Station	Water	Sampling	Archaeal <i>amo</i> A (copies L ⁻¹)			<i>β</i> -pr	β-proteobacterial <i>amo</i> A (copies L ⁻¹)			<i>Nitrospira</i> 16S rRNA (copies L ⁻¹)				<i>Nitrospina</i> 16S rRNA (copies L ⁻¹)					
	Depth (m)	Depth (m)	FL ^a	SD	PAb	SD	FL ^a	SD	PAb	SD	FL ^a	SD	PAb	SD	FL ^a	SD	PAb	SD	
D1	0.0	1	0		1501	40	0		1338	799	1533	446	33025	525	909	747	4537	691	
PI	8.9	7	0		1248	57	228	56	528	17	776	76	53287	1086	121	6	3902	179	
D2	0.9	1	NS ^c				NS ^c				NS ^c				NS ^c				
P2	9.8	7	2768	27	4462	1243	526	6	7441	562	29374	5945	328697	15430	4851	447	45997	2792	
D2	10.2	1]	NS ^c]	NS ^c			NS ^c				NS ^c			
P3	10.2	8	2556	251	11321	85	298	14	8239	482	25360	1478	573425	12573	5103	850	85027	9576	
P4	21.5	1]	NSc]	NSc				NS ^c]	NS ^c		
	21.5	18	657	22	12080	516	308	49	34158	2469	9175	1541	2024263	198739	3068	441	380537	14232	
2.5	22.5	1	4104	80	6535	30	961	58	5532	428	40070	3306	365741	18556	13556	1852	84860	3967	
P5		19	3263	109	9162	327	672	70	12341	292	38076	5273	763345	93318	12186	1715	125427	10142	
DC	18.8	1	3617	305	11219	241	488	71	4136	208	21516	2437	482519	13994	3763	250	56974	2244	
Po		16	NS ^c			NS°			NS ^c				NS ^c						
D7	10	1	40742	2180	108877	4425	2012	245	14259	3443	69806	5991	735150	42882	7820	652	95572	4870	
Ρ/	12	10	10212	2234	8267	677	221	11	974	171	11393	3342	46220	3334	950	103	7540	399	
DQ	5	1	2614	47	64350	3095	150	40	1024	72	16111	1427	70874	15050	3368	539	7479	625	
Pð	3	3.5	2904	272	49549	4515	201	117	1228	92	26179	3334	83656	10345	5913	668	11065	1838	
DO	0	1	1018	55	23925	1716	70		553	127	3536	475	40278	3435	8309	1501	75342	10147	
P9	0	6	501	22	454359	16727	0		1392	64	0		47889	10565	769	139	296757	20048	
D10	12.0	1	1114	28	730	231	0		121		506	128	1663	946	1814	98	2033	214	
P10	12.9	11	3683	160	9475	1631	298	71	165	29	63	23	973	292	2340	256	14241	2378	
P11	14.2	1	0		0		0		172	118	43		495	135	412	151	51		

Table S1. Abundances of the archaeal and β -proteobacterial *amo*A genes and *Nitrospira* and *Nitrospina* 16S rRNA genes in the PRE.

		12	4710	435	18304	1145	0	224	14	154	101	2542	750	3400	315	12913	2894
D10	16	1	714	52	0		0	0		68		0		6945	3360	362	
F 12	10	14	21793	1731	33005	3976	0	1423	74	227	110	5294	807	6635	851	20858	530

^a, Free-living; ^b, Particle-associated; ^c, No sample

Table S2. Primer set sequences, PCR reaction mixtures and conditions for each gene.

