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Abstract. The concentration-carbon feedback (𝛽𝛽), also called the CO2 fertilization effect, is a key unknown in climate-carbon 

cycle projections. A better understanding of model mechanisms that govern terrestrial ecosystem responses to elevated CO2 is 20 

urgently needed to enable a more accurate prediction of future terrestrial carbon sink. We conducted C-only, carbon-nitrogen 

(C-N) and carbon-nitrogen-phosphorus (C-N-P) simulations of the Community Atmosphere Biosphere Land Exchange model 

(CABLE) from 1901 to 2100 with fixed climate to identify the most critical model process that causes divergence in 𝛽𝛽. We 

calculated CO2 fertilization effects at various hierarchical levels from leaf biochemical reaction and leaf photosynthesis to 

canopy gross primary production (GPP), net primary production (NPP), and ecosystem carbon storage (cpool) for seven C3 25 

plant functional types (PFTs) in response to increasing CO2 under RCP 8.5 scenario. Our results show that 𝛽𝛽 values at 

biochemical and leaf photosynthesis levels vary little across the seven PFTs, but greatly diverge at canopy and ecosystem 

levels in all simulations. The low variation of the leaf-level 𝛽𝛽 is consistent with a theoretical analysis that leaf photosynthetic 

sensitivity to increasing CO2 concentration is almost an invariant function. In the CABLE model, the major jump in variation 

of 𝛽𝛽 values from leaf- to canopy- and ecosystem-levels results from divergence in modelled leaf area index (LAI) within and 30 

among PFTs. The correlation of 𝛽𝛽GPP, 𝛽𝛽NPP, or 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  each with 𝛽𝛽LAI is very high in all simulations. Overall, our results 

indicate that modelled LAI is a key factor causing the divergence in 𝛽𝛽 in the CABLE model. It is therefore urgent to constrain 

processes that regulate LAI dynamics in order to better represent the response of ecosystem productivity to increasing CO2 in 

Earth System Models. 
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1. Introduction 

Terrestrial ecosystems take up roughly 30% of anthropogenic CO2 emissions, and is of great uncertainty and vulnerable to 40 

global climate change (Cox et al., 2000; Le Quéré et al., 2018). Persistent increase of atmospheric CO2 concentration will 

stimulate plant growth and ecosystem carbon storage, forming a negative feedback to CO2 concentration (Long et al., 2004; 

Friedlingstein et al., 2006; Canadell et al., 2007). This concentration-carbon feedback (𝛽𝛽), also called the CO2 fertilization 

effect, has been identified as a major uncertainty in modeling terrestrial carbon-cycle response to historical climate change 

(Huntzinger et al., 2017). In the Coupled Model Intercomparison Project (C4MIP) and the Coupled Model Intercomparison 45 

Project Phase 5 (CMIP5), all models agree that terrestrial carbon sink will gradually saturate in the future but disagree on the 

magnitude of 𝛽𝛽 (Friedlingstein et al., 2006; Arora et al., 2013; Friedlingstein et al., 2015). Some studies pointed out that the 

contribution of 𝛽𝛽 is 4 to 4.5 times larger, and more uncertain, than climate-climate feedback (𝛾𝛾) (Gregory et al., 2009; Bonan 

and Levis, 2010; Arora et al., 2013). Apart from the substantial uncertainty across different models, Smith et al. (2016) 

suggested that Earth System Models (ESMs) in CMIP5 overestimate global terrestrial 𝛽𝛽 values compared with remote sensing 50 

data and Free-Air CO2 Enrichment (FACE) experimental results. Though satellite products they used may underestimate the 

effect of CO2 fertilization on net primary productivity (De Kauwe et al., 2016), the large disparity between models and FACE 

experiments gives us little confidence in making policies to combat global warming.  

 

The response of ecosystem carbon cycle to elevated CO2 (eCO2) is primarily driven by stimulation of leaf-level carboxylation 55 

rate in plants (Polglase and Wang, 1992; Long et al., 2004; Heimann et al., 2008). The CO2 stimulation of carboxylation then 

translates into increasing gross primary production (GPP) and net primary production (NPP), possibly leading to increased 

biomass and soil carbon storage and slowing down anthropogenically driven increase in atmospheric CO2 (Canadell et al., 

2007; Iversen et al., 2012). The leaf-level CO2 fertilization for C3 plants is generally well characterized with models from 

Farquhar et al. (1980), and the basic biochemical mechanisms have been adopted by most land surface models although some 60 

models implement variants of Farquhar et al. (1980) (Rogers et al., 2017). Previous research with both theoretical analysis and 

data synthesis from a large number of experiments has revealed that normalized CO2 sensitivity of leaf-level photosynthesis, 
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which represents kinetics sensitivity of photosynthetic enzymes, varies little among different C3 species at a given CO2 

concentration (Luo and Mooney, 1996; Luo et al., 1996). However, the CO2 fertilization effects are considerably more variable 

at canopy- and ecosystem-level than at the leaf-level, because a cascade of uncertain processes, such as soil moisture feedback 65 

