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Abstract. Atmospheric deposition is an important source
of micronutrients to the ocean, but atmospheric deposition
fluxes remain poorly constrained in most ocean regions due
to the limited number of field observations of wet and dry
atmospheric inputs. Here we present the distribution of dis-5

solved aluminium (dAl), as a tracer of atmospheric inputs,
in surface waters of the Atlantic Ocean along GEOTRACES
sections GA01, GA06, GA08, and GA10. We used the sur-
face mixed-layer concentrations of dAl to calculate atmo-
spheric deposition fluxes using a simple steady state model.10

We have optimized the Al fractional aerosol solubility, the
dAl residence time within the surface mixed layer and the
depth of the surface mixed layer for each separate cruise
to calculate the atmospheric deposition fluxes. We calcu-
lated the lowest deposition fluxes of 0.15± 0.1 and 0.27±15

0.13 g m−2 yr−1 for the South and North Atlantic Ocean
(> 40◦ S and> 40◦ N) respectively, and the highest fluxes of
1.8 and 3.09 g m−2 yr−1 for the south-east Atlantic and tropi-
cal Atlantic Ocean, respectively. Overall, our estimations are
comparable to atmospheric dust deposition model estimates20

and reported field-based atmospheric deposition estimates.
We note that our estimates diverge from atmospheric dust de-

position model flux estimates in regions influenced by river-
ine Al inputs and in upwelling regions. As dAl is a key trace
element in the GEOTRACES programme, the approach pre- 25

sented in this study allows calculations of atmospheric depo-
sition fluxes at high spatial resolution for remote ocean re-
gions.

1 Introduction

Atmospheric deposition is a major source of micronutrients, 30

especially iron, for the surface ocean (Martin et al., 1991;
Moore et al., 2004). Aerosol deposition of iron in the tropical
and subtropical North Atlantic stimulates N2 fixation (Moore
et al., 2009), and in high-latitude waters with high-nitrate–
low-chlorophyll conditions it can enhance primary produc- 35

tivity (Baker et al., 2013). Consequently, atmospheric depo-
sition is considered to support up to 50 % of global export
production (Jickells et al., 2014). Therefore, by supplying
growth-limiting elements to marine microorganisms, atmo-
spheric deposition can have important direct impacts on the 40
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2 J.-L. Menzel Barraqueta et al.: Atmospheric deposition fluxes over the Atlantic Ocean

marine carbon cycle and indirectly influence global climate
(Mahowald et al., 2014).

The size distribution of mineral dust is considered a con-
tinuum. However, mineral dust is often described to have
a bimodal size distribution and thus aerosols are classified5

into a fine (radius 0.1–0.25 µm) or coarse mode (radius 1–
2.5 µm) (Maring et al., 2003). The classification facilitates
us to assign aerosol deposition velocities for the aerosol size
classes for the quantification of dry deposition fluxes (Slinn
and Slinn, 1980). Mineral dust mobilization mainly depends10

on vegetation cover, surface soil moisture content, and wind
friction speed (Mahowald et al., 2014; Zender et al., 2003).
Once mobilized by wind and lofted into the troposphere,
mineral dust can be transported thousands of kilometres from
source regions following major air mass movements. In the15

North Atlantic the trade winds transport dust from North
Africa to the Caribbean and the Americas (Prospero et al.,
2010) in about 1 week (Ott et al., 1991). Along the transport
path of atmospheric aerosols, the size distribution of aerosol
tends to decrease with increasing distance from the source20

regions. Chemical and physical transformation processing of
aerosol in clouds, such as photoreduction and dissolution,
can enhance the fraction of trace metals that are released
upon deposition into the surface ocean (Duce and Tindale,
1991). Thus, the degree of atmospheric processing can be a25

critical factor in determining the impact of atmospheric de-
position on marine ecosystems (Baker and Croot, 2010; Ma-
howald et al., 2011).

In the Atlantic Ocean, mineral dust deposition is highest
in tropical regions located downwind of the major aerosol30

source regions of the Sahara Desert and Sahel (Jickells et al.,
2005; Prospero and Carlson, 1972). Moreover, the Intertrop-
ical Convergence Zone (ITCZ) in the Atlantic Ocean (lo-
cated at∼ 5–10◦ N in winter and in summer) features intense
wet deposition which effectively strips the aerosols from the35

atmosphere, thereby depositing trace elements to the sur-
face ocean in solution (Kim and Church, 2002; Schlosser et
al., 2014). Other important mineral dust source regions in-
clude the Namib Desert and Patagonia for the South Atlantic
Ocean (Chance et al., 2015; Mahowald et al., 2005; Wagener40

et al., 2008). In remote marine areas such as the far North
and South Atlantic, removed from major desert dust sources,
aerosols are of a mixture of marine origin, shipping emis-
sions, industrial and agricultural emissions from the conti-
nents (Baker et al., 2013; Chance et al., 2015; Shelley et al.,45

2017), seasonal emissions of proglacial till (Bullard et al.,
2016) and occasional volcanic ash emissions (Achterberg et
al., 2013). In addition, aerosols in these remote regions may
also have a mineral dust component, depending on the mete-
orological conditions (Prospero, 1996a).50

Atmospheric deposition flux determinations have a rela-
tively high uncertainty (Zender et al., 2003) due to large
inter-annual and inter-seasonal variabilities. Several ap-
proaches are used to calculate atmospheric deposition fluxes
from geochemical tracers or proxies (Anderson et al., 2016).55

Geochemical methods determine atmospheric deposition
fluxes from elemental concentrations in aerosols and/or rain,
or chemical concentrations, or signatures of tracers of at-
mospheric deposition in seawater (Anderson et al., 2016).
A commonly used geochemical method to determine total 60

(wet+ dry) deposition fluxes is to measure elemental con-
centrations in aerosols collected on filters and in rain wa-
ter, multiplying the aerosol concentration data with deposi-
tion velocities (dry deposition flux) and multiplying the rain-
water concentration data by a precipitation rate (wet deposi- 65

tion flux) (Baker et al., 2003; Prospero, 1996a; Shelley et al.,
2018). Atmospheric dry deposition fluxes are subject to a 2–
3-fold uncertainty due to the use of a single deposition veloc-
ity in the flux calculation (Duce and Tindale, 1991); thus the
varying deposition velocities of different mineral dust sizes 70

are not considered. However, when size segregated sam-
pling approaches are used more than one deposition velocity
is applied, thereby decreasing the uncertainty in the calcu-
lated deposition flux. The uncertainty may be even larger for
wet deposition fluxes because of the uncertainties associated 75

with precipitation rates and scavenging ratios (Shelley et al.,
2018). A different approach that tries to reduce the uncer-
tainties associated with the deposition velocity and precipi-
tation rates uses the inventory of 7Be in the surface mixed
layer and the ratio of trace elements to 7Be in aerosols to cal- 80

culate atmospheric deposition fluxes on seasonal timescales
(Kadko et al., 2015; Kadko and Prospero, 2011). Other ap-
proaches used to determine atmospheric fluxes of trace ele-
ments use particle collection by sediment traps (Jickells et
al., 1998; Kohfeld and Harrison, 2001) or analyse mineral 85

dust tracers in surface ocean waters (Dammshäuser et al.,
2011). Modern atmospheric models consider aerosol charac-
teristics (e.g. size distribution, particle type) and field obser-
vations to estimate atmospheric deposition fluxes (Mahowald
et al., 2005; Zender et al., 2003; Zhang et al., 2015). Of- 90

ten, modelling approaches simulate atmospheric deposition
fluxes more accurately in regions downwind from the main
aerosol sources (Huneeus et al., 2011; Wagener et al., 2008)
because the aerosol characteristics, due to extensive datasets
in these regions, are better constrained in proximity to their 95

source. Modelled atmospheric deposition fluxes often rely
on satellite-derived climatologies. The satellite-derived cli-
matologies use properties (i.e aerosol optical depth) which
suffer from cloud coverage and are biased towards clear-sky
conditions (Huneeus et al., 2011). 100

