

1	
2	Ammonia impacts methane oxidation and methanotrophic community in
3	freshwater sediment
4	
5	Yuyin Yang ¹ , Jianfei Chen ¹ , Shuguang Xie ^{1,*} , Yong Liu ²
6	
7	¹ State Key Joint Laboratory of Environmental Simulation and Pollution Control,
8	College of Environmental Sciences and Engineering, Peking University, Beijing
9	100871, China
10	
11	² Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of
12	Environmental Sciences and Engineering, Peking University, Beijing 100871, China
13	
14	
15	* Corresponding author. Tel: 86-10-62751923. Email: xiesg@pku.edu.cn (S Xie)
16	
17	
18	
19	
20	
21	

22 Abstract

- 23 Lacustrine ecosystems are an important natural source of greenhouse gas methane.
- 24 Aerobic methanotrophs are regarded as a major regulator controlling methane
- 25 emission. Excess nutrient input can greatly influence carbon cycle in lacustrine
- 26 ecosystems. Ammonium is believed to be a major influential factor, due to its
- 27 competition with methane as the substrate for aerobic methanotrophs. To date, the
- 28 impact of ammonia on aerobic methanotrophs remains unclear. In the present study,
- 29 microcosms with freshwater lake sediment were constructed to investigate the
- 30 influence of ammonia concentration on aerobic methanotrophs. Ammonia influence
- 31 on the abundance of *pmoA* gene was only observed at a very high ammonia
- 32 concentration, while the number of *pmoA* transcripts was increased by the addition of
- 33 ammonium. pmoA gene and transcripts differed greatly in their abundance, diversity
- 34 and community compositions. *pmoA* transcripts were more sensitive to ammonium
- 35 amendment than *pmoA* gene. Methane oxidation potential and methanotrophic
- 36 community could be impacted by ammonium amendment. This work could add some
- 37 new sights towards the links between ammonia and methane oxidation in freshwater
- 38 sediment.
- 39

40 Keywords: Ammonium; Freshwater lake; Methane oxidation; Methanotroph; *pmoA*41 gene; *pmoA* transcripts

43

44 **1. Introduction**

- 45 Methane is a major product of carbon metabolism in freshwater lakes, and also a
- 46 critical greenhouse gas in the atmosphere (Bastviken et al., 2004). Aerobic methane
- 47 oxidation performed by bacterial methanotrophs is a major pathway controlling
- 48 methane emission. Up to 30–99% of the total methane produced in anoxic sediment
- 49 can be oxidized by methanotrophs (Bastviken et al., 2008). Methane oxidation in
- 50 freshwater lakes can be greatly influenced by the environmental changes (e.g.
- 51 eutrophication) induced by anthropogenic activities (Borrel et al., 2011).
- 52
- 53 The increasing input of nutrients into freshwater lakes has greatly raised the
- 54 availability of dissolved organic carbon (DOC), nitrogen and phosphorus, and also
- 55 exerted a considerable influence on aerobic methane oxidation (Liikanen and
- 56 Martikainen, 2003; Veraart et al., 2015). Among various types of nutrients, ammonia
- 57 has attracted great attention. Ammonium and methane have similar chemical
- 58 structure, and ammonium is known to compete with methane for the binding site of
- 59 methane monooxygenase, a key enzyme in methane oxidation (Bédard and Knowles,
- 60 1989). On the other hand, a high concentration of oxygen in lake water might also
- 61 inhibit methane oxidation (Rudd and Hamilton, 1975), and excess ammonia can lead
- 62 to the competition between methane oxidizers and ammonium oxidizers for oxygen.
- 63 With high oxygen availability or low in-situ nitrogen content, methane oxidation can

- also be stimulated by the addition of ammonium (Rudd et al., 1976). Hence, the effect
- of ammonium on methane oxidation is complex (Bodelier and Laanbroek, 2004), and
- 66 previous studies have documented contradictory results, such as inhibition (Bosse et
- al., 1993; Murase and Sugimoto, 2005; Nold et al., 1999), no effect (Liikanen and
- 68 Martikainen, 2003), or stimulation (Bodelier et al., 2000; Rudd et al., 1976). The
- 69 effect of ammonium on methane oxidation might largely depend on the characteristics
- 70 of the studied ecosystem and in-situ environment (Bodelier and Laanbroek, 2004;
- 71 Borrel et al., 2011).
- 72
- 73 To date, previous studies about the ammonium effect on methane oxidation in
- 74 freshwater lakes mainly focused on either oxidation rate or net methane flux (Bosse et
- al., 1993; Liikanen and Martikainen, 2003; Murase and Sugimoto, 2005). However,
- 76 methanotrophs play a fundamental role in regulating methane emission from
- 77 freshwater sediment (Bastviken et al., 2008). The abundance, transcription, and
- 78 community structure of aerobic methanotrophs may also be affected by the extra input
- 79 of ammonium (Shrestha et al., 2010). The difference in methanotrophic community
- 80 structure can further lead to various responses of methane oxidation to nitrogen
- 81 content (Jang et al., 2011; Mohanty et al., 2006; Nyerges and Stein, 2009). Therefore,
- 82 identification of the variation of methanotrophic community can be helpful to
- 83 understand how ammonium input influences methane oxidation process. The
- 84 community change of methanotrophs under ammonium stress has been observed in

