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General response and overview of proposed changes 
 
Authors: We thank the two referees for appreciating our contribution and for their 
encouraging comments. Their observations prompted us to conduct a more detailed 
analysis of bias in our algorithm, which we will include in the new manuscript. This 
analysis deepened our understanding of the behavior of the algorithm, and further 
convinced us of the validity of our approach. In response to the referee's concerns we 
would like to propose the changes summarized below: 
 
1. Extending the abstract to make it more comprehensive and informative, following 
Biogeosciences recommendations. We propose including the general form of eq. 2 
(which links DMS to DMSPt and PAR) while highlighting the strong mechanistic basis 
of our empirical formulation (response to R1, general comment #2). If possible, we 
would like to cite in the abstract our previous work describing the DMSPt sub-algorithm. 
 
2. Including, for completeness, an annex with a brief description of the DMSPt sub-
algorithm, which was described in depth by Galí et al. (2015) (response to R1 general 
comment #3). 
 
3. Reshaping the third and the last paragraph of the Introduction to clarify that our two-
step empirical algorithm has a sound mechanistic basis (response to R1 general comment 
#2). 
 
4. Further clarifying and justifying the primary satellite datasets used to produce each of 
the DMSSAT datasets (Methods subsections 2.1 and 2.3) and the corresponding in situ 
data used to validate them (Results subsection 3.1). These changes address criticisms 
from R2 (response to general comments #2 and #3) and minor comments from R1 
(regarding the use of PAR and the propagation of uncertainties from the DMSPt sub-
algorithm). 
 
5. Better organizing subsection 3.1.2 to clarify the physical meaning of eq. 2 parameters 
(in response to R1 comment). 
 
6. Further justifying our choices regarding algorithm configurations for the global, the 
regional and the local scales. Since both reviewers are concerned with potential negative 
bias in our global DMSSAT climatology, we propose adding a new table with a detailed 
bias assessment (response to R2 general comment #1), and discussing its implications 
(Discussion). The new table shows that, excluding the Southern Ocean and the Coastal 
biomes (where ChlSAT causes a negative and positive DMSSAT bias, respectively), the 
mean bias of DMSSAT in the remainder of the global ocean is likely -16% to -20%, at 
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most. This suggests that the interpolation based DMS climatology of Lana et al. (2011) is 
biased in a similar proportion (around 15%), adding to the statistical evidence already 
given in section 4.1 and Fig. 8. We also note that this finding may have implications for 
our understanding of DMS effects on CCN. Since DMS control of marine boundary layer 
CCN populations is well established (Quinn et al., 2017), the efficiency with which DMS 
promotes gas-to-particle conversion might need upward revision. 
 
7. Correcting errors in figure 3 (R2 spotted an error in the caption), but also figure 2 (text 
in red and blue boxes was exchanged) and figure 4 (we spotted a minor error in the data 
subsets used for the calculation of statistics; it does not affect the validity of the results 
and alters only slightly the algorithm skill statistics).  
 
On the other hand, we would like to decline the following recommendations: 
 
1. Assessing interannual variability in DMS concentrations at the global scale (as 
proposed by R1). The main objective of our paper is presenting a new approach to 
estimate sea-surface DMS, and the example datasets are sufficient for a proof-of-concept, 
in our judgment (response to R1 general comment #1). An analysis of DMS 
concentration and emission variability at latitudes >45N will be presented elsewhere 
(Galí et al., in prep.). 
 
2. Producing a new global climatology with regionally variable model coefficients. While 
acknowledging the regional biases in our algorithm, we defend the interest and validity of 
our global-scale estimates. Factoring regional variability into the global scale algorithm 
to resolve "endogenous error" is not a trivial problem, and correcting for the ChlSAT bias 
to resolve "exogenous error" is not the matter of our paper (response to R2 general 
comment #1 and R1 specific comment). 
 
Detailed reasons for our choices are given in responses below. 
 