(Fatichi et al., 2016), canopy scaling (Rogers et al., 2017), nutrient limitation (Zaehle et al., 2014), allocation (De Kauwe et 

al., 2014), and carbon turnover process (Friend et al., 2014) influence the responses of GPP, NPP and carbon storage. Therefore, 

understanding which processes in ecosystem models amplify the variability in 𝛽𝛽 from biochemical and leaf levels to canopy 

and ecosystem levels is quite important. 

 70 

Leaf area index (LAI) largely affects canopy assimilation and plant growth under eCO2. Many satellite products exhibit 

increasing trends of LAI over the past 30 years although marked disparity still exists among these products (Jiang et al., 2017). 

Zhu et al. (2016) has attributed global increases in satellite LAI primarily to increased CO2 concentration. LAI plays a key role 

in scaling leaf-level biogeophysical and biogeochemical processes to global scale responses in ecosystem models, and the 

representation of LAI in models causes large uncertainty (Ewert, 2004; Hasegawa et al., 2017). Models generally predict that 75 

LAI dynamics will respond to eCO2 positively due to enhanced NPP and leaf biomass (De Kauwe et al., 2014). But how the 

increasing LAI in turn feeds back to ecosystem carbon uptake as a result of more light interception has not been discussed in 

previous research. The relative contributions of the leaf-level photosynthesis and LAI to modelled 𝛽𝛽  have been rarely 

quantified and compared.  

 80 

The CO2 fertilization effects depend on locations, vegetation types and soil nutrient conditions. The strongest absolute CO2 

fertilization effect has been found in tropical and temperate forests where the larger biomass presents than other regions. In 

comparison, the weakest response to eCO2 occurs in boreal forests (Joos et al., 2001; Peng et al., 2014). But with gradual eCO2, 

relative response in tropical forests might not be very high owing to light limitation caused by canopy closure (Norby et al., 

2005). In addition, 𝛽𝛽 might be overestimated by the neglect of nitrogen (N) limitations on plant growth (Luo et al., 2004; 85 

Thornton et al., 2009; Coskun et al., 2016). Several lines of evidence suggest that N availability also influences decomposition 
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of soil organic matter (Hunt et al., 1988; Neff et al., 2002; Averill et al., 2016). 𝛽𝛽 will be reduced by 50–78% in C-N coupled 

simulations compared with C-only simulations in land surface models (Thornton et al., 2007; Sokolov et al., 2008; Zaehle et 

al., 2010). Inadequate phosphorus (P) will also constrain terrestrial carbon uptake, especially in tropical area (Aerts and Chapin, 

2000; Vitousek et al., 2010). It is reported that N limitation on carbon uptake is significant in boreal ecosystems, while P 90 

limitation has a profound influence in tropical ecosystems in CASA-CNP model (Wang et al., 2010). However, whether N and 

P limitations affect the variability of 𝛽𝛽 across different vegetation types at different hierarchical levels from biochemistry to 

ecosystem carbon storage, have not been carefully examined. 

 

In this study, we tried to answer the following questions: how variability, as measured by coefficient of variation (CV) within 95 

and across different plant functional types (PFTs), in the CO2 fertilization effects changes at different hierarchical levels from 

leaf to canopy GPP, ecosystem NPP and total carbon storage levels? What is the most important process causing the variability 

of 𝛽𝛽 for different geographical locations and PFTs? How nutrient limitations influence the variability of 𝛽𝛽 at different 

hierarchical levels? We used Community Atmosphere Biosphere Land Exchange model (CABLE) to identify key mechanisms 

driving diverse 𝛽𝛽 values under RCP 8.5 scenario.  100 

2. Materials and methods 

2.1 CABLE model description 

CABLE (version 2.0) is the Australian community land surface model (Kowalczyk et al., 2006) and incorporates CASA-CNP 

to simulate global carbon (C), nitrogen (N) and phosphorus (P) cycles (Wang et al., 2010; Wang et al., 2011). Leaf 

photosynthesis, stomatal conductance, and heat and water transfer in CABLE are calculated using the two-leaf approach (Wang 105 

and Leuning, 1998) for both sunlit leaves and shaded leaves. The descriptions of photosynthesis module are in supplementary 

Text S1. 
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Leaf Area Index (LAI) is calculated as:  

LAI = 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ SLA                                                 (1) 110 

Where 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is leaf carbon pool, and SLA is specific leaf area. 

