

1	Ecosystem respiration in coastal tidal flats can be
2	modelled from air temperature, plant biomass and
3	inundation regime
4	Xueyang Yu ^{1,2} , Siyuan Ye ^{1,2*} , Linda Olsson ^{3,4} , Mengjie Wei ^{1,2} , Ken W.
5	Krauss ⁵ , Hans Brix ^{3,4}
6	
7	1 Key Laboratory of Coastal Wetland Biogeosciences, China Geological Survey,
8	Qingdao Institute of Marine Geology, Qingdao, 266071, China;
9	2 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and
10	Technology, Qingdao, 266061, China;
11	3 Aarhus University, Department of Bioscience, Aarhus, 8000C, Denmark;
12	4 Sino-Danish Centre for Education and Research, Aarhus, 8000C, Denmark;
13	5 U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, Louisiana,
14	70506, United States of America.
15	
16	Corresponding author's present address:
17	Qingdao Institute of Marine Geology, China Geological Survey, MLR
18	62 Fuzhou Road, Qingdao, China
19	Tel: 86-532-85755811
20	Fax: 86-532-85720553
21	Email: siyuanye@hotmail.com
22	

1

23 Abstract

24	Ecosystem respiration contributes greatly to carbon emissions and losses
25	in coastal wetlands. To gain a better understanding of gaseous carbon loss from
26	a coastal wetland covered by seablite (Suaeda salsa Pall.) and to evaluate the
27	influence of environmental factors on ecosystem respiration, a multi-year in-situ
28	experiment was carried out during the growing season of 2012 through part of
29	2014. By partitioning total carbon dioxide (CO ₂) flux into soil respiration (R_{soil})
30	and plant respiration (R_{ρ}), we found that during mid-summer, ecosystem CO ₂
31	respiration rates ($R_{eco})$ were within the range of 844.5 to 1150.0 mg CO $_2~m^{-2}$
32	$h^{-1},$ while ${\it R}_{eco}$ was as low as 31.7 to 110.8 mg CO_2 $m^{-2} \ h^{-1}$ at the beginning
33	and the end of growing seasons. Aboveground S. salsa plant material
34	comprised 79.1% of total biomass on average, and R_p dominated R_{eco} during
35	inundated periods. It is estimated that 1 gram of soil-emergent S. salsa biomass
36	(dry weight) could produce approximately 1.41 to 1.46 mg CO $_{2}$ per hour during
37	mid-summer. When water level was below the soil surface, soil microbial and
38	below ground root respiration (R_{s+r}) was exponentially correlated with air
39	temperature. Based on our observation, an empirical model was developed to
40	estimate system respiration of the S. salsa marsh in the Liaohe River Delta,
41	Northeast China. This model can be applied for regional carbon budget
42	estimation purposes from <i>S. salsa</i> wetlands throughout Northeast China.

43

44 Keywords:

45 Coastal wetland, soil respiration, plant respiration, field observation,46 carbon cycling, empirical modelling

47 1. Introduction

48 Coastal wetlands are known to sequester carbon at high rates, and many 49 are regulated by salinity to emit less methane than inland wetlands due to the 50 greater availability of sulfate (Chmura et al., 2003; Holm et al., 2016; Lu et al., 51 2016). Ecosystem respiration (R_{eco}) is believed to be the dominant gaseous 52 carbon emissions process from coastal wetlands, weakening the carbon sink 53 function of coastal wetlands that have the highest effluxes of CO₂ (Nicholls, 54 2004; Smith et al., 1983). Reco includes sources of CO₂ both routed through or 55 originating from emergent plant structures (R_p) and those sources associated 56 with soil microbial and belowground root respiration (R_{s+r}). R_p and R_{s+r} should 57 be quantified separately because each process has its unique seasonal pattern 58 and response to environmental factors (Li et al., 2010). Considering that CO2 59 generated by plant and microbial respiration is much more than CO₂ generated 60 from anthropogenic activities (Raich et al., 2010), these fluxes from natural and 61 managed wetlands are inherently important in regulating the climate cycle in 62 providing positive feedbacks (i.e., greater CO₂ emissions; greater atmospheric 63 warming) or negative feedbacks (i.e., reduced CO2 emissions; less atmospheric 64 warming) (Cox et al., 2000; Davidson and Janssens, 2006; Melillo et al., 2002; 65 Mitsch et al., 2008). Coastal wetlands have been the focus of much attention since large amounts of carbon can be stored in tidal (known as "blue carbon") 66 67 and in inland non-tidal coastal wetlands, but with a notable reduction in net 68 gaseous CO_2 (and CH_4) emissions when managed properly (Chen et al., 2016; Jankowski et al., 2017; Rodríguez et al., 2017; Wang et al., 2016). 69

Reco in coastal wetlands is influenced by many environmental factors
including soil and air temperature (Arora et al., 2016; Juszczak et al., 2013),
soil properties (Hassink, 1992), salinity (Neubauer et al., 2013), plant type (Xu
et al., 2014), root biomass (Krauss et al., 2012), and hydrologic conditions
(Guan et al., 2011). Environmental factors change greatly with time, which

75 create bias on evaluating R_{eco} if the full range of changing environmental 76 conditions is not included in determinations (Marínmuñiz et al., 2015; White et 77 al., 2014). In addition, R_p and soil microbial respiration have different responses 78 to temperature and water level change (Dawson and Tu, 2009; Hall and 79 Hopkins, 2015; Wu et al., 2017).