 
Response to Anonymous Referee #1 (comment received and published 13 March 2018) 
 
R1: This manuscript, entitled "Diagnosing sea-surface dimethylsulfide (DMS) 
concentration from satellite data at global and regional scales", used climatological MLD, 
satellite retrieved Chl and PAR, and an embedded sub-algorithm based on satellite data to 
construct an algorithm for surface DMS concentrations. This work provides a prescribed 
DMS distribution with seasonal and interannual variability. The paper is well written and 
well organized. Yet I recommend the following points to be clarified or modified. 
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Main comments: 
1. One major contribution of this algorithm is providing DMS estimate with interannual 
and seasonal variability. Authors chose some regions to show the variability, but the 
results are part of the validation and not representative as mentioned in the manuscript 
(being the region where the algorithm works the best). It would be better if authors can 
discuss more about the variability on a global scale. 
 
Authors: We agree with R1 that a global-scale analysis of interannual variability would 
be an interesting exercise, and one that we plan to do in the future. However, we declined 
this possibility in the present paper for the following reasons: (i) we thought of this paper 
as a proof-of-concept, and it is already quite long (~8500 words with planned 
modifications); (ii) running the algorithm for >10 years of satellite observations with the 
appropriate temporal resolution (at least 8 days) is doable but not trivial in terms of data 
storage and processing capacity; (iii) as described in the paper, we already implemented 
the algorithm for the MODIS-Aqua 2003-2016 record for latitudes >45N (at daily 4.6 km 
resolution), and the major results of this analysis will be analyzed elsewhere (manuscript 
in preparation); (iv) an analysis of interannual variability of the seasonal cycle is most 
informative in coherent ecoregions where sufficient in situ DMS data are available for 
validation. In our opinion, there are two possible rigorous approaches to address this: 
analyzing variability in regions/stations where in situ time series exist (which we did: 
BATS and OSP stations in Fig. 10); and analyzing variability in regions where the 
algorithm shows very good skill, evaluated both in a "scatterplot view" and in a "seasonal 
view", lending more credit to the satellite-diagnosed patterns (which we also did: Fig. 9 
and Fig. S3). 
 
Besides, we would like to stress that the algorithm optimized for the region >45N works 
well in regions other than the temperate and subpolar North Atlantic. We attached two 
figures (Fig. R1 and R2) showing that the algorithm works very well in the Bering Sea, a 
region where in situ DMS concentrations are well documented (see map in 
https://saga.pmel.noaa.gov/dms/). The figures correspond to areas of size similar to those 
shown in Fig. 9 of the paper and have the same legend. 
 
Reviewer: 
2. Authors discussed regional tuning and biases as the strength of the algorithm. 
However, it raises the question about predictive power. In other words, the algorithm is 
largely built based on statistical regression, lacking fundamental scientific support. 
Authors should further clarify the optimized formula, differences caused by regional 
tuning, and regional tuning is required in some cases. 
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Authors: We disagree with R1 about the algorithm "lacking fundamental scientific 
support". The effects of sunlight on DMS production-consumption budgets have been 
experimentally demonstrated by several studies (Archer et al., 2010; Galí et al., 2013a, 
2013b, 2013c; Royer et al., 2016; Toole et al., 2006). Although UVB and UVA elicit the 
strongest responses, PAR can also stimulate plankton DMS production (Archer et al., 
2010; Galí et al., 2013c). More importantly, since clouds are the main atmospheric 
attenuators in the visible and UV regions, incident PAR and UVR are strongly correlated 
(Bordewijk et al., 1995; Calbó et al., 2005), and satellite-retrieved PAR is an excellent 
first-order approximation for UVR effects. Moreover, seawater transparency in the UVR 
is also strongly correlated to that in the PAR region in most oceanic waters, where 
phytoplankton-derived materials drive sunlight attenuation in the water column, further 
strengthening the coherence between PAR and UVR.   
 
