipitation Sites with higher mean temperature tend to be those closer to the equator, and5

tend to have a smaller annual temperature cycle range. All other things being equal, we might therefore expect warmer sites to

be more consistent over time, have a more constant response to meteorological forcing, and therefore be more predictable. Sites

with higher average precipitation would be expected to have fewer drier periods, more consistently available soil moisture, and

higher humidity resulting in a damped daily temperature cycle, and are therefore likely to be more predictable.

For these hypotheses, the FLUXNET site data is not always adequate, as the mean may not be perfectly representative of the10

true climatology of the site. For example, if the site only has a short dataset measured over a particularly wet or dry period, or if

a site has a strong seasonal pattern in the quality of the temperature data, the mean would be less representative of the general

site characteristics than a longer-term dataset. For this reason, we calculated mean annual temperature and precipitation from

the half-degree CRU TS4.01 data (Harris and Jones, 2017), using data from 1961-2016, and using the nearest neighbouring

grid cell.15

Budyko curve deviations The Budyko curve (Gerrits et al., 2009) plots an evaporative index against a dryness index, with

the expectation that sites should, in the long term, fall along a function of dryness that is both energy and water limited. Sites

that fall further from the Budyko curve may indicate data errors, or hydrological uniqueness (for example, rapid drainage, or

external water sources), or that the data in question is not long enough to adequately capture and account for long-term internal

variability. Whatever the cause of divergence from the Budyko expectation, we would expect that more divergent sites would20

be more difficult to predict.

Vegetation type The FLUXNET 2015 sites are categorised by International Geosphere-Biosphere Programme (IGBP) veg-

etation types. There is a widely held assumption that different vegetation types behave differently in response to similar me-

teorological forcings (although this was assumption was questioned by Alton, 2011), and this presumably also applies to the

overall predictability of a site. We grouped IGBP vegetation types into 5 major groups:25

– Evergreen Forest: Evergreen Broadleaf Forests, Evergreen Needleleaf Forests (49 sites).

– Deciduous Forest: Deciduous Broadleaf Forests, Deciduous Needleleaf Forests (16 sites).

– Mixed Forest: Mixed Forests (7 sites).

– Crop: Cropland/Natural Vegetation Mosaics, Croplands (15 sites).

– Grass: Grasslands (29 sites).30

– Shrubland: Barren or Sparsely Vegetated, Closed Shrublands, Open Shrublands (11 sites)
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– Savanna: Savannas, and Woody Savannas (13 sites).

– Wetland: Permanent Wetlands (15 sites).

Other IGBP vegetation types not represented in FLUXNET 2015 Tier 1 included Snow and Ice, Unclassified, Urban and

Built-Up Lands, and Water Bodies. We then compared the performance metrics across these groups.

Energy balance closure Wilson et al. (2002) showed that FLUXNET sites often have a problem closing their energy5

balance. Net incoming radiation (Rnet) does not match the total energy accounted for by the heat fluxes (Qh, Qle, and Qg) and

changes in heat storage, on average having an imbalance of around -20% at each site, but ranging from -60% to +20%. Since

this imbalance pertains to boundary conditions, which are all measured (sometimes with the exception of Qg, although that can

be assumed to be too small to account for the difference on a long enough time scale), the imbalance indicates some problem

with either the measurement system, or the eddy covariance methodology. We would assume that sites with worse energy10

imbalances are likely to be more difficult to predict. We calculated the energy closure gap as the energy_gap = mean(Rnet

- Qh - Qle - Qg) (we used Qg=0 for sites missing Qg), and also compared sites by normalised energy gap, using abs(1 -

energy_gap/Rnet). Note that this is not the exact formulation used by Wilson et al. (2002), but it serves the same purpose – to

identify energy closure imbalances.

Record length Since many of the longer-term or rarer behaviours mentioned above are more likely to be captured adequately15

in site datasets that span longer periods, we should expect that longer sites would be more predictable. On top of this, site

principal investigators are likely to become more familiar with problems with their sites, equipment, or methods, and more

likely to be able to find solutions to those problems over time, and so we should expect that data quality should improve in

longer site datasets. We examined the number of years in the dataset as a predictor for uniqueness.

Gap-filling ratio Some bad data is likely to make it through quality assurance procedures, and such bad data would make20

prediction more difficult. It is not clear how one would tell such data in most cases, unless patterns are obvious. We visually

inspected the time series plots produced by FluxnetLSM for each relevant variable, for each site, and saw no obvious problems

within the data periods marked as good QC. However, some proxy for data quality may be possible, and in particular sites

with more high quality data may indicate better instrumentation or procedures, and less likelihood of having bad data marked

as high quality. We compared sites by the proportion of data marked as good QC to total data, averaged over all variables,25

separately for meteorological and flux variables.

We also looked at various other hypotheses, including the impact of aridity index; daily, seasonal, and interannual variability

in temperature and precipitation, and geographic remoteness. The majority of these had few interesting trends or other patterns,

and so we have excluded them from the paper. They are included in the Supplementary Material.

We note that some determinants of predictability could not be calculated for some sites. For example, a number of sites have30

no non-gap-filled data for precipitation, and so mean annual precipitation can not be calculated, and neither can dependent

determinants, such as aridity index. In such cases, the sites are omitted from individual analyses.
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3 Results

3.1 Viability of the “predictability” metrics

First, we show how the uniqueness and mean performance metrics vary across all models and sites for RMSE, Corr and

Overlap. Figure 2 shows each of the 3 metric pairs (rows) for each of the three fluxes (columns), and how those metrics vary

with mean annual temperature in the CRU TS4.01 dataset. Here the uniqueness and mean performance values are similar to5

those explained in Figure 1, but use more complex models in addition to S_lin (listed in Table 1). Note that uniqueness values

less than zero indicate that the local model is not performing better than the global model, as noted above.

– Row 1 shows the RMSE uniqueness of each site, with more unique sites having higher values.

– Row 2 shows the mean of the RMSE of the global and local simulations for each site. For this metric, one might expect

that sites that are more difficult to predict would have higher values, but note that sites with more available energy will10

generally tend to have larger fluxes and so higher RMSE values, regardless of uniqueness.

– Row 3 shows correlation uniqueness. Like RMSE uniqueness, higher values indicate lower site predictability. Note that

there are a large number of zero values for this metric, because for instantaneous linear regression models, correlation

is always identical (or inverted) between global and local models, since they are using the same input data, and so

uniqueness is always 0.15

– Row 4 shows the mean correlation with observed values for local and global simulations - sites with a low correlation are

more difficult to predict (at least by these models). Note that there are a few simulations with 0 mean correlation – these

are cases where linear regressions had global and local gradients with opposite sign, resulting in an exactly opposite

correlation. In those cases, the zero does not indicate that the global and local simulations had low correlation.