80 Our lack of understanding about CO2 emissions from a wide range of 81 environments and environmental conditions results in difficulties in linking 82 response to key factors (Wolkovich et al., 2014), yet such linkages are critical 83 for modeling and determine area-scaled fluxes of use at regional and national levels. Statistical analyses are useful in identifying interactions and the 84 85 importance of individual environmental factors in controlling R_{eco} , but such 86 information is often more locally relevant than globally and there has been 87 decidedly less quantification of larger-scale influence (Iwata et al., 2015; Song 88 et al., 2015). Modelling is an effective way to understand and evaluate CO2 89 exchange between ecosystems and the atmosphere (Giltrap et al., 2010; 90 Kandel et al., 2013), given that empirical assessment often misses extreme 91 environmental conditions. By simulating biogeochemical activities, process-92 based models are capable of interpreting material and energy flow from one 93 pool to another (Giltrap et al., 2010; Metzger et al., 2015; St-Hilaire et al., 2010). 94 However, as more processes are considered through iterative research, the 95 number of parameters of relevance to modelling can increase, which makes 96 models more complicated and more difficult to apply across scales (Wang and 97 Chen, 2012). Empirical models are easier to deploy for evaluating respiration 98 in the same ecosystem because driving variables are connected to 99 observations via mathematical formulas (Yuste et al., 2005). Biological 100 processes are not typically fully integrated within models, rather statistical 101 relationships are used to imply cause and effect, leading to imperfect model 102 structure and larger uncertainty in model projections (Larocque et al., 2008).

103 Partitioning in-situ Reco into different components and determining the 104 variables controlling each component is challenging but important (Li et al., 105 2010). For this approach, traditional chamber methods have advantages as flux 106 measurements are direct and linked over small spatial scales to environmental 107 measurements (Dyukarev, 2017; Pumpanen et al., 2004). This approach does abandon a degree of reality accomplished through eddy covariance methods 108 109 (Aubinet et al., 2012; Nicolini et al., 2018). However, models can be applied 110 effectively to develop chamber-based assessments at larger scales.

111 Suaeda salsa Pall is a pioneer herbaceous species of tidal marshes and is 112 very tolerant to salinity (Baoshan et al., 2008; Guan et al., 2011). It naturally 113 grows on highly saline soil including intertidal zones of Europe and East Asia 114 as well as saline and alkaline soils of beaches and lakeshores in northern China. 115 The growing season Reco rate of S. salsa wetlands in the Liaohe River Delta 116 and the Yellow River Delta averaged 335 to 402 mg CO_2 m⁻² h⁻¹ (Ye et al., 2016) 117 and approximately 193 mg CO₂ m⁻² h⁻¹ (Chen et al., 2016), respectively. From 118 these studies, temperature is believed the dominant controlling factor of R_{eco} , 119 and several exponential correlations between temperature and Reco have been 120 developed (Xie et al., 2014). However, water level also determines soil aerobic 121 versus anaerobic condition by enhancing or restricting oxygen availability, 122 respectively, and plant biomass also contributes to Reco through emergent plant 123 structures and roots embedded below the soil surface (Olsson et al., 2015). 124 Due to a mix of temporal and spatial characteristics of plant distributions and environmental factors in S. salsa wetlands across their geographic range, 125 126 observing and measuring Reco of S. salsa marshes across this range would be 127 cost-prohibitive (Sánchez-Cañete et al., 2017).

To gain a better understanding of gaseous carbon loss from a coastal wetland covered by *S. salsa* and to evaluate the contributions of plant and soil fluxes to R_{eco} , a multi-year in-situ experiment based on the chamber method

131 was carried out during the growing seasons of 2102, 2013, and 2014. We 132 quantify the influence of temperature, biomass, and water table on ecosystem 133 respiration, as past studies, but we also develop a rapid assessment method (ecosystem model) to estimate system-scale Reco in S. salsa marshes of the 134 135 Liaohe River delta to aid future efforts to scale beyond where experimental measurements are taken, and over potentially different environmental 136 137 conditions projected for the future. This rapid evaluation model also has 138 potential application in regional and national carbon budget estimation for S. 139 salsa wetlands with lower costs than direct empirical assessment.

- 140 2. Materials and methods
- 141 2.1. Study area

This study was conducted in the Liaohe Delta (121°25'-123°31' E, 40°39'-142 143 41°27' N) of Northeast China (Figure 1). Natural wetlands in the Liaohe Delta 144 cover about 2610 km², which account for about 69% of the delta area (Ji et al., 145 2009). In addition, rice agriculture (non-natural wetlands) comprises approximately 3287 km², and is spread inside and outside of the Liaohe Delta 146 147 area proper. The Liaohe Delta is located in the temperate continental monsoon 148 zone with mean air temperature of 8.3 °C, and a mean annual precipitation of 149 612 mm with most rain falling in summer. The mean annual evaporation rate is 150 1705 mm, and the mean annual sunshine duration is around 2769 h (Luo et al., 151 2003). The average tidal range in the area is 2.7 m; tides are semi-diurnal. The 152 Liaohe Delta comprise what is believed to be the largest reed (Phragmites 153 australis Cav. Trin ex Steud) wetland in the world with a total area of approximately 800 km² (Brix et al., 2014). A field study site was built 16 km west 154 155 of the Liaohe River mouth in a newly restored wetland on a former fallow tidal 156 flat colonized recently by S. salsa. Saueda salsa wetlands comprise only 32 157 km² in the Liaohe River delta, but provide seasonal color to the region during 158 flowering that draws tourists from all over China.