The reasons why solar PAR+UVR irradiance drive the DMS seasonal cycle were 
extensively discussed by Galí and Simó (2015). Basically, at high irradiance, there is (i) a 
higher proportion of high-DMSP phytoplankton species, (ii) a higher community DMSP-
to-DMS conversion yield, (iii) an increase in DMS photolysis rate constants, and (iv) a 
decrease in bacterial consumption rate constants. Factors (i) and (ii) synergistically 
combine to increase gross DMS production rates, whereas factors (iii) and (iv) 
compensate each other so that total DMS removal rate constants do not change as much 
as gross DMS production. As a result, DMS budgets imply a higher near-steady-state 
DMS concentration during high irradiance seasons. (Note that DMS is at near-steady-
state on daily-to-weekly time scales most of the time, see Galí and Simó (2015) and 
Royer et al. (2016)). These are the robust theoretical underpinnings of our algorithm. 
Statistical fitting of in situ data is used to translate this mechanistic knowledge into model 
parameters with predictive value. 
 
As a corollary, community DMSPt-to-DMS yields are significantly correlated to the 
DMS/DMSPt ratio. We attached a further figure to illustrate this (Fig. R3). The figure is 
based on the same global-ocean DMS(P) cycling process database analyzed by Galí and 
Simó (2015), and could be added as Annex. 
 
In response to R1 criticism, we will briefly review the information provided above in the 
Introduction of the revised manuscript. Regarding the clarity of the formulas used: the 
paper is already clear regarding the formula used to produce each dataset. Formulas are 
indicated throughout the text (eq. 2a-h), compiled in Table 2, and indicated in Fig. 10 
where more than one formula was used. 
 
Reviewer: 
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3. The algorithm discussed here largely depends on the sub-algorithm. Though it is 
described in a previous publication, basic introduction and discussion about the sub- 
algorithm are needed for readers to understand the strength and limitation. For example, 
chlorophyll data contains no information about speciation, which plays an important role 
in the total DMS concentration. 
 
Authors: We propose adding an annex with a brief description of the DMSPt sub-
algorithm in the revised version of the paper (we assume R#1 refers to the DMSPt sub-
algorithm). Although this algorithm, thoroughly described and validated by Galí et al. 
2015, does not include explicit phytoplankton speciation, it implicitly discriminates 
different types of phytoplankton communities. 
 
Briefly, the DMSPt sub-algorithm is based on two equations that predict DMSPt from 
Chl and other secondary variables. The algorithm switches between these equations 
depending on a classical bio-optical criterion, the ratio Zeu/MLD (Zeu is euphotic layer 
depth defined by 1% surface PAR penetration; MLD is mixed layer depth) (Uitz et al., 
2006). 
* Zeu/MLD >1 indicates "stratified waters" where the mixed layer is entirely well 
illuminated. In these conditions, phytoplankton communities have higher proportions of 
DMSP-rich taxa, mainly haptophytes but also dinoflagellates, and other picoeukaryotes 
with generally lower abundance (chrystophytes, pelagopphytes, prasinophytes).  
* Zeu/MLD < 1 indicates more deeply "mixed waters" where part of the mixed layer is 
below the 1% irradiance level. In these conditions, DMSP-poor phytoplankton (mostly 
diatoms) dominates. 
 
At a given Chl concentration, the "stratified-waters " DMSPt equation produces a tenfold 
higher sea-surface DMSPt concentration (approximately) than the "mixed-waters" 
equation. Detailed information on the DMSPt sub-algorithm can be found in Galí et al. 
(2015), which is freely and legally available (after the 2 year embargo) on ResearchGate: 
https://www.researchgate.net/profile/Marti_Gali_Tapias/contributions. 
 
 
Specific comments: 
 
P2, L31: Please add reference 
A: We will cite Galí & Simó (2015). 

P3, L5: Since diatom-dominated blooms produce low DMSP per unit biomass, how to 
determine the equation parameters based on chlorophyll concentrations alone? It’s clear 
that blooms dominated by different phytoplankton will require different parameter 
values, though the chlorophyll levels are similar. 
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A: Please see response to general comment 3. 
 
P4. L30: please explain more the motivation of using PAR, instead of the total short- 
wave irradiance. Using PAR here imply the role of photosynthesis, however it shouldn’t 
play any role in the DMSP to DMS transformation. Though mentioned a bit in the com- 
parison with VS07, it’s not clear whether and why the choice in the present work is 
better. 
A: Please see response to general comment 2. We will add a short explanation at the end 
of subsection 2.1 in the new version. 
 