Target gene	Primer	Sequence (5'-3')	PCR mixture	PCR conditions	References			
β -proteobacterial	amoA-34F	GCGGCRAAAATGCCGCCGGAAGCG	GCGGCRAAAATGCCGCCGGAAGCG 50 μL reaction mixture: Failsafe Premix F (Epicentre Biotechnologies, Madison, WI, U.S.A.) 25 μL primers 0.5 μM plantium Tag					
amoA	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	DNA polymerase (Invitrogen, Carlsbad, CA, U.S.A.) 1 U, DNA template 1 μL	for 30 s, 57 °C for 30 s, 73 °C for 3 min).	al., 2010			
	Arch-amoAF	STAATGGTCTGGCTTAGACG	50 μ L reaction mixture: Failsafe Premix F	95 °C for 5 min; 30 x	Francis et al			
Archaeal amo A			(Epicentre Biotechnologies) 25 μ L, primers 0.5	(94 °C for 45 s, 53 °C for	2005: Hu et			
Archaear amora	Arch-amoAR	GCGGCCATCCATCTGTATGT	μM, plantium Taq DNA polymerase	60 s, and 72 °C for 60 s);	al., 2010			
			(Invitrogen) 1 U, DNA template 1 µL	and 72 °C for 15 min.	al., 2010			
	nxrBF706	AAGACCTAYTTCAACTGGTC	50 µL reaction mixture: Ex Taq DNA	95 °C for 5 min; 35 x				
Nitrobacter and			polymerase 0.25 µL (TaKaRa), 10×Buffer 5	(95 °C for 40 s, 56 °C 30	Koch, 2009			
Nitrococcus nxrB	nxrBR1431	CGCTCCATCGGYGGAACMAC	μ L, dNTP 4 μ L, Mg ²⁺ 4 μ L, primers 1 μ M,	s, 72 °C 30 s), 72 °C for				
			BSA (20 $\mu g/uL)$ 0.125 $\mu L,$ DNA template 2 μL	10 min.				
	nxrB169F	TACATGTGGTGGAACA	25 μL reaction mixture: Platinum Taq DNA	95 °C for 5 min; 35 x	Madified from			
			polymerase 0.1 µL (Invitrogen), 10×Buffer 2.5	(95 °C for 40 s, 56.2 °C	Notified from			
Nitrospira nxrB	nxrB638R	CGGTTCTGGTCRATCA	μ L, dNTP 2 μ L, Mg ²⁺ 4 μ L, primers 1 μ M,	40 s, 72 °C 90 s), 72 °C	Pester et al.,			
			BSA (200 ng/µL) 2.5 µL, DNA template 1 µL	for 10 min.	2013			
	nxrBNF	GGGCGACCAGATGGAAAC	25 μL reaction mixture: LA Taq DNA	95 °C for 5 min; 35 x				
			polymerase 0.25 µL (TaKaRa), 10×Buffer 2.5	(95 °C for 40 s, 56.2 °C				
ivitrospina nxrB	nxrBNR	GGGCCGGACATAGAAAGG	μ L, dNTP 1 μ L, Mg ²⁺ 5 μ L, primers 1 μ M,	40 s, 72 °C 90 s), 72 °C	i nis study			
			BSA (200 ng/µL) 2.5 µL, DNA template 1 µL	for 10 min.				

1 **References**

2	Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.:
3	Ubiquity and diversity of ammonia-oxidizing archaea in water columns and
4	sediments of the ocean, P. Natl. Acad. Sci. USA, 102, 14683-14688, 2005.
5	Hu, A., Yao, T., Jiao, N., Liu, Y., Yang, Z., and Liu, X.: Community structures of
6	ammonia-oxidizing archaea and bacteria in high-altitude lakes on the Tibetan
7	Plateau, Freshw. Biol., 55, 2375–2390, 2010.
8	Kim, O. S., Junier, P., Imhoff, J. F., and Witzel, K. P.: Comparative analysis of
9	ammonia monooxygenase (amoA) genes in the water column and sediment-water
10	interface of two lakes and the Baltic Sea, FEMS Microbiol. Ecol., 66, 367-378,
11	2008.
12	Koch H.: Ecophysiological investigation of nitrite-oxidizing bacteria of the genus
13	Nitrospira, Ph.D. thesis, University of Vienna, Austria, 123pp., 2009.
14	Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H. and Lücker, S.: NxrB encoding
15	the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for
16	nitrite-oxidizing Nitrospira, Environ. Microbiol., 16, 3055–3071, 2013.
17	

Table S3. Primer pair sequences, qPCR mixtures and conditions for each gene.