In this paper we present surface ocean dissolved alu-
minium (dAl) concentration data for the Atlantic Ocean and
use these to calculate atmospheric deposition fluxes using
the MADCOW model (Measures and Brown, 1996). The
strength of this approach is that it can be used to fill gaps 105

where there are relatively few direct aerosol observations.
This study compares the MADCOW model outputs with
field and model-derived atmospheric deposition flux esti-
mates from the North to the South Atlantic Ocean. We pro-
vide some of the first atmospheric deposition fluxes based 110
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on high-resolution surface mixed-layer concentrations of dAl
for remote regions including the Labrador Sea, south-east
Atlantic and South Atlantic Ocean (ca. 40◦ S). Our results
are discussed in light of the assumptions and limitations of
the MADCOW model, and are compared to available atmo-5

spheric deposition flux estimates from modelling and geo-
chemical approaches.

2 Methods

2.1 Regional, sampling, and processing settings

Seawater samples for dAl were collected during the GEO-10

TRACES section cruises GA01, GA06, GA08, and GA10
(Fig. 1). GEOTRACES section GA01 (Sarthou et al. 2018)
sailed aboard the research vessel Pourquoi Pas? on 15 May
(2014) from Lisbon (Portugal) and arrived on 30 June (2014)
in St. John’s (Canada). GEOTRACES section GA06 sailed15

aboard RRS Discovery on 7 February (2011) from Tenerife
(Canary Islands, Spain) and returned on 19 March (2011) to
Tenerife. GEOTRACES section GA08, on board FS Meteor,
sailed from Walvis Bay (Namibia) on 14 November (2015)
and returned there on 27 December (2015). GEOTRACES20

section GA10, on board RRS James Cook, sailed on 24 De-
cember (2011) from Port Elizabeth (South Africa) and ar-
rived on 27 January (2012) in Montevideo (Uruguay). The
four expeditions crossed several biogeochemical provinces
(Longhurst, 2010) which are shown in Fig. 1 and listed in25

Table S1 in the Supplement along with their geographical
boundaries, ecological and physical properties. Figure S1 in
the Supplement shows the station numbers associated with
each cruise.

In total, seawater samples were collected at 108 stations,30

with 32 stations sampled during GA01, 14 stations dur-
ing GA06, 52 stations during GA08 and 18 stations dur-
ing GA10. Although the different teams used slightly differ-
ent conductivity–temperature–depth (CTD) set-ups for sam-
pling the seawater (Table S2), all samples were collected us-35

ing trace metal clean CTD rosettes and followed the GEO-
TRACES sampling protocols (http://geotraces.org, last ac-
cess: 1 January 2018). All seawater samples for the determi-
nation of dAl were filtered (Table S2 for filter type and pore
size) and collected in 125 mL low-density polyethylene bot-40

tles (LDPE; Nalgene) cleaned using a three-step wash proto-
col (as per GEOTRACES cookbook; http://www.geotraces.
org, last access: 1 January 2018). After collection, the sam-
ples were acidified to pH≈ 1.8 with ultra-clean hydrochloric
acid (UpA, Romil, 0.024 M) and double bagged until analy-45

sis. Analysis of dAl during GA01, GA06, and GA10 used the
flow injection analysis (FIA) method developed by Resing
and Measures (1994) and further modified by Brown and
Bruland (2008). Dissolved Al during GA08 cruise was anal-
ysed using the batch lumogallion method (Hydes and Liss,50

1976). The analytical figures of merit for the dAl datasets
can be found in Table S2.

2.2 Atmospheric deposition flux determinations: the
MADCOW model

The MADCOW (Measurement of Aluminium for Dust Cal- 55

culation in Ocean Waters) model (Measures and Vink, 2000;
Measures and Brown, 1996) determines total (dry+wet) at-
mospheric deposition fluxes to the surface ocean from the
concentration of dAl in the surface mixed layer. The pri-
mary model assumption is that dAl in the surface waters is in 60

steady state with respect to inputs from soluble Al provided
by the dissolution of mineral dust on contact with seawater
and rain deposition, removal via scavenging of Al onto par-
ticle surfaces, and subsequent transfer to depth by sinking.
The model itself is provided by the following equation: 65

G=
[Al]×MLD
τ × S×D

, (1)

where G is the total dust flux in g m−2 yr−1, [Al] is the con-
centration of dAl (mol m−3) in the surface mixed layer, MLD
is the depth of the mixed layer in metres (m), τ is the resi-
dence time in years (yr), S is the fractional solubility of Al 70

in dust (%), and D is the concentration of Al in dust (8.1 %,
mol g−1). The limitations of the MADCOW model and ex-
tended discussions on the inherent assumptions of the MAD-
COW model have been acknowledged in previous investiga-
tions (e.g. Measures and Vink, 2000; Measures and Brown, 75

1996). We describe how each parameter is derived for each of
the cruises in the following sections and describe the assump-
tions used by the MADCOW model for the determination of
the atmospheric deposition fluxes.

2.2.1 Quantification of surface mixed-layer depths 80

We used two different MLDs. First, a measured mixed-layer
depth (MLDms) was obtained for each station using a poten-
tial density difference criterion 1σθ = 0.125 kg m−3 (Mon-
terey and Levitus, 1997) calculated from the salinity and tem-
perature retrieved from the sensors mounted in the CTDs. 85

Second, annual (MLDar) and seasonal (MLDwi, MLDsp,
MLDsu and MLDau, for winter, spring, summer, and au-
tumn, respectively) MLDs were extracted for each station
of the four cruises in a 1× 1◦ bin in latitude and longitude
from the Argo mixed-layer climatology (http://mixedlayer. 90

ucsd.edu/, last access: September 2017) (Holte et al., 2017).

2.2.2 Fractional solubility of Al

Seasonal (April to June and September to November) Al
fractional solubilities were obtained from the compilation
of Baker et al. (2013), based on aerosol samples collected 95

at high spatial resolution over several years in the Atlantic
Ocean. The soluble fraction was based on the results of
an ammonium acetate leach at pH 4.7 for 1–2 h, following
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Figure 1. Map showing the location of the four GEOTRACES cruises. Red lines represent the main surface ocean currents. The diamonds
represent rivers. Yellow arrows represent approximate areas which act as the main mineral dust sources to the Atlantic Ocean (Prospero et al.,
2002). Black lines divide different biogeochemical provinces used in this study which are labelled with letters. Blue dots represent stations.
For station numbers for each cruise please refer to Fig. S1.