– Row 5 shows the Overlap uniqueness. Higher values indicate sites for which the local Overlap was better than the global20

Overlap, and negative values indicate the global model performed better in terms of Overlap.

– Row 6 shows the mean model-obs Overlap values of global and local models, and lower values indicate a site that is

harder to model in terms of Overlap (Overlap=1 indicates that the model’s flux distribution is identical to the observed

distribution).

All plots have a fitted generalised additive model (GAM) line, added to help indicate trends in the site means. It is estimated25

using the pyGAM package (Servén, 2018), using 8 splines, and plotted with a 95% confidence interval. We have also fitted

two other GAM models using subsets of the model ensemble: In each such plot, the red line represents a GAM fit using

only the linear regression models (S_lin, ST_lin), and the purple line represents only the models with lagged input variables

(“Longer models” - short_term243, and long_term243). These serve to show any differences in the predictability metrics that

are contingent on model complexity, non-linearity, or input variables.30
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Figure 2. Predictability metrics for mean annual temperature, for all models. The three columns represent the three fluxes, NEE, Qh, and

Qle. The six rows show RMSE uniqueness, RMSE mean, correlation uniqueness, correlation mean, Overlap uniqueness, and Overlap mean.

Grey points are individual simulation values, blue points are site means across all empirical models. The black line represents a GAM fit of

the site means across models, and the ribbon represents a 95% confidence interval. The red line is a GAM fit using only the linear models

(S_lin, ST_lin), and the purple line is a GAM fit using only the models with lagged variables (short_term243, long_term243). Note that the

mean RMSE for NEE is an order of magnitude smaller than for Qh and Qle, and so we have used a different scale for NEE in the second row

(Qh and Qle scale indicated on the right).
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In Figure 2, we see that there are some consistent behaviour in the predictability metrics, which might indicate that mean

annual temperature is a driver of predictability, but in general any consistency in the behavioural patterns are not strong. For

instance, for RMSE uniqueness (first row), we see a slight increase in uniqueness in sites that are cooler (< -5°C), as well as

sites that have a mean annual temperature around 20°C, for both NEE and Qle. That pattern is less distinct in Qh. There is a

stronger trend in RMSE mean (second row) for Qle, but this is likely largely due to the fact that warmer sites naturally tend5

to have larger heat fluxes. It seems surprising that Qh does not exhibit the same behaviour, since it is more directly related to

temperature. Correlation uniqueness (third row) and mean (4th row) shows a similar pattern to RMSE uniqueness for NEE and

Qle, where cooler sites and sites around 20°C tend to be harder to predict well. Patterns in Overlap uniqueness (5th row) and

mean (6th row) are less clear, but there may be a slight indication of higher uniqueness around 20°C for NEE, and possibly

a lower distribution uniqueness at higher average temperatures. Note that the negative Overlap uniqueness values are largely10

due to the fact that regression models do not perform particularly well on extreme values (as indicated in Best et al., 2015).

We note that the two subset GAM plots for linear and longer-term models describe similar behaviour in each metric in most

panels, here and in later plots. The main differences seem to be largely to do with the more complex models’ ability to capture

more of the variance: The mean performance of these models under each metric is better (and the linear models’ worse) than

the mean, and the uniqueness is higher for the Corr and Overlap metrics, but quite similar for RMSE.15

3.2 Determinants of predictability

Since there are a large number of hypotheses to test, only a selection of the most interesting results is shown here. We have

also opted to show only the RMSE uniqueness in many plots, since its interpretation is the most straightforward, given the

regression based nature of the empirical models, and since in many cases it correlates with some of the other metrics. Methods

and plots for other hypotheses tested are included in the Supplementary Material, along with further details of some of the20

results presented below (including plots of the other 4 predictability metrics). As some determinants are not available for some

sites, the number of site and model combinations in each analysis is noted in each figure title. The figures below use the same

methodology as the Figure 2.

3.2.1 Predictability as a function of energy and water

The three fluxes we investigate are clearly dependent on the availability of both water and energy. The availability of water25

is largely defined by precipitation, and temperature provides a proxy for the amount of energy available. We show the RMSE

uniqueness for mean precipitation in Figure 3. There appears to be some trend associated with precipitation indicating that the

driest sites are more unique for all fluxes, particularly for NEE and Qle.

In Figure 4, the RMSE uniqueness and RMSE mean are plotted as a scatter plot of mean annual temperature and mean

annual precipitation. There appears to be some interaction between the two variables, with drier sites with a mean temperature30

around 20°C showing the highest uniqueness. As in Figure 2, there is also some indication of higher RMSE mean for warmer

sites in all fluxes.
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Figure 3. RMSE uniqueness for mean annual precipitation.
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Figure 4. Predictability metrics for mean annual temperature vs mean annual precipitation (mean across models). The top row is RMSE

uniqueness (darker colours indicate a more unique, less predictable site), and the bottom row is RMSE mean performance (darker colours

indicate higher over-all RMSE). The grey underlying hexbin plot indicates the global distribution of mean precipitation and precipitation

from the CRU dataset for all grid cells over land, to give an indication of the representativity of these sites.
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Figure 5 shows how the sites sit in the Budyko framework. The first row shows the sites on a standard Budyko diagram, with

actual evaporation divided by mean annual precipitation on the y-axis, and potential evaporation divided mean annual precip-

itation on the x-axis. Theoretically, a site should fall just below the solid blue line, but location can be affected by available

water (e.g. inflow, or precipitation in the period before the measurement period), or the method of estimating potential evapo-

ration. There do not appear to be strong patterns in the potential evapotranspiration uniqueness (see Supplementary material)5

and actual evapotranspiration appears to have some weak patterns (greater NEE uniqueness at sites with lower evaporation, and

the opposite for Qh and Qle, see Supplementary Material), although these are not particularly clear in the Budyko diagrams in

the first row. We also calculate a “Budyko deviance”, which is simply the difference between the actual and predicted values

on the Budyko plot, normalised by the predicted values, such that sites falling further above the Budyko curve have a positive

deviance. There does not appear to be any pattern in uniqueness for NEE or Qle as a function of deviance from the Budyko10

curve (see second row in Figure 5), however there does seem to be some trend toward higher uniqueness for Qh for sites fur-

ther above the Budyko curve. Note that one site (AU-Lox) is excluded from this plot, as its values are too large (AET/MAR of

11.77, and a PET/MAR of 10.72). Its RMSE uniqueness values are 0.352 for NEE, 0.476 for Qh, and 0.438 for Qle. This site

and the other sites with AET/MAR values over 2 are all Wetland sites, and as such are likely to have surface water available

from upstream run-off in quantities far exceeding that due to precipitation alone.15

3.2.2 Predictability as a function of vegetation characteristics

Vegetation type is a defining characteristic of different sites, and we would expect different vegetation types to behave differ-

ently, reflecting both their adaptations to their environment as well as their response to the meteorological forcing. In particular,

we would expect the behaviour of some vegetation types to be more predictable than others. Figure 6 shows the RMSE unique-

ness relative to grouped vegetation type (see methods). While there are some differences in uniqueness by vegetation type,20

few are significant. The main significant differences in RMSE uniqueness (Tukey’s honest significant difference test of means

across models per site, p < 0.05) are:

– For NEE, Shrubland sites tend to be more unique than all other vegetation types.