Target gene	Primer	Sequence (5'-3')	PCR mixture	PCR conditions	Efficiency	References
0. masta alta ata ni al	amoA-1F	GGGGHTTYTACTGGTGGT	25 μL reaction mixture: SYBR® Premix	94 °C for 30 s; 45 ×		Rotthauwe et al.,
p-proteobacteriai amoA	amoA-2R	CCCCTCKGSAAAGCCTTCTTC	Ex Taq ¹³⁴ (TakaRa, Dahan, Cmna) 12.5 μL, BSA 5 μg, primers 0.4 μM, DNA template 1 μL	(94 °C for 15 s, 60 °C for 60 s, and 72 °C for 90 s).	96-104 %	2011; Mincer et al., 2007
Archaeal amoA	Arch-amoAF	STAATGGTCTGGCTTAGACG	25 μL reaction mixture: SYBR® Premix	95 °C for 30 s; 40 \times		Francis et al.,
	Arch-amoAR	GCGGCCATCCATCTGTATGT	Ex Taq™ (TakaRa) 12.5 µL, BSA 5 µg, primers 0.4 µM, DNA template 1 µL	(95 °C for 30 s, 53 °C for 60 s, and 72 °C for 45 s).	91-98%	2005; Hu et al., 2011
Nitrospira 16S	Nspra-675f	GCGGTGAAATGCGTAGAKATCG	25 µL reaction mixture: SYBR® Premix	95 °C for 10 min; 45 \times		Graham et al.,
rRNA	Nspra-746r	TCAGCGTCAGRWAYGTTCCAGAG	Ex Taq [™] (TakaRa) 12.5µL, BSA 15 µg, primers 0.2 µM, DNA template 1 µL	(94 °C for 30 s, 64 °C for 30 s, 72 °C for 60 s).	92-98 %	2007; Attard et al., 2010
Nitrospina 16S rRNA	NitSSU_130F	GGGTGAGTAACACGTGAATAA	25 μL reaction mixture: SYBR® Premix Ex Tag TM (TakaRa) 12 5μL BSA 1 μg	94 °C for 15 min; 45 × (94 °C for 15 s, 57.5 °C	90-100 %	Mincer et al. 2007
	NitSSU_282R	TCAGGCCGGCTAAMCA	primers 0.4 μ M, DNA template 1 μ L	for 15 s, 72 °C for 30 s, 77 °C for 1 s).	<i>y</i> 0 100 /0	Wincer et al., 2007

1 References

2	Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B. F., Recous, S.,
3	Le Roux, X.: Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers
4	underlie the response of soil potential nitrite oxidation to changes in tillage
5	practices, Environ. Microbiol., 12, 315–326, 2010.
6	Graham, D. W., Knapp, C. W., Van Vleck, E. S., Bloor, K., Lane, T. B., and Graham,
7	C. E.: Experimental demonstration of chaotic instability in biological nitrification,
8	ISME J., 1, 1–9, 2007.
9	Hu, A., Jiao, N., and Zhang, C.: Community structure and function of planktonic
10	Crenarchaeota: changes with depth in the South China Sea, Microb. Ecol., 62,
11	549–563, 2011.
12	Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., and DeLong, E. F.:
13	Quantitative distribution of presumptive archaeal and bacterial nitrifiers in
14	Monterey Bay and the North Pacific Subtropical Gyre, Environ. Microbiol., 9,
15	1162–1175, 2007.
16	Rotthauwe, J. H., Witzel, K. P., and Liesack, W.: The ammonia monooxygenase
17	structural gene amoA as a functional marker: molecular fine-scale analysis of
18	natural ammonia-oxidizing populations, Appl. Environ. Microbiol., 63, 4704–4712,
19	1997.

Genes	n	No. of OTUs	C (%)	Η'	1/D	Chao1
AOA amoA (SCS)	392	60	0.94	3.04	10.64	49.46
AOA amoA (PRE)	127	23	0.90	2.13	4.87	42.5
β-AOB amoA (PRE)	26	3	0.96	0.43	1.28	3
Nitrospira nxrB	345	29	0.96	1.79	3.57	42
Nitrospina nxrB	185	12	0.98	1.79	4.83	12.75
Nitrobacter nxrB	48	3	0.98	0.78	2.13	3

Nitrobacter nxrB genes based on 5% nucleic acid sequences cutoff.

