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Abstract. Land carbon fluxes, e.g., gross primary production (GPP) and net biome production (NBP), are controlled in part 

by the responses of terrestrial ecosystems to atmospheric conditions near the Earth’s surface. The Coupled Model 10 

Intercomparison Project Phase 6 (CMIP6) has recently proposed increased spatial and temporal resolutions for the surface CO2 

concentrations used to calculate GPP, and yet a comprehensive evaluation of the consequences of this increased resolution for 

carbon cycle dynamics is missing. Here, using global offline simulations with a terrestrial biosphere model, the sensitivity of 

terrestrial carbon cycle fluxes to multiple facets of the spatiotemporal variability of atmospheric CO2 is quantified.  Globally, 

the spatial variability of CO2 is found to increase the mean global GPP by 0.2 PgC year-1, as more vegetated land areas benefit 15 

from higher CO2 concentrations induced by the inter-hemisphere gradient.  The temporal variability of CO2, however, 

compensates for this increase, acting to reduce overall global GPP; in particular, consideration of the diurnal variability of 

atmospheric CO2 reduces multi-year mean global annual GPP by 0.5 PgC year-1 and net land carbon uptake by 0.1 PgC year-

1.  The relative contributions of the different facets of CO2 variability to GPP are found to vary regionally and seasonally, with 

the seasonal variation in atmospheric CO2, for example, having a notable impact on GPP in boreal regions during fall.  Overall, 20 

in terms of estimating global GPP, the magnitudes of the sensitivities found here are minor, indicating that the common practice 

of applying spatially-uniform and annually increasing CO2 (without higher frequency temporal variability) in offline studies 

is a reasonable approach – the small errors induced by ignoring CO2 variability are undoubtedly swamped by other 

uncertainties in the offline calculations.  Still, for certain regional- and seasonal-scale GPP estimations, the proper treatment 

of spatiotemporal CO2 variability appears important.   25 

1 Introduction 

Quantifying the sources and sinks of carbon at the land surface is key to an accurate carbon balance and to the overall 

assessment of where anthropogenically released fossilized carbon ends up in the Earth system.  While current estimates suggest 

that the land absorbs about a quarter of anthropogenic CO2 emissions (IPCC, 2014), the uncertainty in the global carbon budget 

associated with terrestrial ecosystem processes is large (Le Quéré et al., 2016). Studies disagree on portioning of the land 30 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-187
Manuscript under review for journal Biogeosciences
Discussion started: 20 April 2018
c© Author(s) 2018. CC BY 4.0 License.



2 
 

carbon sink between the tropics and the extratropics, for example, tropical ecosystems as carbon sinks (Stephens et al., 2007; 

Lewis et al., 2009; Schimel et al., 2015; Houghton et al., 2015) or sources (Baccini et al., 2017). A substantial interannual 

variability is found in the tropical carbon balance, primarily in response to climate-driven variations (Baker et al., 2006; 

Cleveland et al., 2015; Fu et al., 2017); indeed, tropical ecosystems represent a large fraction of the uncertainty in estimates of 

the total land carbon sink and its future trajectory (Pan et al., 2011; Wang et al., 2014). Carbon fluxes in boreal ecosystems 5 

also remain highly uncertain and are likely to be strongly influenced by changes in climate and the length of growing season. 

Warming over Northern lands may lead to an increase in vegetation productivity (Xu et al., 2013) and to a greater amplitude 

of seasonal CO2 exchange (Forkel et al., 2016) via climate-induced changes in phenological seasonal cycles (e.g., earlier 

vegetation green-ups). 

Because terrestrial carbon dynamics are greatly influenced by forcing from the atmosphere (e.g., air temperature, precipitation, 10 

radiation, humidity, CO2 concentration), quantifying the sensitivity of surface carbon fluxes to variations in atmospheric 

drivers is critical to obtaining accurate flux estimates. Such quantification promotes essential understanding regarding what 

controls these fluxes, understanding that should, in turn, lead to improved models of terrestrial carbon processes. Only with 

accurate models can we obtain reasonably accurate projections of climate under different emission scenarios.  

While the impacts of some aspects of atmospheric variability, such as that of temperature and precipitation, on global land 15 

carbon fluxes have been explored extensively (e.g., Beer et al., 2010; Poulter et al., 2014; Ahlström et al., 2015), the impact 

of atmospheric CO2 variability on the fluxes is relatively understudied and is in fact generally ignored in recent flux estimation 

exercises. In most land surface models (LSMs) or terrestrial biosphere models (TBMs) simulations, the atmospheric CO2 

applied is annually and/or spatially uniform (e.g., TRENDY project,  Sitch et al., 2015) or allowed to vary only on a monthly 

and/or zonal basis (e.g., Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), Huntzinger et al., 2013; Wei et al., 20 

2014; Ito et al., 2016). Potential time variations in the carbon fluxes associated with the diurnal and synoptic variability, if 

monthly CO2 is applied, and also with the seasonal variability, if annual CO2 is applied, are not represented in these modeling 

studies. Likewise, the regional flux response to spatial variations in CO2 is only partially represented with the latitudinal CO2 

driver and not at all with the spatially uniform CO2 driver. 

Such simplifications neglect lessons from decades of in-situ measurements showing that CO2 concentrations vary widely on 25 

different time and space scales. During the growing season, daytime (nighttime) CO2 at the canopy level can be significantly 

smaller (larger) than the daily mean CO2 due to the diurnal cycle of photosynthesis. Summertime measurements, for example, 

at an 11-m tower in northern Wisconsin indicate that the atmospheric CO2 concentration fluctuates by approximately 70ppm 

over the course of a day, from 350ppm at daytime to 420ppm at night (Yi et al., 2000); indeed, the day/night difference is 

comparable to the global atmospheric CO2 growth of the last few decades (~63ppm since 1980). In addition to large diurnal 30 

variations, many stations observe strong seasonal variations in CO2 concentrations; for example, such variations are as large 

as 30ppm at the Hegyhátsál monitoring site in western Hungary (e.g., Haszpra et al., 2008). 