In the CABLE model, leaf growth is divided into four phases. Phase 1 is from leaf budburst to the beginning of steady leaf 

growth, phase 2 is from the start of steady leaf growth to the start of leaf senescence, phase 3 is the period of leaf senescence, 

and phase 4 is from the end of leaf senescence to the start of leaf bud burst. During phase 1, allocation of available carbon to 

leaf is fixed to 0.8, and allocation to wood and root are set to 0.1 for woody biomes, and 0 and 0.2 respectively for non-woody 115 

biomes. During steady leaf growth (phase 2), the allocation coefficients are constants but vary from biome to biome, taking 

their values from Fung et al. (2005). During phases 3 and 4, the leaf allocation is zero and available carbon is divided between 

wood and root in proportional to their allocation coefficients. For evergreen biomes, leaf phenology remains at phase 2 

throughout the year (Wang et al., 2010). SLA is PFT-specific and does not change through time in this study. 

 120 

GPP is the sum of canopy net photosynthesis rate (𝐴𝐴) and day respiration (𝑅𝑅𝑑𝑑). NPP is calculated as the difference between 

GPP and autotrophic respiration ( 𝑅𝑅𝑎𝑎)  (including maintenance and growth respiration), and acts as an input to the 

compartmental nine-pool carbon cycle model. The network for carbon transfer in the compartmental model is based on CASA’ 

model (Fung et al., 2005), including three vegetation pools (leaf, wood and root), three litter pools (metabolic litter, structure 

litter and coarse wood debris), three soil pools (fast soil pool, slow soil pool and passive soil pools). Heterotrophic soil 125 

respiration (𝑅𝑅ℎ) is calculated as the sum of the respired CO2 from the decomposition of all litter and soil organic carbon pools 

(Wang et al., 2010).  

 

Wang et al. (2012) and Zhang et al. (2013) provided details explaining how nutrient limitations are incorporated into carbon 

cycle in CASA-CNP module in the CABLE model. In brief, NPP is calculated as: 130 

NPP = GPP(L,𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑁𝑁𝑙𝑙), 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚(𝑁𝑁𝑙𝑙)) − ∑ 𝑅𝑅𝑚𝑚𝑚𝑚(𝑁𝑁𝑖𝑖) − 𝑅𝑅𝑔𝑔(𝑁𝑁𝑙𝑙
𝑃𝑃𝑙𝑙

)𝑖𝑖   (2) 
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Where L represents leaf area index, 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 are maximum carboxylation rate and maximum rate of electron transport 

of the top leaves, respectively, both are linearly dependent on leaf N (g N m-2) according to the relationships developed by 

Kattge et al. (2009) for different plant functional types. 𝑅𝑅𝑚𝑚𝑚𝑚 is maintenance respiration rates of plant tissue (i=leaf, wood and 

root), contingent on nitrogen amount in each part of plant. 𝑅𝑅𝑔𝑔 is growth respiration, which is described as a function of leaf 135 

nitrogen to phosphorus ratio. Heterotrophic respiration (𝑅𝑅ℎ) is limited by the mineral N pool required for microbial soil carbon 

decomposition (Wang et al., 2010). Net ecosystem productivity (NEP = GPP – 𝑅𝑅𝑎𝑎 – 𝑅𝑅ℎ) is the amount of carbon that is either 

sequestered or lost from ecosystems, and is controlled by N and P availability via abovementioned C-N-P interactions. 

2.2 Experimental design 

CABLE was run from 1901 to 2100 for C-only, C-N and C-N-P modes. C-only simulation was designed to identify the key 140 

carbon cycle processes that influence the variability of the CO2 fertilization effects. C-N and C-N-P simulations were run to 

explore how nutrients affect the patterns of and mechanisms underlying the variability of the CO2 fertilization effects. The 

respective effects of N and P can be calculated through the difference in the carbon uptake between C-N and C-only or C-N-

P and C-N simulations. CABLE was first spun up by using meteorological forcing from Community Climate System Model 

(CCSM) simulations (Hurrell et al., 2013) during 1901 to 1910 until steady states were achieved for the C-only, C-N and C-145 

N-P cases separately. Hourly meteorological driving data include: temperature, specific humidity, air pressure, downward solar 

radiation, downward long-wave radiation, rainfall, snowfall, and wind. In order to separate the CO2 fertilization effect from 

the effect of climate change, climate forcing was held as the average annual cycle of CCSM meteorological data from 1901 to 

2100. Atmospheric CO2 concentrations from 1901 to 2100 were taken from the CMIP5 dataset, representing global annual 

averages and the RCP8.5 scenario after 2010 (Etheridge et al., 1996; MacFarling Meure et al., 2006). The spatial resolution of 150 