– For Qh, Wetlands are more unique than all Forest types, Shrubland and Savannah; and Grass also tends to be more unique

than Evergreen and Deciduous Forests, and Savannah.25

– For Qle, Wetlands and Grasses tend to be more unique than Evergreen Forests.

However, there is still substantial overlap between even these groups, and the differences between the vegetation type groups

are even less distinct when compared over the other five predictability metrics (see Supplementary Material).

3.2.3 Predictability as a function of geography

Globally, FLUXNET sites are not evenly distributed, both in space, and in climate regime. Figure 7 shows RMSE uniqueness30

for NEE as mapped globally, and averaged across models for each site. Given that the models are trained on all sites globally,
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Figure 5. RMSE uniqueness for the Budyko analysis. AET and PET come from the FLUXNET 2015 data, mean precipitation comes from

CRU TS 4.01. In the first row, colour indicates RMSE uniqueness, averaged across models, where darker colours are more unique. The solid

line represents the theoretical energy and water limitations, and the dotted line represents the Budyko curve (Gerrits et al., 2009). The second

row shows sites’ deviance from the Budyko curve, normalised by the Budyko expectation for the site (sites > 0 lie above the curve in the first

row).

and those sites are not evenly distributed around the globe (Figure 7) we might expect that sites less well represented (more

remote) would be more unique. In Figure 7, there is a hint that more remote sites might be more unique for NEE. Such a pattern

is not obvious in the maps for Qh or Qle (see Supplementary Material). To confirm this, we plotted uniqueness by remoteness,

defined as the average distance from a site to all other sites (shown in Figure 15 in the Supplementary material). There is a

indeed a weak trend towards uniqueness at more remote sites for NEE, but not for Qh and Qle. There are no strong patterns5

evident in remoteness for any variable for any of the other predictability metrics (see Supplementary Material).

3.2.4 Predictability as a function of data quality

There are a number of ways that data quality might affect uniqueness. We investigated the energy closure problem in FLUXNET

by comparing predictability as a function of the actual energy closure imbalance, as well as the energy closure imbalance

normalised by Rnet. While the energy closure problem in FLUXNET is perhaps one of the most obvious candidates for a10
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Figure 6. RMSE uniqueness for vegetation type (grouped, see Methods).

determinant of a site’s predictability, there does not appear to be a strong pattern in the data for RMSE uniqueness in either

plot (nor for any of the other predictability metrics, see the Supplementary Material).

The number of years in the dataset is another obvious candidate determinant of predictability. There does seem to be a weak

trend towards shorter sites being more unique, particularly for NEE and Qle (Figure 8). This may be due to longer sites biasing

the global training data such that the global model is more like their local models (and hence they appear less unique). This5

weak trend is somewhat visible in the other predictability metrics (see Supplementary Material, for example in mean Corr, and

mean Overlap), but in each case is not strong enough to be significant.

Although the number of years gives a broad scale view of the amount of data in a dataset, it does not tell the whole story.

For example, one 2-year site might contain almost a whole 2 years worth of good QC data, while another might contain less

than a single year. As such, we also examined the ratio of good QC data to bad QC data at each site. Figure 9 shows the good10

QC ratio for the flux data combined . Like many of the other potential determinants of predictability, we did not find any clear

patterns.

3.3 Predictability summary

While we have shown that predictability is affected to some degree by various factors (dryness and some vegetation types in

particular), it is useful to be able to have an overview of the entire dataset. Figure 10 shows the mean RMSE uniqueness for each15

of the three fluxes, sorted alphabetically by FLUXNET site code. Here we see that uniqueness is somewhat consistent across

variables at each site - Pearson correlation coefficients between variables are: NEE-Qh: 0.113, NEE-Qle: 0.536, Qh-Qle: 0.456.

There are interesting differences within clusters of FLUXNET sites, for example the US Metolius sites (US-Me1, US-Me2,

US-Me6) are similarly unique for Qh and Qle, but US-Me1 is substantially more unique for NEE, and this site was measured
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Figure 9. RMSE uniqueness for good QC ratio in flux forcings.

for two years after a fire that killed all trees at the site (Law, 2016). This gives some indication that our uniqueness metric does

indeed have bio-physical meaning. A similar though less distinct pattern can be seen in the CA-SF sites in Saskatchewan -

the CA-SF3 site was burnt much more recently than the other two. There is also a notable gradation in Qle RMSE uniqueness

in the UCI burn sites (CA-NS), that correlates with time since the last burn. There are likely other comparisons that can be

drawn with sites not included in Tier 1, and an extended year-by-year analysis might also pick up land use changes related to5

cropping, for example.

4 Discussion

In this paper we applied a suite of empirical models to the 155 flux tower sites with half-hourly data included in Tier 1 release

of FLUXNET. Our aim was to explore how predictability varied across sites contingent on meteorological forcings, and then

to use this insight to develop a more systematic approach to guide site selection in model evaluation exercises.10