Spatial variations in CO2 are also known to be significant.  The covariance between flux processes and atmospheric transport, 

for example, results in a phenomenon called the ‘rectifier effect’ wherein substantial spatial variations are introduced into 
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simulated CO2 fields, even when an annually balanced biosphere flux is assumed (Denning et al., 1995; 1999).  Concentrations 

of CO2 contain large spatial gradients with higher annual mean values found in the Northern Hemisphere than in the Southern 

Hemisphere due to the higher level of fossil fuel burning (Tans et al., 1989).  Higher annual mean concentrations are evident 

over land masses, particularly those with large anthropogenic emissions.   

In light of such known variations, the Coupled Model Intercomparison Project (CMIP6) is now encouraging modeling groups 5 

to force their models with CO2 concentrations that vary in space and time (Eyring et al., 2016).  Ostensibly this makes sense, 

given that relevant datasets on temporal and spatial CO2 variations are available for use (Meinshausen et al., 2017).  

Nevertheless, it seems appropriate at the outset of such efforts to quantify the potential usefulness of this added complexity.  

It is still arguably unknown how much the uncertainty in estimated terrestrial carbon fluxes will decrease through the explicit 

consideration of CO2 variations. 10 

In a recent study, Liu et al. (2016) begin to address this issue – they use a TBM to show that the explicit consideration of the 

seasonal variation of CO2 in modeling studies can lower the estimated terrestrial GPP by 0.4 PgC year-1 globally, and they also 

show that the consideration of the spatial variability of CO2 can increase mean global GPP estimates by 2.1 PgC year-1. There 

are, however, additional facets of CO2 variability that are worth exploring.  In particular, diurnal variations in CO2 are known 

to be large (e.g., ~70 ppm in the central US and ~50 ppm in central Europe), and it is worth determining if, in ignoring these 15 

particular variations, process-based models produce significant errors in carbon flux estimation.  

In this paper we provide an analysis of carbon flux sensitivity to spatial and temporal variations in atmospheric CO2 that is 

duly comprehensive. We employ in this study a particular process-based terrestrial biosphere model, the Catchment-CN model 

of NASA’s Global Modeling and Assimilation Office (GMAO).  We first evaluate the ability of the model to reproduce 

observationally-informed carbon flux estimates and flux sensitivities. Then, in a carefully designed suite of simulation 20 

experiments, we quantify the sensitivity of monthly simulated GPP and NBP to different temporal and spatial scales of 

atmospheric CO2 variability.  The paper concludes with some discussion on the implications of the results for future carbon 

cycle research. 

2 Methods 

2.1 Catchment-CN model  25 

The NASA Catchment-CN model (Koster et al., 2014) is a hybrid of two existing models: the NASA Catchment model (Koster 

et al., 2000) and the NCAR-Community Land Model version 4 (CLM4) (Oleson et al., 2010).  The hybrid utilizes the code 

from the Catchment model that performs water and energy cycle calculations.  The carbon and nitrogen dynamics from CLM4 

provides to the hybrid all of the carbon reservoir and flux calculations as well as photosynthesis-based estimates of canopy 

conductance for use in the Catchment model’s energy balance equations. Unlike most land surface models, the surface element 30 

for Catchment-CN is the hydrological catchment (with a typical spatial dimension of about 20km); model equations further 

provide a separation of each catchment into three separate dynamic hydrological regimes, each with its own set of energy 
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balance calculations.  There are up to four Plant Functional Types (PFTs) allowed in each of the three hydrological regimes. 

The model used a 10-minute time step for the energy and water balance calculations and a 90-minute time step for the carbon 

calculations. Note that land-use and land-cover change are not represented in this version of the Catchment-CN model. 

For this study, the Catchment-CN model is driven with atmospheric fields from NASA’s Modern-Era Retrospective analysis 

for Research and Applications, Version 2 (MERRA-2) reanalysis (Gelaro et al., 2017, and also available at  5 

http://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/).  Since MERRA-2 fields are provided on a 0.5°×0.625° resolution grid, the 

forcing values for a given Catchment-CN tile are taken from the MERRA-2 grid cell whose center is closest to the tile’s 

centroid. Precipitation forcing is the same as that used in the production of the Soil Moisture Active Passive (SMAP) level 4 

product (Reichle et al., 2016); this precipitation is scaled to agree with rain gauge observations where available. All of our 

analysis is performed on tile-based (i.e., catchment delineated) fluxes, which efficiently excludes coastal water and lake water 10 

and thus allows for an accurate estimation of the aggregated land-based global carbon fluxes.  

Atmospheric CO2 concentrations directly affect leaf photosynthesis (A) in Catchment-CN (as in NCAR-CLM 4 (Oleson et al., 

2010); see also Farquhar et al. (1980) and Collatz et al. (1991) for the C3 plants model, and Collatz et al. (1992) for the C4 

plants model), which is predicted to be the minimum value of Rubisco-limited photosynthesis (wc, Eq. (1)), light-limited 

photosynthesis (wj, Eq. (2)) and export-limited photosynthesis (we, Eq. (3)): 15 
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where ci is the internal leaf CO2 partial pressure (Pa) and oi is the O2 partial pressure (Pa).  Kc and Ko are the Michaelis-Menten 

constants (Pa) for CO2 and O2, respectively, and vary according to the vegetation temperature. Γ∗ is the CO2 compensation 20 

point (Pa), α is quantum efficiency, ϕ is absorbed Photosynthetically Active Radiation (APAR) (W m-2), and Vcmax is the 

maximum rate of carboxylation (µmol CO2 m-2 s-1). Photosynthesis calculations of the type represented by Eq. (1)-(3) are 

common in process-based land surface models (LSMs), including, for example, the Joint UK Land Environment Simulator 

(JULES) model (Walters et al., 2014) and the ORganizing Carbon and Hydrology In Dynamic Ecosystems Environment 

(ORCHIDEE) model (Krinner et al., 2005).  25 

Leaf photosynthesis (denoted as A) can also be expressed in terms of the diffusion gradient and stomatal conductance for CO2 

between the ambient atmosphere, the leaf surface and the internal leaf: 
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 5 

where rb is boundary layer resistance and rs leaf stomatal resistance (µmol m-2 s-1), and ca the CO2 partial pressure of ambient 

atmosphere and cs the pressure at leaf surface.  