CABLE used here is 1.9°×2.5° (latitude vs longitude). N deposition is prescribed from atmospheric transport models 

(Lamarque et al., 2010, 2011), spatially explicit but fixed as the average from 1901 to 2100 in time. N fixation is prescribed 

from a process-based model, spatially explicit but constant in time (Wang and Houlton, 2009). P enters ecosystems through 

constant rates of weathering and atmospheric deposition (from Mahowald et al. (2008)).  
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2.3 Calculation of 𝜷𝜷 values at five hierarchical levels 155 

We aimed to analyze the CO2 fertilization effects for biochemical reaction (ℒ), leaf photosynthesis rate (p), leaf-to-canopy 

scaling factor (𝑆𝑆), leaf area index (LAI), sunlit leaf GPP (GPP𝑠𝑠𝑠𝑠𝑠𝑠), shaded leaf GPP (GPP𝑠𝑠ℎ𝑎𝑎), canopy GPP, NPP, and ecosystem 

carbon storage (cpool) from C-only, C-N and C-N-P simulations of CABLE. Canopy GPP is the sum of sunlit leaf GPP and 

shaded leaf GPP. Ecosystem carbon storage is the sum of plant, litter and soil carbon stock. Since CO2 concentration increases 

at yearly basis, annual carbon fluxes and storages such as GPP𝑠𝑠𝑠𝑠𝑠𝑠, GPP𝑠𝑠ℎ𝑎𝑎, canopy GPP, NPP and ecosystem carbon storage 160 

were calculated. Leaf-to-canopy scaling factor and LAI were averaged within a year. 𝛽𝛽  values of these variables were 

calculated as the normalized sensitivities of those variables to atmospheric CO2 concentration (𝐶𝐶𝑎𝑎) as 𝛽𝛽V: 

𝛽𝛽V=1
V
∗ dV
d𝐶𝐶𝑎𝑎

 (3) 

Where V in the denominator represents average annual value of 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠, 𝑆𝑆𝑠𝑠ℎ𝑎𝑎, LAI, GPP, GPP𝑠𝑠𝑠𝑠𝑠𝑠, GPP𝑠𝑠ℎ𝑎𝑎, NPP and ecosystem 

carbon storage between two consecutive years. Subscripts “sun” and “sha” denote the sunlit and shaded components. dV is 165 

the difference of these variables between two consecutive years. d𝐶𝐶𝑎𝑎 is the difference of corresponding 𝐶𝐶𝑎𝑎. The unit of 𝛽𝛽V 

is ppm-1. It should be noted that 𝛽𝛽V is the relative response, which is similar to the traditional definition of 𝛽𝛽 factor by 

Bacastow and Keeling (1973), but different from the carbon-concentration feedback parameter in Friedlingstein et al. (2006). 

The relative response facilitates the comparison among PFTs with different initial biomass and the comparison across carbon 

fluxes and storages with different units.  170 

 

Leaf biochemical response (ℒ) was first proposed by Luo et al. (1996). ℒ  function is the normalized response of leaf 

photosynthesis rate to a small change in intercellular CO2 concentration (𝐶𝐶𝑖𝑖) and has been suggested to be an invariant function 

for C3 plants grown in diverse environments. The rate of photosynthesis is typically RuBP-regeneration-limited under high 

CO2 concentration. We found photosynthesis rates are increasingly limited by RuBP regeneration under RCP 8.5 scenario. 175 

Besides, theoretical analysis by Luo and Mooney (1996) showed that biochemical responses are similar for either Rubisco- or 
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RuBP-limited photosynthesis. In this study, ℒ can be used to indicate leaf biochemical response to eCO2. For sunlit leaf and 

shaded leaf, formulations of ℒ under RuBP-regeneration-limitation are defined as: 

ℒs𝑢𝑢𝑢𝑢 = 3  ∗Γ∗𝑠𝑠𝑠𝑠𝑠𝑠
(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+2∗Γ∗s𝑢𝑢𝑢𝑢)(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−Γ∗𝑠𝑠𝑠𝑠𝑠𝑠)

 (4) 

ℒ𝑠𝑠ℎ𝑎𝑎 = 3  ∗Γ∗𝑠𝑠ℎ𝑎𝑎
(𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑎𝑎+2∗Γ∗𝑠𝑠ℎ𝑎𝑎)(𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑎𝑎−Γ∗𝑠𝑠ℎ𝑎𝑎)

 (5) 180 

In this study, Γ∗𝑠𝑠𝑠𝑠𝑠𝑠 and Γ∗𝑠𝑠ℎ𝑎𝑎 are yearly average CO2 compensation points in the absence of day respiration for sunlit leaf 

and shaded leaf, respectively. 𝐶𝐶𝑖𝑖 varies significantly at sub-daily, intra-annual and inter-annual bases. We’re interested in 

how 𝐶𝐶𝑖𝑖 responds to eCO2 on an inter-annual basis. So, we first outputted hourly 𝐶𝐶𝑖𝑖 then calculated yearly GPP-weighted 

average 𝐶𝐶𝑖𝑖 for sunlit leaf (𝐶𝐶𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠) and shaded leaf (𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑎𝑎). 

