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This file contains detailed information regarding data sources and pre-processing of the extended DMS database
(sections 1-3), statistical analyses regarding the development, optimization and validation of the DMSgat algorithm

(section 4), and algorithm implementation (section 5).

S1 Sea surface DMS database and quality control

In situ concentrations of DMS, DMSPt and chlorophyll a (Chl), accompanied by ancillary data (bottom depth,
temperature, salinity, wind speed), were downloaded from the public sea-surface DMS database
(https://saga.pmel.noaa.gov/dms/) on 13 April 2017. This database (n = 47745 for DMS) was complemented with
additional datasets obtained by the authors' teams (n = 403 for DMS; Table S1) as detailed by (Gali et al., 2015).
Quality control involved the deletion of DMS and DMSPt measurements potentially affected by methodological
issues according to the criteria described by (Gali et al., 2015). DMS concentrations lower than 0.1 nM (0.4% of
data) or higher than 100 nM (0.3% of data) were also removed. Removal of DMS < 0.1 nM is justified because
standard gas chromatography methods, with a detection limit of a few pmol S, would require sample volumes of >50
mL to resolve such low concentrations, whereas most studies analyzed DMS in smaller sample volumes (Bell et al.,
2012). DMS concentrations >100 nM are seldom measured in seawater and, in certain datasets obtained before the
2000s, can certainly be attributed to methodological artifacts, i.e. sparging unfiltered samples that contained
Phaecoystis sp. (del Valle et al., 2009) or other DMS-producing phytoplankton sensitive to mechanical strain (Wolfe
et al., 2002). After selecting surface data (depth < 10 m), samples taken on the same day and within a radius of 100
m were averaged. The final dataset had 41304, 3700 and 9182 measurements for DMS, DMSPt and Chl,
respectively, with 3637 DMS-DMSPt and 8141 DMS-Chl pairs.

S2 Satellite matchup data
Daily and 8-day level 3-binned (L3BIN) data from the SeaWiFS and MODIS-Aqua sensors (9.28 and 4.64 km

resolution, respectively) were matched to simultaneous in situ data from the DMS database (see Table S2). Matchups



were done using individual pixels and the average of 3x3 and 5x5 pixel boxes centered on the in situ measurement
location using SeaDAS 6.4 (Gali et al., 2015). For both sensors, the percentage of valid satellite matchups was
around 10% and 40% for daily and 8-day composites, respectively. Merged satellite variables were created in order
to increase the amount of data available for statistical analyses, after observing that inconsistencies between the two
satellite datasets were small compared to other sources of uncertainty. The merged Chlgat, Kd490sat, PICsat and
PARgar variables were created by averaging SeaWiFS and MODIS-Aqua match-ups with a hierarchical search
procedure, i.e. prioritizing daily data over 8-day data and single-pixel data over 3x3 and 5x5 pixel box means. The
resulting satellite matchups originated in 51% of cases from "quasi-simultaneous" SeaWiFS and MODIS-Aqua
retrievals. The remaining 49% of observations was divided evenly between the two sensors. Daily and 8-day gridded

SST (4.6 km) from the AVHRR sensor was also matched to the in situ database.

S3 Binning of the extended sea surface DMS database

Statistical analyses were conducted using (i) non-binned data, (ii) data binned by month and 5x5 latitutde-longitude
bins (M5x5), and (iii) data binned by month and the 56 Longhurst biogeochemical provinces (MLongh) (Longhurst,
2010). For binned data, bins with less than 3 data counts (M5x5) and 5 data counts (MLongh) were discarded (for
being poorly documented) in order to increase the robustness of regression models. These cutoff values are rather
arbitrary, but similar results were obtained with slightly larger cutoff values. The statistics of data bins and the
amount of bins and individual DMS measurements discarded through this procedure are shown in Table S3, showing
that the amount of individual data points discarded through the binning procedure was <2.5%. The mean (median)

data counts per bin were 26.5 (10) for M5x5 binned data and 132.6 (57) for MLongh binned data.

S4 Algorithm coefficients: uncertainty and optimization
To assess the uncertainty in fitted eq. 2 coefficients, we used the bootstrap method to produce 10° sets of regression
coefficients for eq. 2 using the MLongh binned dataset. Fig. S2 shows the nonrandom relationships among eq. 2

coefficients.

Regression-derived coefficients were further optimized for global and regional scales using a constrained nonlinear
optimization approach developed for this study.