- various soils, such as agriculture soil (Seghers et al., 2003; Shrestha et al., 2010) and
- 86 landfill soil (Zhang et al., 2014). The results of these previous studies suggested that
- 87 the effect of ammonium on methanotroph community might be habitat-related. A
- 88 recent filed work suggested that in-situ ammonia concentration might be a key
- 89 regulating factor of methanotrophic community structure in freshwater lake sediment
- 90 (Yang et al., 2016). However, the direct evidence for the influence of ammonium (or
- 91 ammonia) on methanotroph community in freshwater lake sediment is still lacking.
- 92 Hence, in the present study, microcosms with freshwater lake sediment were
- 93 constructed to investigate the ammonium influence on methane oxidation potential
- ⁹⁴ and the abundance, transcription and community structure of aerobic methanotrophs.
- 95

96 2. Materials and methods

- 97 2.1. Sediment characteristics
- 98 Dianchi Lake is a large shallow lake (total surface area: 309 km²; average water
- 99 depth: 4.4 m) located in southeast China (Yang et al., 2016). This freshwater lake is
- 100 suffering from anthropogenically-accelerated eutrophication (Huang et al., 2017).
- 101 Surface sediment (0-5 cm) (24.9286N, 102.6582E) were collected using a core
- 102 sampler from the north part of Dianchi Lake in October, 2017. In-situ dissolved
- 103 oxygen (DO) and ammonium nitrogen (NH4⁺-N) in overlying water were 8.37 mg/L
- and 344 μ M, respectively. Sediment total organic carbon (TOC), total nitrogen (TN),
- 105 the ratio of TOC to TN (C/N), nitrate nitrogen (NO₃⁻-N), ammonium nitrogen (NH₄⁺-

- 106 N), total phosphorus (TP), and pH were 41.3 g/kg, 3.95 g/kg, 10.5, 12.3 mg/kg, 364
- 107 mg/kg, 0.60 g/kg, and 7.2, respectively. Sediment (2 L) was transported to laboratory
- 108 at 4°C for incubation experiment.
- 109
- 110 2.2. Experimental setup
- 111 Sediments were placed at room temperature for 24 h and then homogenized. The

112 homogenized sediments were centrifuged at 5000 rpm for 10 min to determine the

113 initial ammonia concentration of pore water. A series of 50-mL serum bottles (as

- 114 microcosms) were added with 10 mL of sediment aliquot (containing about 0.1 g dry
- sediment). A total of 111 microcosms were constructed, including three autoclaved
- 116 ones used as the control for the measurement of methane oxidation potential. Six
- 117 treatments (A-F) were set up. The microcosms with treatments B-F were added with
- 118 1 mL of NH₄Cl at the levels of 5, 20, 50, 100, and 200 mM, respectively, while the
- 119 microcosm with treatment A was amended with 1 mL diluted water as the blank
- 120 control. For each treatment, 18 microcosms were constructed, including half used for
- 121 molecular analyses and another half for methanotrophic potential measurement. These
- 122 microcosms were closed with butyl rubber stoppers and incubated for 14 days at 25°C
- 123 at 100 rpm in dark.
- 124

At each sampling time point (day 1 (12 h after incubation), day 7 or day 14), triplicate
sediment samples of each treatment were transferred into Falcon tubes, and then

- 127 centrifuged at 5000 rpm for 10 min. The supernatant was filtered with a 0.2-μm
- 128 syringe filter, and its ammonia level was measured using Nessler reagent-colorimetry.
- 129 The sediment was mixed up and immediately used for nucleic acid extraction. In
- 130 addition, at each sampling time, for methanotrophic potential measurement, another
- 131 three bottles of each treatment were opened and shaken to provide ambient air, then
- 132 closed again with butyl rubber stoppers. Headspace air (1 mL) was replaced by CH₄
- 133 (99.99%) with an air-tight syringe. Samples were shaken vigorously to mix. After
- 134 incubation at 25°C, 100 rpm for 24 h, 0.1 mL of headspace gas was taken and
- 135 measured using a GC126 gas chromatograph equipped with a flame ionization
- 136 detector. Autoclaved control was also processed to exclude methane loss due to
- 137 dissolution or airtightness.
- 138
- 139 2.3. Nucleic acid extraction, reverse transcription and quantification
- 140 Sediment DNA and RNA were extracted with PowerSoil DNA Isolation Kit (MoBio)
- 141 and PowerSoil Total RNA Isolation Kit (MoBio, USA), respectively. The quality and
- 142 concentration of extracted nucleic acids were examined with Nanodrop 2000 (Thermo
- 143 Fisher Scientific, USA). RNA was diluted to a similar concentration before further
- 144 analysis. Real-time PCR of *pmoA* gene was performed on a CFX Connect cycler
- 145 (Bio-Rad, USA), using the primer set A189f/mb661r following the conditions
- 146 reported in our previous study (Liu et al., 2015). Reactions were carried out using a
- 147 TransStart Top Green qPCR Kit (Transgen, China) following the manufacturer's

- 148 instructions. Gene transcripts were quantified in a one-step RT-qPCR using a
- 149 TransScript Green One-step qRT-PCR Kit. Melting curve analyses were carried out at
- 150 the end of PCR run to check the amplification specificity. Each measurement was
- 151 carried out with three technical replicates. Standard curve was constructed with pmoA
- 152 gene clones, and the efficiency and r-square were 91.5% and 0.998, respectively.
- 153
- 154 2.4. Terminal restriction fragment length polymorphism (T-RFLP) fingerprinting
- 155 DNA *pmoA* gene fragment was amplified with primer sets A189f/mb661r, with the
- 156 forward primer A189f modified with FAM at 5'-end. PCR reactions were performed
- as previously described (Liu et al., 2015). Two-step RT-PCR was carried out on
- 158 RNA. In the first step, RNA was reversely transcripted into cDNA with pmoA gene
- 159 specific primer using One-step gDNA removal and cDNA synthesis kit (Transgen
- 160 Biotech Co., LTD, China). The 20-µL reaction solution contained 1 µL EasyScript
- 161 RT/RI Enzyme Mix, 1 µL gDNA remover, 10 µL 2×ES Reaction Mix, 2 pmol of gene
- 162 specific primers and 1 μL RNA template. The reaction mixture was incubated at 42°C
- 163 for 30 min, and the enzymes were deactivated at 85°C for 5 s. In the second step, 1 μ L
- 164 cDNA was used as template in *pmoA* gene PCR amplification, proceeded following
- 165 the same protocol with DNA.
- 166
- 167 The fluorescently labeled PCR products were purified using a TIANquick Mini
- 168 Purification Kit (TIANGEN Bitotech Co., Ltd, China). Approximately 20 ng of