20



N
EE Q

h

Q
le

AR-SLu

AR-Vir

AT-Neu

AU-ASM

AU-Ade

AU-Cpr

AU-Cum

AU-DaP

AU-DaS

AU-Dry

AU-Emr

AU-Fog

AU-GWW

AU-Gin

AU-How

AU-Lox

AU-RDF

AU-Rig

AU-Rob

AU-Stp

AU-TTE

AU-Wac

AU-Whr

.50 .20 .36

.07 .19 .11

.09 .43 .29

.47 .24 .36

.06 .10 .09

.43 .16 .39

.11 .09 .07

.13 .13 .13

.08 .04 .05

.23 .05 .04

.37 .14 .24

.40 .36 .18

.62 .11 .48

.29 .27 .24

.04 .11 .06

.30 .46 .41

.28 .07 .10

.14 .12 .10

.06 .08 .06

.39 .10 .15

.78 .19 .60

.09 .16 .08

.13 .16 .16

N
EE Q

h

Q
le

AU-Wom

AU-Ync

BE-Bra

BE-Lon

BE-Vie

BR-Sa3

CA-Man

CA-NS1

CA-NS2

CA-NS3

CA-NS4

CA-NS5

CA-NS6

CA-NS7

CA-Qfo

CA-SF1

CA-SF2

CA-SF3

CH-Cha

CH-Dav

CH-Fru

CH-Lae

CH-Oe1

.26 .11 .19

.44 .20 .45

.04 .08 .03

.07 .11 .12

.18 .11 .06

.07 .33 .20

.13 .21 .04

.10 .30 .09

.08 .28 .07

.04 .19 -0.01

.32 .23 .19

.12 .14 .12

.33 .10 .08

.27 .07 .06

.20 .19 .06

.08 .07 .08

.04 .06 .06

.23 .09 .06

.08 .51 .22

.03 .04 .06

.07 .39 .20

.07 .03 .05

.06 .49 .26

N
EE Q

h

Q
le

CH-Oe2

CN-Cha

CN-Cng

CN-Dan

CN-Din

CN-Du2

CN-HaM

CN-Qia

CN-Sw2

CZ-BK1

CZ-BK2

CZ-wet

DE-Akm

DE-Geb

DE-Gri

DE-Hai

DE-Kli

DE-Lkb

DE-Obe

DE-RuR

DE-RuS

DE-Seh

DE-SfN

.03 .36 .05

.14 .08 .10

.20 .22 .07

.66 .73 .12

.14 .11 .05

.52 .26 .07

.20 .35 .15

.10 .18 .07

.35 .26 .16

.06 .07 .09

.06 .06 .10

.08 .11 .15

.15 .12 .18

.03 .08 .06

.08 .25 .28

.19 .05 .09

.03 .11 .05

.41 .06 .03

.18 .06 .03

.08 .38 .24

.18 .42 .21

.06 .43 .04

.10 .08 .20

N
EE Q

h

Q
le

DE-Spw

DE-Tha

DK-Fou

DK-NuF

DK-Sor

DK-ZaF

DK-ZaH

ES-LgS

ES-Ln2

FI-Hyy

FI-Jok

FI-Lom

FI-Sod

FR-Fon

FR-Gri

FR-LBr

FR-Pue

GF-Guy

IT-BCi

IT-CA1

IT-CA2

IT-CA3

IT-Col

.14 .07 .14

.22 .08 .02

.06 .21 .16

.51 .11 .08

.18 .12 .21

.25 .73 .76

.80 .18 .27

.61 .08 .15

.77 .13 .43

.10 .11 .06

.37 .07 .11

.13 .47 .15

.17 .13 .30

.10 .08 .06

.04 .26 .03

.03 .03 .05

.10 .17 .05

.07 .26 .16

-0.01 .06 .06

.05 .06 .05

.13 .17 .12

.05 .28 .07

.12 .07 .06

N
EE Q

h

Q
le

IT-Cp2

IT-Cpz

IT-Isp

IT-La2

IT-Lav

IT-MBo

IT-Noe

IT-PT1

IT-Ren

IT-Ro1

IT-Ro2

IT-SR2

IT-SRo

IT-Tor

JP-MBF

JP-SMF

NL-Hor

NL-Loo

NO-Adv

RU-Che

RU-Cok

RU-Fyo

RU-Ha1

.12 .32 .16

.11 .25 .17

.19 .07 .31

.17 .11 .06

.30 .19 .06

.06 .39 .11

.44 .39 .45

.07 .11 .14

.06 .05 .04

.05 .12 .09

.09 .05 .05

.11 .21 .16

.10 .23 .06

.10 .48 .11

.09 .07 .04

.07 .14 .06

-0.01 .09 .02

.08 .12 .06

.17 .46 .44

.35 .11 .10

.23 .18 .08

.05 .20 .04

.26 .21 .08

N
EE Q

h

Q
le

SD-Dem

SN-Dhr

US-AR1

US-AR2

US-ARM

US-ARb

US-ARc

US-Blo

US-GBT

US-GLE

US-KS2

US-Los

US-Me1

US-Me2

US-Me6

US-Myb

US-NR1

US-ORv

US-Prr

US-SRG

US-SRM

US-Syv

US-Ton

.21 .28 .23

.08 .20 .08

.33 .23 .28

.38 .18 .38

.16 .14 .12

.14 .13 .18

.15 .19 .13

.12 .09 .23

.20 .04 .11

.20 .08 .12

.15 .08 .10

.18 .06 .08

.42 .09 .24

.13 .07 .05

.15 .07 .08

.10 .59 .18

.18 .06 .11

.05 .33 .21

.26 .04 .07

.27 .12 .15

.41 .05 .21

.07 .04 .06

.09 .08 .20

N
EE Q

h

Q
le

US-Tw1

US-Tw2

US-Tw3

US-Tw4

US-Twt

US-UMd

US-Var

US-WCr

US-Whs

US-Wi0

US-Wi3

US-Wi4

US-Wi6

US-Wi9

US-Wkg

ZA-Kru

ZM-Mon

.26 .32 .42

.15 .09 .16

.17 .43 .21

.37 .66 .28

.12 .39 .19

.09 .06 .08

.18 .13 .30

.10 .08 .09

.62 .12 .30

.05 .05 .16

.18 .05 .13

.15 .12 .11

.08 .10 .07

.04 .11 .05

.49 .23 .31

.16 .11 .12

.07 .12 .06

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

SE
 U

ni
qu

en
es

s

Figure 10. RMSE uniqueness mean across models for each flux at each site, in alphabetical order. Darker colours indicate more unique sites

for each flux.

In our exploration of meteorological predictability, which we characterised using both uniqueness and mean performance for

each metric (described in the Methods), we have mostly focussed on uniqueness of behaviour of sites. This metric is the most

novel component of this study, and is, we think, the most interesting aspect of relative site predictability. However, it is also

less intuitive than mean performance. It is worth reiterating that uniqueness is not the direct inverse of predictability, and under

certain conditions it can actually be correlated with overall predictability. In an effort to clarify uniqueness in an intuitive way,5

we illustrate the relationships between meteorological drivers and fluxes, and site-specific (non-meteorological) modulators of

these relationships in Figure 11.

