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Abstract. The rapidly intensifying process of ocean acidification (OA) in coastal areas due to anthropogenic CO; is not only
depleting carbonate ions necessary for calcification but also causing acidosis and disrupting internal pH homeostasis in
several marine organisms. These negative consequences of OA on marine communities, particularlyto-shellfish oyster
species, has been very well documented in recent studies, however, the consequences of these-reduced or impaired
calcification processes on the end-product, shells or skeletons, still remains one of the major research gaps. Shells produced

by marine organisms under OA are expected to—becorroded with disorganized—or-impaired—crystal orientation o

. To bridge this knowledge gap and to test the above hypothesis, we
investigated the effect of OA on shell e commercially important oyster species (Crassostrea angulata) at

@2 (using pH 8.1, 7.8, 7.5, 7.2 as-proxies). In decreased pH conditions, a
drop—of shell hardness and stiffness was revealed by nanoindentation tests, while an evident (loosened internal
microstructure was detected by scanning electron microscopy (SEM). ln-contrary—the crystallographic—orientation—of
oyster—shell showed no significant difference with decreasing pH by, Electron Back Scattered Diffraction (EBSD)
analyses. These results indicate the loosenedrinternal microstructure may be the cause of the OA-induced reduction in
shell hardness and stiffness. Micro-computed tomography analysis (Miere-CT) indicated that an overall Sdewn=shifing?
of mineraldensity in the shell with decreasing pH, which implied the4eesened-internal-microstructure-may-run-through
the shellthus-inevitably limiting-the effectiveness of the shell defensive function. This study surfaces—potential bottom-

up deterioration induced-by OA on-oyster-shells, especially in their @arly juvenile life stage. This knowledge is critical to
forecast the survival and production of edible oysters in future ocean,

ecologically and climatically relevant OA|

1 Introduction

Edible oysters belong to the genus “Crassostrea” have a complex life cycle, in which the free-swimming larvae attach onto a
suitable hard substrate and then metamorphose into sessile juveniles within a few hours (Medakovi¢ et al., 1997). The oyster
larval shell is primarily made of aragonitea denser and mechanically stronger form of calcium carbonate (CaCO3) compared
to calcite, which is a stable but brittle polymorphous CaCO;@n metamorphosis, the fraction of calcite rapidly increases
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and becomes the main component in the juvenile and adult oyster shell (Medakovic¢ et al., 1997; Weiner and Addadi, 1997).
The composition of the mineral polymorphs—and-the-occluded, organic matrix contributetg a wide array of fascinating
hierarchical compositeswhich-determing the mechanical strengths of shell-structures-in each of these life stages (Lee et al.,
2011). Fhese-early-life stages of marine invertebrates, including-oysters; are highly vulnerable to predators (Newell et al.,
2007) and environmental stressors (Thomsen et al., 2015) when compared to the adult stages. Production of mechanically
stronger and-structurally-integrated shells during larval and juvenile period, therefore-is essential to accomplish-the post-
larval phase because their-shell integrity and strength protect-them shell-breaking and drilling predators.

The oceans currently absorb about a third of man-made CO,, which dissolves in seawater forming carbonic acid and
increases the seawater acidity, known as ocean acidification (OA). A meta-analysis showed that the calcification rate of
marine organisms,-including-oysters; is highly vulnerable to high4pC0Oz driven decreases in seawater pH (Feely et al., 2009;
De Bodt et al., 2010). If the early-life stages of edible oysters are vulnerable to this near-future OA process, then it could
directly harm oyster survival and their aquaculture production. There-is-already evidence of the negative effects of OA;for

(Barton et al., 2012). Previous studies on calcifying organisms,
including-oysters; suggest that OA not only reduces calcification rates, but also increases dissolution of formed shells (Ries,
2011; Bednarsek et al., 2012). The decreased pH depletes carbonate ions necessary for CaCOs mineralization chemically, as
well as weakens marine organisms physiologically by causing acidosis and impairing internal pH homeostasis needed for
optimal calcification (Dupont and Portner, 2013) . Recently, an increasing number of studies capture the importance of the
mechanical properties of calcareous shel, the end-products of calcification, under OA scenarig (Dickinson et al., 2012;
lvanina et al., 2013; Li et al., 2014; Fitzer et al., 2015; Collard et al., 2016; Teniswood et al., 2016; Milano et al., 2016).
For instance, it has been reported that the [Pacific oyster and the Eastern-oyster produced softer shells with reduced
mechanical strength under OA condition, (Beniash et al., 2010; Dickinson et al., 2012). Despite these OA threats to oyster
calcification process, studies are yet to demosntrate the hierarchical-structural organization of oyster shells under elevated
CO; and OA conditions. Importantly, the modulating effect of OA on the inherent relationship between shell strctural and
mechanical features is yet to be studied in detail.