Using the Ball-Berry model of stomatal conductance (Ball et al., 1987; Collatz et al., 1991), rs is expressed as a function of A, 

cs, and vapor pressures (es, the vapor pressure at the leaf surface, and ei, the saturation vapor pressure inside the leaf): 

 10 
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where m is a parameter dependent upon plant functional type, and b is the minimum stomatal conductance (20000 µmol m-2 s-

1).  Assuming the initial value of ci to be 0.7 times (for C3 plants) or 0.4 times (for C4 plants) the ambient CO2 concentration, 

the Catchment-CN model simultaneously computes the leaf photosynthesis (A) from Eq.(1)-(3). This value of A is then used 15 

to estimate cs in Eq. (4b) and rs in Eq. (5), as well as ci in Eq. (4c), which is inserted back into Eq. (1)-(3) for another calculation 

of A.  The iteration cycle proceeds three times to obtain the final value of A.   

NBP was calculated as: 

 

NBP =	−GPP+ RD + Rr + 	F,          (6) 20 

 

where the GPP is tied directly to the computed photosynthesis, Ra is the autotrophic respiration (through plant growth and 

maintenance), Rh is the heteorotrophic respiration (through litter and soil decomposition), and F is fire carbon flux. Positive 

(negative) NBP values mean that the land surface is a carbon source (sink). The respiration terms Ra and Rh were calculated 

as in the NCAR-CLM4, except for a modification to Rh, imposed here, that prohibits decomposition if the soil water is frozen. 25 

With this modification, the Catchment-CN’s NBP showed a better agreement to atmospheric inversion estimates in the 

Northern high latitude regions during December through February. Note that our study did not consider carbon flux changes 

associated with land use (e.g., deforestation). 
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2.2 Datasets for model evaluation and comparison 

Given that no direct measurements of GPP exist at the global scale (Anav et al., 2015), we evaluate the GPP values produced 

in our control simulation against GPP estimates from the data-derived FLUXNET Model Tree Ensembles (MTE) GPP project 

(hereafter referred to as MTE-GPP) (https://www.bgc-jena.mpg.de/geodb/projects/Home.php). This global-scale, monthly, 

gridded dataset effectively consists of upscaled observations from the eddy-covariance towers of the FLUXNET network; the 5 

upscaling utilizes the the MTE approach with inputs of: (i) meteorological data, (ii) the fraction of absorbed photosynthetically 

active radiation (fPAR) derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference 

vegetation index (NDVI), and (iii) land cover information (i.e., vegetation type) (Jung et al., 2009; 2011). The flux partitioning 

method utilized was from Lasslop et al. (2010). This dataset is widely used for performance evaluation of TBMs including 

CLM (e.g., Bonan et al., 2011).  10 

The net carbon fluxes (i.e., NBP) of the Catchment-CN model were evaluated against estimates from three atmospheric 

inversions: Monitoring Atmospheric Composition and Climate (MACC) v14r2 (Chevallier et al., 2011; 

http://macc.copernicus-atmosphere.eu/), CarbonTracker 2015 (Peters et al., 2007, with updates documented at 

http://carbontracker.noaa.gov), and Jena-CarboScope v3.8 (Rödenbeck et al., 2003; http://www.bgc-

jena.mpg.de/CarboScope/). The atmospheric inversion methods use atmospheric CO2 concentration measurements in 15 

conjunction with an atmospheric transport model to provide a range of estimates of net carbon fluxes between the atmosphere 

and biosphere.  The net carbon fluxes of the Catchment-CN model were also compared with fluxes estimated by the diagnostic 

Carnegie Ames Stanford Approach (CASA)-Global Fire Emission Database (GFED, version 3) (Ott et al., 2015; van der Werf 

et al., 2010). CASA-GFED3 is widely-used dataset that is heavily constrained by satellite observations, including GIMMS 

fAPAR, as well as by MERRA-2 meteorology. The mean NBP of the 11 years (2004-2014) overlapping our control simulation 20 

were evaluated.  

2.3 Experimental design 

Our control case imposes a maximum level of CO2 variability.  In the control simulation, the model is forced with time varying 

(at 3-hourly resolution) and spatially varying (at 3° longitude × 2° latitude resolution) global fields of CO2 concentration over 

the period 2001-2014.  The surface CO2 fields are extracted from the NOAA CarbonTracker database (Peters et al., 2007) for 25 

this period (CT2015, http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/molefractions.php, accessed in August 2016).   

We achieved reasonable initial land carbon states for January 1, 2001 using a two-step approach. First, starting with carbon 

prognostic states equilibrated over multiple millennia with a somewhat different modeling/forcing combination (including the 

use of present-day CO2 concentrations), the Catchment-CN model was run for at least 2,000 simulation years under a spatially 

and temporally uniform CO2 concentration of 280 ppm to mimic the pre-industrial era (i.e. before 1850), with meteorological 30 

forcing extracted from multiple loops over the 1981-2015 MERRA-2 dataset.  In the second step, the period from 1850 to 2000 

was simulated using CO2 concentrations that grew linearly in time to match the observed CO2 conditions and that varied 
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diurnally, seasonally, and spatially.  The meteorological forcing applied during this time was also the cycled 1981-2015 

MERRA-2 forcing and thus was also not tied to true year-specific forcing (except for within the final 1981-2000 period); such 

meteorological information is simply unavailable for the earlier part of the industrial period, and in any case, the main point 

of the exercise was to allow the carbon reservoirs in the land surface to respond to the gradual increase in CO2 concentrations.  

The resulting status of the land ecosystem on January 1, 2001 was used as the initial condition for the control simulation and 5 

for all experiments.   