Figure 11 provides a schematic for understanding how mean performance and uniqueness interact as components of pre-

dictability. In all cases, we assume that the observations include some noise, or unpredictable components of variability. In the

left column, we present a case where there is a strong universal relationship between meteorological forcings and flux observa-10

tions (in this case for example, a linear trend), in the right column, this relationship is weak or non-existent. In the top row, we

have the case where the local site conditions modulates the behaviour of the fluxes (in this case for example, a simple bias, but
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Figure 11. Schematic of sources of variability and how they affect predictability, mean performance, and uniqueness. The black line represent

the flux observations, and the grey ribbon, the unpredictable internal variability or noise in the system. “Meteorological drivers” indicate

universal physical relationships between meteorological forcings and fluxes, here we have indicated this using a simple linear trend as an

example (red and blue lines). “Site modulators” are characteristics of the site (soil or vegetation properties, storage pools, geography, or data

problems) that modulate the meteorological -> flux relationship such that it is different to the relationships observed globally - here we have

used a simple bias as an example.
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it could also be a complex non-linear relationship), and in the bottom row, there is no such site-related modulation. In the right

column, where there is no meteorological driver relationship, we can see that uniqueness is correlated with performance: in the

absence of site modulators (bottom right) there is no predictability (as all variability is due to noise) and both models perform

poorly. In the presence of site modulators (top-right), predictability is higher and uniqueness is also higher (because the local

model performs better). When there are strong meteorological drivers (left column), predictability is higher in the case where5

site modulators are weak (bottom left) because the global model is able to perform well. In this case, sites with strong site

modulators are less predictable because the global performance is worse, and uniqueness would clearly be anti-correlated with

“predictability”. It is clear that there are strong relationships between meteorological drivers and fluxes (see Best et al., 2015;

Haughton et al., 2018), and so the inferences made in this study mostly fall in the left column. This suggests that in real-world

situations uniqueness is mostly anti-correlated with predictability, but not perfectly, and so we emphasise that uniqueness alone10

is not an adequate proxy for predictability.

4.1 Site predictability

Our multi-site analysis points to marked variability in predictability. For example, it appears that sites in warmer, drier climates

tend to be more unique for all fluxes (Figure 3 and Figure 4), and sites with a large diurnal temperature range tend to be more

unique, particularly for NEE, and to a lesser extent for Qle (See Figure 6 in the Supplementary Material). On the other hand,15

potential determinants that we expected to have quite strong effects on predictability did not appear to do so, for instance mean

temperature (Figure 2), dataset length (Figure 8), and major vegetation types (Figure 6). There are several reasons why this

might have been the case.

First, the assumption that vegetation type is a major driver of flux behaviour may be wrong. It is perhaps more likely that

the widely used approach of analysing FLUXNET sites grouped by a small number of discrete plant functional types is too20

simplistic, as opposed to exploring differences at a species level, or relating differences to a spectrum of plant traits, plant life

spans and metabolism (Kattge et al., 2011; Reich et al., 1997; Wright et al., 2004). Despite widely acknowledged issues with

this PFT approach (Alton, 2011; Pavlick et al., 2013; Van Bodegom et al., 2012), this analysis framework is still used, partly

because this is the relevant interpretation metric that LSMs use, but also because the necessary information to dig deeper into

site differences along these lines is still lacking. Whilst datasets do exist - for example TRY (Kattge et al., 2011), GLOPNET25

(Wright et al., 2004), LEDA (Kleyer et al., 2008), and ECOFLORA (Fitter and Peat, 1994) - often these are not freely available

and the existing ancillary information relating to vegetation available via FLUXNET is minimal, which impedes analyses

in this direction. This point was eloquently demonstrated by Konings and Gentine (2016), who used data from the AMSR-E

satellite to characterise global variations in isohydricity (the degree to which plants regulate their stomata as leaf water potential

declines). When they categorised their analysis on a PFT level, differences between sites and species were no longer distinct.30

This remains an avenue ripe for future analysis.

Second, our predictability metrics (RMSE, Corr, Overlap uniqueness and mean) may not be appropriate. There may be

systematic biases that inhibit our estimate of predictability due to over-representation of particular biomes, or because mea-

surement periods were not representative. Our results did indicate a weak trend toward higher uniqueness in sites with shorter
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measurement periods (see Figure 8), however, a single year of flux data could represent a substantial amount of useful data.

Short datasets may be particularly useful if they happen to include rare events that are not well represented in other datasets,

such as regional droughts or heatwaves. We nevertheless openly invite constructive arguments against our predictability metric

proposal, identification of flaws in the process, or alternative definitions of site predictability or uniqueness.

Should we expect stronger patterns of predictability? In our view, there are strong arguments to support the utility of the5

FLUXNET data for analyses of predictability. We know that meteorological data measured at flux tower sites does contain

a great deal of information about the measured fluxes (Best et al., 2015; Haughton et al., 2018). Indeed the information

contained in the meteorological data about fluxes was very much consistent across sites and this was key to the success of

those experiments. So we know that the empirical models used here, which follow a very similar methodology, are capturing

the relationships between the meteorological forcing and the predicted fluxes relatively well.10

One way we might improve upon our analysis is by focusing on the differences in performance or uniqueness between

models with similar structure, but with extra forcing variables. This would tell us something about the predictability contingent

on that variable. For instance, if a model such as STH_km243 (a 243-centre cluster and regression on shortwave down, air

temperature, and relative humidity, see Table 1) performs substantially better at a class of sites than an ST_km243 model (the

same, but missing relative humidity), then we can infer that predictability at those sites may be contingent on information in15

the humidity data. This analysis is substantially more complex as it requires up to 2n models for n driving variables for a given

model structure, and elaborate analysis, and so we have left it for future work. The code used to run these models is freely

available at https://github.com/naught101/empirical_lsm, version 1.1 was used for this paper.

4.2 Model evaluation

Our second major aim was to develop a more systematic approach for LSM evaluation underpinned by differences in site20

predictability. Recent work has already illustrated the benefits of defining benchmark levels of performance for a given metric,

at a given site (Best et al., 2015; Haughton et al., 2016). The empirical analysis of site predictability we presented goes one

step further, effectively quantifying the additional benefit to model performance that site-specific information can provide in

the form of the locally trained empirical models.

Land surface modellers will usually rationalise why a particular module was selected to represent a physical process, or why25

a specific atmospheric model was used. Given the new information presented in this paper, we suggest that a thorough rationale

for why specific FLUXNET sites were used should be explicit in future publications. Importantly, we note that we could not

provide evidence that would support site choices based on PFT (Figure 6), data length (Figure 8), quality control (Figure 9) and

so these really do not seem legitimate ways to rationalise choice of sites. Nevertheless, we intentionally avoid recommending

a particular set of most or least predictable sites, as the suitability of a given set of sites for a particular study will be dependent30

on many factors. Instead, we recommend that the predictability of the site is one element for choosing sites, but the process of

selecting sites should be more rigorous and reported whether or not this recommendation is followed.