Sarthou et al. (2003). Baker et al. (2013) divided the Atlantic
Ocean into various regions and subregions (Fig. S2) based on
air mass back trajectories and the relative contribution of the
air masses over the two seasons in each region. Along with
Fig. S2 we provide an explanatory note on the relative contri-5

bution of each air mass for each region which we then com-
piled in Table S3. They calculated the fractional Al solubility
for each subregion. Baker et al. (2013) provide a good spa-
tial coverage of the Atlantic Ocean, thus allowing us to assign
values of Al fractional solubility for different biogeochemi-10

cal regions (Fig. 1) based on field observations. However, the
aerosols Al fractional solubility might not be representative
over an annual timescale due to, for example, the pulses of
Saharan dust and where the mineral dust falls which is re-
lated to the position of the ITCZ. Yet, it is still the largest15

dataset on aerosol Al fractional solubility over the Atlantic
Ocean. We produced a single weighted averaged aerosol Al
fractional-solubility percentage value for each area of inter-
est based on the Al fractional solubility for each air mass
to the relative contribution of that air mass to a certain area20

(Table S3). Furthermore, we assumed that the chosen Al sol-
ubility was representative for the whole annual cycle as our
atmospheric aerosol deposition flux estimates are given in
g m−2 yr−1. As the compilation of Baker et al. (2013) does

not cover regions north of 50◦ N in the North Atlantic, we 25

used Al fractional solubilities from Shelley et al. (2018) de-
rived from aerosol samples collected during the GA01 cruise.

2.2.3 Al residence time in the surface mixed layer

The residence time is defined as the ratio of the dAl inventory
in the surface mixed layer to the rate of input or removal. Res- 30

idence times of dAl in the surface mixed layer were obtained
from Han et al. (2008) and are based on an extensive surface
water dAl observational database (including 22 cruises in the
Atlantic Ocean). The latter residence times were derived us-
ing a fixed mixed-layer depth (50 m) and a constant Al frac- 35

tional solubility (5 %) and take into account Al sources to the
surface mixed layer from atmospheric deposition, advection,
and mixing. The MADCOW model does not account for ad-
vection and mixing processes which, for example, occur in
equatorial regions (van Hulten et al., 2013). Thus, the use of 40

modelled residence times which account for advection and
mixing sources could partially counterbalance the error asso-
ciated with our modelled atmospheric deposition fluxes. We
acknowledge that the use of residence times derived from us-
ing a fixed mixed-layer depth and constant Al solubility may 45

underestimate or overestimate the real residence time. The
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Figure 2. Box whisker plot for the MLD determined using in
situ measurements (MLDms) and annual mixed-layer climatol-
ogy (MLDar) (http://mixedlayer.ucsd.edu/, last access: September
2017) (Holte et al., 2017).

latter affects regions of large seasonal variability such as the
tropical Atlantic (see Sect. 3.2.2 and 3.6.2).

3 Results and discussion

3.1 Mixed-layer depth (MLD)

The surface mixed layer is considered a quasi-homogenous5

layer based on physical properties (salinity and tempera-
ture). The properties display gradients at the bottom of the
layer. The bottom depth of the surface mixed layer varies
due to atmospheric forcing, with turbulent mixing caused by
wind stress (Risien and Chelton, 2008), convection caused by10

heat exchange (Yu and Weller, 2007), in addition to salinity
changes due to evaporation and precipitation at the surface
(Schanze et al., 2010). Thus, the thickness of the MLD is an
indication of the amount of water that directly interacts with
the atmosphere.15

Figure 2 shows a box and whisker plot with the quanti-
fied MLDs (MLDms and MLDar) for each of the four study
regions. Table S4 shows the calculated MLDs for each sta-
tion and Fig. S3a, b, c and d show a comparison plot for
each cruise between the MLDms, MLDar, MLDmw (mixed-20

layer depth original MADCOW model) and the Argo average
MLD during the season when each cruise took place.

In the North Atlantic (GA01) and South Atlantic (GA10)
Ocean, large differences were observed between median
MLDms and MLDar (differences of 77 and 20 m, respec-25

tively). Smaller differences were detected between median
MLDms and MLDar in the tropical (GA06) and south-east
Atlantic (GA08) Ocean (differences of 7 and 10 m, respec-
tively). Maximum MLDar and MLDms were greatest in the
North Atlantic (up to 218 m), followed by the South Atlantic30

(106 m), the south-east Atlantic (83 m), and tropical Atlantic
(66 m). The large differences in maximum MLDar and be-
tween the MLDms and MLDar medians, between the North
Atlantic Ocean and the other three study areas, were due to

strong deep mixing taking place in the North Atlantic Ocean 35

during winter (Kara et al., 2003). In the tropical Atlantic
Ocean, the MLD is largely controlled by changes in tem-
perature (net heat flux) and salinity (evaporation to precip-
itation ratios) (Chahine, 1992; Webster, 1994). In our study,
deeper MLDs relative to shallower MLDs imply that higher 40

quantities of aerosols need to be supplied to a specific re-
gion in order to maintain the observed dAl concentrations in
the MLD. As an input parameter for the MADCOW model
we have chosen a single MLD value for each cruise. This
is the median value between the MLDms and MLDar. We 45

acknowledge that choosing a single MLD value may not be
the best approach but it gives us the opportunity for an intra-
comparison of atmospheric fluxes within the same cruise.

3.2 Distributions of dAl in the surface mixed layer

Figure 3 shows the average dAl concentration in the surface 50

mixed layer along the four sections. Occasionally, when no
sample was collected, the closest underway surface water
sample collected with a tow fish was used. A detailed de-
scription for the surface mixed-layer dAl concentrations of
the four cruises relative to physical and biological parame- 55

ters is given in the following sections. Overall, a large range
in surface dAl concentrations was observed, ranging between
< 0.5 and 784 nM (median 5.1 nM; n= 108 stations). The
highest dAl concentrations were observed in the tropical At-
lantic Ocean between 1–15◦ N and ca. 26◦W, and in coastal 60

waters off Portugal, Greenland, Argentina, Angola, Demo-
cratic Republic of the Congo, and Gabon in association with
the highest atmospheric inputs and continental inputs (rivers,
glacial flour, and ice melt). In contrast, low dAl concen-
trations (< 5 nM) due to low atmospheric deposition and/or 65

scavenging of dAl by particles were found in the North At-
lantic (GA01), in the south-east Atlantic (GA08), and in the
South Atlantic Ocean (GA10).

3.2.1 Dissolved Al in the surface mixed layer of the
North Atlantic Ocean (GA01) 70

Along GEOTRACES GA01 section in the North Atlantic
(Fig. 1), the highest (> 15 nM) dAl surface mixed-layer con-
centrations were found in the North Atlantic Subtropical
Gyre region (NAST) off Portugal (stations 1, 2 and 4) and
are attributed to riverine inputs from the Tagus Estuary (Men- 75

zel Barraqueta et al., 2018). An additional source of dAl off
Portugal involves episodic deposition of mineral dust origi-
nating from the Sahara and Sahel regions (Prospero, 1996a),
and wet deposition events as observed during the GA01
cruise (Shelley et al., 2017). Enhanced dAl surface mixed- 80

layer concentrations (> 5 nM) were also observed in the At-
lantic Arctic region (ARCT) off south-east and south-west
Greenland (stations 53 and 61) as a consequence of runoff
and ice melt, respectively (Menzel Barraqueta et al., 2018).
In addition, enhanced dust inputs delivered from proglacial 85
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Figure 3. Surface mixed-layer dAl concentrations (nM) for the
cruises used in this study (GA01, GA06, GA08, and GA10). Red
lines divide the different biogeochemical provinces used in this
study.

tills in Greenland occur from June to September (Bullard et
al., 2016), coinciding with the time of sample collection off
Greenland. Excluding the stations with continental Al inputs,
mixed-layer dAl concentrations were low, reflecting low con-
tributions of atmospheric deposition (median dAl= 2.9 nM),5

and were not significantly different from east to west due to
differences in the intensity of biological removal processes
as described by Menzel Barraqueta et al. (2018). A more de-
tailed explanation on the surface distribution for dAl along
the GA01 cruise and comparison to previous studies is given10

in Menzel Barraqueta et al. (2018).