The CO2 concentration fields used during 1850-2000 spin-up period were constructed as follows.  First, the 3-hourly, spatially 

varying CarbonTracker CO2 fields were averaged over 2001-2014 and over each month into a climatological 3-hourly diurnal 

cycle for each of the 12 months of the year (i.e., 96 fields – eight 3-hourly fields for each month at each grid location). The 12 

diurnal cycles were then assigned to the middle of each month, and linear interpolation to each day-of-year produced 365 10 

climatological diurnal cycles of CO2 concentration.  We applied these daily diurnal cycles in each year of 1850-2000 after 

scaling them with a year-specific scaling factor that forced the annual, global mean CO2 concentration to increase linearly in 

time from 280ppm in 1850 to 311ppm in 1950 and then from this value to 375.5ppm in 2000 (to approximate the growth in 

CO2 seen in the historical record; see http://www.eea.europa.eu/data-and-maps/figures/atmospheric-concentration-of-co2-

ppm-1).  All of the interpolation was performed in the time dimension only; the global spatial variation contained within the 15 

CarbonTracker data was retained.  

The strategy behind our experiments is described in Fig. 1.  We performed a series of five experiments covering the period 

2001-2014 (using the same 2001 initial conditions as the control), with each experiment removing, in turn, one facet of the 

spatio-temporal variability of atmospheric CO2 concentration.  In the first experiment (referred to as dCO2), the 3-hourly CO2 

diurnal cycle was averaged into a single daily value at every land surface element, and these daily-averaged values were then 20 

used to force the Catchment-CN model.  Comparing the results of this experiment to those of the control thus illustrates the 

impact of ignoring diurnal CO2 variability on the modeled carbon fluxes.  In the second experiment (mCO2), synoptic-scale 

variability in CO2 was removed – the daily CO2 concentrations used in dCO2 were averaged into monthly values, which were 

then linearly interpolated (as in the spin-up procedure) into a temporally smoothed version of the daily fields.  Note that the 

daily fields used for mCO2 still retain the interannual variability of CO2 inherent in the CarbonTracker data; this interannual 25 

variability was removed in the third experiment (mmCO2), in which the daily fields were derived from the climatological 

monthly values of CO2 inherent in the 14 years of CarbonTracker data.  In the fourth experiment (aCO2), seasonality in CO2 

was removed – the multi-year, annual average CO2 from CarbonTracker above a surface element was applied to that element.  

Finally, in the fifth experiment (cCO2), all spatial variability in CO2 was removed by averaing over the global land, resulting 

in a constant CO2 concentration (390 ppm) applied every 10 minutes. 30 

The resulting carbon fluxes were averaged to monthly values for our analyses.  We computed mean global GPP (in units of 

PgC year-1) by multiplying tile-based fluxes (in units of gC/m2/s) by the associated tile area and then aggregating the areal 

totals over global land (excluding Greenland and Antarctica). The mean global NBP was estimated in the same way. 
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3 Results 

We evaluate in sections 3.1 and 3.2 the ability of the control simulation to produce reasonable GPP and NBP fluxes, and we 

examine in section 3.3 the model’s ability to reproduce observed sensitivities to variations in atmospheric CO2.  With this 

overview of model performance in hand, we analyze in section 3.4 the results of the experiments outlined in Fig. 1.  Note that 

this model’s ability to capture the observed sensitivity of phenological variables to moisture variations was demonstrated by 5 

Koster et al. (2014). 

3.1 Evaluation of simulated GPP against the MTE-GPP dataset  

The spatial pattern of the mean annual GPP simulated by the Catchment-CN in the control simulation (i.e., the case forced 

with spatially varying, 3-hourly atmospheric CO2 fields) is broadly consistent with the MTE-GPP data over the period of 2002-

2011 (Fig. 2).  Catchment-CN tends to produce higher GPP in the tropics.  Note that because the MTE-GPP dataset is more 10 

reliable in regions with denser observations, and because measurement stations in the tropics are limited, MTE-GPP estimates 

in the tropics are subject to particular uncertainty (Anav et al., 2015). Outside the tropics, the model produces higher GPP 

values in southeastern China, southeastern Brazil and the North American boreal region but slightly lower values in western 

Europe. The generally higher values for Catchment-CN are not surprising given that higher values were also found for CLM4 

(Bonan et al., 2011), the parent model of Catchment-CN’s carbon code.  The zonal means of the simulated GPP data and the 15 

MTE-GPP product in fact agree reasonably well (Fig. 2c). At 20N, however, despite its greater regional GPP in southern 

China, the zonal mean of the Catchment-CN GPP is smaller than that for MTE-GPP, presumably due to disparate land masks; 

the Catchment-CN model includes low GPP values in the Sahel, whereas MTE-GPP excludes this region (Fig. S1).   

Averaged over the full simulation period (2001-2014), the Catchment-CN model predicts a mean global GPP of 130.6 PgC 

year-1. This value is essentially in the range, though at the high end, of estimates from MTE-GPP: 119 ±6 PgC year-1 for the 20 

period 1982-2008 (Jung et al., 2011), 123 PgC per year-1 for the period 1998-2005 (Beer et al., 2010), and 130 PgC year-1 for 

the period 2001-2010 (Slevin et al., 2017).  The Catchment-CN estimate also lies within the range of mean global GPP 

predicted by other process-based LSMs or TBMs.  CLM4, from which the Catchment-CN model’s carbon modules were 

procured, produces an estimate of 165 PgC year-1, and a version of the CLM model with revised treatments (which were 

adopted later in CLM 4.5) of canopy radiation, leaf photosynthesis, stomatal conductance, and canopy scaling produces a value 25 

of 130 PgC year-1 for the period of 1982-2004 (Bonan et al., 2011).  The JULES model (Slevin et al., 2017) produces a value 

of 140 PgC year-1 for 2001-2010.  