159

Figure 1 The location of the study site in the Liaohe Delta, Northeast China The soil on the study sites is a silty clay loam with a sand, silt and clay content of 20%, 65% and 15%, respectively, and a soil bulk density of approximately 1.3 g cm³. The soil total and organic carbon content are low, averaging 9.5 g kg⁻¹ and 6.4 g kg⁻¹, respectively, and total nitrogen content is 1.1 g kg⁻¹. Soil pH is 7.3 ± 0.4 (std. err.) and soil pore water salinity is 17 ± 2‰. 2.2. CO₂ flux measurements

167 The CO₂ fluxes were measured using a field-portable infrared gas analyzer 168 (Li-8100A, LI-COR Biosciences, Inc., Lincoln, NE, U.S.A.) with a commercial 169 survey chamber (8100-103). CO₂ measuring range was 0 to 3000 ppm with 170 errors less than 1.5 %. Circular survey collars (10 cm tall by 20 cm diameter) 171 were inserted 3 to 5 cm into the soil 2 hours before measurement began to limit 172 the influences of recent disturbance. The survey collar measured an area of 173 318 cm². The total volume of the flux chamber was calculated as the sum of the 174 volume of the commercial survey chamber system (~4843 cm³) plus the volume 175 inside the collar factoring insertion depth of each collar individually. CO2 176 concentrations were recorded at 1 Hz during 90 s measurement periods, 177 measurements were replicated twice, and values were averaged to ensure data 178 reproducibility (Mukhopadhyay and Maiti, 2014). Prior to each field trip, the 179 infrared gas analyzer was factory calibrated and checked for zero drift before 180 measurements using CO₂-free nitrogen gas (Dyukarev, 2017).

181 The CO₂ fluxes (*F*, mg CO₂ m⁻² h⁻¹) were calculated according to the 182 following equation:

183

$$F = \frac{dc}{dt} \frac{M}{V_0} \frac{P}{P_0} \frac{T_0}{T} \frac{V}{S}$$

Where dc/dt (mol h⁻¹) is the slope of the linear regression line for CO₂ 184 concentration over time; M (mg mol⁻¹) is the molecular mass of CO₂; P (in 185 186 Pascals) is the barometric pressure; T (in Kelvin) is the absolute temperature 187 during sampling; V (in Liters) is the total volume of the enclosure measuring space; S (in m²) is the cover area of the measuring plot. V_0 (22.4 L/mol), T_0 188 189 (273.15 K) and P₀ (101.3 kPa) are the gas mole volume, absolute air 190 temperature, and atmospheric pressure under standard condition, respectively 191 (Song et al., 2009).

192 2.3. Experimental design

Fluxes of CO₂ were measured approximately monthly during the growing seasons of 2012, 2013, and 2014 (figure 2), for a total of 15 months of measurements over the three years. Soils of Liaohe Delta wetlands are frozen to depths of 15 cm during the months of December to March (Ye et al., 2016). Six plots were established, and all had different amounts of vegetation coverage in each observation month. On each plot, three measuring procedures were included, as follows:

200 (1) Measurement of the entire ecosystem CO_2 flux by including all 201 vegetation and soil area under that vagatation, " R_{eco} ";

(2) Measurement of plant material after cutting and removing all *S. salsa*at 1 to 2 cm above soil surface, *R*_p. We placed all *S. salsa* into a sealed and
dark survey collar immediately after harvest (within 2 minutes) and measured
CO₂ flux from the still physiologically active plants.

206 (3) Measurement of CO₂ flux within the survey chamber but without 207 standing plants, which indicates soil microbial respiration plus respiration of 208 roots underlying those soils, R_{s+r} . R_{s+r} was taken when soils were not inundated.

- 209 Additional measurements were taken when soils were inundated, and those
- 210 measurements used to partition CO₂ exchange between the water surface and
- 211 the atmosphere at those times.

All harvested *S. salsa* plant material was dried to a constant mass at 65 °C in a convection oven for a measure of aboveground biomass (AGB). A 15 cm deep surface soil sample was taken within each survey collar after measurements were completed during each sampling period. Living roots of *S. salsa* were collected, separated from the soil column and dried in an oven at 65° C to constant mass for a measure of belowground biomass (BGB).

218

219Figure 2 The observing period and procedures. The observation periods from 2012220to 2014 was marked as filled grey patches on the top subplot. Vertical blue patches221indicated the relative water level of a corresponding observation period. Months with222continuous blue rectangles refer to inundation of all six plots; half covered refer to223inundation of only some of the plots; and no blue bar equates to no inundation. The224bottom subplot displays a visual depiction of procedures. R_{eco} , R_{s+r} , and R_p were225measured in the corresponding sequence.

226

227 2.4. Statistical analysis and modeling

All monthly data are presented as means among plots with corresponding standard errors among plots. Correlation analyses were conducted to examine the relationships between the fluxes and the measured environmental variables.

- In all tests, the differences were considered significant at p < 0.05. Least square curve fitting was applied to quantify the influence of environmental factors. An empirical model was developed using Spyder 3.2.4 on Python 3.6 platform based on the field observations of respiration (R_{eco}) in various treatments and their corresponding air temperature, plant biomass, and inundation regime.
- Results and discussions

237 3.1. Ecosystem respiration

238 Overall, soil and root respiration (R_{s+r}) and plant respiration (R_p) 239 contributed 16% and 84%, respectively, to the total ecosystem respiration (R_{eco}) . 240 However, the relative contributions of R_{s+r} and R_p varied both during the season 241 and between seasons (Figure 3).

242 Reco varied significantly over the growing season with peak values in 243 August when the weather was hot (Figure 3). The seasonal pattern was nearly 244 identical between years, although peak Reco varied between 845 mg CO₂ m⁻² h^{-1} in 2014 and 1150 mg CO₂ m⁻² h^{-1} in 2013. During mid-summer (July and 245 246 August) there was great spatial variation in R_{eco} (as indicated by relatively large 247 variation among measurements) due to the variations in plant biomass within 248 the collars and also differences in water table depth at the time of specific 249 measurements.