- 169 purified PCR products were digested with restriction endonuclease BciT130 I (Takara
- 170 Bio Inc., Japan) following the conditions recommended by the manufacturer's
- 171 instruction. Electrophoresis of digested amplicons was carried out by Sangon Biotech
- 172 (China) using an ABI 3730 DNA analyzer (Thermo Fisher Scientific, USA). The
- 173 length of T-RFs was determined by comparing with internal standard using the
- 174 GeneScan software. Terminal restriction fragments (T-RFs) with similar length (less
- than 2 bp difference) were merged, and T-RFs shorter than 50 base pairs (bp) or
- 176 longer than 508 bp were removed from the dataset. Relative abundance of each
- 177 fragment equaled to the ratio of its peak area to the total area. Minor T-RFs with
- 178 relative abundance less than 0.5 % were excluded for further analysis. The Shannon
- 179 diversity indices of *pmoA* gene and transcripts were calculated based on DNA and
- 180 RNA T-RFs, respectively.
- 181
- 182 2.5. Cloning, sequencing and phylogenetic analysis
- 183 pmoA gene clone library was generated with mixed DNA PCR products using a TA
- 184 cloning kit (TransGen Biotech Co., LTD, China). Randomly picked clones were
- 185 subjected to sequencing. The in silico cut sites of these pmoA sequences were
- 186 predicted using the online software Restriction Mapper
- 187 (<u>http://www.restrictionmapper.org</u>). The sequences of each T-RF, together with their
- 188 reference sequences from the GenBank database, were used for phylogenetic analysis.
- 189 A neighbor-joining tree was conducted with MEGA 7 (Kumar et al., 2016), and

- 190 bootstrap with 1000 replicates was carried out to check the consistency. The
- 191 phylogenetic tree was visualized using iTOL v4.2 (Letunic and Bork, 2016). The
- 192 sequences used in phylogenetic analysis were deposited in GenBank database, and the
- accessions were shown in Fig. 3.
- 194
- 195 2.6. Statistical analysis
- 196 Two-way ANOVA (analysis of variance) was carried out to determine the effect of
- 197 ammonia concentration and incubation time on CH₄ oxidation potential, gene
- 198 abundance and transcription. One-way ANOVA followed by Student-Newman-Keuls
- 199 test was adopted to detect the difference among treatments. The analysis was carried
- 200 out in *R*, using *R* packages stats (version 3.4.4) and agricolae (version 1.2-8).
- 201 Moreover, the comparison of methanotrophic communities in different microcosms,
- 202 using Redundancy Analysis (RDA) and clustering analysis, was carried out with R
- 203 package Vegan (version 2.4-6) (Oksanen et al., 2018). Permutation test was carried
- 204 out to detect the margin effect of variables (treatment and time). Clustering analysis
- 205 was carried out based on Bray-Curtis dissimilarity, to demonstrate the variation of
- 206 microbial community structure during incubation.
- 207
- 208 **3. Results**
- 209 3.1. Methane oxidation potential

910	A	as found to	and alter de	mlata in	a a ha a mama	in in the second	ddad main		T:~
210	Ammonium wa	as found to	αυτέκτν αε	onete in (each ammo	mum a	aaea mic	crocosin (F12 .
								(

- 211 S1). Methane oxidation potential (MOP) varied from 0.77 (in the microcosm with
- 212 treatment F on day 1) to 1.94 (in the microcosm with treatment F on day 14) mmol/g
- 213 dry sediment day (Fig. 1), while autoclaved control did not show notable methane
- 214 oxidation (data not shown). Based on two-way ANOVA, both ammonium
- 215 concentration (treatment) and incubation time had significant effects on MOP (P<
- 216 0.01), and their interaction was also significant (*P*< 0.05). The MOP in the microcosm
- 217 with treatment A (with no external ammonium addition) did not show a significant
- 218 difference among incubation times (P>0.05). Based on post-hoc test (Fig. 1, Table
- S1), at each time, the microcosm with treatment B had slightly higher MOP than the
- 220 microcosm with treatment A. At days 1 and 7, the microcosms with treatments C, D
- and E had slightly lower MOP than the un-amended microcosm. However, at each
- 222 time, no statistical difference in MOP was observed among the microcosms with
- 223 treatments A-E. Moreover, the microcosm with treatment F (with the highest
- ammonium addition) tended to have significantly lower MOP than other microcosms
- on day 1 (P< 0.05), but significantly higher MOP on day 14 (P< 0.05). On day 7, no
- statistical difference in MOP was found between the microcosm with treatment F and
- any other microcosms.
- 228
- 229 *3.2. pmoA* gene and transcript abundance