This study is designed specifically to fill this gap in our-current knowledge using the ecologically and economically
important edible oyster{(Crassostrea angulata) as model species. Here, the quantitative relationship between microstructural
and mechanical properties was examined using the-newly formed juvenile oyster shells. Specifically, the effect of OA on this
relationship was tested using three levels-of environmentally and climatically relevant levels of high-CO, induced decreased
pH. As the calcitic foliated layer is the major shell structure for mechanical support in oysters (Lee et al., 2008), we
specifically examined its structural and mechanical properties by using varietyof materials—science techniques such as
scanning electron microscopy (SEM), crystallography-by electron backscatter diffraction (EBSD) and nanoindentation tests.
To further evaluate the overall structural integrity, we quantified shell mineral density, mineral density-volume ratio
relationships using high-resolution micro-computed tomography scanning (Micro-CT).

2 Materials and methods
2.1 Experimental animal-and design

Sexually matured adult oysters of the Portuguese oyster-species, Crassostrea angulata, were collected from the coastal area
in Fujian, China (26°05'53.36"N 119°47'45.81"W) in the South China Sea on July 29", 2014. The adults were transported to

the laboratory at the Swire Institute of Marine Science {SWAMS); The University of Hong Kong. They were acclimated in
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flow-through tanks in natural seawater at ambient conditions (31 psu salinity, 29 °C and pHgs) 8.1) for a week. They were
fed with a mixed algae diet (Isochrysis galbana and Chaetoceros gracilis). Sperm and eggs were obtained from more than 10

males and 10 females by the “strip spawning” method (Dineshram et al., 2013), and cultured under ambient conditions. After

. embryos developed into D-shaped veliger larvae. Larvae-were-subjected-to-pH-perturbation-to-study

dification—(OA)-proce

Four environmentally and climatically relevant pH levels (pH8:1;:7:8,:7:5;7and"7:2) were selected as—proxies to
investigate the effect of CO.-driven OA on oyster shells. According to IPCC projections, the average pH of oceans (currently
pH 8.1) is expected to drop to pH 7.8 and 7.5 by the year 2100 and 2300, respectively (Feely et al., 2009). The very-low pH
72 treatment included in this study to understand the impact of extreme environmental conditions in-the-coastal habitats
of C. angulat s and-may-decrease-by-as-much-as-0.8 units due to river runoff and
microbial respiration (Duarte et al., 2013; Thiyagarajan and Ko, 2012). Treatment pH-levels were maintained by bubbling
filtered natural seawater with air enriched with CO; at the required concentrations using gas flow meters/controllers (Cole-
Parmer, USA). Oyster larvae were raised from the D-shaped veliger stage to the juvenile stage under the four pH levels with
four biologically independent replicates tanks for each treatment. Briefly,-D-shaped larvae (10 larvae/mL, 50L replicate
tanks, 1 um FSW, 31 psu salinity, at 29°C + 2°C) were reared until the pediveliger stage following previoushy described
methods(Dineshram et al., 2013). After about 2 to 3 weeks, larvae attained competency for attachment and metamorphosis.
TFhey, were transferred from each 50 L replicate tanks to 1 L replicate tanks containing plastic substrates coated with 7-day-
old natural biofilms. Attachment and metamorphosis took place within 24-h,-and-attached oyster were reared in 1 L replicate
tanks with the same pH level beforg attachment for 35 days until shell-collection for-subsequent-analysis. Larvae and
juveniles were fed twice a day using mixture-0f live Isochrysis-galbana and Chaetoceros-gracilis (5-10x10° cells/mL, 1:1
ratio). Seawater pH (NBS scale) and the temperature were measured using a Metter-Toledo (SG2) probe-and, salinity with a
refractometer (ATAGO, S/MIIIOE; Japan). The probe was calibrated using NIST buffers (pH =4.01, 7.00, and 9.21; Mettler
Toledo, Gmbh Analytical CH8603 Schwerzenbach, Switzerland). In each culture, tanks levels of pH, temperature and
salinity were measured daily. Daily measurements were firstly averaged within and among days per each replicate tank.
Afterwards, the treatment level (Mean + SD; Table S1) was calculated, by averages of the replicate culture tanks within each
treatment (n = 4). Samples of seawater (50 ml) from each culture tank were collected every 4 days and poisoned with 10 pl
of 250 mM mercuric chloride for total alkalinity (TA) analysis using the Alkalinity Titrator (AC-A2, Apollo SciTech's Inc.,
U.S.). The TA measurement was standardized with a certified seawater reference material (Batch 106, A.G. Dickson,
Scripps Institution of Oceanography, U.S.). The carbonate system parameters, i.e. €arbon dioxide partial pressure (pCO3;
patm), carbonate ion concentration (CO32; umol kg?), calcite and aragonite saturation state (Qca, Qar), Were calculated
using the CO2SY'S software program (Pierrot et al., 2006) with equilibrium constants Ki, K, and KSO4 (Mehrbach et al.,
1973; Dickson and Millero, 1987) (Table S1). On the 35" day post-metamorphosis, juveniles were sacrificedrand preserved
in@ethanol for the following analyses.