3.2.2 Dissolved Al in the surface mixed-layer of the
tropical Atlantic Ocean (GA06)

The tropical Atlantic has a large coverage of dAl measure-
ments, compiled in Han et al. (2008), related to the impor-15

tance of dust delivering micronutrients (e.g. Fe) to the surface
ocean. Along the GEOTRACES GA06 section, dAl concen-
trations were high and ranged from 8 nM in the North At-
lantic Tropical Gyre region (NATR) to 67 nM in the west-
ern tropical Atlantic region (WTRA). In the southern part of20

the section at ∼ 8◦ S, at the boundary between the South At-
lantic Gyre (SAG) and the South Equatorial Current (SEC)
in the WTRA (Fig. 1), dAl displayed low concentrations
(∼ 8.8 nM) with elevated salinity (36.54) (Fig. 4). The latter
region is known to have low rainfall, high rates of evapora-25

tion (Yoo and Carton, 1990) and receives large volumes of
mineral dust deposition (Prospero, 1996b). Vink and Mea-
sures (2001) observed similarly low levels of dAl (8 nM) but

somewhat further south at 15◦ S. Similarly, on the westward
transect at ca. 12.5◦ N, low dAl concentrations were observed 30

(down to 8 nM), and are associated with enhanced removal
of dAl by biogenic particles. Enhanced primary production
as a consequence of upwelling of nutrient-rich deep water
resulted in a high abundance of biogenic particles; Mea-
sures et al. (2015) reported similar conditions for the region. 35

Also, the low levels observed could be associated with the
westward transport of depleted Al waters arising from the
African upwelling region (Gelado-Caballero et al., 1996).
High dAl concentrations (15–28 nM) were found north of
3◦ S and were related to enhanced deposition of mineral dust 40

as the sampling stations were located along the flow path
of the trade winds that carry mineral dust from the Sahara
and Sahel regions (Mahowald et al., 2005; Prospero et al.,
2002). Maximum concentrations of dAl (up to 68 nM) were
observed at ca. 3◦ N, 26◦W (station 14) and coincided with 45

reduced salinity (down to 35) (Fig. 4), suggesting freshwater
inputs from rainfall occurring in the ITCZ. The ITCZ was
positioned between ca. 3◦ S and 3◦ N with the core situated
at 1◦ N during the cruise period (Schlosser et al., 2014). Pre-
cipitation in the ITCZ effectively scavenges dust from the 50

atmosphere and supplies Al to surface waters in the form of
wet deposition (Schlosser et al., 2014). Similarly, high dAl
concentrations (or total Al, e.g. up to 74 nM) (Van Der Lo-
eff et al., 1997) for the region have been reported (Barrett
et al., 2015; Bowie et al., 2002; Dammshäuser et al., 2011; 55

Helmers and Rutgers van der Loeff, 1993; Measures, 1995;
Measures et al., 2015, 2008; Measures and Vink, 2000; Pohl
et al., 2011; Schlosser et al., 2014). These studies relate the
high Al values either to wet deposition and/or large dry de-
position pulses. 60

Figure 5 shows average, maximum and minimum Al con-
centration data (filtered and unfiltered) collected over sev-
eral cruises from approximately 25◦ S to 25◦ N. The single
datasets used for the figure are shown in Fig. S4. From Figs. 5
and S4 we can observe that Al values between 8◦ S and 17◦ N 65

are highly variable with a large range between maximum and
minimum values. This high variability is a consequence of
seasonal migration of the ITCZ and the seasonal nature of
mineral dust plumes which vary in intensity on a daily basis
(Patey et al., 2015). These factorsCE1 , in addition to equato- 70

rial upwelling (Vink and Measures, 2001), will impact parti-
cle fluxes (biogenic and non-biogenic) (Chester, 1982; Kuss
et al., 2010) which, in turn, impact the residence time of Al
in the tropical Atlantic and our ability to accurately calculate
atmospheric fluxes (see Sect. 3.6.2). The influence of spo- 75

radic inputs of Al (either wet or dry) is critical as it has been
demonstrated that dAl concentrations in surface waters can
change substantially within weeks after sporadic inputs (de
Jong et al., 2007; Schlosser et al., 2014). Deciphering the
seasonal variability of dAl in the tropical Atlantic seems a 80

difficult task. The deciphering of seasonal variability, if done
by only using Al surface concentrations, would struggle to
yield precise outcomes.
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Figure 4. Distribution of dAl (nM), salinity and temperature for the northward transect in the tropical Atlantic (GA06). SEC, South Equatorial
Current; ECG, Equatorial Gyre; ITCY, Intertropical Convergence Zone; NEC, North Equatorial Current; NASG, North Atlantic Subtropical
Gyre.

Figure 5. Compilation of aluminium (Al) data for the tropical Atlantic Ocean. Solid and dashed lines represent minimum, maximum, and
average Al (filtered and unfiltered) and salinity for several cruises in different seasons and years. For each degree in latitude available Al data
have been averaged. For specific seasons and specific references to a dataset please refer to Fig. S5.

3.2.3 Dissolved Al in the surface mixed-layer of the
south-east Atlantic Ocean (GA08)

Along GEOTRACES section GA08 in the south-east At-
lantic, dAl concentrations (Fig. 3) ranged from 1.2 (sta-
tion 45) to 784 nM (station 15) (median 9 nM; n= 44). The5

lowest dAl concentrations were found south of 20◦ S at sta-
tions along the prime meridian and at ca. 30◦ S and 1 to 10◦ E
as a consequence of low aerosol deposition to the South
Atlantic Gyre (SAG) region. Similar low concentrations of
surface dAl associated with low productivity waters in the10

South Atlantic Gyre have been reported (Measures, 1995).
Low dAl concentrations (down to 1.3 nM) were observed
during GA08 in the Benguela Coastal Current (BENG) re-
gion off Namibia coinciding with high chlorophyll a (Chl a)
concentrations (Fig. S5) and thus enhanced dAl scavenging15

onto biogenic particles. The enhanced scavenging of dAl by
particles is supported by elevated concentrations of total dis-

solvable Al (unfiltered) observed during the AMT-6 cruise
(Bowie et al., 2002). Bowie et al. (2002) argued that the en-
hanced total dissolvable Al was a consequence of Al-rich 20

upwelled waters. Significant correlations between increased
number of biogenic particles, and low dAl and high particu-
late Aluminium (pAl) concentrations have recently been re-
ported (Menzel Barraqueta et al., 2018; Barret et al., 2018),
indicating the control of biogenic particles on Al cycling 25

in surface waters. The highest dAl concentrations (up to
784 nM) were observed along the SW African coast north
of 6◦ S (stations 14 to 23) in the Guinea Current Coastal
region (GUIN) and were associated with freshwater inputs
from the Congo River. Similar observations were made by 30

van Bennekom and Jager (1978), and enhanced levels of dAl
(up to 50 nM) associated with inputs from the Congo River
have been reported as far as 1200 km (6◦ S 0◦ E) from the
river mouth (Van Der Loeff et al., 1997). Between the Congo
River mouth (6◦ S) and the Angola-Benguela frontal zone 35

www.biogeosciences.net/16/1/2019/ Biogeosciences, 16, 1–19, 2019
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(ca. 11◦ S) (Fig. 1) elevated dAl was observed (20–40 nM)
(Fig. 3). Possible sources for the elevated dAl concentra-
tions are urban emissions and atmospheric mineral dust from
West Africa. Prospero (1996a) argued that when the ITCZ
migrates south of the Equator, additional southward transfer5

to the Gulf of Guinea of atmospheric dust from the Sahara
and the Sahel regions can occur during austral summer. In
addition, the low Chl a concentrations in the GUIN region
would facilitate dAl accumulation in the surface mixed layer
due to a lack of adsorption onto biogenic particles.10