250 R_{s+r} generally varied in concert with R_{eco} with highest rates in July-August, except in 2012 where rates were low (< 100 mg $CO_2 m^{-2} h^{-1}$) in July and August. 251 252 This corresponds to a period where the soil surface in all six measuring plots 253 was inundated, i.e. had standing water on the soil surface. This was also the 254 case in June-July in 2013 which also had very low R_{s+r} rates. The inundation probably reduces R_{s+r} because of the prevailing anoxic conditions in the soil 255 256 which is likely to occur as a consequence of the inundation. However, emission of CO₂ to the atmosphere through the water surface might also be reduced 257 258 because CO₂ is highly soluble in water and enters into an equilibrium with the

bicarbonate buffer system (Berglund and Berglund, 2011), with is especially prominent in saline water (i.e., the porewater of our sites was ~50% of fullstrength seawater). The highest soil respiration rates (>400 mg $CO_2 m^{-2}$) were recorded in August of 2013 and 2014 where the water table was below the soil surface and temperatures were high.

264 R_p generally peaked in August where temperatures were high and where 265 the plant biomass were maximal, except in 2014 where R_p was highest in September. R_p generally varied in concert with R_{eco} and often, particularly 266 267 during inundated periods, contributed to most of the ecosystem respiration 268 (approximately 93 %), while both R_{s+r} and R_{p} contribute to R_{eco} when the water 269 table is below the soil surface (approximately 38 % R_{s+r} and 62 % R_p). R_{eco} from 270 additional S. salsa wetlands in the Liaohe Delta was in the range of what we 271 found, and also peaked in June to August, depending on the year (Ye et al., 272 2016), corresponding strongly to peak seasonal aboveground biomass as well. 273 Our study confirms that all components of R_{eco} follow suit, with R_{s+r} and R_p 274 peaking concomitant with R_{eco} in most instances (figure 3), tracking plant growth.

- 278
- 279
- 280 3.2. Plant biomass
- 281 Suaeda salsa is an annual herb that germinates and starts to grow in late

standard error of the mean values.

282 April. The plants then follow the normal seasonal vegetation growth cycle for 283 cold temperate regions, with flowering beginning in July and maturation of 284 seeds occurring around late September (Mori et al., 2010). In the current study, the biomass production of S. salsa largely followed this pattern reaching a total 285 biomass of between 530 and 930 g dry mass m⁻² depending on year (Fig. 4). 286 Overall, the aboveground biomass constituted about 79% of the total biomass 287 288 (i.e., aboveground plus belowground), but the proportion varied during the 289 growing season. In the spring and early summer, the roots contributed a larger 290 proportion (25% to 35%) of the total biomass whereas in the late summer and 291 autumn the roots only constitute 15% to 20% of the total biomass. This shows 292 that the roots of S. salsa develop prior to peak above ground biomass, and are 293 thus slightly out of phase, suggesting an important role for early growing season 294 root growth initiation which also influences Reco. After mid-September, 295 aboveground biomass remains stable probably because roots at this stage are 296 now able to support the biomass of the entire plant. Mao et al. (2011) reported 297 that the root covers 8%~13% of total Suaeda salsa biomass in the Yellow River 298 Delta, which was similar to our results.

299

300 Figure 4 Seasonal variation of S. Salsa biomass during three growing seasons. Error

301 barsindicates the standard error at each sampling period (n=6). The inserted graph

302 presents the proportion of aboveground biomass (AGB) of total biomass. The dashed line 303 indicates the overall average AGB proportion. 304 3.3. Influencing environmental factors on R_{s+r} and R_p Air temperature varied between 3°C and 33°C during the measuring period. 305 306 R_{s+r} rates were always low when the air temperature was below 18 °C (Fig. 5), which is consistent with the findings of Ye et al. (2016). When the low fluxes 307 308 measured during inundated periods were excluded, we found that R_{s+r} was 309 exponentially correlated with air temperature on a seasonal scale, which has 310 also been reported in several other studies (Bäckstrand et al., 2010; Xie et al., 311 2014). If we did not remove fluxes of R_{s+r} that were measured during inundated 312 periods, the correlation would be significantly weakened (figure 5), suggesting 313 a strong statistical interaction between air temperature and inundation that 314 needs to be considered (Krauss et al., 2012). Reco also correlated weakly with 315 air temperature probably because the combined effects of soil temperature, 316 water table, and plant biomass on Reco were not considered (Flanagan et al., 317 2002; Reth et al., 2005; Zhang et al., 2016). Observations from measuring plots 318 with large biomasses were significantly higher than the exponentially predicted 319 values, indicating that roots in the soils probably contributed significantly to R_{s+r}.

Figure 5 The relationship between the observed soil respiration (R_{s+r}) rates and air

322 temperatures. The fluxes are grouped by month. The fluxes during inundated periods are 323 plotted separately using different marks (included in the correlation). 324 During inundated periods, R_{s+r} rates were low because water blocked both oxygen and CO₂ transport (Yang et al., 2014). Water can both absorb or emit 325 326 CO_2 depending on the HCO_3^-/CO_3^{2-} balance in surface water and the dissolve balance of CO₂ between surface water and the atmosphere (Wanninkhof and 327 328 Knox, 2003). Suaeda salsa has very limited aerenchyma in its tissue, and no 329 plant-mediated gas transport has been found in this species (Brix et al., 1996). 330 Besides, compared to the rates of R_{s+r} and R_p , the rates of gas exchange 331 between surface water and the atmosphere is low. Our observations suggest 332 that the main effect of inundation to the S. salsa marsh respiration is blocking 333 the gas transport from the soil to the atmosphere. Hence, the R_{s+r} rate is very 334 sensitive to water level variation just around the soil surface. This phenomenon 335 was also reported in cool temperate bog located in Mer Bleue, Canada (Lafleur 336 et al., 2005; Pugh et al., 2017).