How might this site-specific information be used? Perhaps most obvious would be the clustering of sites, based on their

predictability, for use in model evaluation and benchmarking exercises. In Figure 10, we provided some initial guidance to the
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LSM evaluation community. Here, sites shown in darker colours are sites that exhibit unusual meteorological-flux relationships

for a given flux. These are the sites that are likely to present more of a challenge for process-based LSMs to simulate. On the

flip side, lighter coloured sites follow commonly observed patterns of behaviour, so good LSM performance at these should

be less surprising, and is perhaps less of an achievement. What is important is that modellers should know if the sites they

are evaluating their models against are relatively predictable, or unpredictable. Our results, and Figure 10 in particular, gives5

modellers a tool that can form the basis of a strategy to choose sites: a defence if they choose unpredictable sites and do poorly,

and a challenge if they choose more predictable sites and do well. We suspect that the best strategy for model evaluation would

be to pick a set of sites that includes both very predictable sites, as well as very unpredictable sites, with a distribution informed

by the determinants of predictability presented above.

Of particular note in Figure 10, but of interest beyond LSM evaluation, is that predictability can be markedly different for10

different surface fluxes at the same site. For example, we see a number of sites with high NEE and Qle uniqueness, and low

Qh uniqueness (e.g. AU-TTE, AU-Ync, ES-Ln2, US-Whs, US-Wkg), and other sites with high Qh uniqueness (e.g. CH-Cha,

IT-MBo, IT-Tor, US-Myb). We also see some neighbouring sites with extremely different predictability responses for different

fluxes (e.g. DK-ZaF, a wetland site, has very high NEE uniqueness, while the neighbouring DK-ZaH, a heath [grasslands]

site, has high Qh and Qle uniqueness). This is evident in other figures where there uniqueness patterns are not shared between15

fluxes (for example the differences between Qh and the other fluxes in Figure 5). This provides new justification for different

site selection strategies depending on the processes being evaluated.

Our analysis may understandably lead to modelling groups gravitating toward evaluating their models only against a specific

sub-sets of FLUXNET sites. We do not think that this is a desirable outcome, and thus have not provided a suggestion of

specific sites to use. Indeed care must be taken when evaluating models on small groups of FLUXNET sites due to the greater20

need to consider the various intricacies of site-specific behaviour. When models are evaluated against a large number of sites,

an argument can be advanced that unique site behaviour may average out in the noise. If analysis approaches like ours were

to lead to small groups of sites being used to evaluate models, greater care would be needed to capture an adequate diversity

of site characteristics. For example, it may be that sites we determine to be unique are simply those that have undergone a

disturbance event (e.g. clear felling, fire, wind storms, etc.), or are subject to management (e.g. cropping, irrigation). With25

improved information about site characteristics (e.g. time since last disturbance), these issues could be avoided. A major

advance that would be useful to the LSM community would be the systematic publishing of metadata characterising each site

in the FLUXNET data.

Finally, the logical next extension of our work is to evaluate a suite of LSMs at the sites deemed to be most and least pre-

dictable, in order to understand the extent to which site predictability translates into model skill. Such an analysis will of course30

need careful consideration of the kinds of site eccentricities noted above, noting that information about these eccentricities is

not as commonly available as flux and meteorological data. Nevertheless, work of this kind will ultimately help refine how this

predictability metric is best utilised in model evaluation strategies.
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5 Conclusions

In this study, we applied a novel methodology to characterise the predictability of surface fluxes at sites within the FLUXNET2015

dataset. We had two key aims: first, we sought to explain why predictability varied across the 155 FLUXNET sites, with the ex-

pectation that we would find patterns in predictability along gradients such as mean precipitation, vegetation type, or in relation

to various bioclimatic metrics, both annually and seasonally. Whilst we did show that the 155 FLUXNET sites vary strongly5

in their predictability, we did not find strong patterns in predictability, with the possible exception of drier sites, which appear

to be substantially more unique. We acknowledge that we might have missed some relevant determinants of predictability, or

some transformation of, or interaction between the determinants that we did have available. If we could incorporate these, a

clear pattern of predictability might emerge.

Our second aim was to propose a more systematic approach to site selection for model evaluation, underpinned by differences10

in site predictability. While we found fewer patterns in predictability that we expected, we nevertheless now have a basis on

which to define a priori expectations of model performance. We suggest that careful choice of FLUXNET sites based on

predictability may avoid modellers incorrectly judging their models negatively (via choice of very unpredictable sites) or

positively (via choice of very predictable sites). While further work based on this predictability metric is required before a

complete rationale for site selection is obvious, we now have a basis on which to develop such a strategy. As a first step, we15

strongly encourage modelling groups to explain why they choose specific sites for evaluation because, thanks to the FLUXNET

community, a lack of availability of data is no longer a reason for site selection.

References

Abbas, S. R. and Arif, M.: New Time Series Predictability Metrics for Nearest Neighbor Based Forecasting, in 2006 IEEE

International Multitopic Conference, pp. 100–105., 2006.20

Alton, P. B.: How useful are plant functional types in global simulations of the carbon, water, and energy cycles?, J. Geophys.

Res., 116(G1), doi:10.1029/2010JG001430, 2011.

Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M. and Betts, A. K.: A Revised Hydrology for

the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J.

Hydrometeor., 10(3), 623–643, doi:10.1175/2008JHM1068.1, 2009.25

Best, M. J., Abramowitz, G., Johnson, H. R., Pitman, A. J., Balsamo, G., Boone, A., Cuntz, M., Decharme, B., Dirmeyer, P.

A., Dong, J., Ek, M. B., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., Peters-Lidard, C. D., Santan, J. S.,

26

https://doi.org/10.1029/2010JG001430
https://doi.org/10.1175/2008JHM1068.1


Stevens, L. E. and Vuichard, N.: The Plumbing of Land Surface Models: Benchmarking Model Performance, J. Hydrometeor,

16(3), 1425–1442, doi:10.1175/JHM-D-14-0158.1, 2015.

Bonan, G.: Ecological Climatology: Concepts and Applications, 3rd ed., Cambridge University Press, National Center for

Atmospheric Research, Boulder, Colorado., 2015.

Bonan, G. B., Williams, M., Fisher, R. A. and Oleson, K. W.: Modeling stomatal conductance in the earth system: Linking5

leaf water-use efficiency and water transport along the soilplantatmosphere continuum, Geosci. Model Dev., 7(5), 2193–2222,

doi:10.5194/gmd-7-2193-2014, 2014.

Chapin III, F. S., Matson, P. A. and Vitousek, P.: Principles of Terrestrial Ecosystem Ecology, 2nd ed., Springer-Verlag, New

York. [online] Available from: //www.springer.com/gp/book/9781441995032 (Accessed 3 April 2018), 2011.