3.2.4 Dissolved Al in the surface mixed-layer of the
South Atlantic Ocean (GA10)

Along GEOTRACES section GA10 in the South Atlantic
Ocean, dAl concentrations were generally low and ranged
between 0.3 nM in the South Atlantic Ocean and 15.8 nM15

on the Argentine shelf (n= 17, median= 1.6 nM) (Fig. 3).
Highest concentrations (up to 16 nM) were observed on the
south-west Atlantic Shelf region (FKLD). The FKLD is
thought to be influenced by dAl inputs from the Rio de
la Plata, shelf sources, and possibly atmospheric deposition20

from Patagonian sources (Chance et al., 2015; Jickells et al.,
2005; Mahowald et al., 2005; Wagener et al., 2008). How-
ever, the correlation between surface salinity and dAl for the
FKLD is weak (n= 4, R2

= 0.13) and suggests a minor in-
fluence on Al concentrations from freshwater sources. Thus,25

it is unlikely that the Rio de la Plata was a major source of
dAl at the time of the cruise. An additional input of dAl could
be associated from the advection of Al-rich waters from
the southward flowing Brazil Current (Vink and Measures,
2001). However, this feature has been observed somewhat30

further north at 34◦ S and the influence of the Brazil Current
at our latitude may been counterbalanced by the northward
flowing Malvinas Current (Fig. 1). Similar dAl concentra-
tions in the vicinity of the South American continent were
observed during expeditions ANT IX/1 (Van Der Loeff et al.,35

1997) and AMT-3 (Bowie et al., 2002), and attributed to re-
cent dust deposition. In the South Subtropical Convergence
region (SSTC), the dAl concentrations were low (< 5 nM),
reflecting low Al inputs from atmospheric deposition (Ma-
howald et al., 2005) and/or removal via particle scavenging in40

the SSTC along ca. 40◦ S. Our observations agree with mea-
surements of low concentration of dAl in the high-latitude
South Atlantic Current (SAC)CE2 (Middag et al., 2011).

3.3 Fractional solubility of Al (Alsol%)

The fractional solubility of trace metals from aerosols is con-45

trolled by the following: (1) chemical processing during at-
mospheric transport which is influenced by the relative hu-
midity of the particles (Keene et al., 2002), by the balance
of acid species enhanced by anthropogenic sources, e.g. fos-
sil fuel combustion (Ito, 2015; Sholkovitz et al., 2012) and50

by the phase partitioning of NH3 (Hennigan et al., 2015);

and (2) composition and type of particle; aerosols from dif-
ferent sources have different mineralogies and size distri-
butions which influence the solubility of metals (Baker and
Jickells, 2017). Reported aerosol Al fractional solubilities in 55

aerosols span a large range from 0.5 % to 100 % (Baker et
al., 2006; Buck et al., 2010; Measures et al., 2010; Prospero
et al., 1987; Shelley et al., 2017). A modelling approach by
Han et al. (2012) resulted in a global Al fractional solubility
of 4.1 (3.8 and 7 for the North and South Atlantic, respec- 60

tively). However, the Han model uses Al fractional solubility
data of three cruises due to the lack of available field data at
that time. One of the reasons for this large range is likely the
lack of standardization in aerosol leaching methods (Aguilar-
Islas et al., 2010). An up to 20-fold (1 to 20 g m−2 yr−1) 65

difference between atmospheric deposition fluxes, estimated
from Al fractional solubility values following two different
aerosol leaching methods, has been reported by Anderson et
al. (2016). However, based on aerosol Fe solubility exper-
iments, the largest differences resulted from aerosols from 70

different sources (Aguilar-Islas et al., 2010; Fishwick et al.,
2014).

In an early study which used dAl concentrations in the
surface mixed layer to derive atmospheric deposition fluxes,
Measures and Brown (1996), chose an Al fractional solubil- 75

ity range of 1.5 % to 5 % for the tropical Atlantic, with the
upper limit derived from aerosols and rain data by Prospero
et al. (1987). Measures and Brown (1996) discussed that the
chosen upper boundary for Al fractional solubility may have
been too low, as earlier studies (Maring and Duce, 1987) 80

reported an Al fractional solubility of 9 %, which was at-
tributed to cloud processing during long-range atmospheric
transport to the mid-Pacific Ocean, and thus not directly ap-
plicable to tropical Atlantic aerosols.

As our study region spans the entire Atlantic Ocean, we 85

expect a large range in Al fractional solubility due to mul-
tiple aerosol sources (Baker and Jickells, 2017; Baker et al.,
2006). Table S3 shows the Al fractional solubility for each re-
gion and subregion (Fig. S2) and the relative abundance of air
mass back trajectories. The Al fractional solubility partially 90

reflects the different aerosol sources. The lowest Al fractional
solubility values (5 %–7.7 %) were estimated for the NATR
and WTRA (GA06) and for the GUIN and BENG region in
the south-east Atlantic (GA08) due to the dominance of min-
eral dust. The highest Al fractional solubility (11.6 %–21 %) 95

was calculated at high latitudes (GA01 and GA10) and in
the SATL (GA08) which was likely due to the greater dis-
tances from the aerosol source regions and/or higher degree
of atmospheric processing that these aerosols have under-
gone during transport (e.g. Shelley et al., 2017). Overall, the 100

Al fractional solubility used in this study ranged from 5 % to
20 %. The higher the Al fractional solubility value, the less
aerosol material is required to maintain the observed dAl sur-
face mixed-layer concentrations.

We acknowledge the lack of use of Al solubility values in 105

rain, which has been estimated to account for 89 % of the to-
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Figure 6. Salinity and fluorescence measurements from the ship sensors along the South Atlantic (GA10). FKLD, south-west Atlantic Shelf
region; SSTC, South Subtropical Convergence region; EAFR, East Africa coastal region.TS1

tal deposition to the ocean (Zender et al., 2003). However, the
amount of published data of Al fractional solubility in rain is
still minor (Heimburger et al., 2013; Losno et al., 1993). The
option to link the few values to global precipitation models
(Liu et al., 2012) seems, at this stage, a more qualitative than5

quantitative approach in comparison to the larger amount of
Al fractional solubility data available for dry aerosols.