- 230 Two-way ANOVA indicated that the number of both *pmoA* gene and transcripts was
- significantly influenced by ammonium concentration and incubation time (P < 0.01)
- 232 (Fig. 2a and 2b). The abundance of *pmoA* gene in the microcosm with treatment A
- showed no significant difference among times (0.05 < P < 0.1). On day 1, the
- 234 microcosms with treatments C and D had higher (but not significantly) pmoA gene
- abundance than other microcosms. However, at days 7 and 14, the microcosm with
- 236 treatment F (with the highest ammonium addition) had the highest pmoA gene
- abundance.
- 238
- 239 At each time, *pmoA* transcripts in the un-amended microcosm was less abundant than
- those in amended microcosms. On day 1, the highest number of transcripts was
- 241 observed in the microcosm with treatment C, followed by the microcosms with
- 242 treatments D, E and F. The microcosm with treatment B had much lower pmoA
- transcript abundance than other ammonium added microcosms (P < 0.05) (Table S1).
- 244 On day 7, pmoA transcript abundance tended to increase with the level of added
- ammonium, although statistical difference in *pmoA* transcript abundance was only
- 246 observed between treatment F and other treatments. On day 14, no significant
- 247 difference in *pmoA* transcript abundance was detected among treatments (*P*> 0.05).
- 248
- 249 The ratio of transcripts to *pmoA* gene varied with ammonium concentration and
- 250 incubation time (Fig. S2). The ratio tended to decrease with time in ammonium

- amended microcosms. Moreover, at days 1 and 7, the ratio tended to increase with the
- 252 increasing ammonium concentration.
- 253
- 254 3.3. T-RFLP fingerprinting
- 255 In silico analysis of the cloned *pmoA* sequences showed that restriction enzyme
- 256 BciT130 I could well capture pmoA gene diversity and present a good resolution
- among different subgroups of aerobic methanotrophs. Most of the T-RFs retrieved in
- the current study could be assigned to certain methanotrophic groups, while some of
- 259 the T-RFs from *pmoA* transcripts could not match the cut site predicted from the
- sequences in clone library. The obtained *pmoA* sequences could be grouped into four
- 261 clusters (Fig. 3), which could be convincingly affiliated with known methanotrophic
- 262 organisms. Three clusters were affiliated with Type I methanotrophs
- 263 (Gammaproteobacteria), which could be further divided into several subgroups.
- 264 Cluster 1 contained 157 bp, 242 bp and 338 bp T-RFs that could be related to Type Ia
- 265 methanotrophs, the most frequently detected methanotrophs in freshwater lakes
- 266 (Borrel et al., 2011). The 157 bp and 338 bp T-RFs might be affiliated with
- 267 Methylobacter and Methylomicrobium, respectively. However, the 242 bp T-RF could
- 268 not be convincingly assigned to a certain genus because of the highly similar pmoA
- 269 sequences of Type Ia organisms. Cluster 2 was composed of three different T-RFs,
- and could be affiliated with Methylococcus and Methyloparacoccus. Cluster 3
- 271 included the T-RFs of 91 bp and 508 bp, which might be closely related to

- 272 *Candidatus Methylospira*. Both cluster 2 and cluster 3 could be affiliated with Type
- 273 Ib methanotrophs, but they distinctly differed in phylogeny and morphology
- (Danilova et al., 2016). Cluster 4 comprised of the T-RFs of 217 bp, 370 bp and 403
- bp, and it was phylogenetically related to Type IIa methanotrophs (Methylocystaceae
- 276 in Alphaproteobacteria). The 403 bp T-RF was likely affiliated with Methylosinus,
- while 217 bp and 370 bp T-RFs could not be convincingly assigned to a single genus.
- 278
- 279 The 508 bp fragment could be affiliated with either *Methylospira* or unknown Type Ia
- 280 methanotroph. Considering the low abundance of 508 bp T-RF (<0.5% in DNA
- 281 TRFLP profile and approximately 2% in RNA TRFLP profile), and in order to avoid
- 282 incorrect annotation, this T-RF was excluded from further analysis.
- 283
- 284 3.4. T-RFLP diversity and profiles of pmoA gene and transcripts
- 285 Diversity of each community was calculated based on T-RFLP results. In the current
- study, the T-RFs with relative abundance more than 5% in at least one sample or with
- average relative abundance more than 2% in all samples were defined as major T-
- 288 RFs. For a given sample, the total number of T-RFs and the number of major T-RFs
- were greater in RNA T-RFLP profile than in DNA T-RFLP profile. On day 1,
- ammonium amended microcosms tended to have lower pmoA gene diversity than un-
- amended microcosm, while an opposite trend was found at days 7 and 14 (Table 1).
- 292 For a given sample, pmoA transcript showed higher Shannon diversity than pmoA

- 293 gene. Ammonium amended microcosms tended to have lower *pmoA* transcript
- 294 diversity than un-amended microcosm. In the microcosms with treatments A-D,
- 295 pmoA transcript diversity tended to increase with time. However, the Shannon
- 296 diversity of transcriptional T-RFs experienced an increase followed by a decrease in
- 297 the microcosms with treatments E and F.
- 298
- 299 A total of 11-14 T-RFs were retrieved from T-RFLP analysis of DNA samples. Most
- 300 of them (including all major T-RFs) could be well assigned to certain methanotrophic
- 301 groups (Figs. 3 and 4a). In all DNA samples, Type Ia and Type IIa methanotrophs
- 302 dominated methanotrophic communities. On day 1, the 242 bp T-RF (Methylobacter-
- 303 related Type Ia methanotrophs) comprised about 50% of methanotrophic

304 communities. The 370 bp T-RF (Type IIa methanotrophs) also showed a considerable

- 305 proportion (20–25%). The addition of ammonium tended to induce no considerable
- 306 change of methanotrophic community structure after 12-hour incubation. After 7 and
- 307 14 days of incubation, the proportions of major T-RFs illustrated an evident variation.
- 308 The proportion of Type Ia methanotrophs (157 bp, 242 bp and 338 bp; marked in
- 309 green) decreased with time, while Type IIa methanotrophs (217 bp and 370 bp,
- 310 marked in pink) increased. The proportion of *Methylococcus*-related Type Ib
- 311 methanotrophs (marked in blue) also increased, especially the 145 bp T-RF, whereas
- 312 the proportion of *Methylospira*-related Type Ib methanotrophs (91 bp, marked in
- 313 yellow) did not show a notable variation.