P 5. L 24: Conclusions about the comparison are vague. More discussion about various 
choices would be helpful. 
A: Lines 23-24 in page 5, which belong to section 2 (Methods), currently read: 
"Based on the correlation analysis, we built several regression models where DMS was 
predicted as a function of in situ DMSPt concentration and one or more additional 
variables (Table 1)". 
 
We are not sure we understand the point made by R2. The variables used as additional 
predictors in the stepwise regression are those listed in Table 1, and the results of the 
stepwise regression are briefly described in section 3.1.1 (Results, Statistical exploration). 
A compilation of regression models and statistics is given in Table S4, and the potential 
predictive power of additional variables is discussed in section 4.2 (Discussion, 4.2 How 
far can we go with empirical remote sensing algorithms?). 
 
Although we devoted much effort to find regression models that improved on our base 
model (eq. 2), none of the several tested models provided robust and significant 
improvements. This result is the main conclusion of section 3.1.1, and is the reason why 
we chose to be concise when it came to describing our (comprehensive) statistical 
explorations. Readers are referred to Table S4, which can be a useful starting point for 
future studies that may benefit from a larger DMS database. 
 
At the editor's request, we can revise the paragraph quoted above (P5, L23-30), the 
description of the stepwise regression results (section 3.1.1) and their discussion in 
section 4.2. 
 
P8: Please discuss uncertainties attributable to DMSP estimates. 
 
This comment is addressed in section 3.1.3, page 9. We decline in-depth analyses of the 
uncertainty associated with the DMSPt sub-algorithm alone for the sake of concision and 
for the following reasons: (i) the DMSPt sub-algorithm was already thoroughly validated 
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by Galí et al. (2015); (ii) we find it more useful to assess uncertainty in the complete, 
two-step algorithm, which partly results from uncertainty in satellite Chl that propagates 
through the DMSPt sub-algorithm; (iii) the amount of in situ DMSPt measurements 
available is smaller than that of in situ Chl (page 4 line 10), so that validation controlled 
for ChlSAT error is statistically more powerful; and (iv) in situ DMSPt measurements 
were already used to fit the algorithm equations, so they have to be excluded to achieve 
and independent validation. All these ideas were already expressed in page 9 lines 9-15, 
and in consequence we decline modifying the text in this regard. 
 
P8 sec 3.1.2 Authors showed how DMS estimates vary with parameter values, but not 
physical meanings, which should be included. 
 
Following R2 recommendation, we propose reorganizing section 3.1.2 (although the 
physical meaning of model coefficients was already described in the former manuscript). 
The physical meaning of the model eq. 2 coefficients will be clearly described in a 
separate, along with their interval of variation according to bootstrapped regression. The 
revised section would be organized following this sequence of ideas: 
 
1. Introductory sentence (as it is). Introduce Table 2 and bootstrap analysis here (formerly 
described in page 8 lines 25-26. 
2. Alpha coefficient: intercept. 
3. Beta coefficient: The DMSPt coefficient can be seen as a biomass-dependent 
modulation of DMSP-to-DMS conversion efficiency, probably reflecting planktonic food 
web structure and biogeography.  
4. Gamma coefficient: The PAR coefficient can be seen as a DMSPt-independent 
sensitivity of DMSPt-to-DMS conversion efficiency. 
5. Examples of typical DMS/DMSPt ratios across ocean regimes and DMSPt and PAR 
levels as formerly described in page 8 lines 15-22. 
6. Interrelationships among eq. 2 coefficients based on bootstrap analysis, as formerly 
described in page 8 lines 26-31. 
 
At the editor's request, we can add additional panels in figure 3 to show how changing eq. 
2 coefficients impacts DMS retrievals. 
 