3.2 Evaluation of simulated NBP against multiple datasets 

The mean global net carbon fluxes from our control simulation were compared with the CASA-GFED3 model estimates 

(which, in fact, serve as a prior to CarbonTracker (CarbonTracker Documentation CT2015 Release, 2016)) as well as against 30 

the three aforementioned atmospheric inversion estimates (MACC v14r2, CarbonTracker 2015, and Jena CarboScope v3.8). 
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In Fig. 3, the phase of the climatological NBP from the Catchment-CN model (solid blue) agrees well with that of the inversions 

(dotted curves). These datasets agree, for example, on the time during spring at which the land shifts from being a carbon 

source to a carbon sink. The CASA-GFED3 model (solid red) shows a delay in the shift, a feature noted in previous studies 

(e.g., Ott et al., 2015)  

The annual NBP from Catchment-CN (-0.6 PgC year-1) indicates that the land is a carbon sink, though the value is smaller 5 

than the mean of the sinks estimated by the three atmospheric inversions (-3.2 PgC year-1).  The reason for the smaller value 

is unclear; we note only that the sink strength produced by the model reflects the net effect of a multitude of physical processes 

(underlying GPP, respirations, and fire) in the model, processes that can interact with each other in complex ways. The seasonal 

and zonal dependence of the Catchment-CN NBP is, in any case, within the spread of the inversions and the CASA-GFED3 

model (Fig. S2). The boreal summer (JJA) carbon sink of Catchment-CN is approximately three quarters of the inversion 10 

estimates (Fig. 3) and is relatively weak in the Northern boreal ecosystem, where the dominating temperate or boreal forests 

show strong seasonality (Fig. S2c). During DJF, the model NBP agrees with the inversions and the CASA-GFED3 model 

estimates in the Northern Hemisphere, but it mostly follows the MACC v14r2 inversion in the Southern Hemisphere tropics 

where the inversions show disagreement in sign (Fig. S2a). The spring and autumn NBP from the Catchment-CN lie within 

the range of the inversion estimates (MAM in Fig. S2b; SON in Fig. S2d).  15 

3.3 Sensitivity of Catchment-CN Fluxes to enrichment of CO2 

Our analysis in section 3.4 will focus on how simulated GPP responds to various facets of the spatio-temporal character of the 

imposed atmospheric CO2 forcing.  It is thus particularly appropriate to evaluate the realism of the model’s sensitivity to CO2 

variations. 

The Large-Scale Free-air CO2 Enrichment (FACE) experiments provide valuable data for such an evaluation.  In these 20 

experiments, CO2 was released into the air and advected by natural wind over the vegetation within experimental fields; the 

resulting CO2 concentrations were increased by about 200ppm above ambient conditions.  Net Primary Productivity (NPP) 

observations over these fields were compared to those over control fields that lacked the CO2 increase (e.g., Ainsworth and 

Long, 2004; Norby et al., 2005; Norby and Zak, 2011).  Here we focus on two particular temperate forest FACE experiments: 

Duke FACE (35.58°N, 79.5°W) (Hendrey et al., 1999) and Oak Ridge National Laboratory (ORNL) FACE (35.54°N, 25 

84.20°W) (Norby et al., 2001), well-documented field experiments that have been used in previous model-data comparison 

studies (e.g., Hickler et al., 2008; Piao et al., 2013; Zaehle et al., 2014; Walker et al., 2014). 

To mimic these FACE field experiments, we performed a supplemental numerical experiment with the Catchment-CN model 

(beyond the experiments outlined in section 2.3):  the control simulation was repeated but with the atmospheric CO2 forcing 

increased artificially by 200 ppm.  Considering the land elements containing the Duke and ORNL FACE sites, and considering 30 

only the overlapping years (2001-2007 for Duke and 2001-2008 for ORNL), we computed the increase in simulated NPP 

relative to the control simulation.  In this supplemental simulation, the Catchment-CN model produces a 16% increase of NPP 

for the Duke site and a 12% increase for the ORNL site.  This turns out to underestimate the observed responses of 32% (Duke) 
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and 17% (ORNL); the model does not capture the full sensitivity measured in the field.   It is possible that the underestimation 

is due to a nitrogen (N) limitation that down-regulates GPP, as was found for the original CLM4 model (Zaehle et al., 2014); 

the supply of mineralized nitrogen in the model may be insufficient for the plants’ increased N demand associated with the 

CO2-induced increase in the rate of photosynthesis. 

This underestimation must be kept in mind when interpreting our model results below.  Note, however, that despite the 5 

underestimation, our model results are still relevant to the interpretation and evaluation of the Dynamic Global Vegetation 

Model (DGVM)-based, bottom-up estimates of GPP and NBP found in the literature.  Zaehle et al. (2014) discuss the results 

of forcing multiple DGVMs with a 200 ppm increase in CO2, along the lines of our own supplemental experiment.  The average 

increase in NPP across the eleven participating DGVMs in that study was about 16% for the Duke site and 13% for the ORNL 

site, very much in line with the increases found with our model.  We can infer, then, that the sensitivities uncovered with our 10 

model experiments likely also apply to other models, including those providing global GPP and NBP estimates to the scientific 

community.  The agreement in the sensitivities, by the way, is perhaps not a surprise, given that the Catchment-CN model’s 

treatment of the dependence of photosynthesis on atmospheric CO2 is largely contained within Eq. (1)-(5), a set of equations 

similar to those used in many DGVMs.   

3.4 Global-Scale Sensitivity of Carbon Fluxes to Imposed CO2 Variability  15 

Here we present the results of the experiments outlined in Figure 1, with each facet of variability considered separately. 

3.4.1 Diurnal Cycle of CO2 

Figure 4 compares the results of dCO2 to those of the control simulation, thereby revealing the impact of the CO2 diurnal cycle 

on simulated GPP and NBP.  Figure 4a shows the time series of global mean GPP differences (dCO2 minus control) over the 

14 year period; removing the diurnal variability clearly increases GPP, and the effect is particularly large in boreal summer 20 

(0.07 PgC month-1 , equivalent to 0.8 PgC year-1). Figure 4b shows that most of the increases are in the tropics and in the far 

eastern areas of the Northern Hemisphere continents. Almost no region shows a decrease in GPP associated with the removal 

of the CO2 diurnal cycle.  As indicated in Table 1, removing the CO2 diurnal cycle leads to an overall increase in global mean 

GPP of 0.497 PgC year-1 and a change in the global mean NBP of -.100 PgC year-1. 