314

315	A total of 14-38 T-RFs were retrieved from T-RFLP analysis of RNA samples, but
316	most of them were only detected in a few samples with low relative abundance (Fig.
317	4b). Among the major transcript T-RFs, only 4 transcript T-RFs could be assigned to
318	a known methanotrophic group, and on day 1 they comprised of a considerable part of
319	methanotrophic community in un-amended microcosm (43-72%) and of in amended
320	microcosms (22–72%), while the other 7 T-RFs were not found in <i>pmoA</i> gene library
321	as well as DNA T-RFLP profiles. Compared with <i>pmoA</i> gene, the community
322	structure of <i>pmoA</i> transcripts was more sensitive to external ammonium addition. The
323	addition of ammonium induced a marked shift in pmoA transcriptional community
324	structure after 12-h incubation. The proportion of 242 bp increased, but the proportion
325	of 91 bp decreased. After 1 or 2 weeks' incubation, the microcosms with treatments
326	B, C, D and E had similar transcriptional community structure as the un-amended
327	microcosm. However, the microcosm with treatment F (with the highest ammonium
328	addition) encountered a remarkable increase in 91 bp (Ca. Methylospira-related Type
329	Ib methanotrophs). Moreover, the 370 bp T-RF, accounting for up to one fourth
330	(average) of DNA T-RFs, was only detected on day 14, with relative abundance of
331	0.8–2.9%.
332	

333 3.5. Clustering and statistical analysis of TRFLP profiles

334

335	hierarchal clustering based on Bray-Curtis dissimilarity (Fig. 5). pmoA community
336	structure was quite stable during the whole incubation period. Most of the samples on
337	day 1 were grouped together. Samples B7, D7, E7, B14, C14, D14, E14 and F14 were
338	clustered into another group. Sample D1 was distantly separated from other samples,
339	
340	Higher dissimilarity of transcriptional community structures could be observed among
341	samples. The samples on day 1 were still close to each other, and they were clearly
342	separated from the samples at day 7 and 14. Samples A7, A14, B7, B14, D7, E7 and
343	F7 could form a clade, while samples C7, D14 and E14 formed another clade.
344	Moreover, sample F14 was distantly separated from other samples.
345	
346	RDA with permutation test was carried out to test the potential relationship between
347	each major T-RF and factors (treatment and incubation time). The result indicated that
348	incubation time had a significant impact on DNA-based methantrophic community
349	composition ($P < 0.01$), while ammonium concentration did not exert a significant
350	influence (P >0.05). The constrained variables could explain up to 74.4 % of total
351	variance. However, most of the explained variance (73.7% out of 74.4%) was related
352	to constrained axis 1, and only the first axis was significant ($P=0.029$). In addition,
353	for RNA-based methantrophic community, treatment and time were able to explain
354	76.0% of total variance. Only incubation time had a significant effect on RNA-based

DNA- and RNA-based methanotrophic community structures were characterized with

- 355 methantrophic community composition (P < 0.01), and only the first constrained axis
- 356 was significant (P<0.01). These results indicated that after the addition and with the
- depletion of ammonium, the community compositions of both *pmoA* gene and
- 358 transcripts could undergo a considerable shift.
- 359
- 360 4. Discussion
- 361 4.1. Effect of ammonium on MOP
- 362 The current study showed that a high dosage of ammonium could present a temporary
- 363 inhibition effect on methane oxidation. The result was consistent with several
- previous studies (Bosse et al., 1993; Murase and Sugimoto, 2005; Nold et al., 1999).
- 365 These studies indicated that the addition of ammonium might inhibit methane
- 366 oxidation in water and sediment of freshwater lake. However, to date, the minimal
- 367 inhibit concentration for methane oxidation in lake sediment is still unclear. Bosse et
- al. (1993) pointed out that methane oxidation in littoral sediment of Lake Constance
- 369 could be partially inhibited when ammonium concentration in pore water was higher
- than 4 mM. In contrast, methane oxidation in sediment of hyper-eutrophic Lake
- 371 Kevätön was not obviously affected by a continuous water flow containing up to 15
- 372 mM of ammonium (Liikanen and Martikainen, 2003). Lake Kevätön and Dianchi
- 373 Lake had similar average water depth, and the overlying water of sediment in both
- 374 lakes had very high levels of ammonium (Liikanen and Martikainen, 2003). In the
- 375 present study, inhibition was only observed in the microcosm with a very high

376	ammonium dosage (with 17.3 mM ammonium in overlying water on day 1), while no
377	evident inhibition was found in the other ammonium amended microcosms, even at
378	high dosages. This suggested that methane oxidation might depend on ammonium
379	dosage, which was sustained by the result of two-way ANOVA. The minimal inhibit
380	concentration for methane oxidation in Dianchi Lake was much higher than that in
381	Lake Constance (Bosse et al. 1993). Hence, the minimal inhibition concentration for
382	methane oxidation could be lake-specific.
383	
384	Despite of a very high dosage of ammonium, sediment MOP was only partially
385	inhibited. This might be explained by two facts. The studied sediment sample
386	originated from a eutrophic lake, which suffered from high ammonium input.
387	Methanotrophs in this kind of ecosystem could effectively oxidize methane under the
388	condition of high ammonia concentration (Liikanen and Martikainen, 2003). This was
389	consistent with the above-mentioned lake-related minimal inhibition concentration for
390	methane oxidation. On the other hand, the affinity of pMMO (pmoA encoding
391	protein) to methane is much higher than that to ammonium (Bédard and Knowles,
392	1989). As a result, when the methane concentration is high enough, as a common case
393	for the measurement of MOP, methanotrophs should be able to consume a
394	considerable amount of methane.
395	