P9 L26: estimated DMS concentrations are much lower than L11. Does it suggest an 
overestimation in L11? Please clarify. 
A: Discussion of algorithm bias with respect to L11 does not belong to this section. The 
benchmark for validation is real data, not L11. As mentioned in the general response and, 
which much more detail, in the response to R2 general comment #1, the disagreement 
between L11 and DMSSAT has multiple causes, and most of them were already discussed 
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in sections 4.1 and 4.2. Section 4.1 focused on well-known causes of positive bias in L11 
(sparse sampling, interpolation/extrapolation procedures), whereas 4.2 focused on built-in 
("endogenous") limitations of our approach (negative bias caused by inability to produce 
high DMS/DMSPt ratios under certain conditions and in specific regions). 
 
In summary, neither L11 nor DMSSAT are without limitations. The exact value of mean 
DMS concentration and emission fields is not known, and it is logical that different 
statistical reconstruction approaches lead to different estimates. When evaluated using the 
full DMS dataset for the satellite era (later than 1997), DMSSAT has a negative bias of -
9%. This bias compounds a bias of -16 to -20% in most of the ocean, a likely Chl-driven 
positive bias in coastal areas, and a Chl-driven negative bias in the southern polar waters. 
We will add a new table with a detailed description of  the bias assessment in the revised 
version of the manuscript, and the related information will beadded to the Discussion. 
 
P10 L26 Please explain the cause of the disagreement. 
A: The disagreement is probably explained by a strong negative bias in satellite Chl as 
already reported at the end of section 4.1 (and mentioned in the abstract, as well). 
 
P12: Different regions require different sets of parameter values for optimization, which 
raises the question about uncertainties. Please elaborate on it. 
A: The need for regional tuning is commonplace in the development of ocean color 
remote sensing algorithms, and in particular at high latitudes (Cota et al., 2004; Johnson 
et al., 2013; Morel and Gentili, 2009; Ben Mustapha et al., 2012); but the well-
acknowledged need for regional algorithms does not prevent space agencies from 
implementation of global-scale optimized algorithms for products such as Chl, Kd, etc. 
Regional tuning must rely on both a solid theoretical understanding of regional 
particularities and data availability.  
 
As argued above, our algorithm relies on robust understanding of the links between light 
exposure, plankton biogeography and DMS budgets. These relationships do not suffice to 
accurately predict DMS in some regions/seasons, as we discuss in subsection 4.2, but 
neither the exact causes nor the geographic extent of regional anomalies are well known. 
As shown in the new Table (see response to R2), data are too scarce in the southern polar 
ocean to allow for development of robust regional algorithms. Conversely, we were able 
to develop a robust regional algorithm for high northern latitudes (>45N) thanks to much 
better coverage in the database. 
 
As indicated in page 16 lines 20-21 (section 4.2), "	Tuning the eq. 2 coefficients is a 
workable alternative to better reproduce the mean seasonal cycle in certain regions (Fig. 
10), and eq. 2 could perhaps be generalized in a way that allowed its coefficients to vary 
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across different biogeochemical regimes". However, doing so is not trivial if one wants to 
avoid discontinuities at the border of biogeographic regions. Besides data availability and 
theoretical understanding, there is another strong reason for a single global scale 
optimized model: global data provides the largest possible dynamic ranges in all 
variables, helping avoid overfitting. 
 
P13: This section discusses biases of the algorithm without explanation of causes and 
suggestions on potential improvements. 
A: Explanations of the causes of algorithm biases (and other shortcomings) and 
suggestions on potential improvements were given in section 4.2 (see response to 
previous question). We concluded that significant improvements are unlikely using a 
small amount of predictor variables (as we did). Future improvements will probably rely 
on much better spatial-temporal coverage of in the global DMS database and new process 
studies, leading to better understanding of regional DMS drivers.  
 