The optimal coefficients of eq. 1 were obtained by minimizing a cost function different from RMSE (which is by
definition the cost function minimized by least-squares regression). The best model was obtained with a cost function

J defined as:
J=RMSE + abs(1 - R*) + abs(1 - Slopey,) (eq. S1),
where Slopeya is the major axis regression between observed and predicted fields. This cost function rewards the

model coefficients that predict DMS with R* and Slopeya closest to 1. The goodness-of-fit statistics used in eq. S1

were calculated in log;o space using the same MLongh binned dataset. To obtain realistic solutions, we constrained



the optimization to the 99% confidence intervals of the 10° bootstrapped regression coefficients shown in Fig. S2
(MLongh binned dataset). The resulting optimal model (eq. 2f) had higher DMSPt () and PAR (y) coefficients and a
smaller y-intercept than eq. 2e, and moved the modeled DMS concentration closer to the 1:1 agreement line without
degrading neither RMSE nor R” (Table 2). The optimized model coefficients were validated using an independent

dataset as described in section 3.1.3 of the main text (see Fig. 4).

The same approach was used to optimize the eq. 2 coefficients for the Bermuda Atlantic Time Series (BATS) site. In
this case we used the 3 years of monthly measurements (upper mixed layer means) to obtain the regionally tuned
coefficients (eq. 2h), which were not further validated using independent datasets given that they were only used to

demonstrate the portability of the algorithm.

S5 Algorithm implementation: data sources and processing chain
The full DMSgat algorithm (Fig. 2) was implemented to produce (i) a monthly global DMSgat climatology based on
SeaWiFS climatological 1997-2010 data; and (ii) regional time series with 8-day resolution for the period 2003-2016

using MODIS-Aqua data. In both cases we used reprocessing 2014.0. The data sources are summarized in Table S2.

Global DMSgar fields were computed using ocean color data from the SeaWiFS 1/12° gridded monthly climatology
(1997-2010) in combination with the 1/2° gridded monthly MLD climatology from MIMOC. The input Chlgat
product was either the band-ratio algorithm OC4-OCI (the current standard NASA Chl algorithm) or the semi-
analytical GSM algorithm (Maritorena et al., 2002). The euphotic layer depth (Zeu) was computed as either the 1%
penetration depth of 490 nm radiation (Zeu = 4.6/Kd490) or the semi-analytical Zeu from (Lee et al., 2007).

Regional DMSg,t time series between 2003 and 2016 for latitudes >45°N were computed using daily MODIS-Aqua
data (4.64 km) combined with the MIMOC MLD climatology (linearly interpolated onto the MODIS-Aqua grid and
a daily period). Unlike the global implementation, which used Chl and Kd490 directly downloaded from the NASA
Ocean Color website, in this case we used remote sensing reflectance spectra (Rrs) to compute bio-optical variables.
Chlgat was computed using either the OC3 band-ratio algorithm (MODIS version of the OC algorithm (O’Reilly et
al., 1998)) or the GSM algorithm (Maritorena et al., 2002). The diffuse attenuation coefficient at 488 nm, Kd488,
which is nearly equivalent to the SeaWiFS Kd centered on 490 nm, was computed using the semi-analytical

algorithm of (Lee et al., (2005) and used to estimate Zeu = 4.6/Kd488.

Since non-climatological satellite data frequently contain data gaps caused by cloudiness, we applied a binning and
gap-filling procedure to obtain full coverage. First, we calculated DMSPtsat (Gali et al., 2015) using daily 4.64 km
MODIS-Aqua data (native L3bin resolution). Daily 4.64 km data were then averaged into 6x6 pixel boxes (27.84 km
macropixels) and 8-day periods. The remaining gaps (10% pixels) were successively filled with 8-day (9%) and
monthly (1%) climatologies of each variable. Finally, DMSgar was calculated from 8-day 27.84 km DMSPtsar and
PARgAT.