3.4 Residence time of dAl

The residence time of dAl in the surface mixed layer is a
balance between atmospheric, riverine and sedimentary in-10

puts, and removal processes which are dominated by scav-
enging of dAl by biogenic particles (Orians and Bruland,
1986). Short residence times are associated with regions
of enhanced mineral dust deposition (Dammshäuser et al.,
2011; Schüßler et al., 2005) such as the tropical North At-15

lantic and regions of enhanced biological activity (primary
productivity) such as the North Atlantic (north of 40◦ N).
In contrast, long Al residence times are associated with re-
gions of low mineral dust deposition and low biological ac-
tivity (Dammshäuser et al., 2011; Jickells, 1999) such as the20

South Atlantic Subtropical Gyre. The residence time of dAl
in the upper ocean has been estimated to range from ∼ 0.2
to more than 17 years (Dammshäuser et al., 2011; Jickells,
1999; Jickells et al., 1994; Orians and Bruland, 1986) and
up to 73 years in modelling studies (Han et al., 2008). In25

this study, we used short Al residence times in the surface
mixed layer for the North Atlantic (GA01), tropical Atlantic
(GA06), along the upwelling regions in the south-east At-
lantic (GA08), and for the South Atlantic along the South
Subtropical Convergence region (SSTC) (GA10). Longer Al30

residence times were used for the south-east Atlantic Ocean,
more precisely along the prime meridian as a consequence
of low removal rates removal due to low primary productiv-
ity and low atmospheric deposition. Overall, the Al residence

times used in this study (Table 1) were derived for each bio- 35

geochemical province from the estimates provided in Han et
al. (2008), and ranged between 0.75 and 3 years.

3.5 Application of the MADCOW model to derive total
atmospheric deposition fluxes in the study area

3.5.1 MADCOW input parameter assumptions 40

The original MADCOW model (Measures and Brown, 1996)
assumed a uniform residence time of 5 years for dAl in the
surface mixed layer, an invariant content of Al in dust of 8 %,
a fixed MLD of 30 m, and an aerosol Al fractional solubility
of between 1.5 % and 5 %. The total dust deposition was cal- 45

culated by multiplying the concentration of dAl in the mixed
layer by 0.133 and 0.04 (factors for unit conversion) for a
solubility of 1.5 % and 5 %, respectively. Our study region
spans the whole Atlantic Ocean, with a range in MLDs, in
fractional Al solubilities, and in residence times of Al in the 50

surface mixed layer. The different input parameters used for
the dust flux calculations for each of the four study regions
can be found in Table 1 and relate to the factors described in
Sects. 2 and 3. Mixed layer depths were deeper for GA01 and
GA10, and shallower for GA06 and GA08. The residence 55

time of dAl in the surface mixed layer along the four tran-
sects was quite uniform and ranged from 0.75 to 3 years. The
largest variability was noted for the aerosol Al fractional sol-
ubility due to the following: inter-annual and inter-seasonal
variability in the contribution of different aerosol sources, in- 60

complete spatial coverage, and wet to dry deposition balance,
etc. As a consequence, for each cruise we chose a lower and
upper limit of Al fractional solubility. Thus we obtained an
upper and lower range in atmospheric deposition fluxes for
each cruise. The total range on aerosol Al fractional solu- 65

bility used in this study was 5 % to 20 %, which is up to
3× and 4× higher than the lower and upper limit used by
Measures and Brown (1996). Higher Al fractional solubil-
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Table 1. Input values to estimate total atmospheric deposition fluxes using the MADCOW model. MLD, average between the median MLDms
and MLDar; τ , Al residence time derived from Han et al. (2008) for the different biogeochemical provinces; Alsol%, Al fractional solubility
percentage calculated from Baker et al. (2013). For reference to the biogeochemical provinces please refer to Table S1.

Cruise MLD (m) τ (year) Alsol% range (%)

GA01 57 1.25 (NAST and NADR) 11.6–20
0.75 (ARCT)

GA06 36 1.25 (NATR and WTRA) 5–8.6
GA08 20 0.75 (BENG, GUIN, and ETRA) 7.7–10.3

3 (SATL)
GA10 47 1.5 (EAFR) 10.9–13.9

1 (SSTC and FKLD)

Table 2. Average atmospheric deposition fluxes estimated for each biogeochemical province. For reference on the different regions please
refer to Table S1. The deposition fluxes are given in g m−2 yr−1. Mahowald, Duce, and Zender refer to the atmospheric deposition flux
results provided in Mahowald et al. (2005), Duce et al. (1991), and Zender et al. (2003), respectively. GUIN∗ refers to deposition results
affected by additional Al inputs from the Congo River plume.

Cruise Biogeochemical Deposition Mahowald Duce Zender
province (this study)

GA01 NAST 0.71± 0.65 1.05± 0.24 0.1–1 1.02± 0.21
GA01 NADR 0.28± 0.12 0.52± 0.1 0.01–0.1 0.62± 0.06
GA01 ARCT 0.27± 0.13 0.35± 0.03 0.01–1 0.39± 0.15
GA06 NATR 2.2± 1.2 10± 1.3 10–100 11.87± 2.58
GA06 WTRA 3.8± 2.7 4.4± 3.2 1–100 7.15± 4.35
GA08 ETRA 2.65± 1.84 0.89± 0.36 1–10 2.13± 0.9
GA08 GUIN∗ 26.2± 43.42 1.04± 0.9 1–10 0.75± 0.77

GUIN 2.67± 1.96
GA08 BENG 0.36± 0.18 5.2± 4.16 1–10 0.1± 0.09
GA08 SATL 0.17± 0.18 0.22± 0.09 0.1–1 0.04± 0.03
GA10 EAFR 0.21± 0.22 0.28± 0.14 0.1–1 0.05± 0.01
GA10 SSTZ 0.15± 0.1 0.44± 0.34 0.1–1 0.21± 0.09
GA10 FKLD 1.23± 0.67 1.17± 0.16 1–10 0.21± 0.03

ities were used for GA01 and GA10, and lower values for
GA08 and GA06.

3.6 Atmospheric deposition fluxes

Figure 7 shows the average atmospheric deposition flux
(wet+ dry) for each station. In addition, Fig. 8a, b, c and5

d show a comparison of calculated average total atmospheric
deposition fluxes (this study) and total atmospheric deposi-
tion fluxes for each station extracted from the models of Ma-
howald et al. (2005) and Zender et al. (2003). In Table 2,
we present our total atmospheric deposition fluxes values for10

each biogeochemical province compared to the model esti-
mates from Mahowald et al. (2005), Zender et al. (2003), and
Duce et al. (1991). Overall, we found good agreement along
GA01, GA08, and GA10. Weaker agreement was found in
the tropical Atlantic along GA06. In the following sections15

we describe our atmospheric deposition fluxes in more de-
tail.

3.6.1 Atmospheric deposition fluxes to the North
Atlantic and Labrador Sea (GA01)

In the North Atlantic, along the GA01 section, our cal- 20

culated atmospheric deposition fluxes ranged from 1.75±
0.71 g m−2 yr−1 (Station 2) near the Iberian Peninsula in the
NAST region to 0.12± 0.05 g m−2 yr−1 (Station 78) above
the Newfoundland margin in the ARCT region (Figs. 7 and
8a). The average atmospheric deposition flux was 0.49± 25

0.46 g m−2 yr−1. The highest atmospheric deposition fluxes
were calculated in the vicinity of land masses (i.e. Iberian
Peninsula and Greenland) and could be partly due to overesti-
mations by the MADCOW model. An overestimation would
arise if there were additional Al sources, rather than Al be- 30

ing input solely from atmospheric deposition. The coastal
stations (1, 2 and 4; Fig. S1) near the Iberian Peninsula re-
ceived additional Al inputs from the Tagus Estuary (Men-
zel Barraqueta et al., 2018), while the coastal stations (53
and 63; Fig. S1) near Greenland were influenced by addi- 35

tional Al inputs from glacial run-off and ice melt (Men-
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Figure 7. (a) Average atmospheric deposition fluxes determined for the four GEOTRACES cruises. (b) Average atmospheric deposition
fluxes determined from GEOTRACES GA03 and A16N-2003 cruises are plotted (Measures et al., 2015). Black dashed lines define bound-
aries of atmospheric deposition from Duce et al. (1991).