 
Response to Anonymous Referee #2 
 
General Comments: 
The manuscript “Diagnosing sea-surface dimethylsulfide (DMS) concentration from 
satellite data at global and regional scales” highlights the need to improve spatial and 
temporal scale of DMS through satellite data sets. The science community has relied on 
the available climatology data for couple of years. However, validity of current data sets 
(Kettle et al., 1999; Lana et al., 2011) are limited because of significant uncertainty and 
lack of interannual variability. I think the algorithm presented in this manuscript coupled 
with preceding studies on DMSSAT are very important to assess the challenges with 
global and regional DMS data sets. The algorithm proposed relies on the non-linear 
relationship between phytoplankton light exposure, DMSP and DMS. Again this research 
is a step in the right direction to produce appropriate observation-related data of reduced 
sulfur from the ocean that could be employed to constrain Earth System Models (ESMs). 
Suitable DMS dataset could ultimately help to reduce uncertainty associated with the 
impact of tropospheric aerosol forcing on global radiation. However, satellite generated 
dataset are not immune from uncertainties. Thus, there is a general concern of 
compounding uncertainty transferred to derived dataset such as DMSPSAT and 
DMSSAT. Algorithm and dataset presented in this manuscript could therefore be 
improved in different biomes. The paper addresses relevant scientific question and the 
overall presentation is well structured and clear. I encourage the paper to be published 
after addressing the following concerns: 
 
Main Comments: 
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1) Global DMSSAT concentration seems a little bit low. In-situ measurements at BATS 
station in late summer to early spring of 2006 and 2007 show higher concentration than 
DMSSAT from equation 2f. With this regional underestimation, it will be reasonable to 
assume that area weighted global mean DMS obtained from equation 2f (Table 3) could 
also be a little bit underestimated. Thus, An annual emission of 16–18 Tg S yr−1 could 
significantly lower the formation of sulfate aerosol in ESMs below atmospheric 
measurements at the boundary layer. Could you combine optimize local scale 
concentrations (for BATS and any available region) with the global scale to improve the 
overall concentrations? 
 
Authors: We agree with R2 that our global DMS may be underestimated. However, the 
global underestimation is not necessarily driven by the tropical and subtropical oceans, as 
one would think after a quick look at the BATS time series (Fig. 10). We prepared a table 
to show in more details the bias of DMSSAT across ocean biomes when compared to in 
situ DMS data or to the L11 climatology. In situ database comparisons were made using 
all available matchups and also by constraining the error in ChlSAT with respect to in situ 
Chl. Validation using satellite matchups with unconstrained ChlSAT error indicates 
DMSSAT has a small positive bias (+6%) in the Trades biome, and a -14% bias when 
ChlSAT error is constrained. Thus, the -34% difference between DMSSAT and L11 in that 
biome probably results from both DMSSAT underestimation and L11 overestimation. 
More generally, this exercise shows that the assessment of algorithm bias is not 
unequivocal, as it depends on the combination of known sources of bias (ChlSAT) and 
unknown sources of bias (e.g., how representative are of an entire biome a few tens or 
hundreds of available measurements?). 
 
New Table X. Relative deviation ("bias") of the global-scale optimized DMSSAT algorithm 
across ocean biomes when evaluated against the database, using satellite matchups with 
(a) constrained ChlSAT error with respect to ChlIN SITU, or (b) all matchups, and (c) against 
the L11 monthly climatology. The three criteria are used for a qualitative overall 
assessment of DMSSAT bias (last column), classifying the most likely magnitude and sign 
as small± (±10%), moderate (10 to 40%, either + or -) or large (>40%, either + or -). 
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aFor the database comparisons, the amount of data available for validation in a given 
region depends on the total amount of measurements, the proportion of data points with 
satellite matchups and, for the constrained case, the fraction of matchups where ChlSAT 
has log10 RMSE < 0.5 compared to concurrent ChlIN SITU. Samples with available DMSPt 
measurements were excluded because they were used in model fitting and optimization. 
bFor the global climatology comparison we report the % of ocean area, excluding pixels 
that could not be observed by satellites (high latitude winter). 
cSamples where DMSPt was measured not excluded for this biome due to the small 
amount of data. Removing them would leave N = 13. 
 
Further analysis of this table shows that most of the underestimation in the global scale 
optimized algorithm occurs in northern and southern high latitudes. In the paper we show 
that, in high northern latitudes, this gap can be filled by developing a specific 
parameterization, which benefits from the relatively abundant in situ data and the use of 
GSM algorithm to correct for continental interferences in the retrieval of ChlSAT. A 
similar exercise would be extremely interesting in the Southern Ocean, but the small 
number of DMS and DMSPt samples and concurrent satellite matchups precludes robust 
estimation of the algorithm coefficients. 
 