2.2 Shell microstructure analysis

The sessile juvenile oyster permanently cements the left valve of its shell to substratum, whereas its right valve provides
protection from predators and the environment. In this study, only the right valve was used in the shell analysis. The surface
topography of the intact shell was examined under variable pressure at 30 kV using a scanning electron microscope (SEM;
Hitachi S-3400N VP SEM, Hitachi, Japan). To examine sectional surface microstructures, shells were embedded in epoxy
resin (EpoxyCure, Buehler) and sliced along the dorsal-ventral axis using a diamond trim saw blade. This allows for a more
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controlled comparison between the hinge region and the middle region of the shell. The hinge region (hereafter also referred
to as “older shell”) is the part of the shell that is deposited first by the juvenile oyster, whereas the middle region (hereafter
also referred to as “younger shell”) is the part of the shell that is deposited more recently. The (ill region, formed most
recently, was not included in this study becauseritiis'too fragile'torhandle: The sectioned surfaces were polished for 2 to 5
min using grit papers (P320, P800, P1200, P2500, and P4000) and etched for 20 seconds using 1% acetic acid, and then
washed with distilled water and air dried. The sectioned resin blocks were mounted on aluminium stubs using carbon
adhesive tape with the polished side up. The area surrounding the specimen was painted with silver to reduce charge build-
up, and the sectioned surfaces were sputter-coated with 50-nm thick gold—palladium alloy. The shell microstructures were
examined under an accelerating voltage of 5 kV using a LEO 1530 Gemini FSEM (Zeiss, Germany). The cross-sectional
porosity of foliated laminated structure was calculated using ImageJ software by standardizing and converting an'SEM
image to thresholding) The pore area was then calculated by using the Image] “Analyse Particles” feature due to the
divergence in the size of pores. The pores area was sized with a confidence area of greater than 0.001 um?. Three to four
specimens from each treatment were randomly selected and examined (n = 3~4). All data was tested for normality of
residuals, normality, and homogeneity of variance before analysing by ANOVA. Student-Newman-Keuls test was used to

compare the means following one-way ANOVA.

2.3 Shell crystallography analysis

Shell crystallographic orientation was analysed by Electron Backscatter Diffraction (EBSD). Shells were prepared according
to the above method, but-without etching. The shell surfaces were ultra-polished for 4 min using cloths with 1 pm and 0.3
um Alpha alumina powders and for 2 min using colloidal silica. In order to investigate both larva aragonite and juvenile
calcite composition, an area throughout the sectional surface of the older hinge regions were selected. The EBSD analyses
were carried out under low vacuum mode (~50 Pa) with a beam voltage of 20 kV using an FEI Quanta 200F with the stage
tilted at 70° to examine backscatter Kikuchi patterns (Perez-Huerta and Cusack, 2009). Diffraction intensity, phase, and
crystallographic orientation maps were produced using the OIM Analysis 6.2 software. Data was partitioned through two
clean-up procedures to display grains with a confidence index (CI) greater than 0.1. Pole figures were used to illustrate the
spread of crystallographic orientation (Perez-Huerta and Cusack, 2009). The colours in the crystallographic orientation maps
and pole figures were used to quantify the crystallographic orientation. Two randomly selected specimens were examined

per treatment.