 185 

Then leaf-level 𝛽𝛽𝑝𝑝 is defined as the product of ℒ and d𝐶𝐶𝑖𝑖
d𝐶𝐶𝑎𝑎

. For sunlit leaf and shaded leaf, the formulations are: 

𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 = ℒ𝑠𝑠𝑠𝑠n*d𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
d𝐶𝐶𝑎𝑎

                                                    (6) 

𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎 = ℒ𝑠𝑠ℎ𝑎𝑎*d𝐶𝐶𝑖𝑖𝑖𝑖ℎ𝑎𝑎
d𝐶𝐶𝑎𝑎

                                    (7) 

 

Leaf-to-canopy scaling factor (𝑆𝑆) scales fluxes at the single top leaf of the canopy to whole canopy fluxes. The formulations 190 

of 𝑆𝑆 for sunlit leaves and shaded leaves are:  

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 =1−exp [−LAI(𝑘𝑘𝑛𝑛+𝑘𝑘𝑏𝑏)]
𝑘𝑘𝑛𝑛+𝑘𝑘𝑏𝑏

 (8) 

𝑆𝑆𝑠𝑠ℎ𝑎𝑎= 1−exp(−𝑘𝑘𝑛𝑛LAI)
𝑘𝑘𝑛𝑛

− 1−exp[−LAI(𝑘𝑘𝑛𝑛+𝑘𝑘𝑏𝑏)]
𝑘𝑘𝑛𝑛+𝑘𝑘𝑏𝑏

 (9) 

Where 𝑘𝑘𝑏𝑏 is extinction coefficient of a canopy of black leaves for direct beam radiation. 𝑘𝑘𝑛𝑛 is an empirical parameter used 

to describe the vertical distribution of leaf nitrogen in the canopy (Kowalczyk et al., 2006). In our simulation, 𝑘𝑘𝑛𝑛 is uniformly 195 
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assigned as 0.001 for different PFTs. The leaf-to-canopy scaling factor varies with time because 𝑘𝑘𝑏𝑏 is the function of sun 

angle, and LAI varies seasonally and inter-annually. The annual value of the leaf-to-canopy scaling factor was just calculated 

as the average of hourly leaf-to-canopy scaling factors in a year. 

 

Big-leaf 𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠  (or 𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎) can be decomposed as the sum of normalized sensitivity of photosynthesis rate: 𝛽𝛽𝑝𝑝s𝑢𝑢𝑢𝑢 200 

�or 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎� and leaf-to-canopy scaling factor: 𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  (or 𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎) as shown in Eq. (10) and Eq. (11). Detailed mathematical 

derivations are in supplementary Text S2.             

𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠= 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠  + 𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  (10) 

𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎= 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎 + 𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎 (11) 

 205 

There are ten patches in each model grid in CABLE. Each patch consists of a certain land use type with a specific fraction. To 

study the variation of 𝛽𝛽  across different C3 PFTs, biome-level parameters such as Γ∗𝑠𝑠𝑠𝑠𝑠𝑠 , 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  and LAI were 

calculated as mean values based on PFTs, whereas biome-level GPP, GPP𝑠𝑠𝑠𝑠𝑠𝑠, GPP𝑠𝑠ℎ𝑎𝑎, NPP and ecosystem carbon storage 

were integrated sums based on PFTs. Then ℒs𝑢𝑢𝑢𝑢, ℒsℎ𝑎𝑎, 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎, 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  at the year 2023 (relative to 

2022) for different C3 PFTs were calculated and compared. Coefficients of variation (CVs) of 𝛽𝛽 values were calculated across 210 

various C3 PFTs for these hierarchical levels. The year 2023 was chosen because large oscillations of LAI occurred for shrub 

after 2025 in the C-N-P simulation (Fig. S1c). For C-N and C-N-P simulations, the time series of LAI, GPP, and NPP for 

shrub, C3 grass and tundra underwent small short-term variability and therefore were smoothed using the “smooth” function 

in MATLAB software before the calculation of 𝛽𝛽. We also calculated 𝛽𝛽 values for each patch and CV of 𝛽𝛽 values across 

different geographical locations within a specific PFT at different hierarchical levels at the year of 2023 to explore the 215 

variability of 𝛽𝛽 within the same PFTs. All abovementioned calculations were processed in MATLAB R2014b. 



