Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-188-AC2, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

BGD

Interactive comment

Interactive comment on "Rapid response of habitat structure and aboveground carbon storage to altered fire regimes in tropical savanna" by Shaun R. Levick et al.

Shaun R. Levick et al.

slevick@bgc-jena.mpg.de

Received and published: 9 August 2018

Reviewer comment: This is a useful application of LiDAR technology to examine effects of burning on vegetation structure. The results are important, but I must admit that I was disappointed there were no analyses of how fire affected 3D vegetation structure, despite multiple claims to the contrary (Page 1, lines 8 and 11; Page 2, line 34; Page 12, Line 13; Page12, line 17 Figure 6, caption). These claims should be removed or actual analysis of 3D structure should be added.

Author response: Thank you, we're glad you consider these results to be important. Our reference to 3D comes from our consideration of canopy cover (horizontal compo-

nent) and height (vertical component) which together encompass the 3D structure of vegetation. However we agree with your comment that we have not analysed single metrics that capture 3D structure/diversity. We have removed any misleading claims and have checked the validity of our terminology throughout.

Reviewer comment: Figure 2 is a great reconstruction of the 3D structure of the vegetation, but the information contained therein was ultimately distilled into metrics that lose this 3D information. I do not have the expertise to suggest what metrics should be used to compare 3D structure, but certainly such metrics must exist, such as the various methods to measure aggregation.

Author response: Thanks you. We disagree that the 3D information has been lost through our analyses, it has been distilled and we focused on metrics which are targeted in traditional ecology (height, height layering, cover, biomass). The field of true 3D metrics is gaining momentum and we agree more could be done to derive metrics of full 3D structure. We consider this avenue to be important for future research, but beyond the scope of this study. We have raised this point in the future directions section of our discussion.

Reviewer comment: It would have been helpful to have a brief overview of the research approach at the end of the introduction. For example, as I was reading the methods, it was not clear to me why you used Lidar to estimate biomass of the fire plots when you already had more direct measurements of above- ground biomass for the same plots. Of course your approach allowed you to estimate biomass for a 3-fold greater area of each experimental plot, which I suspect is the reason that you did this, but this was not clearly laid out.

Author response: Thanks for pointing that out, and yes our reasoning to use LiDAR was to increase the area sampled, but also to test the potential for LiDAR to be used in future fire/biomass studies over much larger areas in these landscapes. We have laid this out more clearly at the end of the introduction.

BGD

Interactive comment

Printer-friendly version

Reviewer comment: Considering that you possess the ground-based data for comparing fire impact on AGB, a direct test using these data should be included. Even though the area sampled is lower, the ground measurements avoid the additional error introduced by relying on a model relationship (even though the fit was quite good).

Author response: Good point - we have added the field estimated AGB values to Figure 4b, making it possible to compare the patterns as if we only had field data available.

Reviewer comment: What is the difference between Figure 7 and the corresponding data from figure 6? At first glance, it appeared that Figure 7 was presenting data already presented in figure 6, but upon close examination, the corresponding data in figure 6 are different than figure 7. For example in figure 6, there is more vegetation at heights of about 8 to 15m in the 2-yr early treatment than in the unburnt treatment, in contrast to Figure 7. The figure legends and text do not help clarify these differences. Also, are the error bars standard errors? Were they calculated using variation and n of 30x30 plots or of experimental plots? The latter should be used if we are to use them to compare treatments.

Author response: It is the same underlying data. We have tried various iterations of showing all the profiles together, but found them too clustered for comparison. Figure 6 shows the vertical profile means and 95% CI. We broke out the unburnt and the early and late season 2-years to show the effect of altering only season while keeping only frequency constant, since early versus late season burning is important from a policy perspective in northern Australia. We also show the mean and SE (experimental plots) here to be more objective is comparing the overlap between treatments. Clarified in text and legends.

Reviewer comment: The fire intensity data in Table 1 are important for this study, but no details are given. How were these data collected? Were they obtained for every fire between 2004 and 2013 or just for representative fires? If these data have not been published elsewhere then the methods should be described.

BGD

Interactive comment

Printer-friendly version

Author response: We have added this to the methods section and provided a reference to earlier work.

Reviewer comment: Page 2, Line 23. It seems like an overstatement that detailed 3D measurements are the best way to quantify carbon dynamics. Perhaps it could be the best choice for non-destructive measurements of certain C pools.

Author response: True – modified to say that better understanding of above ground biomass can be achieved

Reviewer comment: Page 3, line 15 and line 19. In these instances replace "blocks" with "block."

Author response: Corrected.

Reviewer comment: Page 4, line 3. In what year were these tree measurements made?

Author response: 2014 - now specified in manuscript

Reviewer comment: Page 5, lines 8-12 and page 6, line 3. Are references available for these software tools?