2.4 Shell mechanical properties analysis

After SEM and EBSD analysis, the resin blocks were re-polished for 5 min using grit papers (P2500 and P4000) and for
another 5min using cloth with colloidal silica to remove the gold-palladium coating and etched shell surface. The mechanical
properties of the polished longitudinal cross sections were determined by measuring the hardness (H) and stiffness (E) using
load and displacement sensing nanoindentation tests (Perez-Huerta et al., 2007). Hardness and stiffness of foliated layers
were measured in the older hinge and younger middle regions of the specimens used in the SEM analysis. The
nanoindentation tests were carried out from the interior to the exterior shell in these regions at ambient temperature with a
Hysitron Tribolndenter T1 900 (T1 900, Hysitron, MN, USA) equipped with a Berkovich indenter (with a half-angle of
63.5°). Indentations were made in each specimen using a 6—11 indent-per-row pattern and a maximum load of 2000 puN with
valid contact depth of 16 to 184 nm. The hardness and stiffness from each indentation were obtained from the loading-
unloading curve using the Oliver-Pharr model (Doerner and Nix, 1986; Oliver and Pharr, 1992). Five to six specimens of

each treatment were randomly selected for nanoindentation tests. Measurements were firstly averaged within per specimen
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and then per replicate tank. Finally, three to four replicate values per treatment were compared (n = 3~4). All data was tested
for normality of residuals, normality, and homogeneity of variance before analysing by ANOVA. Student-Newman-Keuls

test was used to compare the means following one-way ANOVA.

2.5 Shell mineral density analysis

The three-dimensional shell density maps, the overall mineral density and the mineral density-volume ratio relationships
were obtained using a high-resolution micro-CT scanning system (SkyScan 1076, Skyscan, Kontich, Belgium) with a spatial
resolution of 9 pum. Individual shells were placed in a small plastic container held securely in the chamber of the micro-CT
scanner. Shell densities and volume ratios of partial density were calculated by relative comparison using standardized
phantoms used for bone density measurement in the analytical software CT-Analyser v 1.14.4.1 (SkyScan) (Celenk and
Celenk, 2012). The 3D digital data was converted from ~1000 2D layers using reconstruction software CT-Volume v 2.2.1.0
(SkyScan). Three randomly selected specimens were used per treatment (n = 3). The volume ratio with partial density ranges
of 0 to 0.5 g/cm?, 0.5 to 1 g/cm?, and >1.5 g/cm?, and density of the treatment groups were compared with the controls by
one-way ANOVAs. For the datasets that did not meet the requirement of variance homogeneity, i.e., the volume ratio with a
partial density range of 1 to 1.5 g/cm?, Kruskal-Wallis tests were used to compare the effect of pH on these shell properties.
For all other datasets, Student-Newman-Keuls test was used to compare the means following one-way ANOVA. Otherwise,
Dunn’s test was used after Kruskal-Wallis test. Linear regressions (Volume ratio (%) = bx mineral density (g/cm?) +a) was
utilized to determine the relationships between mineral-density and volume ratio, a is the y-intercept and b is the scaling
exponent of consumption. To compare slopes of the resulting linear models, analysis of covariance (ANCOVA) was
performed by using logio transformed volume ratio as the dependent variable, pH levels as the independent variable, and
mineral density range as covariates. All data met the homogeneity of variance and normality assumptions of parametric tests.

ANCOVA were implemented in R 3.3.2 using the statistical package Linear and Nonlinear Mixed Effects Models (Team,

2013). @

3 Results

3.1 Deceased pH alters shell surface and internal microstructure

- Mineral

dissolution or-eresion was prominent on the outer surface layers of shells under decreased pH: The shells of juveniles raised,
at pH 7.8 (Fig. 1b, f) and pH 7.5 (Fig. 1c, g) showed signs of eresien or physical damage when compared to the controls
(Fig. 1a, ). At the lowest pH of %2 with-undersaturated-calcite-conditions; the outer prismatic layer was completely absent
at the older hinge and younger middle regions of the shell (Fig. 1d, h). Though the overall calcitic foliated laminas alignment
were retained, those in the shells of untreated juveniles:(controls) were compactly arranged and well-ordered with minimal
gaps between layers (Fig. 2c, e). In contrast, the foliated layers in shells under all three decreased pH treatments were less
tightly packed and irregularly arranged (Fig. 2g, i, k, m, o and q). The area porosity of foliated layers was-significantly

increased-by decreased—pH-treatments, regardless of older and younger shell (Older region: F 311 = 3.683, p = 0.045;
Younger region: F (311)= 7.480, p = 0.005) (Fig. 2r, s).