The changes evident in Fig. 4 make sense in the context of the daily variations in atmospheric CO2 noted in many studies (e.g., 25 

Denning et al. 1995, 1999).  In nature (and as captured in the control simulation), the nighttime atmospheric CO2 within the 

planetary boundary layer is higher than the daily mean value due to the shutdown of photosynthetic activity. Correspondingly, 

mid-day CO2 concentrations are lower near the surface due to the plants’ photosynthetic uptake of CO2.  In experiment dCO2, 

applying the daily mean CO2 concentration at all hours of the day has the effect of imposing a higher CO2 concentration during 

daytime, when photosynthesis occurs, and this has the effect of artificially “fertilizing” the surface – the extra CO2 imposed 30 

during daytime makes photosynthesis more productive, increasing GPP.  The GPP change in the Tropics accounts for about 

two thirds of the mean global GPP change, which is not surprising given the region’s high productivity over the whole year.  
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3.4.2 Synoptic-Scale Variability of CO2 

The day-to-day variability of CO2, as influenced, for example, by synoptic-scale weather and its impacts on atmospheric 

transport, is removed in experiment mCO2, relative to experiment dCO2.  Table 1 indicates a negligible impact of this 

modification on the simulated global GPP and NBP compared to using diurnally varying CO2.  The impacts on the temporal 

changes in the carbon fluxes and on the spatial distribution of the fluxes are similarly minimal (not shown). 5 

3.4.3 Interannual Variability of CO2 

In experiment mmCO2, the interannual variability of atmospheric CO2 is removed – the mean (location-specific) seasonal 

cycle of CO2 is applied instead. The increases in the global GPP seen early in the simulation (2001-2008) and the decreases 

seen in the later part (2009-2014) (Fig. 5a, showing results for mmCO2 minus mCO2) reflect the fact that the mmCO2 

experiment no longer imposes the observed yearly growth rate of atmospheric CO2. The 14-year mean GPP increases owing 10 

to removal of internannual variation of CO2 are mostly in the tropics (Fig. 5b), leading to an additional change in global mean 

GPP of 0.078 PgC year-1 (Table 1). While this time-mean change is smaller than that associated with neglecting diurnal 

variability, the differences at the beginning and end of the period (1.4PgC year-1 between year 2001 and year 2014) are 

comparable to, or even larger than the diurnal variability impact.  These larger differences may have relevance to some period-

specific model-based GPP estimates in the literature. 15 

3.4.4 Seasonal Variability of CO2 

The aCO2 experiment forces the land surface with mean annual, but spatially varying, atmospheric CO2.  The resulting 

increases in GPP (aCO2 minus mmCO2) in Fig. 6a are indicative of seasonal CO2 variations.  By applying the annual mean 

CO2 concentration all year long, vegetation outside of the Tropics experiences higher CO2 concentrations during the spring 

and summer seasons, when photosynthesis is highest, than they would have otherwise; in nature photosynthetic drawdown of 20 

atmospheric CO2 acts to reduce warm season CO2 concentrations below the annual mean.  The artificial warm season 

“fertilization” of the vegetation in the aCO2 case leads to an increase in growing season GPP (Fig. 6a). 

A comparison of Figs. 4 and 6 shows that the influence of seasonal CO2 variations is smaller than that of diurnal variations, 

which is consistent with the fact that the amplitude of the CO2 seasonal cycle is about 10~20ppm while that of the diurnal 

cycle is about five times larger (up to ~120ppm) in boreal summer (Fig. S3).  The response of GPP to the seasonal variability 25 

of atmospheric CO2 is highest in the Northern Hemisphere high latitudes (Fig. 6b), for which the distinction between cold 

season and warm season photosynthesis is largest. The regional- and seasonal-scale impact of this variability is further 

discussed in Section 3.5. 
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3.4.5 Spatial Variability of CO2 

Finally, Figure 7 shows the impact of applying in experiment cCO2 a globally uniform atmospheric CO2 rather than a spatially 

varying distribution (e.g., with the inter-hemisphere gradient).  In contrast to the above impacts of reducing temporal 

variability, the loss of spatial variability of atmospheric CO2 leads to a global GPP decrease (Fig. 7a, showing results for cCO2 

minus aCO2).  This decrease in fact tends to offset significantly the global GPP increases seen in the other experiments.  Loss 5 

of spatial variability of CO2 results in an overall reduction in global mean GPP (relative to the value from aCO2) of -0.189 

PgC year-1 and a change in the global mean NBP of 0.039 PgC year-1. 

Notably, the sign of the GPP change associated with the removal of CO2 spatial variability is not globally uniform (Fig. 7b). 

In the absence of the large-scale inter-hemispheric gradient (Fig. S4), the GPP change is mostly negative in the densely 

vegetated areas of the Northern Hemisphere continents and positive in the Southern Hemisphere. GPP decreases are especially 10 

large in Europe, in the eastern US, in eastern China, and in tropical regions (e.g., the southeast Asia, Amazon and Congo 

rainforests), and these changes are only partially compensated by GPP increases in extratropical Southern Hemisphere land 

areas such as the South America Atlantic forests and Cerrado. For densely vegetated areas, the pattern of the GPP change 

correlates well with changes in the imposed atmospheric CO2 (Fig. S4); the agreement is less evident in areas with sparse 

vegetation.   15 

3.5 Regional- and Seasonal-Scale Sensitivity of Carbon Fluxes to Imposed CO2 Variability  

The Atmospheric Tracer Transport Model Intercomparison Project (TransCom) 03 experiment (Gurney et al., 2000) defined a 

number of land and ocean source/sink regions of interest for the estimation of uncertainty in atmospheric inversion-based 

carbon flux estimates.  The eleven terrestrial regional boundaries shown in their basis function map 

(http://transcom.project.asu.edu/transcom03_protocol_basisMap.php) offer a convenient framework for characterizing, in one 20 

place, the relative impacts of the different facets of spatio-temporal CO2 variability on carbon fluxes and how the relative 

importance of these different facets varies across the globe.  Such a characterization is presented here in the form of histograms 

(Fig. 8); together, the histograms succinctly capture our regional and seasonal findings. 