 

11 
 

3. Results  

3.1 Temporal trends of 𝜷𝜷 at ecosystem level for different PFTs  

In C-only simulation, 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values for different C3 PFTs all decline with time from 2011 to 2100 under RCP8.5 scenario 

(Fig. 1a). However, the magnitudes of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 differ among different PFTs, with the highest values occurring in deciduous 220 

broadleaf forest from 2011 to 2075 and in shrub after 2075, and lowest values occurring in deciduous needleleaf forest and 

tundra. 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values for deciduous needleleaf forest and tundra nearly overlap over time. As compared with C-only 

simulation, values of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are reduced when N limitation is included as in C-N simulation for all C3 PFTs except evergreen 

broadleaf forest (Fig. 1b). Deciduous broadleaf forest and evergreen broadleaf forest have the greatest 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values, while 

deciduous needleleaf forest and tundra still have the lowest 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values in C-N simulation. When both N and P limitations 225 

are taken into account as in C-N-P simulation, magnitudes and trends of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are similar to those in C-N simulation (Fig. 

1c) as P limitation is quite weak under present condition in the current version of CABLE (Zhang et al., 2011). 

3.2 Variations of intercellular CO2 concentration and CO2 compensation point  

To reveal which processes cause the large disparity of 𝛽𝛽 across PFTs as shown in Fig. 1, we first compared intercellular CO2 

concentration (𝐶𝐶𝑖𝑖) and CO2 compensation point in the absence of day respiration (Γ∗), which are critical parameters for leaf-230 

level biochemical response. In C-only simulation, the ratio of 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑎𝑎 (𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎) is approximately constant with eCO2 for each 

PFT (Fig. 2a, 2b). For sunlit leaf, 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values range from 0.64 to 0.70 with CV=0.03 across different C3 PFTs (Table 1). 

𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values for shaded leaf are higher than those for sunlit leaf, and the range is 0.68 to 0.76 with CV=0.03 across different 

C3 PFTs (Table 1). Evergreen broadleaf forest has the greatest 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 value, while deciduous needleleaf forest has the lowest 

𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 value. In C-N simulation, 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values for sunlit leaf are lower than those for the same PFT in C-only simulation, while 235 

𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values for shaded leaf change little as compared with those for the same PFT in C-only simulation (Table 1 and Fig. 

S2). 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values for both sunlit and shaded leaves in C-N-P simulation are very similar to those in C-N simulation (Table 1 

and Fig. S3). 
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In all of the simulations, values of CO2 compensation point in the absence of day respiration (Γ∗) for a specific PFT do not 240 

change over time since air temperature as an input to the model is not affected by the biophysical feedback in the offline model 

simulations (Fig. 2c, 2d, S2c, S2d, S3c, S3d). But there is a huge variance of Γ∗ across different C3 PFTs because of different 

leaf temperature which Γ∗ values depend on. 

3.3 Comparison of 𝜷𝜷 at different hierarchical levels 

To further trace the cause for the divergence of 𝛽𝛽 across PFTs as shown in Fig. 1 at a specific time, ℒs𝑢𝑢𝑢𝑢, ℒsℎ𝑎𝑎, 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎, 245 

𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  at the year 2023 for different C3 PFTs in all simulations were plotted in Fig. 3. CV is marked above 

data points for each variable to indicate degree of variation across different C3 PFTs. In C-only simulation (Fig. 3a), results 

show that at leaf biochemical level, ℒ values for sunlit leaf and shaded leaf range from 0.00055 ppm-1 to 0.00097 ppm-1. 

Variations of ℒs𝑢𝑢𝑢𝑢 and ℒ𝑠𝑠ℎ𝑎𝑎 among PFTs are small (CV=0.15 and 0.13). At leaf photosynthesis level, 𝛽𝛽𝑝𝑝sun and 𝛽𝛽𝑝𝑝sha for 

the seven PFTs vary from 0.00041 ppm-1 to 0.00072 ppm-1, and the variations among different PFTs are not significant 250 

(CV=0.18 and 0.12). But 𝛽𝛽 values are diverging when scaled up to GPP level with CV jumping to 0.49 among PFTs. 𝛽𝛽 values 

of deciduous broadleaf forest and shrub greatly increase from leaf level to GPP level. However, canopy scaling effects do not 

significantly amplify 𝛽𝛽 values at canopy levels (𝛽𝛽GPP) for deciduous needleleaf forest, tundra and evergreen broadleaf forest. 

Magnitudes and variance of 𝛽𝛽NPP are similar to those of 𝛽𝛽GPP because NPP linearly correlates with GPP for all C3 PFTs (Fig. 