3.2 Decreased pH does not affect the crystallographic orientation of foliated layer

Electron backscatter diffraction (EBSD) intensity mapping analysis showed diffraction patterns for both calcite and aragonite

crystals of older hinge regions in the juvenile shells (Fig. 3). From crystallographic orientation maps, though the foliated
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layers of shells under decreased pH showed colour variations within a limited area (~ 5-10 foliated laminas) close to the
interior, the majority of calcite crystal units showed uniform orientation, the same as those in the control (Fig. 3.i and ii). The
spread of data points in the pole figures (Fig: 8:ii) confirmed the identical preferred crystallographic orientation of foliated
layers, resulting in the extent of the variation in crystal orientation of 40 degree regardless of pH treatments, which
corresponded to the olours in the orientation maps (Fig. 3.i). The aragonite erystal-units-appeared-to be similarly distributed
(Fig. 3.iii), but notably, there was an absence of aragonite in the shells formed under pH 7.2 (Fig. 3.iv). Though [decreased
pH had a restricted effect on the marginal foliated laminas closed-to-interior-of-oyster-shell,-theoverall crystallographic

3.3 Decreased pH reduces shell mechanical properties

All decreased pH treatments significantly reduced the shell hardness when compared to shells in the controls (Fig. 4a, b)
(Older region: F 311y = 21.987, p < 0.001; Younger region: F 311y = 4.135, p = 0.034). Similarly, shells at pH 7.5 and 7.2 had
reduced (Young’s modulus compared to the controls (Fig. 4c, d) (Older region: F 311= 4.525, p = 0.027; Younger region: F
@11 = 7.369, p = 0.006). The reduced mechanical features due to decreased pH were observed in both the older hinge regions

and younger middle regions (Fig. 4). @

3.4 An overall “down-shifting” of shell density with decreased pH

Three-dimensional (3D) shell density imaps, the overall shell density and mineral density-volume (ratio relationships by
micro-computed tomography (Micro-CT) showed an overall “down-shifting” of mineral density in-theshell with
decreasing pH (Fig—5)-—The-shell mineral-density-was-significan educed-by-decreased-pH-(Fig. 5e) (F 38 =5.318, p =
0.026)-whi . mineral-density-volume ratio relationships (Figi'5f): Volume ratios were decreased
with the increased mineral density in all pH treatments (ANCOVA; mineral density, F (1,263 = 1253.14, p < 0.001). There
was an interaction between pH and mineral density (ANCOVA; pH xmineral density, F (3263 = 4.994, p = 0.002), indicating
that the effect of pH on the mineral density-volume ratio was different. The lower scaling of consumptions at pH 7.8 (mean

exponent -0.063), pH 7.5 (mean exponent -0.065), pH 7.2 (mean exponent -0.062) versus the control pH level of 8.1 (mean
exponent -0.052), indicating the volume ratio of denser shell was reduced with decreased pH while the volume ratio of less
denser shell was increased correspondingly (Fig. 5f). 3D shell density map (Fig. 5 a-d) reinforced the effect of decreased pH
on the mineral density-volume ratio relationships. In the controls, shells were produced with denser minerals compared to
shells in decreased pH (Fig. 5a). Shells in pH 7.8, pH.7.5 and pH 7.2 had larger proportions of lower mineral density regions
or “pores”™ (Fig:'5b=d): These pores were observed in the 3D density maps as density values below the detection threshold
(Fig. 5a-d). With classifying the shell volumes into four density categories, i.e., < 0.5 g/cm?, 0.5-1 g/cm?, 1-1.5 g/cm? and >
1.5 g/lcm?, the proportions of high (>1.5 g/cm®) and low (< 0.5 g/cm?) shell mineral density areas were significantly affected
by decreasing-pH-(Fig. 5a-d). The volume ratios of high density areas were significantly reduced in all-three-decreased pH
treatments (pH 7.8, pH 7.5 and pH 7.2) when compared to the ontrols (F g = 4.856, p = 0.033). Meanwhile, the volume
ratios of low density areas (< 0.5 g/cm®) significantly increased in-decreased-pH-treatments (pH 7.8, pH 7.5 and pH 7.2)
when-compared to the controls (F a8 = 6.945, p = 0.013). There were no significant differences in the volume ratios of the
middle mineral densities (0.5-1 g/cm®: 4?2 =5.615, p = 0.132; 1-1.5 g/cm®: F g = 3.713, p = 0.061) among treatments (Fig.
5a-d).
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230 4 Discussion