337 Plants are reported to account for 35% to 90% of the total ecosystem 338 respiration in wetlands (Johnson et al., 2000), and are therefore believed to be 339 the dominant influencing factor for the spatial variation observed in Reco (Han 340 et al., 2007). In the Yellow River delta, Han et al. (2014) did not find a significant 341 relationship between Reco and biomass during the growing season in a S. salsa 342 wetland. This may be because they did not partition R_p , as we did here. As can 343 be seen in figure 3, R_p was close to R_{eco} during inundated periods, which shows 344 that the S. salsa plants contributed the most to the Reco. In all periods except August 2012, we observed a significant linear correlation between AGB and R_o 345 346 (figure 6). To demonstrate how the AGB influences R_p , the slope of the linear 347 curves versus Julian days are shown in figure 7. The slope of the regression 348 line varies over a growing season, and is < 0.1 mg CO₂ per g dry mass per hour 349 in October and November, probably because of plant senescence in the autumn.

350 The slopes obtained for 2013 and 2014 are comparable and the difference is 351 less than 5% in June and August. In June and July 2012, the slopes of R_{ρ} to 352 AGB are more than twice as high as the corresponding slopes of 2013 and 353 2014. As the study site was established in 2012, it is possible that the 354 biochemical conditions in the soil, including nutrient and organic carbon 355 concentrations, were disturbed slightly. The soil might have contained more 356 nutrients the first year, which might have led to high plant activity and 357 corresponding high respiration rates. Disregarding the larger slopes in 2012, 358 the remaining points follow a unimodal distribution over time. This can be 359 mathematically described by a Gaussian equation relating R_p/AGB over Julian 360 day (figure 7). Some studies prefer to use the air or soil temperature as the 361 proxy to evaluate seasonal parameters, while the accumulated temperature 362 has been shown to be better for evaluations of plant phenology (Cannell and 363 Smith, 1983). Since we did not measure meteorological variables on site 364 continuously over annual cycles, we are still able to predict respiration 365 parameters versus S. salsa plant biomass because of the significance of 366 seasonal time represented by Julian day as a proxy.

367 368

369

- 370 tested within each observation, the solid lines indicate the correlation after 'outlyers' are
- 371 removed, and the dashed line indicate the linear correlation with all data points included.

- 394 3.4.2. Plant respiration 395 R_p in *S. salsa* wetlands can be determined by 396 $R_p = m_p \times k_{act}$ Equation 5 397 where m_{ρ} (g dry weight m⁻²) is the biomass of *S. salsa* and k_{act} was the 398 amount of CO₂ that 1 gram plant material can produce in 1 hour based on our 399 study, and is used here to indicate the influence that seasonal plant activity has 400 on R_p .
- 401 $k_{act} = k_{amax} \times e^{-\left(\frac{D-D_m}{D_s}\right)^2}$ Equation 6

402 k_{act} has a seasonal signature as well, related to environmental variables 403 such as air temperature; however, air temperatures alone were not as useful in 404 predicting R_p as k_{act} . A gaussian equation driving by Julian day was used to 405 evaluate the seasonal and annual variation in k_{act} . According to our observation 406 and analysis, the best fit parameters of k_{amax} , D_m , and D_s was 1.49, 214.83, and 407 76.63, respectively (figure 7, figure 8b).

Figure 8 Key parameters and the driving variables. (a): Parameter k_{WT} changes driven by water level change near soil surface; (b): Seasonal variation of k_{act} driven by Julian day of a year; (c): Soil respiration under different air temperatures.

As is shown in figure 9, R_{eco} in 2012 was significantly underestimated because plant activity in 2012 was higher than the other two years (figure 4). The estimated R_{s+r} rate includes living root respiration as well as soil organic matter respiration (microbial) according to our model, if we assume the living roots respire as fast as the aboveground parts. With the record of belowground biomass and the parameter k_{act} , the contribution of each component can be

418 estimated. On our study sites, R_{s+r} had an average contribution of 23.9% to total 419 ecosystem respiration during the entire growing season. Knowing that the 420 modelled aboveground R_p covers an average of 55.2% of R_{eco} , plant biomass 421 determines the spatial variation in Reco, and is therefore suggestive that our 422 model is widely applicable to other cold temperate S. salsa wetlands through 423 plant biomass, water table depth, and air temperature modeling alone. As 424 Moore and Dalva (1993) reported, the effects of climatic change on gas flux 425 from peatlands are more likely to be associated with changes in the water table 426 than with changes in thermal regime. The schematic respiration model derived 427 from our results follow suit (figure 10).

433

428

434

435

environmental factors in *S.Salsa* marsh of the Liaohe River delta. Water level in July is
manully set above soil serface.

438 More complicated environmental variables (such as water table and temperature) on plant activity, processes of gas diffusion and water HCO_3^2/CO_3^{2-} 439 440 balance are not included in this model due to the limitation of our field 441 observation. Besides, for only one dataset, comparing the observed data and 442 modelled data here makes less sense. More observations or data from other S. 443 salsa wetlands are needed to test this model on a larger scale. However, with 444 easily obtained environmental variables (AGB, air temperature, and water 445 regime), R_{eco} (and by extension R_p and R_{s+r}) rate can be estimated on a large scale, making assessments of area-scaled CO2 emissions from this wetland 446 447 type, such as conducted by Ye et al. (2016), more cost-effective in the future. 448 This model provides a regional rapid assessment protocol for Reco within S. 449 salsa marshes; Necessary environmental variables can even be obtained through remote sensing. 450

451 4. Conclusions

452 Ecosystem respiration (R_{eco}) of a *S. salsa* wetland in the Liaohe Rive Delta, 453 China, was observed to range from -61 to 2995 mg CO₂ m⁻² h⁻¹, with significant