The high latitude underestimation seems to be compensated by overestimation in coastal 
waters, yielding a global scale bias of -9% (all matchups) to +11% (constrained ChlSAT 
error). As already reported in the ms (e.g. Table 3), using semi-analytical ocean color 
algorithms should produce more robust results in optically complex, continentally 
affected waters. Note also that these statistics are subject to the disproportionate influence 
of coastal measurements. 
 
If we exclude southern polar and coastal waters, constrained and unconstrained 
assessments of the DMSSAT converge at -16 to -20%. This assessment, combined with the 
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Westerlies Sc -3% -30% 30 -27% 1585 -26% 14.2% Small± to 
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Polar S -59% -6% 42 -47% 170 -76% 5.7% Large- 
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Global ocean 11% 2% 1053 -9% 15080 -36% 100% Small± to 

moderate- 
Global ocean 
-pS -C 

-16% -2% 634 -20% 9249 -33% 83.9% Moderate- 
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compelling case for a high-DMS bias in the database (section 4.1, Fig. 8), allows us to 
conclude that the L11 climatology provides an upper bound (likely an overestimate) of 
global DMS concentrations, and the DMSSAT a lower bound (likely an underestimate). In 
consequence, attempts to improve DMSSAT should not strive to match L11. 
 
Assuming that DMSSAT has a global mean bias of -10%, we could easily correct it by 
increasing α in eq 2f by log10(1.1), e.g. from -1.237 to -1.196. However, this would not 
improve the representation of the mean seasonal cycle in areas like BATS or OSP.  
As indicated in page 16 lines 20-21 (section 4.2), "	Tuning the eq. 2 coefficients is a 
workable alternative to better reproduce the mean seasonal cycle in certain regions (Fig. 
10), and eq. 2 could perhaps be generalized in a way that allowed its coefficients to vary 
across different biogeochemical regimes". However, doing so is not trivial if one wants to 
avoid discontinuities at the border of biogeographic regions. Since we conceived this 
paper as a proof-of-concept, we found sufficient to produce a global-scale optimized 
dataset, a regionally optimized dataset (>45N, including OSP) and a locally optimized 
dataset (BATS) for illustrative purposes. By discussing the limitations of each dataset, we 
gained insight into factors, other than light exposure, that may control the mean DMS 
seasonal cycle and its interannual variability in different regions. 
 
Finally, regarding R2's argument that lower global mean DMS "could significantly lower 
the formation of sulfate aerosol in ESMs below atmospheric measurements at the 
boundary layer": this argument can easily be reversed. Given that independent 
atmospheric observations support the dominant role of DMS in controlling marine 
aerosol and CCN populations (Quinn et al., 2017), lower marine concentration and 
emission would mean that atmospheric chemistry modules in ESM's underestimate the 
efficiency with which DMS nucleates new aerosol particles that grow to CCN relevant 
sizes. 
 
2) Authors should discuss if any extrapolation method was used to compute DMS con- 
centration at high latitudes where SeaWIFS chlorophyll concentrations are limited. If 
none, then authors should be careful to note the spatial coverage of DMS in the winter. 
Otherwise, authors could also be quantitative on the overall polar concentrations reported 
in L11 climatology but missing in this study due to limitations in satellite chlorophyll 
measurements. 
 
Authors: We did not use any extrapolation method to compute DMS outside the satellite 
observed areas. Results shown in Fig. 5 are the means of December through February 
(Northern hemisphere) or June through August (Southern hemisphere) and unobserved 
pixels were left blank. The northward (southward) latitude limit of ocean color satellite 
observation is at about 48 degrees in December (June), 52 degrees in January (July) and 
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60 degrees in February (August). Therefore, most observations during the winter season 
at latitude 52-60 degrees represent the month of February (August) only. 
 