This study provided new €ompiling information of structure - property relationships in calcareous shells of commercially

important oyster species at different spatial scales and under a variety of environmentally and climatically relevant

4. The reveled structural information and subsequent analysis of mechanical
features in this study provided an important experimental basis for developing predictive models to forecast the impact of
235  ocean acidification process on marine calcifying organisms. The rate of calcareous—shellformation of many marine
organisms is expected to be significantly reduced in near-future oceans with a reduced pH of 7.8 due to ocean-acidification
{OA)-process (Ries, 2011; Bednarsek et al., 2012). \We-have-also-observed-a-similar-trend-on-calcification-process in the
Crassostrea angulata because decreased—pH-due—to OA is not only depleting carbonate ions necessary for CaCOs
mineralization, but alsg metabolically weakening marine organisms through the altered physiological processes, i.e. acidosis
240 (Dupont and Portner, 2013). Importantly, this study provided a strong evidence to support the argument that shells produced
by oysters under OA are—corroded with disorganized or impaired crystal orientation ex microstructures with, reduced
mechanical properties. The possible mechanisms and consequences underlying such a negative effects of decreased pH on

mechanics of shell structure are discussed in the following sections.

4.1 Effect of ocean acidification on shell mechanical features: a-hierarchical-analysis

245 In any given biologically formed materials, mechanical properties at-macroscale-is generally depends en composition of
material component and materials—micro-structural features (Rodriguez-Navarro et al., 2002). In this study, oyster shell
material is composed of two inorganic (CaCO3 compounds, calcite and aragonite. Oysters begin their life (larvae) with
aragonite-based shell, but it is completely replaced by, calcite in adults_thoughjuvenile shells-may retain-a-tiny portion-of
aragonite; Calcite is a relatively less soluble form of CaCOs to decreased environmental pH when compared to aragonite.

250  This chemical feature of calcite may have made feasible for the juvenile oysters to successfully mineralize and retain the
laminated calcareous structure even under undersaturated CaCOs saturation levels, e.g. decreased pH 7.4 (Fig. 2).

Like a previously described oyster shell microstructure, the materials used in this study compoesed-of structurally
organized layers. The bulk of the microstructure is characterized by the-foliated layer, with-laminated-lamelar-structureof
crystalunits; In order to understand the modulating effect of environmental pH on the relationship between the shell

255 structural and mechanical features, we have quantified the “space or gap-er pore” size between laminated layers within the
folia. The decreased pH significantly increased size and quantity of the pore in the folia layer. The presence of such a
loosened laminated folia with pores or gaps was an obvious impairment of decreased pH. This micro-structural impairment
was observed even under the near-future level of decreased pH 7.8, where the porosity was increased by 10 folds (Fig. 2r).
On the other hand, the preferred orientation of crystal units within the folia layer showed no difference in all decreased

260 pH treatments, with c-axis of calcite units approximately perpendicular to the outer and inner shell surface. Nevertheless,
hardness and stiffness of the folia layer were significantly reduced under decreased pH, possibly due to the impaired
microstructure with significantly higher pore size and numbers.

Furthermore, we have measured the impacts of decreased pH on whole shell mineral density and thus on “pores or
gaps” in foliated layers using micro-CT analysis. Notably, higher density mineral volume has started reducing with

265 decreasing pH. This result supports our finding on the effect of decreased pH on microscale structure and mechanical
features in the folia. Calcite shell materials are brittle in nature, like egg shells or ceramics, therefore their resistance to
deformation (or breaking force) is largely depend on stiffness parameter of the shell. Here, we have found that both the
hardness and stiffness of the folia layer has started to reduce with decreasing pH, which may have triggered ghell failure
phenomenon under stimulated external attack. Under-the-condition-of same-external-forces, thefolia layer with lower
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stiffness and hardness owing—to—loosened laminated micro-structure under—decreased—pH is expected to be highly
vulnerable to predatory attack even though the preferred orientation of-the brittle material (i.e—calcite)-is unaffected
(Kemeny and Cook, 1986). In addition, the overall “dewn-shifting”, of mineral density detected by Micro-CT analysis
indicates the loosed internal microstructure may run through the juvenile shell with-decreasing—pH; thus-the-above
conclusion—may—be—applicable forthe—entire—oyster shell—In other words, the juvenile oyster shell with impaired

microstructural features is more prone to predator attack under near-future level of decreased pH due to OA processes.