20

454 seasonal variation. Flux partitioning confirmed that Reco was correlated with 455 plant biomass, water regime, and air temperature. Plant biomass and plant activity controlled plant respiration, and further dominated the Reco during 456 inundated period. Both soil and plant contributed to Reco when water level was 457 458 below soil surface. Soil and root respiration is exponentially correlated with air temperature with a sensitivity of 0.113 °C⁻¹. Besides, S. salsa could produce as 459 much as 1.41 to 1.46 mg CO₂ g^{-1} dry weight h^{-1} during mid-summer. Air 460 461 temperature, plant biomass, and hydrological regime are essential to estimate 462 Reco using our proposed rapid assessment method. With regional data 463 calculated from remote sensing, the method can be used to evaluate R_{eco} of S. 464 salsa marshes on a large scale in the Liaohe River Delta, and potentially in other similar cold temperate wetland types. 465

466 5. Acknowledgement

467 This study was jointly funded by the National Key R&D Program of China 468 (2016YFE0109600), Ministry of Land and Resources program: "Special foundation for scientific research on public causes" (Grant No. 201111023), 469 470 National Natural Science Foundation of China (Grant Nos. 41240022 & 471 40872167), China Geological Survey (Grant Nos. 1212010611402, GZH201200503 and DD20160144), and in-kind contributions from the U.S. 472 Geological Survey (through Project Annex No. 6, CH-02.0600) LandCarbon 473 Program and Environments Program. Funding for L. Olsson was provided by 474 475 Sino-Danish Center for Education and Research and the Danish Council for 476 Independent Research - Natural Sciences (Project 4002-00333B) via a grant 477 to HB. Any use of trade, firm, or product names is for descriptive purposes only 478 and does not imply endorsement of the U.S. Government.

We thank Guangming Zhao, Hongming Yuan, Jin Wang, Xigui Ding,
Xiongyi Miao, Jin Liu and other staff of our working group for the hard working
in the field and in the laboratory. We also thank the staff of Reed institure of

- 482 Panjin City for the help and convenience they offered. Finally, we thank all the
- 483 guides and suggestions to improve our manuscripts.
- 484 6. References

485	Arora, B. et al., 2016. Influence of hydrological, biogeochemical and
486	temperature transients on subsurface carbon fluxes in a flood plain
487	environment. Biogeochemistry, 127(2): 1-30.
488	Aubinet, M., Vesala, T. and Papale, D., 2012. Eddy Covariance: A Practical
489	Guide to Measurement and Data Analysis. Springer: 365-376.
490	Bäckstrand, K. et al., 2010. Annual carbon gas budget for a subarctic peatland,
491	Northern Sweden. Biogeosciences, 7(1): 95-108.
492	Baoshan, C., Qiang, H. and Xinsheng, Z., 2008. Ecological thresholds of
493	Suaeda salsa to the environmental gradients of water table depth and soil
494	salinity. Acta Ecologica Sinica, 28(4): 1408-1418.
495	Berglund, O. and Berglund, K., 2011. Influence of water table level and soil
496	properties on emissions of greenhouse gases from cultivated peat soil. Soil
497	Biology & Biochemistry, 43(5): 923-931.
498	Brix, H., Sorrell, B.K. and Schlerup, HH., 1996. Gas fluxes achieved by in situ
499	convective flow in <i>Phragmites australis</i> . Aquatic Botany, 54(2): 151-163.
500	Brix, H. et al., 2014. Large-scale management of common reed, Phragmites
501	australis, for paper production: A case study from the Liaohe Delta, China.
502	Ecological Engineering, 73: 760-769.
503	Cannell, M. and Smith, R.I., 1983. Thermal time, chill days and prediction of
504	budburst in Picea sitchensis. Journal of Applied Ecology, 20(3): 951-963.
505	Chen, L. et al., 2016. Effects of environmental and biotic factors on soil
506	respiration in a coastal wetland in the Yellow River Delta, China. Chinese
507	Journal of Applied Ecology, 27(6): 1795-1803.
508	Chmura, G.L., Anisfeld, S.C., Cahoon, D.R. and Lynch, J.C., 2003. Global
509	carbon sequestration in tidal, saline wetland soils. Global biogeochemical
510	cycles, 17(4): 1111-1132.
511	Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. and Totterdell, I.J., 2000.
512	Acceleration of global warming due to carbon-cycle feedbacks in a coupled
513	climate model. Nature, 408(6809): 184-187.
514	Davidson, E.A. and Janssens, I.A., 2006. Temperature sensitivity of soil carbon
515	decomposition and feedbacks to climate change. Nature, 440(7081): 165-
516	173.
517	Dawson, T.E. and Tu, K.P., 2009. Partitioning Respiration Between Plant and
518	Microbial Sources Using Natural Abundance Stable Carbon Isotopes. Agu
519	Fall Meeting Abstracts.
520	Dyukarev, E.A., 2017. Partitioning of net ecosystem exchange using chamber
521	measurements data from bare soil and vegetated sites. Agricultural and