We performed a further sensitivity test to analyze the effect of different mixed layer depth (MLD) products on
DMSPtga1. Besides our standard MLD obtained from the MIMOC climatology (Schmidtko et al., 2013), we tested
the monthly MLD time series diagnosed by the Global Ocean Data Assimilation System (GODAS) ocean circulation
model (which covers latitudes <65° between 1980 and present). Eight-day DMSPtsat time series between 2003 and
2015 were generated for two areas located in the North Atlantic (Iceland Basin) and Pacific (Bering Sea), which
show contrasting wintertime MLD —owing to differences in salinity stratification. To verify the accuracy of
MIMOC and GODAS MLD, we compared them to MLD derived from collocated ARGO float profiles. As shown in
Fig. S1, GODAS overestimated wintertime MLD in the subpolar Atlantic. This translated, in some years, in slightly
lower DMSPtsar with GODAS because the DMSPt sub-algorithm switched at a later date from the 'mixed'
(Zeu/MLD < 1) to the 'stratified' (Zeuw/MLD > 1) waters equation. Differences were almost absent in the Bering Sea.

Overall, the use of climatological or model-derived MLD had a negligible effect on diagnosed DMSPtgur.



Tables

Table S1. Compilation of studies added to the sea

surface DMS database used for algorithm development and

validation.

Reference Region Dates

Levasseur et al. 2006 NW Pacific Jul 2002

Matrai et al. 2007 Barents Sea 1998, 1999, 2001
Royer et al. 2010 NW Pacific Jul 2007

Lizotte et al. 2012, SABINA | NW Atlantic 2003

cruises

Luce et al. (2011), IPY C-
SOLAS cruises

Canadian Arctic

Late summer 2007, 2008

Malaspina circumnavigation
cruise
(Royer et al. 2015)

Tropical Atlantic,
Pacific and Indian
oceans

Dec 2010—Jul 2011

SUMMER cruises (Royer et
al. 2016)

NW Mediterranean

Sep 2011, May 2012




Table S2. Summary of datasets used to complement the sea surface DMS database (for algorithm development and validation) and to implement the DMSgar

algorithm at global and regional scales. R: reprocessing.

Data type and source

Use, data version and type (when applicable).

SeaWiFS and MODIS-Aqua ocean color data:

https://oceancolor.gsfc.nasa.gov/

Matchups: SeaWiFS R2010.0 and MODIS-Aqua R2013.1.
DAY and 8D L3BIN data.

Global ocean implementation of DMSgar, SD02 and VSO07
algorithms: MODIS-Aqua R2014.0. MONTH L3SMI data.
Regional DMSgar implementation: MODIS-Aqua R2014.0.
DAY L3SMI data. Note: MODIS-Aqua nighttime SST was used
between 2003-2016 instead of AVHRR SST.

AVHRR sea surface temperature (SST):

https://www.nodc.noaa.gov/SatelliteData/pathfinderdkm/

Matchups: Pathfinder v5.2.

Global DMSgar implementation: 1/12  degree monthly
climatology based on Pathfinder v5.2.

Regional DMSgar implementations of DMSgar: Pathfinder
v5.3. Note: MODIS-Aqua nighttime SST was used between
2003-2016 instead of AVHRR SST.

Monthly Isopycnal & Mixed-layer Ocean Climatology (MIMOC):

http://www.pmel.noaa.gov/mimoc/

Matchups: Native 0.5 degrees monthly resolution.
Global ocean implementation of DMSgar, SD02 and VSO07
algorithms: Native 0.5 degrees monthly resolution.
Regional DMSgsr implementation: Reprojected onto MODIS-

Aqua 4.64 sinusoidal grid and interpolated to 1-day resolution.

NCEP Global Ocean Data Assimilation System (GODAS):
https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html

Regional DMSg.1 implementation sensitivity tests: Reprojected
onto MODIS-Aqua 4.64 sinusoidal grid and interpolated to 1-

day resolution.

ARGO float MLD:

http://mixedlayer.ucsd.edu/

Regional DMSga7 implementation sensitivity tests: matched to

27.84 8-day resolution of DMSgut dataset.




World Ocean Atlas 2009 nutrient and salinity data: Matchups: 1-degree monthly resolution.

http://coastwatch.pfeg.noaa.gov/erddap/griddap/nodc Woa09sealn.html

General Bathymetric Chart of the Oceans Matchups: GEBCO One Minute Grid (November 2008)

https://www.gebco.net/data and products/gridded bathymetry data/gebco one minute grid/




Table S3. Binning statistics for the extended sea surface DMS database. V = valid, D = discarded.

Binning Minimum N | Bin counts Individual data counts

scheme per bin A% D %D v D %D
M5x5 N=>3 1562 742 32.2% | 40326 978 2.4%
Mlongh N=>5 322 66 17.0% | 41156 148 0.4%




Table S4. Summary of the stepwise regression analysis. Only models with significant coefficients are shown. WS: wind speed.