- 396 A recovery of MOP after a single-shot fertilization has been reported in forest soil
- 397 (Borjesson and Nohrstedt, 2000). In this study, it was noted that after the depletion of
- ammonium, sediment MOP could also get a quick recovery. The highest ammonium
- dosage eventually stimulated sediment MOP in the long run (about two weeks).
- 400 Considering the increase of *pmoA* gene abundance and the change of RNA-based
- 401 methantrophic community structure, this might be attributed to an adaption to the
- 402 environment. The initial decrease of MOP could be explained by the competition
- 403 between methane and ammonium for pMMO (Bédard and Knowles, 1989), while the
- 404 subsequent increase of MOP might be the consequence of the shift in methantrophic
- 405 community structure (Seghers et al., 2003; Shrestha et al., 2010) and the increase of
- 406 *pmoA* gene abundance and transcription.
- 407
- 408 4.2. Effect of ammonium on pmoA gene and transcript abundance
- 409 So far, little is known about the changes of methanotrophic abundance and transcripts
- 410 induced by external ammonium amendment. Alam and Jia (2012) reported that the
- 411 addition of 200 µg of nitrogen/g dry weight soil (in ammonium sulfate) showed no
- 412 significant influence on *pmoA* gene abundance in paddy soil. However, in
- 413 ammonium-amended rhizospheric soil microcosms, pmoA gene abundance slightly
- 414 increased after 29 days' incubation (Shrestha et al., 2010). In this study, after 7 days'
- 415 incubation, the sediment microcosm with the highest ammonium dosage had much
- 416 higher *pmoA* gene abundance than un-amended microcosm and other amended

- 417 microcosms with lower dosage, whereas no significant difference of *pmoA* gene
- 418 abundance was detected between un-amended microcosm and amended microcosms
- 419 (except for the treatment with the highest ammonium dosage). After 14 days'
- 420 incubation, the microcosm with the highest ammonium dosage also had much higher
- 421 DNA-based methanotrophic abundance than other amended microcosms. Hence, the
- 422 present study further provided the evidence that the addition of ammonium,
- 423 depending on dosage, could influence freshwater sediment DNA-based
- 424 methanotrophic abundance, which was in agreement with the result of two-way
- 425 ANOVA. Dianchi Lake had been suffering from eutrophication for over 30 years
- 426 (Huang et al., 2017). It could be assumed that methanotroph community in this lake
- 427 had been adapted to high in-situ ammonia concentration. As a result, only extremely
- 428 high dosage of ammonium could pose a significant impact on DNA-based
- 429 methanotrophic abundance.
- 430
- 431 At each time, the microcosm with no external ammonium addition had lower
- 432 abundance of *pmoA* transcripts than each amended microcosm. This suggested the
- 433 addition of ammonium could influence the transcription of *pmoA* gene. The
- 434 stimulation of *pmoA* transcription by the addition of ammonium could be attributed to
- 435 the competition between methane and ammonium for the binding site of pMMO
- 436 (Bédard and Knowles, 1989). This was also verified by the similar number of
- 437 transcripts in these amended microcosms after the considerable reduction of

- 438 ammonium. At days 1 and 14, the abundance of *pmoA* transcripts differed greatly in
- 439 different amended microcosms. This suggested that ammonium dosage could
- 440 influence the number of *pmoA* transcripts, which was consistent with the result of
- 441 two-way ANOVA.
- 442
- 443 4.3. Effect of ammonium on DNA- and RNA-based methanotrophic community
- 444 *compositions*
- 445 Several previous studies have investigated the influence of ammonium amendment on
- 446 soil methanotrophic community structure (Alam and Jia, 2012; Mohanty et al., 2006;
- 447 Shrestha et al., 2010), yet information about the influence of ammonium amendment
- 448 on freshwater methanotrophic community structure is still lacking. In this study,
- 449 immediately after ammonium addition (after 12-h incubation), the relative abundance
- 450 of Type I (especially Type Ia) methanotrophs transcripts increased, instead of Type II.
- 451 This coincided with the result reported in rice and forest soils (Mohanty et al., 2006).
- 452 This also suggested that a high level of ammonia favored the growth of Type I
- 453 methantrophs and they might play an important role in methane oxidation in
- 454 ammonia-rich lake. However, both DNA- and RNA-based T-RFLP profiles indicated
- 455 that the addition of ammonium lead to an increase in the ratio of Type II to Type I
- 456 methanotrophs in two weeks, which was contrary to the results observed in some
- 457 previous studies in soil ecosystems (Alam and Jia, 2012; Bodelier et al., 2000;
- 458 Mohanty et al., 2006). These previous studies found that Type I methanortrophs had a