zel Barraqueta et al., 2018). With these stations removed,
the average atmospheric deposition flux along GA01 de-
creased to 0.28±0.12 g m−2 yr−1 (n= 24). Although the at-
mospheric deposition fluxes near the Iberian Peninsula were
high relative to the rest of the transect, they are compara-5

ble to modelled atmospheric aerosol deposition fluxes (Ma-
howald et al., 2005; Zender et al., 2003) (Table 2 and Fig. 7).
Measures et al. (2015) reported an atmospheric deposition
flux of ca. 0.91 g m−2 yr−1 (station USGT10-02) close to
the Iberian Peninsula along GEOTRACES section GA0310

(Fig. 7b), which is somewhat lower than our average deposi-
tion flux for stations 1, 2 and 4 (1.63±0.08 g m−2 yr−1). Our
calculated fluxes derived from dAl at coastal stations near
the Iberian Peninsula may be on the high end of the scale
due to additional Al inputs from the Tagus Estuary which15

did not influence the nearby stations sampled by Measures et
al. (2015). In the NAST we derived an average dust flux for
stations 21, 23 and 25 of 0.42± 0.17 g m−2 yr−1. This is in
good agreement with the calculated atmospheric deposition
fluxes for the same region during the 2003 CLIVAR A16N20

cruise (Measures et al., 2015) using aerosol Al concentra-
tions from Buck et al. (2010) (Fig. 7b). Shelley et al. (2017)
reported atmospheric deposition fluxes for a suite of ele-
ments for the GA01 cruise using two different approaches:
(1) aerosol and precipitation concentration data (which they25

termed “traditional approach”) and (2) 7Be in aerosols and
the surface mixed layer. They divided the GA01 section into
two areas: (i) Area 1=west of 30◦W and (ii) Area 2= east
of 30◦W (Fig. 1). For Area 1 they derived atmospheric de-
position fluxes of 0.03 and 0.1 g m−2 yr−1 using the tradi-30

tional and 7Be approaches, respectively. For Area 2, the at-
mospheric deposition fluxes were 0.19 and 0.14 g m−2 yr−1

for the traditional and 7Be approaches, respectively. With the
MADCOW model we calculated average atmospheric de-
position fluxes of 0.27± 0.16 and 0.3± 0.12 g m−2 yr−1 for 35

Area 1 and 2, respectively. The average modelled flux esti-
mates for the same areas from Mahowald et al. (2005) were
0.36±0.03 and 0.76±0.32 g m−2 yr−1. It is encouraging that
the different flux results are of a similar order of magnitude,
although the dust flux estimates derived from Mahowald et 40

al. (2005) were always highest. It is possible that the dust de-
position model (Mahowald et al., 2005) may have overesti-
mated atmospheric deposition in the North Atlantic (north of
50◦ N) due to the limited number of field observations avail-
able at the time. Interestingly, a higher atmospheric deposi- 45

tion flux was calculated with the MADCOW model than with
either the aerosol approach or the 7Be method. This could be
due to the different timescales over which each approach in-
tegrates. The MADCOW model approach integrates the to-
tal atmospheric deposition flux over a period of ca. 1 year 50

prior (based on our choice of dAl surface mixed-layer resi-
dence time) to the GA01 cruise, while the 7Be approach in-
tegrates over a period of 3 months, and the aerosol approach
provides a snapshot over a period of days. The elevated at-
mospheric deposition flux for the traditional compared to the 55

7Be approach in area 2 was attributed to 7Be scavenging onto
biogenic particles near the Iberian Peninsula (Shelley et al.,
2017).
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Figure 8. Total average atmospheric deposition fluxes (this study, black circles) and model atmospheric deposition estimates from Mahowald
et al. (2005) (blue circles) and Zender et al. (2003) (orange circles). For stations numbers associated to each cruise please refer to Fig. S1.

3.6.2 Atmospheric deposition fluxes to the tropical
Atlantic (GA06)

Overall, the atmospheric deposition fluxes calculated for the
tropical Atlantic using MADCOW are generally of the same
order of magnitude compared to modelled atmospheric de-5

position fluxes (Mahowald et al., 2005; Zender et al., 2003)
(Table 2 and Figs. 6, 7b). Along GA06, the calculated atmo-
spheric deposition fluxes range from 1.19± 0.45 g m−2 yr−1

at station 8 to 9.96± 3.72 g m−2 yr−1 at station 14 (Figs. S1

and 7, 8b). The average calculated atmospheric deposition 10

flux along the cruise was 3.46± 2.18 g m−2 yr−1. In con-
trast, in the WTRA, our average atmospheric deposition
flux of 3.82± 2.72 g m−2 yr−1 agrees very well with mod-
elled atmospheric deposition fluxes (4.4± 3.2 and 7.15±
4.35 g m−2 yr−1 for “Mahowald” and “Zender”). However, 15

in the NATR, large discrepancies are observed between
our and modelled atmospheric deposition fluxes (Table 2,
Fig. 8b). The largest differences are found along the east–
west transect and north of 8◦ N. Along the east–west tran-
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sect (Station 7 to 9) at ca. 12◦ N and north of 8◦ N, our at-
mospheric deposition fluxes range between 1.19± 0.44 and
3.54±1.32 g m−2 yr−1, while modelled dust fluxes are above
8 g m−2 yr−1 and reach up to 12 g m−2 yr−1 (Fig. 8b).

The discrepancy could result from differences in the sol-5

ubility of aerosols in the east and west of the basin. A com-
bination of more soluble aerosols transported from mineral
dust sources regions in North Africa, via the trade winds to
the western tropical Atlantic, and from American sources,
may result in higher levels of dAl in the western tropi-10

cal Atlantic than in the eastern tropical Atlantic (Measures
et al., 2015; Sedwick et al., 2007). In addition, the Ma-
howald model uses extensive field data and monthly satel-
lite retrievals over many years. Thus, the Mahowald model
may better capture the high degree of inter-annual and inter-15

seasonal variability in dust. Whilst there is more dust being
deposited in the eastern tropical Atlantic (e.g. 18 g m−2 yr−1,
annual average; Powell et al., 2015) than in the western tropi-
cal Atlantic (e.g 1.71 g m−2 yr−1 in the Sargasso Sea; Jickells
et al., 1994), MADCOW calculates higher atmospheric depo-20

sition fluxes in the western tropical Atlantic than in the east-
ern tropical Atlantic (this study and Measures et al., 2008,
2015).

The NATR region is influenced by strong seasonal varia-
tions (e.g. intensity of rainfalls, episodic dust events) which25

influence primary productivity (i.e. number of particles).
Therefore, the latterCE3 variations have a strong influence in
seasonal variability in Al concentrations (Pohl et al., 2011)
as well as seasonal variability of particle fluxes (i.e. poten-
tial reducers of dAl concentrations in surface waters). This30

implies an added difficulty in assessing a residence time for
Al. The residence time in the NATR could be lower, in the
range of weeks, as postulated in previous works (Croot et
al., 2004). Assuming a residence time of 0.3 years (orig-
inal residence time set up to 1.25 years), for the NATR35

region would yield atmospheric deposition fluxes rang-
ing between 4.96± 1.86 and 19.37± 7.25 g m−2 yr−1 (aver-
age 12.32± 4.66 g m−2 yr−1) which, within uncertainty, are
rangesCE4equal to those provided by modelling approaches
(see above, Mahowald et al., 2005; Duce et al., 1991; Zender40

et al., 2003).
These results do not match the observations (from field

data and satellite retrievals) and this suggests that atmo-
spheric deposition fluxes calculated with the MADCOW
model are less reliable and likely underestimated in the trop-45

ical North Atlantic Ocean if seasonal variations in the resi-
dence time of Al are not accounted for.