S4). Magnitudes of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for all PFTs are decreased compared with those of 𝛽𝛽NPP and 𝛽𝛽GPP. Deciduous broadleaf forest and 255 

shrub have the highest 𝛽𝛽GPP and 𝛽𝛽NPP values (around 0.0026 ppm-1). Deciduous broadleaf forest has the greatest 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

value (around 0.0018 ppm-1) among all. Deciduous needleleaf forest has the lowest 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  values. CV of 

𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  among different PFTs reaches the highest (0.58) compared with CV of 𝛽𝛽 values at other levels.  

  

In C-N and C-N-P simulations, magnitudes and variations of 𝛽𝛽 at leaf biochemical and photosynthetic levels are comparable 260 

to those in C-only simulation because 𝐶𝐶𝑖𝑖 and Γ∗ values only slightly change under nutrient limitations (Fig. 3b, 3c, S2, S3). 

Nutrient-limited 𝛽𝛽GPP values are smaller than those in C-only simulation, except for evergreen broadleaf forest. There is a 
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large divergence of nutrient-limited 𝛽𝛽GPP across different PFTs, which is similar to C-only simulation. However, unlike in 

C-only simulation, 𝛽𝛽NPP values in nutrient-coupled simulations are reduced for most C3 PFTs and diverge more compared 

with 𝛽𝛽GPP values. Coefficients of variation (CVs) of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  in nutrient-coupled simulations exceed 0.8, larger than that in 265 

C-only simulation.  

 

Within-PFT variations of 𝛽𝛽 in C-only simulation were listed in Table 2, including CVs for biochemical response ℒ, leaf-

level 𝛽𝛽𝑝𝑝, 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙  across different geographical locations within each PFT. Variations of biochemical and 

leaf-level responses are relatively smaller than those at canopy and ecosystem levels within all C3 PFTs. 𝛽𝛽GPP values greatly 270 

differentiate across different geographical locations. Variations of 𝛽𝛽NPP are very similar to those of 𝛽𝛽GPP within all PFTs 

except the evergreen needleleaf forest. CVs of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  are lower than those of 𝛽𝛽NPP within most PFTs except evergreen 

broadleaf forest and tundra. Within-PFT variations of 𝛽𝛽  in C-N and C-N-P simulations are similar to those in C-only 

simulation (data not shown). 

 275 

To further explore why 𝛽𝛽 values at canopy and ecosystem levels are diverging across different C3 PFTs, the correlations 

between 𝛽𝛽GPP and 𝛽𝛽LAI, 𝛽𝛽NPP and 𝛽𝛽LAI, 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and 𝛽𝛽LAI for C-only, C-N and C-N-P simulations were plotted at the year 

2023. Results show that 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  all have significant linear correlations with 𝛽𝛽LAI across different C3 PFTs 

(Fig. 4). Results also show that 𝛽𝛽LAI linearly correlates with 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  across patches within the same PFT, 

although there are some discontinuous points within evergreen broadleaf forest where canopy of many patches closes (Fig. 280 

S5-S7). Therefore variations of 𝛽𝛽 values from leaf to ecosystem scale can be well explained by 𝛽𝛽LAI, or the LAI response to 

increasing CO2. 

3.4 𝜷𝜷 of sunlit and shaded leaves 

To understand the in-depth mechanism for the influence of LAI on canopy GPP, we investigate the response of sunlit and 

shaded leaf GPP separately from C-only simulation. Temporal trends of sunlit leaf GPP (GPP𝑠𝑠𝑠𝑠𝑠𝑠) and shaded leaf GPP (GPP𝑠𝑠ℎ𝑎𝑎) 285 
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were plotted for each type of C3 PFTs from 1901 to 2100 in Fig. 5. From the beginning of the simulation, GPP𝑠𝑠ℎ𝑎𝑎 is higher 

than GPP𝑠𝑠𝑠𝑠𝑠𝑠 for all C3 PFTs. With significant increases of CO2 concentration from 2011, GPP𝑠𝑠ℎ𝑎𝑎 responds more drastically 

than GPP𝑠𝑠𝑠𝑠𝑠𝑠. Shaded leaf GPP of deciduous broadleaf forest and shrub responds to eCO2 more significantly than other PFTs. 

However, a single sunlit leaf has higher photosynthesis rate (𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠) than a shaded leaf (𝑝𝑝𝑠𝑠ℎ𝑎𝑎) because of more radiation absorbed. 

Thus, the LAI-dependent canopy scaling factor of shaded leaves (𝑆𝑆𝑠𝑠ℎ𝑎𝑎) contributes more to the magnitude and sensitivity of 290 

canopy GPP than photosynthesis rate.  