4.2 Effect of ocean acidification on shell microstructure and crystallography

The outermost prismatic layers of the older hinge and younger middle regions was completely disappeared when juvenile

oysters exposed, to the extreme,-but-still-environmentally and-climaticallyrelevant, thedecreased pH-of 7.2 with-calcite
undersaturation—{(Qc==0.66)—(Fig. 1h and Fig. 2n, p). (This'maybe"because of the corrosive effect of the calcite=

undersaturated seawater in the environment (Bednarsek et al., 2012). Similar impacts were observed in the juvenile scallop
(pH 7.8 and pH 7.5), Argopecten irradians (Talmage and Gobler, 2010), juvenile hard-shell clams (pH 7.7), Mercenaria
mercenaria (Dickinson et al., 2013) and the rock oyster (pH 7.8 and pH 7.6), Saccostrea glomerata (Watson et al., 2009).
The juvenile oysters exposed to decreased pH exhibited loosened microstructure in foliated layers (Fig. 2). Firstly, it
may be due to the decreased calcification rate resulted from the metabolic depression and/or energy shortage in the decreased
pH conditions (Gobler and Talmage, 2014; Lannig et al., 2010). Secondly, the, dissolution of the-newly formed minerals of
the inner surface in the—decreased pH conditions may-be-anotherprobable-reason (Melzner et al., 2011). [Based on the
calcification mechanism of mollusc, undersaturated calcite conditions may be in contact with the inner shell surface (Addadi
et al., 2006; Thomsen et al., 2010), where the newly formed minerals grow as the structural building blocks for foliated
layers; in the decreased pH conditions: Thus, the newly formed minerals may still be prone to dissolution. When the
dissolution rate is faster than the calcification rate, organisms may-tend-tg produce loosened microstructure-of-foliated layers.
Similarly, mussel shells grown in decreased pH conditions (pH 7.65) showed inner shell surface dissolution (Melzner et al.,
2011) and impaired shell microstructure (Hahn et al., 2012), which were consistent with the results in this study. (The
crystallography of marine-shel is the @then important proxy to environmental stressors (Milano et al., 2017). Compared to
calcite, aragonite eccuples-muchJess-amoum-ef-oysteLsheus and is more soluble under decreased pH conditions (Fitzer et al.,

absentof aragonite in the older hinge regions at pH 7.2

(Fig. 3.iv) is observed in this study. A similar absence of aragonite also-was reported in mussel shells in high pCO, (1000
patm) conditions (Fitzer et al., 2014). Nevertheless, the aragonitic portion in the adult oyster shell is insignificant and it plays
no role in determining the ultimate mechanical properties of the calcite predominant adult shells.

4.3 Ecological implications and conclusion

Although previous studies showed that early larval life stages of several edible oyster species were relatively physiologically
tolerant to the near-future pH-?-S-due-to-OA(Dmeshram et al., 2013; Ko et al., 2013; Ko et al., 2014), this study shows that

they are still vulnerable due to-the-softer-and-less-s s, Similar negative impact of OA on

shell mechanical properties was reported in various marine calcifiers. For example, the pearl oyster, Pinctada fucata,
produced a 25.9% weaker shell after exposure to acidified-seawater at pH 7.8 (Welladsen et al., 2010). [Decreasing shell
hardness in decreased pH conditions was also observed in the California mussel (pH-7-95—and—pH 7.75), Mytilus
californianus (Gaylord et al., 2011), the hard clam (pH-7-7); Mercenaria mercenaria (Dickinson et al., 2013; Ivanina et al.,
2013), and the serpulid tubeworm (pH-7-8); Hydroides elegans (Li et al:; 2014): However, the effects of increased pCOz on
shell mechanical properties are species-specific. Near-future decreased-pH-7-8 did not affect shell hardness in the sea urchin
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Paracentrotus lividus (Collard et al., 2016) or in the barnacle Amphibalanus amphitrite (McDonald et al., 2009). ndeed;
310  juvenile oysters of C. gigas significantly increased their shell strength and size as a compensatory adaptive response to the
high pCO; condition (i.e., pCO, 1000 patm) (Wright et al., 2014), and the blue mussel, Mytilus ednlis_produced a stiffer

and harder calcite layer under in increased pCO- condition (i.e., pCO, 1000 patm) (Fitzer et al., 2015)
The long-term survival strategy of oysters with mechanical softer and-less-stiff shells as yet to be studied. However, as
shown in a recent study (Sanford et al., 2014), it appears that the-mechanically weaker shell, will result in compromised
315 defence ability; i i i i i i
oysters-in-the-decreased-pH-condition. Moreover, results from a recent study suggest that oysters with reduced and impaired
calcification mechanisms have lower capab s (Coleman et al., 2014). This

hierarchical study revealed that the OA-induced-decreased—pH, conditions may cause a bottom-up deterioration en oyster
shells, thus pose a serious threat to oyster survival and the health of coastal oyster reef structures in the near-future ocean