- 459 numerical advantage over Type II at a high ammonia concentration. Our recent field
- 460 study suggested that the abundance of Type II methanotrophs in sediment of
- 461 Dianchi Lake was closely correlated to the concentration of ammonia (Yang et al.,
- 462 2016). Therefore, the response of methanotrophs to ammonia might depend on the
- 463 type of ecosystem. In addition, the community compositions of *pmoA* genes and
- 464 transcripts could be divergent, and DNA-based and RNA-based methanotrophs could
- show different responses to ammonium addition (Shrestha et al. 2010). In this study,
- 466 compared with *pmoA* gene, the community structure of *pmoA* transcripts was more
- 467 sensitive to external ammonium addition. This was in a consensus with the result of a
- 468 previous study on the effect of ammonium addition on methanotrophs in root and
- 469 rhizospheric soils (Shrestha et al. 2010).
- 470

471 **5.** Conclusions

- 472 This was the first microcosm study on the influence of ammonium on freshwater lake
- 473 sediment methanotroph community. In freshwater lake sediment microcosm, methane
- 474 oxidation potential and methanotrophic community could be influenced by
- 475 ammonium amendment. Ammonia concentration had a significant impact on
- 476 methanotrophic abundance and diversity, but exerted no evident influence on
- 477 community structure. Compared with *pmoA* gene, transcripts were more sensitive to
- 478 external ammonium addition. Further works are necessary in order to elucidate the
- 479 influence of ammonium on methane oxidation in freshwater sediment.

480

481 **Conflict of interest**

- 482 The authors declare that they have no competing interests.
- 483

484 Acknowledgments

- 485 This work was financially supported by National Natural Science Foundation of
- 486 China (No. 41571444), and National Basic Research Program of China (No.
- 487 2015CB458900).
- 488

489 **References**

- 490 Alam, M., Jia, Z., 2012. Inhibition of methane oxidation by nitrogenous fertilizers in a
- 491 paddy soil. Front. Microbiol. 3, 246.
- 492 Bastviken, D., Cole, J., Pace, M., Tranvik, L., 2004. Methane emissions from lakes:
- 493 Dependence of lake characteristics, two regional assessments, and a global
- 494 estimate. Glob. Biogeochem. Cycle 18, GB4009.
- 495 Bastviken, D., Cole, J., Pace, M., de Bogert, M., 2008. Fates of methane from
- 496 different lake habitats: Connecting whole-lake budgets and CH₄ emissions. J.
- 497 Geophys. Res.-Biogeosci.113, G02024.
- 498 Bédard, C., Knowles, R., 1989. Physiology, biochemistry, and specific inhibitors of
- 499 CH₄, NH₄⁺, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53,
- 500 **68–84**.

- 501 Bodelier, P.L.E., Roslev, P., Henckel, T., Frenzel, P., 2000. Stimulation by ammonium-
- 502 based fertilizers of methane oxidation in soil around rice roots. Nature 403, 421–
- 503 424.
- 504 Bodelier, P.L.E., Laanbroek, H.J., 2004. Nitrogen as a regulatory factor of methane
- 505 oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277
- 506 Borjesson, G., Nohrstedt, H.O., 2000. Fast recovery of atmospheric methane
- 507 consumption in a Swedish forest soil after single-shot N-fertilization. For. Ecol.
- 508 Manage. 134, 83–88.
- 509 Borrel, G., Jezequel, D., Biderre-Petit, C., Morel-Desrosiers, N., Morel, J.P., Peyret,
- 510 P., Fonty, G., Lehours, A.C., 2011. Production and consumption of methane in
- 511 freshwater lake ecosystems. Res. Microbiol. 162, 832–847.
- 512 Bosse, U., Frenzel, P., Conrad, R., 1993. Inhibition of methane oxidation by
- ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol. 13,
- 514 123–134.
- 515 Danilova, O.V., Suzina, N.E., Van De Kamp, J., Svenning, M.M., Bodrossy, L.,
- 516 Dedysh, S.N., 2016. A new cell morphotype among methane oxidizers, a spiral-
- 517 shaped obligately microaerophilic methanotroph from northern low-oxygen
- 518 environments. ISME J 10, 2734–2743.
- 519 Jang, I., Lee, S., Zoh, K.D., Kang, H., 2011. Methane concentrations and
- 520 methanotrophic community structure influence the response of soil methane
- 521 oxidation to nitrogen content in a temperate forest. Soil Biol. Biochem. 43, 620–

- 522 **627**.
- 523 Huang, C.C., Yao, L., Zhang, Y.L., Huang, T., Zhang, M.L., Zhu, A.X., Yang, H.,
- 524 2017. Spatial and temporal variation in autochthonous and allochthonous
- 525 contributors to increased organic carbon and nitrogen burial in a plateau lake. Sci.
- 526 Total Environ. 603, 390–400.
- 527 Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular evolutionary genetics
- 528 analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.
- 529 Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3, an online tool for the
- 530 display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44,
- 531 W242–W245.
- 532 Liikanen, A., Martikainen, P.J., 2003. Effect of ammonium and oxygen on methane
- and nitrous oxide fluxes across sediment–water interface in a eutrophic lake.
- 534 Chemosphere 52, 1287–1293.
- 535 Liu, Y., Zhang, J.X., Zhao, L., Li, Y.Z., Yang, Y.Y., Xie, S.G., 2015. Aerobic and
- 536 nitrite-dependent methane-oxidizing microorganisms in sediments of freshwater
- 537 lakes on the Yunnan Plateau. Appl. Microbiol. Biotechnol. 99, 2371–2381.
- 538 Mohanty, S.R., Bodelier, P.L., Floris, V., Conrad, R., 2006. Differential effects of
- 539 nitrogenous fertilizers on methane-consuming microbes in rice field and forest
- 540 soils. Appl. Environ. Microbiol. 72, 1346–1354.