522	Forest Meteorology, 239: 236-248.
523	Flanagan, L.B., Wever, L.A. and Carlson, P.J., 2002. Seasonal and interannual
524	variation in carbon dioxide exchange and carbon balance in a northern
525	temperate grassland. Global change biology, 8(7): 599-615.
526	Giltrap, D.L., Li, C. and Saggar, S., 2010. DNDC: A process-based model of
527	greenhouse gas fluxes from agricultural soils. Agriculture, Ecosystems &
528	Environment, 136(3–4): 292-300.
529	Guan, B. et al., 2011. Physiological Responses of Halophyte Suaeda salsa to
530	Water Table and Salt Stresses in Coastal Wetland of Yellow River Delta.
531	Clean – Soil Air Water, 39(12): 1029–1035.
532	Hall, S. and Hopkins, D.W., 2015. A microbial biomass and respiration of soil,
533	peat and decomposing plant litter in a raised mire. Plant Soil &
534	Environment, 61(9): 405-409.
535	Han, G. et al., 2014. Ecosystem photosynthesis regulates soil respiration on a
536	diurnal scale with a short-term time lag in a coastal wetland. Soil Biology &
537	Biochemistry, 68(1): 85-94.
538	Han, G. et al., 2007. Soil temperature and biotic factors drive the seasonal
539	variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem.
540	Plant & Soil, 291(1-2): 15-26.
541	Hassink, J., 1992. Effects of soil texture and structure on carbon and nitrogen
542	mineralization in grassland soils. Biology & Fertility of Soils, 14(2): 126-134.
543	Holm, G.O. et al., 2016. Ecosystem Level Methane Fluxes from Tidal
544	Freshwater and Brackish Marshes of the Mississippi River Delta:
545	Implications for Coastal Wetland Carbon Projects. Wetlands, 36(3): 401-
546	413.
547	lwata, H. et al., 2015. Methane exchange in a poorly-drained black spruce
548	forest over permafrost observed using the eddy covariance technique.
549	Agricultural and Forest Meteorology, 214-215: 157-168.
550	Jankowski, K.L., Törnqvist, T.E. and Fernandes, A.M., 2017. Vulnerability of
551	Louisiana's coastal wetlands to present-day rates of relative sea-level rise.
552	Nature Communications, 8: 14792.
553	Ji, Y., Zhou, G. and New, T., 2009. Abiotic Factors Influencing the Distribution
554	of Vegetation in Coastal Estuary of the Liaohe Delta, Northeast China.
555	Estuaries and Coasts, 32(5): 937-942.
556	Johnson, L.C. et al., 2000. Plant carbon-nutrient interactions control CO ₂
557	exchange in Alaskan wet sedge tundra ecosystems. Ecology, 81(2): 453-
558	469.
559	Juszczak et al., 2013. Ecosystem respiration in a heterogeneous temperate
560	peatland and its;sensitivity to peat temperature and water table depth.
561	Plant & Soil, 366(1-2): 505-520.
562	Kandel, T.P., Elsgaard, L. and Lærke , P.E., 2013. Measurement and modelling
563	of CO2 flux from a drained fen peatland cultivated with reed canary grass

564	and spring barley. Global Change Biology Bioenergy, 5(5): 548–561.
565	Krauss, K.W., Whitbeck, J.L. and Howard, R.J., 2012. On the relative roles of
566	hydrology, salinity, temperature, and root productivity in controlling soil
567	respiration from coastal swamps (freshwater). Plant & Soil, 358(1-2): 265-
568	274.
569	Lafleur, P.M., Moore, T.R., Roulet, N.T. and Frolking, S., 2005. Ecosystem
570	respiration in a cool temperate bog depends on peat temperature but not
5/1	water table. Ecosystems, 6(0). 619-629.
572	Larocque, G.R. et al., 2008. Uncertainty and Sensitivity Issues in Process-
5/3	based Models of Carbon and Nitrogen Cycles in Terrestrial Ecosystems.
574	Elsevier Science & Technology.
575	LI, X., Fu, H., Guo, D., LI, X. and Wan, C., 2010. Partitioning soil respiration and
576	assessing the carbon balance in a Setaria Italica (L.) Beauv. Cropland on
577	the Loess Plateau, Northern China. Soil Biology and Biochemistry, 42(2):
578	337-346.
579	Lu, W. et al., 2016. Contrasting ecosystem CO2 fluxes of inland and coastal
580	wetlands: A meta - analysis of eddy covariance data. Global change
581	biology, 23(3): 1180-1198.
582	Luo, H., Huang, F. and Zhang, Y., 2003. Space-time change of marsh wetland
583	in Liaohe delta area and its ecological effect. Journal of Northeast Normal
584	University, 35.
585	Mao, P. et al., 2011. Biomass allocation in Suaeda salsa population in different
586	habitats of coastal zone. Ecology & Environmental Sciences, 20: 1214-
587	1220.
588	Marínmuñiz, J.L., Hernández, M.E. and Morenocasasola, P., 2015.
589	Greenhouse gas emissions from coastal freshwater wetlands in Veracruz
590	Mexico: Effect of plant community and seasonal dynamics. Atmospheric
591	Environment, 107(3): 107-117.
592	Melillo, J.M. et al., 2002. Soil warming and carbon-cycle feedbacks to the
593	climate system. Science, 298(5601): 2173-6.
594	Metzger, C. et al., 2015. CO 2 fluxes and ecosystem dynamics at five European
595	treeless peatlands–merging data and process oriented modeling.
596	Biogeosciences, 12(1): 125-146.
597	Mitsch, W.J. et al., 2008. Tropical wetlands for climate change research, water
598	quality management and conservation education on a university campus
599	in Costa Rica. Ecological Engineering, 34(4): 276-288.
600	Moore, T. and Dalva, M., 1993. The influence of temperature and water table
601	position on carbon dioxide and methane emissions from laboratory
602	columns of peatland soils. Journal of Soil Science, 44(4): 651-664.
603	Mori, S. et al., 2010. Physiological role of sodium in the growth of the halophyte
604	Suaeda salsa (L.) Pall. under high-sodium conditions. Crop Science. 50(6):
605	2492.