3.6.3 Atmospheric deposition fluxes to the south-east
Atlantic (GA08)

The MADCOW model overestimates atmospheric aerosol50

deposition fluxes to the GUIN region north of 6◦ S with
fluxes ranging from 38 to 163 g m−2 yr−1. We have omitted
stations 14 to 21 from the average atmospheric deposition

flux, as they are strongly influenced by additional dAl in-
puts from the Congo River (Figs. 3 and S1). Following this 55

removal, atmospheric deposition fluxes along GA08 (Figs. 7,
8c) ranged from 0.04±0.01 g m−2 yr−1 in the South Atlantic
Gyre region (SATL) to 7.08±1.44 g m−2 yr−1 in the Guinea
Current coastal region (GUIN) at ca. 12◦ S (Table 2). The
average calculated atmospheric deposition flux to the south- 60

east Atlantic was 1.33± 1.85 g m−2 yr−1. The MADCOW
model may underestimate atmospheric deposition fluxes in
the BENG region, which is influenced by eastern boundary
upwelling processes, supplying nutrients from deep to sur-
face waters, and resulting in enhanced primary productiv- 65

ity with high levels of Chl a (Fig. S5). The BENG region
receives mineral dust inputs from the Namib Desert (Pros-
pero et al., 2002), but the large abundance of biogenic parti-
cles likely results in low surface dAl concentrations (< 7 nM)
(Fig. 3) due to enhanced scavenging. Mahowald et al. (2005) 70

calculated an average atmospheric deposition flux for the
BENG region of 5.2± 4.16 g m−2 yr−1 with deposition val-
ues of up to 11.96 g m−2 yr−1 (station 48). However, our at-
mospheric deposition fluxes and Zender’s ones for this re-
gion are rather low with an average of 0.36±0.18 g m−2 yr−1

75

and 0.1± 0.09 g m−2 yr−1, respectively. In contrast, our
MADCOW-derived atmospheric deposition fluxes in the
SATL region (0.17±0.18 g m−2 yr−1) are in close agreement
with model estimates (0.22± 0.09 g m−2 yr−1).

3.6.4 Atmospheric deposition fluxes to the South 80

Atlantic Ocean (GA10)

Along GA10, the calculated atmospheric deposition fluxes
ranged from 0.15± 0.1 g m−2 yr−1 in the South Subtropi-
cal Convergence (SSTC) region to 1.23± 0.67 g m−2 yr−1

in the south-west Atlantic shelf (FKLD) region off Ar- 85

gentina. The average atmospheric deposition flux calculated
along the 40◦ S section was 0.21 g m−2 yr−1. The highest
atmospheric deposition flux was estimated in the FKLD
(1.23± 0.67 g m−2 yr−1) downwind from South America,
with Patagonian dust reported as the main source of mineral 90

dust to the South Atlantic Ocean (Johnson et al., 2010; Wa-
gener et al., 2008). Our atmospheric deposition fluxes in the
FKLD agree with model estimates for the same region from
Mahowald et al. (2005) (Table 2, Figs. 7, 8d) and Wagener
et al. (2008). In contrast, the “Zender” model atmospheric 95

deposition flux within the FKLD (0.21±0.03 g m−2 yr−1) is
significantly lower than the deposition flux from our study
(Mahowald et al.,2005; Wagener et al.,2008). Some discrep-
ancies exist between the region of maximum atmospheric de-
position. Indeed, Wagener et al. (2008) acknowledged this 100

issue stating that the largest uncertainty in their estimates
occurred downwind from South America as their field data
were collected on cruises in the South Pacific and South
Indian oceans. The lowest atmospheric aerosol deposition
was found along the SSTC region (0.15± 0.1 g m−2 yr−1), 105

and was somewhat lower than model results but identi-
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cal in the calculated uncertainties (Table 2). In the EAFR,
we calculated an average atmospheric deposition flux of
0.21± 0.22 g m−2 yr−1. This flux agrees very well with to-
tal atmospheric deposition fluxes for the same region calcu-
lated from aerosol samples collected on the Falkland Islands5

(0.18 g m−2 yr−1) (Chance et al., 2015) and with model re-
sults (Mahowald et al., 2005; Zender et al., 2003). It is pos-
sible that the South Atlantic Ocean also receives additional
mineral dust inputs from South African sources although
Patagonian dust is considered the major source of aerosols10

to this region (Gaiero et al., 2003; Wagener et al., 2008).

4 Conclusions

Dissolved Al concentrations in the surface ocean are a bal-
ance between input and removal processes. In this context,
we can use the concentration of dAl in the mixed layer along15

with the residence time of dAl in the mixed layer to calculate
atmospheric deposition fluxes. Overall, in oceanic regions
beyond the shelf break, we found good agreement between
our calculated MADCOW atmospheric deposition fluxes and
modelled atmospheric deposition fluxes (Mahowald et al.,20

2005; Zender et al., 2003). The agreement between our
MADCOW deposition flux calculations and model results
was poor in regions with additional Al inputs (e.g. river run
off, ice melt, and benthic) and strong in regions were Al
depletion by biogenic particles occurs (e.g. upwelling re-25

gions)CE5 . Our atmospheric deposition fluxes were lower
than model fluxes in areas of the Atlantic Ocean regions re-
moved from the main aerosol sources regions. This obser-
vation suggests that these regions receive fewer atmospheric
inputs than the models indicate or that MADCOW under-30

estimates atmospheric inputs to these regions. As such, this
work provides new constraints for models of atmospheric de-
position for the largely under-sampled regions of the Atlantic
Ocean (e.g. Labrador Sea, South Atlantic and south-east At-
lantic Ocean). Specifically, Mahowald et al. (2008) note that35

there are few aerosol measurements reported for the region
between 30 and 60◦ S, due to a lack of island sites for de-
ployment of aerosol samplers and the remoteness of the re-
gion presenting logistical challenges for research cruises. In
the GEOTRACES programme, a concerted effort has been40

made to cover these under-sampled regions of the ocean. Dis-
solved Al is a key trace element of the GEOTRACES pro-
gramme and as such it is measured on all the GEOTRACES
cruises which provides a great chance to use the MADCOW
model. We acknowledge that there are regions of the At-45

lantic for which the application of the MADCOW model
has limitations (i.e. tropical Atlantic Ocean). In these re-
gions, more work is needed to constrain parameters such as
aerosol Al fractional solubility and the residence time of Al
within the surface mixed layer. Realistic residence time val-50

ues would significantly improve our atmospheric deposition
flux results. We suggest that forthcoming expeditions should

use more than one technique to calculate atmospheric deposi-
tion fluxes as different methods provide us with complemen-
tary information. The new Intermediate Data Product 2017 55

(Schlitzer et al., 2018) from the GEOTRACES programme
along with upcoming dAl datasets will give us a better cover-
age of under-sampled regions which, combined with histori-
cal data, will help us to refine atmospheric deposition fluxes
(i.e. capturing seasonal and inter-annual variability). 60
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