Author response: Yes – now provided. rapidlasso GmbH, "LAStools - efficient LiDAR processing software", obtained from http://rapidlasso.com/LAStools

Reviewer comment: Page 6, line 12. I presume that two of these six quadrats corresponded with the plots sampled on the ground. It would be helpful to clarify this. If not, I am not sure how figure 3 was generated.

Author response: Correct – clarified.

Reviewer comment: Page 6, line 15. I disagree that including quadrats as a random resolves the issue of pseudoreplication. One foolproof way of avoiding pseudoreplication would be to average your data across quadrats to get a single value for each experimental plot. Traditionally the blocks are considered to provide the replication,

BGD

Interactive comment

Printer-friendly version

but this is lost if block and block x treatment are treated as a fixed factors. For a randomized full block design, block is typically treated as a random factor, treating the blocks as replicates of the experimental treatment, and in a least-squares approach, the block x treatment interaction would be used for the denominator MS. Of course the denominator df would be rather small in a design like this. I am not quite sure what is accomplished by treating the subplot as a random factor, but certainly it is not eliminating the pseudoreplication issue. I believe there are ways of estimating df for Ime4 tests, and these should be presented, and I strongly recommend that the authors archive their data and r code as supplementary information. All this being said, this is a large-scale experiment, which commonly suffer from pseudoreplication, so I am not as concerned about pseudoreplication here as I am about the claim that pseudoreplication has been avoided.

Author response: Thanks for raising these concerns. We have removed claims that our approach has avoided pseudoreplication.

Reviewer comment: Figure 3. The legend should state what each point represents. I presume the ground-estimated AGB corresponds to one 30m x 30m plot.

Author response: Yes that's correct. We have updated this legend (and others) with more detail.

Reviewer comment: Page 7, line 6-7. I don't think is what you really mean to say. It is always true that the model including all factors and interactions will explain the most variance. Besides, Table 2 doesn't really show how much variance is explained.

Author response: Thanks for picking this up – we have clarified the text.

Reviewer comment: Page 8, line 18. It is stated here that the late burns had significantly less canopy than the unburnt, but no statistical tests were performed. Perhaps this conclusion is based on the non-overlap of error bars in figure 7. This should be clarified, and it is important to provide details on how these errors bars were generated.

BGD

Interactive comment

Printer-friendly version

Author response: Clarified as suggested, and details on error bars suggested.

Reviewer comment: Page 9, Line 2. It isn't clear what "this study" is. Does it refer to the present study, to Murphy et al 2013, or to Fensham et al 2017?

Author response: Thanks – we have clarified this section..

Reviewer comment: Figure 5. Are these relationships significant if you do not aggregate them by treatment? Presumably you have fire intensity data for each 1-ha plot, which would allow you to test this for a larger number of true replicates.

Author response: Good point – we have explored this in more detail and have used the non-aggregated intensity data. The refreshed Figure 5 now also shows the differences with landscape position as raised by Reviewer 1 (A,B,C block).

Reviewer comment: Reviewer comment: Page 10, Lines 1-3. Please be specific about what results from your study suggest this.

Author response: Clarified as requested.

Reviewer comment: Figure 6. Please provide more information about the data in this figure. Are these frequency distributions of the returns themselves, or are they a reconstruction of vegetation density that takes into account the fact that foliage high in the canopy has a higher probability of being detected than foliage low in the canopy. Also, figure 6 shows 1-D vegetation structure, not 3-D structure as indicated by the caption.

Author response: We have provided clearer information as requested. These are the returns after running a voxel thinning to remove duplicate points and standardise density across the site. Probability of upper layer detection is not explicitly accounted for - these effects are minimal in savannas compared to denser tropical or temperate systems. These details have been added and the Figure legend has been corrected.

Reviewer comment: Page 11, Line 3. Where do you show this correlation? You show a relationship with fire intensity, but I don't think you showed this for frequency.

Interactive comment

Printer-friendly version

Author response: True - this sentence has been revised.

Reviewer comment: Page 12, line 3. This mention of herbaceous volume here raises a relevant point regarding the interpretation of your figures. In figure 7, do the data corresponding to 1-m above the ground correspond in reality to 0-1 m, or to 1-2 m, or to 0.5 to 1.5 m. When looking at figure 7, it wasn't clear whether grasses would be included in the lowest point.

Author response: 1-m corresponds to 1-2m, we have clarified this in the Figure legend. Denser patches of grass may be included in the lower layers, but most often it is not detected. We have added a line stating there might be some returns coming from herbaceous layer, but we cannot quantify this.

Reviewer comment: Page 12, line 12. I am not sure what minimal overlap means here. I don't think you are referring to overlap of individual trees, since you did not examine this. And looking at figure six, I would say that there is a lot of overlap in these distributions, since some distributions fit wholly within others.

Author response: Thanks for picking this up – we did mean the distributions, but overlap was the wrong term, we have clarified this sentence.

BGD

Interactive comment

Printer-friendly version

Interactive comment on Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-188, 2018.