320  This biological effect of OA on shell structures and mechanical features should be incorporated to the coastal oceanographi@

biophysical models to accurately project the survival of oysters in near-future coastal oceans.
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Figures

pH 8.1 pH 7.8 pH 7.5 pH 7.2

Figure 1: Scanning electron micrographs of 35-day-old juvenile Crassostrea angulata shells cultured at ambient or control pH 8.1
(a and e), treatment pH 7.8 (b and f), pH 7.5 (c and g) and pH 7.2 (d and h) were compared. Top row: low magnification
tomography of the juvenile shells. Bottom row: enlarged view of the crystallite units (top view). (¢) The prism units were arranged
in compact prismatic structures at pH 8.1; (f) prismatic arrangement was partially lost at pH 7.8; (g) rough surface was observed
demonstrating a much lower level of organization at pH 7.5; (h) a smooth surface was observed with no prismatic arrangement
due to corrosion by environmental seawater.
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Figure 2: Microstructures were observed in the cross-sectional shell surfaces of 35-day-old juvenile Crassostrea angulata. Scanning
electron micrographs were taken near the older hinge region (b, c, f, g, j, k, n and o) and the younger middle region (d, e, h, i, I, m,
p and q). First row: scanning electron micrograph of the full shell cross-sectional surface (a). Second row: the prismatic layer (b
and d) and tightly packed foliated structure (c and ) at pH 8.1. Third row: the prismatic layer (f and h) and the foliated structure
with more and bigger pores (g and i) at pH 7.8 compared with at pH 8.1. Fourth row: the incomplete prismatic layer (j and I) and
more porous foliated structure (k and m) at pH 7.5 compared with at pH 8.1. Fifth row: the prismatic layer was not detectable (n
and p) with porous foliated structure (o and g) at pH 7.2. The porosity of foliated layers at the older (r) and younger regions (s) of
the shell reared under control and low pH treatments. The mean values are presented in the bar chart (mean £ SD, n = 3 - 4).
Annotations: P-prismatic layer; F- foliated layer.
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Figure 3: Electron Backscatter Diffraction analyses of shells grown for 35 days at control pH 8.1 (a), treatment pH 7.8 (b), pH 7.5
(c) and pH 7.2 (d). Crystallographic orientation maps (i) of calcite crystals in reference to the {0001} plane and aragonite crystals
in reference to the {001} plane. Crystallographic planes of calcite are colour-coded according to the normal crystallographic
direction shown in the colour key (Perez-Huerta and Cusack, 2009). Pole figures for calcitel(ii) and aragonite (iii) corresponding to
the crystallographic orientation maps with the same colour key. (iv) Phase map of calcite exhibited in red and aragonite in green.
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White arrow: change in colour of 5 to 10 marginal foliated laminates. Scale bar = 45 pm.
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Figure 4: Shell mechanical properties in terms of hardness (a and b) and stiffness (c and d) with longer and shorter exposures in
older hinge regions (a and c) and younger middle regions (b and d) in cross-sectional shell surfaces of Crassostrea angulata were
compared. Data of mechanical properties are presented as mean + SD of three to four replicates (n = 3 or 4).
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Figure 5: Effects of low pH on the shell density map (a-d), overall density (e), and mineral density - volume ratio relationships (f)
for the four experimental pH treatment groups were examined by micro-CT of shells of Crassostrea angulata. Three dimensional
reconstructions represent the density distribution of the shells produced in ambient or control pH 8.1 (a), treatment pH 7.8 (b), pH
7.5 (c) and pH 7.2 (d). The volume ratios of density categories of <0.5 g/cm?, 0.5-1.0 g/lcm?, 1.0-1.5 g/cm?, and > 1.5 g/cm® were
quantified. (e) The overall density was presented as mean + SD of three replicates (n = 3). (f) Mineral density-volume ratio
relationships for the four experimental pH treatment groups of C. angulata. Regression lines for the three low pH treatments
closely overlap and are partly obscured.