3 n, number of sequences; OTU, operational taxonomic unit; C, coverage; H',

4 Shannon-Wiener Index; 1/D, Simpson's diversity Index; SCS, South China Sea; PRE,

5 Pearl River estuary

1

Cono	Community	Water m	eters	Subst	rate paran	neters	Parameters influencing substrate availability			
Gene	Community	Temperature	Salinity	SiO ₃ ²⁻	\mathbf{NH}_{4}^{+}	NO ₂ -	NO ₃ -	TSM	DO	pН
		(n = 20)	(n = 20)	(n = 20)	(n = 15)	(n = 20)	(n = 20)	(n = 19)	(n = 20)	(n = 20)
	FL ^a	0.302	-0.441	0.439	-0.108	<mark>0.527*</mark>	0.759 ^{**}	-0.053	-0.425	-0.512^{*}
	PA ^b	0.332	<mark>-0.474*</mark>	<mark>0.475*</mark>	-0.048	<mark>0.706^{**}</mark>	<mark>0.464*</mark>	<mark>0.520*</mark>	<mark>-0.525*</mark>	<mark>-0.496*</mark>
WINGIL	FL+PA	0.341	<mark>-0.471*</mark>	<mark>0.487*</mark>	-0.053	<mark>0.718^{**}</mark>	<mark>0.491*</mark>	<mark>0.504*</mark>	<mark>-0.536*</mark>	<mark>-0.513*</mark>
	FL ^a	-0.158	0.016	-0.051	-0.208	0.005	0.013	-0.125	0.024	-0.050
AUA amoA	PA ^b	-0.213	0.239	-0.223	-0.341	-0.186	-0.144	<mark>0.562*</mark>	0.209	0.191
	FL+PA	-0.226	0.238	-0.225	-0.321	-0.184	-0.142	<mark>0.543*</mark>	0.208	0.184
N 7*/	FL ^a	0.426	<mark>-0.580**</mark>	<mark>0.537*</mark>	-0.205	<mark>0.643**</mark>	0.772 ^{**}	-0.099	<mark>-0.464*</mark>	-0.625**
Nurospira 16S rRNA	PA ^b	0.356	<mark>-0.474*</mark>	<mark>0.491*</mark>	-0.073	<mark>0.730**</mark>	<mark>0.518*</mark>	<mark>0.504*</mark>	<mark>-0.541*</mark>	<mark>-0.524*</mark>
	FL+PA	0.367	<mark>-0.475*</mark>	<mark>0.503*</mark>	-0.080	<mark>0.743**</mark>	<mark>0.539*</mark>	<mark>0.493*</mark>	<mark>-0.550*</mark>	<mark>-0.540*</mark>
N7:4	FL ^a	0.097	-0.167	0.158	-0.268	0.436	0.253	-0.315	-0.190	-0.230
<i>Nurospina</i> 16S rRNA	PA ^b	0.108	-0.134	0.162	-0.105	<mark>0.453*</mark>	0.173	0.822**	-0.276	-0.221
10511114	FL+PA	0.111	-0.140	0.167	-0.115	<mark>0.468*</mark>	0.182	<mark>0.811^{**}</mark>	-0.282	-0.229

Table S5. *r* values for the relationship between gene abundances of nitrifiers and environmental parameters in the PRE.

^a, Free-living; ^b, Particle-associated; ^{*}, P < 0.05; ^{**}, P < 0.01; TSM, Total suspended material; DO, Dissolved oxygen

3

Figure S1. Depth profiles of biogeochemical parameters at SEATS.

Figure S2. Rarefaction curves of (a) AOA and β-AOB amoA gene sequences and (b) *Nitrospira*, *Nitrospina*, and *Nitrobacter nxr*B gene sequences. The curves were
generated at 95% DNA sequence identity.

2 Figure S3. Unrooted neighbor-joining (NJ) phylogenetic tree of the archaeal amoA

1	gene sequences (expanded view for group Ba and Bb (LAC)). Clone sequences from
2	this study are shown in bold and sequences sharing 95% DNA identity are grouped.
3	Phylogenetic relationships were bootstrapped 1000 times, and bootstrap values greater
4	than 50% are shown. The scale bar indicates 5% estimated sequence divergence.
5	