DMS concentrations at high latitudes attain their lowest annual values in winter, which 
probably corresponds to their weakest effects on aerosols and clouds. Therefore, there is 
little interest in obtaining full DMS data coverage in winter at high latitudes. We will 
include this information in section 2.3 (Algorithm implementation). 
 
Finally, we would like to note that our satellite diagnosed DMS concentrations at high 
northern latitudes in the winter season (DJF) are at odds with those estimated through 
interpolation by Lana et al. (2011), and probably more realistic than their estimates. 
Analysis of available DMS data shows that this in an interpolation artifact in the L11 
climatology. L11 suggests a latitudinal increase in mean zonal DMS in winter, from 
about 0.6 nM at 50N to >1.5 nM at 80N (Figure 5a). However, the DJF mean ± std of 
database DMS between 45N and 60N is 0.63 ± 0.42 (median of 0.53) N = 1136, and no 
measurements are available north of 60N for the DJF months. In addition, existing data 
represent mostly continental shelves (median depth of 160 m). A similar case can be 
made for March and April. 
 
3) The authors should clarify why they computed global DMSSAT fields with SeaWIFS 
data and regional DMSSAT with MODIS data. I was wondering if the authors made a 
global scale optimization (MLongh) with MODIS data? Monthly DMS climatologies 
derive from DMSSAT (MODIS-Aqua) tend to be more agreeable with in-situ 
measurements. The authors should report how the global climatology computed from 
MODIS differs from SeaWIFS and/or Lana et al. 2011. 

Authors: We computed global DMSSAT with SeaWiFS because the SeaWiFS climatology, 
based on the period 1998-2010, overlaps in time with 55% of the in situ database 
measurements used to develop the L11 climatology, whereas the MODIS-Aqua record 
(2003-present) temporal overlap reaches only  41% of those measurements. Thus, using 
SeaWiFS maximizes the temporal overlap to compare the DMSSAT and L11 
climatologies. This being said, DMS climatologies derived from SeaWiFS and MODIS-
Aqua would be very similar. We already compared the global monthly DMSPt 
climatologies derived from these two sensors in our previous work (Galí et al., 2015), 
where we reported (section 5.1, bottom of page 177 of that paper) that "the difference 
between global DMSPt climatologies derived from SeaWiFS and MODIS-Aqua is 
generally negligible: 74% of pixels differ by less than ±5% and the global mean 
difference is 1 ± 9%". 

Indeed, our algorithm coefficients can be tuned to maximize the model-data fit depending 
on the satellite sensor used. However, since our previous work showed that differences 
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among satellite sensors are a relatively small source of uncertainty, we found more useful 
to optimize a single set of coefficients for both sensors. The justification of merging 
SeaWiFS and MODIS matchup, which already appeared in SI section S2, can be moved 
to the main text. 

Finally, R2 seems to assume that MODIS-derived DMSSAT is better than the one derived 
from SeaWiFS, although we did not report any direct comparison between SeaWiFS- and 
MODIS-derived DMSSAT. The direct comparison can be done for those measurements 
where nearly simultaneous SeaWiFS and MODIS matchups exist. But again, this is a 
minor source of uncertainty. 

Specific Comments: 

Page 2, line 32 needs reference “...10% is emitted to the atmosphere through turbulent 
diffusion [ref]”.  

A: We will cite Galí & Simó (2015). 

Page 3, line 6 needs reference “... and low DMS yield [ref]”. 

A: We will cite Lizotte et al. (2012). 

Page 4, line 15: I have the impression you used MODIS-Aqua (2003-2016) for the 
satellite matchups. Please clarify if you used 2003-2012 data for something else. 

A: As clearly explained in that paragraph, we merged SeaWiFS and MODIS matchups 

Page 5, line 17: which environmental variables?� Write out what N means in table 1 

A: Will be corrected. Environmental variables were listed in Table 1. N is sample size. 
 
�Figure 3b: In the caption, do you mean DMS/DMSPt ratio vs PAR (or vs DMSPt)?  

A: Will be corrected, we meant vs. DMSPt. 
 
Figure 7: Caption for DMSSAT algorithm should be (b) 

A: Will be corrected. 
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