Model R’adj RMSE AIC N
Non-binned data

log;oDMS =-1.21 + 0.67 log;)DMSPt + 0.0136 PAR 0.50 0.35 2743 3620
log;oDMS =-1.01 + 0.75 log;oDMSPt + 0.0111 PARyp 0.47 0.37 2992 3595
log;oDMS =-1.17 + 0.64 log;)DMSPt + 0.0151 PAR - 0.0038 SST 0.51 0.35 2722 3615
log;oDMS = -1.22 + 0.63 log;()DMSPt + 0.0152 PAR + 0.055 log;o[NOs] 0.51 0.34 2357 3418
log;oDMS = -1.17 + 0.64 log;)DMSPt + 0.0147 PAR - 0.040 log;o[N-cline] 0.51 0.35 2562 3418
log;oDMS = -1.79 + 0.70 log;)DMSPt + 0.0159 PAR + 0.012 Salinity 0.52 0.31 1027 1911
log;oDMS =-1.04 + 0.59 log;)DMSPt + 0.0118 PAR - 0.0082 WS 0.48 0.32 764 1442
log;oDMS = -0.63 + 0.45 log;DMSPt + 0.0129 PAR + 0.098 log;oPICgar 0.35 0.29 388 1123
MLongh binned data (bin medians)

log;oDMS =-1.02 + 0.45 log;)DMSPt + 0.0163 PAR 0.57 0.21 -31.0 118
log;oDMS = -0.94 + 0.69 log;,DMSPt + 0.0172 PARywp 0.52 0.25 15.7 118
log;oDMS =-0.91 + 0.48 log;)DMSPt + 0.0189 PAR - 0.0087 SST 0.59 0.24 0.9 118
[NOs;] coefficient non-significant (p = 0.26) 118
[N-cline] coefficient non-significant (p = 0.71) 118
Salinity coefficient non-significant (p = 0.35) 102
WS coefficient non-significant (p = 0.86) 97
log;oDMS = -0.64 + 0.29 log;DMSPt + 0.0118 PAR + 0.033 log;(PICgar 0.52 0.21 -14.8 86




Table S5. DMSsar validation statistics for constrained and unconstrained (in italics) Chlgat error. N

increases from 86 to 1293 as the tolerated Chlgar error increases. N is 14677 for unconstrained Chl error.

Algorithm R’ RMSE MAPE Mean bias (linear
(logio space) (logyo space) (linear space) space)
DMSsar (eq. 2f) 0.40-0.52 0.21-0.30 42-68% 7-29%
0.29 0.38 108% -9%
SDO02 (eq. 3) 0.22-0.30 0.21-0.31 42-78% 9-31%
0.24 0.40 138% 2%
VS07 (eq. 4) 0.10-0.22 0.30-0.34 82-94% 0-42%
0.02 0.45 89% -41%
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Figure S1:

2015 8-day resolution time series of MIMOC and GODAS MLD, ARGO float MLD, and satellite derived

Sensitivity of the DMSPts 7 sub-algorithm to different MLD input data. Top: scatterplots
comparing DMSPtgat calculated with the MIMOC and GODAS MLD products. Middle and bottom: 2003-

euphotic layer depth (Zeu). The scatterplots and time series plots show the regional means of each variable

for the two regions highlighted in the map: Iceland Basin and Bering Sea.
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Figure S2. Bootstrapped regression model coefficients obtained for the equation: log;o((DMS) = a +
log1o(DMSPt) + v PAR, with n = 10000. Black squares show the mean coefficients, which are equivalent to
those obtained through regular multiple regression (eq. 2e). The uncertainty envelopes defined by the
10000 bootstrapped coefficients were used as the bounds for a constrained optimization procedure (see

text). Filled circles represent the resulting optimized coefficients (eq. 2f).
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Figure S3. DMSg,7 validation statistics for the subpolar North Atlantic. In situ data points correspond
to the area delimited by latitudes between 45°N—60°N and longitudes between 55°W—15°E, marked in Fig.
9 of the paper. Left-hand plots compare the L11 climatology to the in situ measurements (on which it is
based). Right-hand plots compare DMSgar to the same in situ measurements. Top and bottom plots differ
in the degree of spatial binning applied: 28 km and 111 km. The temporal binning period is 8 days in all
cases. On top of each plot we provide both log;o and linear space statistics. The perfect agreement line is

shown in blue and the model-data linear regression in red (major axis regression, logy space).