Chen, T. H., Henderson-Sellers, A., Milly, P. C. D., Pitman, A. J., Beljaars, A. C. M., Polcher, J., Abramopoulos, F., Boone,10

A., Chang, S. and others: Cabauw experimental results from the project for intercomparison of land-surface parameteri-

zation schemes, Journal of Climate, 10(6), 1194–1215 [online] Available from: http://journals.ametsoc.org/doi/abs/10.1175/

1520-0442(1997)010/%3C1194:CERFTP/%3E2.0.CO;2 (Accessed 10 April 2015), 1997.

Colwell, R. K.: Predictability, Constancy, and Contingency of Periodic Phenomena, Ecology, 55(5), 1148–1153, doi:10.2307/1940366,

1974.15

De Kauwe, M. G., Kala, J., Lin, Y.-S., Pitman, A. J., Medlyn, B. E., Duursma, R. A., Abramowitz, G., Wang, Y. P. and

Miralles, D. G.: A test of an optimal stomatal conductance scheme within the CABLE land surface model, Geosci. Model

Dev., 8(2), 431–452, doi:10.5194/gmd-8-431-2015, 2015.

Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K. and Olson, R.: Global potential

net primary production predicted from vegetation class, precipitation, and temperature, Ecology, 89(8), 2117–2126, 2008.20

Fitter, A. H. and Peat, H. J.: The Ecological Flora Database, Journal of Ecology, 82(2), 415–425, doi:10.2307/2261309,

1994.

Fluxdata.org: FLUXNET2015 Dataset, Fluxdata [online] Available from: http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/

(Accessed 8 January 2018), 2018.

Gerrits, A. M. J., Savenije, H. H. G., Veling, E. J. M. and Pfister, L.: Analytical derivation of the Budyko curve based on25

rainfall characteristics and a simple evaporation model, Water Resour. Res., 45(4), W04403, doi:10.1029/2008WR007308,

2009.

Gillman, L. N., Wright, S. D., Cusens, J., McBride, P. D., Malhi, Y. and Whittaker, R. J.: Latitude, productivity and species

richness, Global Ecology and Biogeography, 24(1), 107–117, doi:10.1111/geb.12245, 2015.

Harris, I. and Jones, P.: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution30

gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2016), Centre for Environmental Data Analysis, 623–642

[online] Available from: http://dx.doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0 (Accessed 20 March 2018), 2017.

Haughton, N., Abramowitz, G., Pitman, A. J., Or, D., Best, M. J., Johnson, H. R., Balsamo, G., Boone, A., Cuntz, M.,

Decharme, B., Dirmeyer, P. A., Dong, J., Ek, M., Guo, Z., Haverd, V., van den Hurk, B. J. J., Nearing, G. S., Pak, B., Santanello,

27

https://doi.org/10.1175/JHM-D-14-0158.1
https://doi.org/10.5194/gmd-7-2193-2014
//www.springer.com/gp/book/9781441995032
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1997)010/%3C1194:CERFTP/%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1997)010/%3C1194:CERFTP/%3E2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1997)010/%3C1194:CERFTP/%3E2.0.CO;2
https://doi.org/10.2307/1940366
https://doi.org/10.5194/gmd-8-431-2015
https://doi.org/10.2307/2261309
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://doi.org/10.1029/2008WR007308
https://doi.org/10.1111/geb.12245
http://dx.doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0


J. A., Stevens, L. E. and Vuichard, N.: The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology

or Data Quality?, J. Hydrometeor., 17(6), 1705–1723, doi:10.1175/JHM-D-15-0171.1, 2016.

Haughton, N., Abramowitz, G. and Pitman, A. J.: On the Predictability of Land Surface Fluxes from Meteorological Vari-

ables, Geosci. Model Dev., 11(1), 195–212, doi:10.5194/gmd-11-195-2018, 2018.

Huston, M. A. and Wolverton, S.: The global distribution of net primary production: Resolving the paradox, Ecological5

Monographs, 79(3), 343–377, doi:10.1890/08-0588.1, 2009.

Kaboudan, M. A.: Genetic Programming Prediction of Stock Prices, Computational Economics, 16(3), 207–236, doi:10.1023/A:1008768404046,

2000.

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch G., Garnier E., Westoby M., Reich P. B., Wright I. J.,

Cornelissen J. H. C., Violle C., Harrison S. P., Van BODEGOM P. M., Reichstein M., Enquist B. J., Soudzilovskaia N. A.,10

Ackerly D. D., Anand M., Atkin O., Bahn M., Baker T. R., Baldocchi D., Bekker R., Blanco C. C., Blonder B., Bond W. J.,

Bradstock R., Bunker D. E., Casanoves F., Cavender-Bares J., Chambers J. Q., Chapin Iii F. S., Chave J., Coomes D., Cornwell

W. K., Craine J. M., Dobrin B. H., Duarte L., Durka W., Elser J., Esser G., Estiarte M., Fagan W. F., Fang J., Fernández-Méndez

F., Fidelis A., Finegan B., Flores O., Ford H., Frank D., Freschet G. T., Fyllas N. M., Gallagher R. V., Green W. A., Gutierrez

a. G., Hickler T., Higgins S. I., Hodgson J. G., Jalili A., Jansen S., Joly C. A., Kerkhoff a. J., Kirkup D., Kitajima K., Kleyer15

M., Klotz S., Knops J. M. H., Kramer K., Kühn I., Kurokawa H., Laughlin D., Lee T. D., Leishman M., Lens F., Lenz T.,

Lewis S. L., Lloyd J., Llusià J., Louault F., Ma S., Mahecha M. D., Manning P., Massad T., Medlyn B. E., Messier J., Moles

a. T., Müller S. C., Nadrowski K., Naeem S., Niinemets Ü., Nöllert S., Nüske A., Ogaya R., Oleksyn J., Onipchenko V. G.,

Onoda Y., Ordoñez J., Overbeck G., et al.: TRY a global database of plant traits, Global Change Biology, 17(9), 2905–2935,

doi:10.1111/j.1365-2486.2011.02451.x, 2011.20

Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein M., Poschlod P., Van Groenendael

J.M., Klimeš L., Klimešová J., Klotz S., Rusch G.M., Hermy M., Adriaens D., Boedeltje G., Bossuyt B., Dannemann A.,

Endels P., Götzenberger L., Hodgson J.G., Jackel A-K., Kühn I., Kunzmann D., Ozinga W.A., Römermann C., Stadler M.,

Schlegelmilch J., Steendam H.J., Tackenberg O., Wilmann B., Cornelissen J.H.C., Eriksson O., Garnier E. and Peco B.: The

28

https://doi.org/10.1175/JHM-D-15-0171.1
https://doi.org/10.5194/gmd-11-195-2018
https://doi.org/10.1890/08-0588.1
https://doi.org/10.1023/A:1008768404046
https://doi.org/10.1111/j.1365-2486.2011.02451.x


LEDA Traitbase: A database of life-history traits of the Northwest European flora, Journal of Ecology, 96(6), 1266–1274,

doi:10.1111/j.1365-2745.2008.01430.x, 2008.