Fig. 8 shows, for example, that ignoring the diurnal variation of atmospheric CO2 results in the overestimation of GPP in all 

seasons and in all TransCom regions except for Australia, where it slightly decreases GPP and where the influence of the 25 

spatial CO2 variability is dominant.  Spatial CO2 variability is also found to lead to GPP changes in the Northern Hemisphere 

temperate regions (North America and Eurasia); here, the GPP reduction induced by ignoring spatial CO2 variations is large 

enough to offset the increase induced by ignoring diurnal CO2 variations (Figs. 8b and 8h). In the tropics and North Africa, 

spatial CO2 variability only partially compensates for diurnal variability (Figs. 8c, 8e and 8i).      

Seasonal CO2 variations are found to be particularly important in Northern hemisphere high latitude regions; during fall (i.e., 30 

SON in Fig. 8a), the GPP change induced by seasonal CO2 variations is comparable to (and in the same direction as) that 

caused by diurnal variations (Figs. 8a and 8g). Similarly, seasonal variations have an important impact on GPP in Europe 
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during fall (i.e., SON in Fig. 8k), presumably due to the presence of mixed (boreal and temperate) forests there. For Europe, 

the global spatial variation in atmospheric CO2 is also important (Fig. 8k).  Synoptic scale variations in atmospheric CO2 have 

little impact anywhere, whereas interannual variations show a relatively large percentage impact (in the mean, i.e., beyond the 

impact of the trend, as described in Fig. S5a) in the two African regions (Figs. 8e, 8f) – ignoring interannual variations in CO2 

in these regions leads to increased GPP. 5 

4 Discussion 

Overall, our results indicate that ignoring temporal variability in atmospheric CO2 in the bottom-up estimation of carbon fluxes 

with a representative offline model can lead to overestimates of global GPP of up to 0.6 PgC year-1 (see Table 1 and Fig. S5a).  

The corresponding estimates of the strength of the land carbon sink may be too high (i.e., estimates of mean global NBP may 

be to low) by about 0.1 PgC year-1.  The most important facets of temporal CO2 variability are found to be its diurnal and 10 

interannual variabilities; ignoring them contribute 0.5 PgC year-1 and 0.08 PgC year-1, respectively, to the GPP overestimate. 

On the other hand, ignoring spatial variability in atmospheric CO2 reduces the mean global GPP by 0.2 PgC year-1 (Fig. S5a); 

that is, ignoring this spatial variability contributes to an underestimation of global GPP. 

Liu et al. (2016) performed, in essence, a subset of the experiments examined here.  In agreement with our findings, they show 

that the seasonal variation of CO2 lowers global GPP and that the spatial variation of CO2 increases it.  The authors in fact 15 

suggest that ignoring spatial variability in CO2 largely compensates for ignoring the temporal variability, though they admit 

that the use of marine background CO2 concentrations in their baseline simulation, which are lower than the surface-layer CO2 

values seen by plants, may have exaggerated the spatial variability-related GPP reduction.  Our more comprehensive set of 

experiments allows us to examine, in addition, the effects of diurnal and interannual CO2 variability on global carbon fluxes, 

which turn out to be more important than the effects of either seasonal or spatial CO2 variability.  Note that the neglect of 20 

diurnal variability may partially explain the overestimate (relative to observations-based datasets) noted in the literature 

regarding tropical GPP simulated by CLM4 (Bonan et al., 2011).  Also note that because the Catchment-CN model 

underestimates the response to CO2 fertilization seen in the FACE experiments, the impact of diurnal variability at work in 

nature could be somewhat larger than our estimate here. 

Again, the overestimation of the global carbon sink (the negative of NBP) associated with ignoring the temporal variability of 25 

atmospheric CO2 is 0.1 PgC year-1 (Table 1 and Fig. S5b). This is in fact a small deviation relative to estimates of the overall 

land sink; Le Quéré et al. (2016, their Fig. 2), for example, cite an estimate of -3.1 PgC year-1 for this sink.  This small 

sensitivity has relevance to the ongoing CMIP6 project. Through our experiments we quantify in effect the expected impacts 

of the minimum requirement recommended by CMIP6 for historical siumulations (Eyring et al., 2016), namely, that of globally 

uniform annual mean CO2 with interannual variations, and of the CMIP6 option of including latitudinal and seasonal variations 30 

(Meinshausen et al., 2017).  The small sensitivities we uncover suggest that these recommendations, while not harmful, will 

nevertheless have little impact on the global-scale fluxes produced in CMIP6.  The land modeling and carbon cycle community 
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need not have been too concerned over the years about the global impacts of CO2 variability finer than what has commonly 

been applied in past studies (i.e., annually increasing transient CO2). 

This, however, may be an overstatement.  It is worth noting that the bias of 0.1 PgC year-1 associated with spatiotemporal CO2 

variability is in fact a significant fraction of the uncertainty in this value (listed by Le Quéré et al. (2016) as  +/- 0.9 PgC year-

1).  Also, various model intercomparison studies (e.g., CMIP6, TRENDY and MsTMIP) and the Global Carbon Project (GCP) 5 

may need to consider the full range of spatio-temporal CO2 variability when estimating terrestrial productivity and net sink 

size on regional and seasonal scales (Fig. 8), for which the impacts can be larger.  The growing-season bias can be as large as 

6% from our analysis (Fig. S6), and the local impact on tropical GPP well exceeds the global impact.  It is thus sensible to 

impose, if at all possible, realistic CO2 variability in carbon budget analyses. 

Our results have some broader implications.  They suggest that the diurnal ‘rectifer effect’ in a DGVM-based NBP may need 10 

to be considered in future atmospheric inversion studies that use it as a prior, given that biases in the prior can propagate into 

errors in the inversion products. Furthermore, they suggest that if the land surface carbon dynamics component of a modeling 

system is not coupled to the atmosphere with a sub-daily time step, the evolution of land carbon (e.g., in a climate change 

study) will not be realistic.  Finally, increasing CO2 has been shown in field experiments (McCarthy et al., 2010; Norby and 

Zak, 2011) to foster biomass production (Huntingford et al., 2013).  Under a CO2-enriched environment, plants obtain CO2 15 

through the open stomata more efficiently and thereby lose less water to the atmosphere, allowing them to be more productive 

in dry regions or seasons.  This process can alter the seasonality of the water cycle (Lemodant et al., 2016) as well as estimates 

of the plants’ productivity in water-limiting areas (Swann et al., 2016).  While our results in fact indicate, on their surface, a 

negligible impact of spatio-temporal CO2 variability on water cycle variations (not shown), more careful analysis of the data 

may reveal some interesting connections. 20 

5 Conclusions 

In summary, the key results from this study are: 

1. The carbon flux estimates of the Catchment-CN model generally agree with other statistics-based and model-based 

estimates. The GPP estimates from our control simulation (which utilized the full complement of atmospheric CO2 

variability contained within the CarbonTracker dataset) validate reasonably well with the MTE-GPP dataset, a 25 

widely-used product for model evalution, and our NBP estimates are also consistent to first order with results from 

the diagnostic CASA-GFED3 model (a bottom-up approach) and the atmospheric inversions (a top-down approach).  