- 541 Murase, J., Sugimoto, A., 2005. Inhibitory effect of light on methane oxidation in the
- 542 pelagic water column of a mesotrophic lake (Lake Biwa, Japan). Limnol.
- 543 Oceanogr. 50, 1339–1343.
- 544 Nold, S.C., Boschker, H.T.S., Pel, R., Laanbroek, H.J., 1999. Ammonium addition
- 545 inhibits 13C-methane incorporation into methanotroph membrane lipids in a
- 546 freshwater sediment. FEMS Microbiol. Ecol. 29, 81–89.
- 547 Nyerges, G., Stein, L.Y., 2009. Ammonia cometabolism and product inhibition vary
- 548 considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett.
- 549 297, 131–136.
- 550 Oksanen. J, Blanchet, F.G., Friendly, M., Kindt, R., Legendre P., McGlinn, D.,
- 551 Minchin, P.R., O'Hara, R. B., Simpson G.L, Solymos, P., Stevens M.H.H.,
- 552 Szoecs, E., Wagner, H., 2018. Vegan, Community ecology package, version 2.4-
- 553 6, Available at, https://CRAN.R-project.org/package=vegan.
- 554 Rudd, J.W.M., Hamiltion, R.D., 1975. Factors controlling rates of methane oxidation
- and the distribution of the methane oxidizers in a small stratified lake. Arch.
- 556 Hydrobiol. 75, 522–538.
- 557 Rudd, J.W.M., Furutani, A., Flett, R.J., Hamilton, R.D., 1976. Factors controlling
- 558 methane oxidation in Shield Lakes: The role of nitrogen fixation and oxygen
- 559 concentration. Limnol Oceanogr, 21, 357–364.
- 560 Seghers, D., Top, E.M., Reheul, D., Bulcke, R., Boeckx, P., Verstraete, W., Siciliano,
- 561 S.D., 2003. Long-term effects of mineral versus organic fertilizers on activity

- and structure of the methanotrophic community in agricultural soils. Environ.
- 563 Microbiol. 5, 867–877.
- 564 Shrestha, M., Shrestha, P.M., Frenzel, P., Conrad, R., 2010. Effect of nitrogen
- 565 fertilization on methane oxidation, abundance, community structure, and gene
- 566 expression of methanotrophs in the rice rhizosphere. ISME J 4, 1545–1556.
- 567 Veraart, A.J., Steenbergh, A.K., Ho, A., Kim, S.Y., Bodelier, P.L.E., 2015. Beyond
- 568 nitrogen: The importance of phosphorus for CH₄ oxidation in soils and
- 569 sediments. Geoderma 259, 337–346.
- 570 Yang, Y.Y., Zhao, Q., Cui, Y.H., Wang, Y.L., Xie, S.G., Liu, Y., 2016. Spatio-
- 571 temporal variation of sediment methanotrophic microorganisms in a large
- 572 eutrophic lake. Microb. Ecol. 71, 9–17.
- 573 Zhang, X., Kong, J.Y., Xia, F.F., Su, Y., He, R., 2014. Effects of ammonium on the
- activity and community of methanotrophs in landfill biocover soils. Syst. Appl.
- 575 Microbiol. 37, 296–304.
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583

587 Table 1 Numbers of T-RFs and T-RF-based Shannon diversity. For sample name,

	Sample	D	NA	RNA		
		T-RFs	Shannon	T-RFs	Shannon	
	A1	11	1.55	23	2.55	
	B1	11	1.55	23	2.23	
	C1	11	1.49	22	2.17	
	D1	11	1.27	14	1.70	
	E1	11	1.48	20	2.12	
	F1	12	1.66	25	2.55	
	A7	12	1.74	28	2.92	
	B7	12	1.80	32	3.09	
	C7	13	1.77	27	2.86	
	D7	12	1.79	18	2.46	
	E7	14	1.89	30	2.98	
	F7	13	1.70	24	2.70	
	A14	13	1.70	36	3.17	
	B14	12	1.79	38	3.09	
	C14	12	1.83	33	2.96	
	D14	12	1.87	34	3.08	
	E14	12	1.83	32	2.89	
	F14	12	1.79	20	2.18	

588 upper case letters refer to treatment while digits indicate sampling time.

- 597 Fig. 1. Change of methane oxidation potential in the microcosms with different
- 598 treatments. Error bar indicates standard deviation (n=3). Asterisk indicates the
- significance between experiment group and control group (P < 0.05). 'ns' indicates no
- 600 significant difference among treatments at a given time.

- 614 Fig. 2. Changes of *pmoA* gene (a) and transcript (b) abundance in the microcosms
- 615 with different treatments. Error bar indicates standard deviation (*n*=3). Asterisk
- 616 indicates the significance between experiment group and control group (P<0.05). 'ns'
- 617 indicates no significant difference among treatments at a given time.
- 618 **(a)**

620

621 **(b)**

- 624 Fig. 3. Phylogenetic tree of obtained *pmoA* sequences and reference sequences from
- 625 the GenBank database. The predicted cut sites were shown after the accession
- 626 numbers of sequences. The dots at branches represent the support values from
- 627 bootstrap test. Branch support values of no less than 50 were dotted. The bar
- 628 represents 1% sequence divergence based on neighbor-joining algorithm.

- **Fig. 4.** T-RFLP profiles based on *pmoA* gene (a) and transcripts (b). For sample name,
- 642 upper case letters refer to treatment while digits indicate sampling time.

- 653 Fig. 5. pmoA gene (a) and transcripts (b)-based cluster diagrams of similarity values
- 654 for samples with different treatments. Dissimilarity levels are indicated above the
- 655 diagram. For sample name, upper case letters refer to treatment while digits indicate
- 656 sampling time.
- 657