Konings, A. G. and Gentine, P.: Global variations in ecosystem-scale isohydricity, Global Change Biology, 23(2), 891–905,

doi:10.1111/gcb.13389, 2016.

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F.: World Map of the Köppen-Geiger climate classification updated,5

Meteorologische Zeitschrift, 259–263, doi:10.1127/0941-2948/2006/0130, 2006.

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., Ciais, P., Sitch, S. and Prentice, I.

C.: A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cycles,

19(1), GB1015, doi:10.1029/2003GB002199, 2005.

Law, B.: AmeriFlux US-Me1 Metolius - Eyerly burn, AmeriFlux; Oregon State Univ., Corvallis, OR (United States)., 2016.10

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L.,

Levis, S., Sakaguchi, K., Bonan, G. B. and Slater, A. G.: Parameterization improvements and functional and structural advances

in Version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3(1), M03001, doi:10.1029/2011MS00045, 2011.

Napoly, A., Boone, A., Samuelsson, P., Gollvik, S., Martin, E., Seferian, R., Carrer, D., Decharme, B. and Jarlan, L.: The

interactions between soilbiosphereatmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv815

29

https://doi.org/10.1111/j.1365-2745.2008.01430.x
https://doi.org/10.1111/gcb.13389
https://doi.org/10.1127/0941-2948/2006/0130
https://doi.org/10.1029/2003GB002199
https://doi.org/10.1029/2011MS00045


2: Introduction of a litter formulation and model evaluation for local-scale forest sites, Geosci. Model Dev., 10(4), 1621–1644,

doi:10.5194/gmd-10-1621-2017, 2017.

Pavlick, R., Drewry, D. and Kleidon, A.: Quantifying the importance of plant functional diversity for ecosystem functioning

and resilience under scenarios of climate change (Invited), AGU Fall Meeting Abstracts, 32, B32D–02 [online] Available from:

http://adsabs.harvard.edu/abs/2013AGUFM.B32D..02P (Accessed 20 March 2018), 2013.5

Perkins, S. E., Pitman, A. J., Holbrook, N. J. and McAneney, J.: Evaluation of the AR4 Climate Models’ Simulated Daily

Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions, J.

Clim., 20(17), 4356–4376, doi:10.1175/JCLI4253.1, 2007.

Pitman, A. J.: The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol., 23(5),

479–510, 2003.10

Reich, P. B., Walters, M. B. and Ellsworth, D. S.: From tropics to tundra: Global convergence in plant functioning, PNAS,

94(25), 13730–13734 [online] Available from: http://www.pnas.org/content/94/25/13730 (Accessed 20 March 2018), 1997.

Schuur, E. A. G.: Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation, Ecology,

84(5), 1165–1170, doi:10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2, 2003.

Servén, D.: pyGAM: Generalized Additive Models in Python, [online] Available from: https://github.com/dswah/pyGAM15

(Accessed 15 March 2018), 2018.

Slevin, D., Tett, S. F. B. and Williams, M.: Multi-site evaluation of the JULES land surface model using global and local

data, Geosci. Model Dev., 8(2), 295–316, doi:10.5194/gmd-8-295-2015, 2015.

Ukkola, A. M., Haughton, N., De Kauwe, M. G., Abramowitz, G. and Pitman, A. J.: FluxnetLSM R package (v1.0): A

community tool for processing FLUXNET data for use in land surface modelling, Geosci. Model Dev., 2017(9), 3379–3390,20

doi:10.5194/gmd-10-3379-2017, 2017.

Van Bodegom, P. M., Douma, J. C., Witte, J. P. M., Ordoñez, J. C., Bartholomeus, R. P. and Aerts, R.: Going beyond

limitations of plant functional types when predicting global ecosystematmosphere fluxes: Exploring the merits of traits-based

approaches, Global Ecology and Biogeography, 21(6), 625–636, doi:10.1111/j.1466-8238.2011.00717.x, 2012.

Wang, Y. P., Kowalczyk, E. A., Leuning, R., Abramowitz, G., Raupach, M. R., Pak, B., van Gorsel, E. and Luhar, A.: Diag-25

nosing errors in a land surface model (CABLE) in the time and frequency domains, J. Geophys. Res., 116(G1), doi:10.1029/2010JG001385,

2011.

Whittaker, R. H.: Classification of natural communities, Bot. Rev, 28(1), 1–239, doi:10.1007/BF02860872, 1962.

Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H.,

Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen,30

J., Valentini, R. and Verma, S.: Energy balance closure at FLUXNET sites, Agricultural and Forest Meteorology, 113(14),

223–243, doi:10.1016/S0168-1923(02)00109-0, 2002.

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen,

J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C.,

Midgley, J. J., Navas, M.-L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C.,35

30

https://doi.org/10.5194/gmd-10-1621-2017
http://adsabs.harvard.edu/abs/2013AGUFM.B32D..02P
https://doi.org/10.1175/JCLI4253.1
http://www.pnas.org/content/94/25/13730
https://doi.org/10.1890/0012-9658(2003)084%5B1165:PAGCRT%5D2.0.CO;2
https://github.com/dswah/pyGAM
https://doi.org/10.5194/gmd-8-295-2015
https://doi.org/10.5194/gmd-10-3379-2017
https://doi.org/10.1111/j.1466-8238.2011.00717.x
https://doi.org/10.1029/2010JG001385
https://doi.org/10.1007/BF02860872
https://doi.org/10.1016/S0168-1923(02)00109-0


Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J. and Villar, R.: The worldwide leaf economics spectrum, Nature, 428(6985),

821–827, doi:10.1038/nature02403, 2004.

Competing interests.

Acknowledgements. “We acknowledge the support of the Australian Research Council Centre of Excellence for Climate System Science

(CE110001028) and the ARC Centre of Excellence for Climate Extremes (CE170100023). This work used eddy covariance data acquired5

and shared by the FLUXNET community, including these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, Car-

boItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC.

The ERA-Interim reanalysis data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing

and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of

FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. A full list10

of Fluxnet sites and citations is included in the Supplementary material. We would also like to thank two anonymous reviewers for insightful

comments that helped improve the paper.”

31

https://doi.org/10.1038/nature02403