The agreement supports our use of the Catchment-CN model in the experiments outlined in Fig. 1. 

2. Ignoring the various facets of temporal variability in CO2 leads to increases in the mean global GPP simulated by the 

process-based model. The diurnal component of the variability is particularly important; ignoring it increases the 30 

estimated mean global GPP by 0.5 PgC year-1.  
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3. Ignoring the spatial variability of atmospheric CO2, on the other hand, leads to a decrease in mean global GPP, with 

decreases in the Northern Hemisphere and increases in the Southern Hemisphere.  The overall decrease of 0.2 PgC 

year-1 is smaller than the increase associated with ignoring temporal variability. 

4. For estimating multi-year mean GPP, the effect of neglecting interannual variations of CO2 is relatively small; 

however the differences at the beginning and end of the period (up to 1.4 PgC year-1 difference between year 2001 5 

and year 2014 in this study) can be much greater than the effect of ignoring diurnal CO2 variation.   

5. The impacts of ignoring temporal and spatial variability vary with region.  The sensitivity in the Tropics tends to be 

the largest.  The seasonal variability of atmospheric CO2 plays a particularly important role in the NH boreal regions 

during fall and winter. Spatial variability of CO2 is important in temperate regions, offsetting the local impacts of 

temporal variability on GPP. 10 

6. The magnitude of the sensitivities found is small, particularly at the global scale.  The proper imposition of realistic 

CO2 variability in offline studies will incur only slight modifications to the terrestrial carbon fluxes computed.  This 

said, the imposition of realistic CO2 variability is straightforward and could have more significant impacts on 

quantified regional and seasonal fluxes. 

 15 

The carbon flux estimation sensitivities highlighted herein are, of course, model-dependent. The sensitivities are subject to 

model-specific assumptions and parameters (see the MsTMIP inter-model comparison study, Ito et al., 2016) and to the 

selection of the meteorological inputs (Poulter et al., 2011). Still, as noted in section 3.3, the sensitivity of GPP to CO2 increases 

in the Catchment-CN model is similar to that in other state-of-the-art models, suggesting that the results herein are broadly 

applicable and that DGVM-based estimates in the literature of global GPP may be subject to the noted biases, small as they 20 

are found to be here.  
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Mean global annual (PgC year-1) GPP ΔGPP  NBP ΔNBP  

CTRL (3-hourly CO2 concentration) 130.632 -- -0.553 -- 

No diurnal variability 131.129 +0.497 -0.653 -0.100 

No synoptic variability 131.132 +0.003 -0.653  0.000 

No interannual variability 131.210 +0.078 -0.649 +0.004 

No seasonal variability 131.230 +0.020 -0.655 -0.006 

No spatial variability 131.041  -0.189 -0.616 +0.039 

 
Table 1: Changes in mean global GPP and NBP for 2001-2014, resulting from a series of simulations representing the removal of 
temporal and spatial variability of atmospheric CO2 concentrations. Delta (Δ) indicates the difference due to removal of a 
spatial/temporal variability (see Fig. 1 for description). 5 
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Fig. 1: Schematic of the six simulations examined in this study, which were designed to isolate the impacts of the different facets of 
spatiotemporal CO2 variability on simulated carbon fluxes. The CO2 concentrations were reconstructed from the NOAA 
CarbonTracker 3-hourly global CO2 data. 5 
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Fig. 2: Spatial patterns of 2002-2011 mean GPP (gC/m2/day) from (a) Catchment-CN GPP and (b) MTE-GPP, and (c) Zonal mean 
GPP (solid blue: Catchment-CN model; dotted black: MTE-GPP). 
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Fig. 3: Monthly mean of terrestrial NBP of the Catchment-CN model (blue), of the CASA-GFED3 model (red), and of three 
atmospheric inversions (dotted lines), for the period of 2004-2014. Positive (negative) NBP values indicate that land is a carbon 
source (sink). 
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Fig. 4: (a) Change in mean global GPP (PgC month-1) due to removal of diurnal variability of atmospheric CO2 concentration (i.e., 
GPP from the dCO2 experiment minus that from the control).  (b) Map of time-averaged GPP changes in percent (%). The tile-
based model GPP values were aggregated to 2° x 2.5° for visualization purposes. 5 
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Fig. 5: (a) Change in mean global GPP (PgC month-1) due to removal of interannual variability of atmospheric CO2 concentration 
(i.e., GPP from the mmCO2 experiment minus that from the mCO2 experiment).  (b) Map of time-averaged GPP changes in percent 5 
(%). 
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Fig. 6: (a) Change in mean global GPP (PgC month-1) due to removal of seasonal variability of atmospheric CO2 concentration (i.e., 
GPP from the aCO2 experiment minus that from the mmCO2 experiment).  (b) Map of time-averaged GPP changes in percent (%). 
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Fig. 7: (a) Change in mean global GPP (PgC month-1) due to removal of spatial variability of atmospheric CO2 concentration (i.e., 
GPP from cCO2 experiment minus that from aCO2 experiment).  (b) Map of time-averaged GPP changes in percent (%). 
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Fig. 8: Regional- and seasonal-scale impacts of spatiotemporal CO2 variabilities on GPP. Changes shown are in %. The map in the 
bottom panel shows the regional boundaries of TransCom land regions (reconstructed from the basis function map in 
http://transcom.project.asu.edu/transcom03_protocol_basisMap.php). 5 
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