606 607	Mukhopadhyay, S. and Maiti, S.K., 2014. Soil CO ₂ flux in grassland, afforested land and reclamine overburden dumps: a case study. Land Degradation &
608	Development, 25(3): 216-227.
609	Neubauer, S.C., Franklin, R.B. and Berrier, D.J., 2013. Saltwater intrusion into
610	tidal freshwater marshes alters the biogeochemical processing of organic
611	carbon. Biogeosciences, 10(12): 8171-8183.
612	Nicholls, R.J., 2004. Coastal flooding and wetland loss in the 21st century:
613	changes under the SRES climate and socio-economic scenarios. Global
614	Environmental Change, 14(1): 69-86.
615	Nicolini, G. et al., 2018. Impact of CO ₂ storage flux sampling uncertainty on net
616	ecosystem exchange measured by eddy covariance. Agricultural and
617	Forest Meteorology, 248(Supplement C): 228-239.
618	Olsson, L. et al., 2015. Factors influencing CO2 and CH4 emissions from coastal
619	wetlands in the Liaohe Delta, Northeast China. Biogeosciences, 12(16):
620	4965-4977.
621	Pugh, C.A., Reed, D.E., Desai, A.R. and Sulman, B.N., 2017. Wetland flux
622	controls: how does interacting water table levels and temperature influence
623	carbon dioxide and methane fluxes in northern Wisconsin?
624	Biogeochemistry.
625	Pumpanen, J. et al., 2004. Comparison of different chamber techniques for
626	measuring soil CO ₂ efflux. Agricultural and Forest Meteorology, 123(3):
627	159-176.
628	Raich, J.W., Potter, C.S. and Bhagawati, D., 2010. Interannual variability in
629	global soil respiration, 1980-94. Global change biology, 8(8): 800-812.
630	Reth, S., Reichstein, M. and Falge, E., 2005. The effect of soil water content,
631	soil temperature, soil pH-value and the root mass on soil CO_2 efflux – a
632	modified model. Plant and soil, 268(1): 21-33.
633	Rodríguez, J.F., Saco, P.M., Sandi, S., Saintilan, N. and Riccardi, G., 2017.
634	Potential increase in coastal wetland vulnerability to sea-level rise
635	suggested by considering hydrodynamic attenuation effects. Nature
636	Communications, 8: 16094.
637	Sánchez-Cañete, E.P., Scott, R.L., van Haren, J. and Barron-Gafford, G.A.,
638	2017. Improving the accuracy of the gradient method for determining soil
639	carbon dioxide efflux. Journal of Geophysical Research: Biogeosciences,
640	122(1): 50-64.
641	Smith, C., DeLaune, R. and Patrick Jr, W., 1983. Carbon dioxide emission and
642	carbon accumulation in coastal wetlands. Estuarine, coastal and shelf
643	science, 1/(1): 21-29.
644	Song, C., Xu, X., IIan, H. and Wang, Y., 2009. Ecosystem–atmosphere
645	exchange of CH_4 and N_2O and ecosystem respiration in wetlands in the
646 0.47	Sanjiang Plain, Northeastern China. Global change biology, 59(3): 692-705.
647	Song, vv. et al., 2015. Methane emissions from an alpine wetland on the libetan

648	Plateau: Neglected but vital contribution of the nongrowing season. Journal
649	of Geophysical Research Biogeosciences, 120: 1475-1490.
650	St-Hilaire, F. et al., 2010. McGill Wetland Model: evaluation of a peatland
651	carbon simulator developed for global assessments. Biogeosciences
652	Discussions, 7(11): 3517-3530.
653	Wang, G. and Chen, S., 2012. A review on parameterization and uncertainty in
654	modeling greenhouse gas emissions from soil. Geoderma, 170: 206-216.
655	Wang, G.D., Wang, M., Lu, X.G. and Jiang, M., 2016. Surface elevation change
656	and susceptibility of coastal wetlands to sea level rise in Liaohe Delta,
657	China. Estuarine Coastal & Shelf Science, 180: 204-211.
658	Wanninkhof, R. and Knox, M., 2003. Chemical enhancement of CO2 exchange
659	in natural waters. Limnology & Oceanography, 41(4): 689-697.
660	White, J.R., Delaune, R.D., Roy, E.D. and Corstanje, R., 2014. Uncertainty In
661	Greenhouse Gas Emissions On Carbon Sequestration In Coastal and
662	Freshwater Wetlands of the Mississippi River Delta: A Subsiding Coastline
663	as a Proxy for Future Global Sea Level, AGU Fall Meeting.
664	Wolkovich, E.M., Cook, B.I. and Davies, T.J., 2014. Progress towards an
665	interdisciplinary science of plant phenology: building predictions across
666	space, time and species diversity. New Phytologist, 201(4): 1156.
667	Wu, J. et al., 2017. Partitioning controls on Amazon forest photosynthesis
668	between environmental and biotic factors at hourly to interannual
669	timescales. Global change biology, 23(3): 1240.
670	Xie, X., Zhang, M.Q., Zhao, B. and Guo, H.Q., 2014. Dependence of coastal
671	wetland ecosystem respiration on temperature and tides: a temporal
672	perspective. Biogeosciences, 11(3): 539-545.
673	Xu, X. et al., 2014. Seasonal and spatial dynamics of greenhouse gas
674	emissions under various vegetation covers in a coastal saline wetland in
675	southeast China. Ecological Engineering, 73: 469-477.
676	Yang, G. et al., 2014. Effects of soil warming, rainfall reduction and water table
677	level on CH4 emissions from the Zoige peatland in China. Soil Biology and
678	Biochemistry, 78(0): 83-89.
679	Ye, S. et al., 2016. Inter-Annual Variability of Area-Scaled Gaseous Carbon
680	Emissions from Wetland Soils in the Liaohe Delta, China. PLoS ONE, 11(8).
681	Yuste, J.C., Janssens, I.A. and Ceulemans, R., 2005. Calibration and validation
682	of an empirical approach to model soil CO ₂ efflux in a deciduous forest.
683	Biogeochemistry, 73(1): 209-230.
684	Zhang, Q., Sun, R., Jiang, G., Xu, Z. and Liu, S., 2016. Carbon and energy flux
685	trom a Phragmites australis wetland in Zhangye oasis-desert area, China.
686	Agricultural and Forest Meteorology, 230–231: 45-57.
687	