 

Then temporal trends were plotted for  𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠( 𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎) and decomposing factors 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠  (𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎) and 𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  (𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎) for each 

PFT as Eq. (10) and Eq. (11) to further evaluate the above inference. Results show that both of the sensitivities of GPP𝑠𝑠𝑠𝑠𝑠𝑠 and 

GPP𝑠𝑠ℎ𝑎𝑎 tend to approach zero through time because the decomposing factors 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 , 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎, 𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  and 𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎 all decline with 295 

time (Fig. 6). 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎 overlap through time for each PFT. Magnitudes of  𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎  are higher than those of  𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠  

for all C3 PFTs. For deciduous needleleaf forest and tundra, both 𝛽𝛽𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠  (𝛽𝛽𝑝𝑝𝑠𝑠ℎ𝑎𝑎 ) and 𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  (𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎)  contribute to the 

maginitudes and trends of 𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠( 𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎). For evergreen needleleaf forest, deciduous broadleaf forest, shrub and C3 grass, 

𝛽𝛽𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  (𝛽𝛽𝑆𝑆𝑠𝑠ℎ𝑎𝑎)  dominates the magnitude and change of  𝛽𝛽GPP𝑠𝑠𝑠𝑠𝑠𝑠 ( 𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎 ). For evergreen broadleaf forest, 𝛽𝛽𝑆𝑆sha 

predominates the magnitude and change of  𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎 before 2035.  300 

4. Discussion 

4.1 Variations of biochemical and photosynthetic responses to eCO2  

The direct CO2 fertilization effect occurs at leaf level and is determined by kinetic sensitivity of Rubisco enzymes to internal 

leaf CO2 concentration. In fact, the normalized short-term sensitivity of leaf-level photosynthesis to CO2 is mainly regulated 

by 𝐶𝐶𝑖𝑖 and slightly influenced by leaf temperature, regardless of light, nutrient availability, and species characteristics (Luo et 305 

al., 1996; Luo and Mooney, 1996). In our study, modelled 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 ratio is approximately constant with eCO2 for a specific PFT, 

and varies little within and across PFTs in all simulations. This is in line with FACE experimental results which show almost 
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constant 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 values for different PFTs under CO2 fertilization (Drake et al., 1997; Long et al., 2004). Γ∗ varies little for 

different species and only depends on leaf temperature (Luo and Mooney, 1996). Sensitivity analysis in a previous study has 

shown that a ±5℃ of leaf temperature changes caused approximately ±7 ppm changes in Γ∗, leading to variation of 0.12 to 310 

leaf-level 𝛽𝛽 (Luo and Mooney, 1996). The overall variation of leaf-level 𝛽𝛽 caused by variation in leaf temperature is still 

quite small compared with that of 𝛽𝛽GPP. Therefore, biochemical and leaf-level 𝛽𝛽 values vary little within and among PFTs 

in this study. Our results also illustrate that nutrient effects do not significantly change 𝐶𝐶𝑖𝑖  and Γ∗ , leading to similar 

biochemical and leaf-level 𝛽𝛽 values in all simulations, which is in accordance with Luo et al. (1996).  

 315 

To identify the source of uncertainty of 𝛽𝛽 in CMIP5 models, Hajima et al. (2014) decomposed 𝛽𝛽 into several carbon cycle 

components. They used GPP divided by LAI (GPP/LAI) as a proxy to represent leaf-level photosynthesis for CMIP5 models, 

since there are no leaf-level process outputs of these models. They found the sensitivities of GPP/LAI to eCO2 diverged a lot 

among models. One possible issue of this calculation is that it ignores different canopy structure used by each CMIP5 model 

such as big-leaf, two-leaf or multiple-layer. Our results just show that the sensitivities of GPP/LAI are different from our 320 

mechanistic calculation of leaf-level 𝛽𝛽  for different PFTs in a two-leaf model. 𝛽𝛽  values estimated from GPP/LAI 

formulation are greatly underestimated for woody trees and slightly overestimated for C3 grass and tundra, but best match for 

shrub if compared with our calculation (Fig. S8). Therefore diagnostics such as 𝐶𝐶𝑖𝑖 and Γ∗ for leaf-level 𝛽𝛽 are more desirable 

for woody trees. Another advantage of our calculation of leaf-level 𝛽𝛽 is that the reason for the divergence of leaf-level 𝛽𝛽 

across PFTs can be traced back to the difference from 𝐶𝐶𝑖𝑖 and leaf temperature as shown in Fig. 2. 325 

4.2 Variations of β at canopy and ecosystem levels 

The two-leaf scaling scheme in CABLE is widely employed by many land surface models, such as Community Land Model 

version 4.5 (CLM4.5, Oleson et al., 2013) and the Joint UK Land Environment Simulator version 4.5 (JULES4.5, Best et al., 

2011; Clark et al., 2011; Harper et al., 2016). We found the responses of ecosystem carbon cycle to eCO2 diverge primarily 

because the responses of LAI diverge within and among PFTs in all simulations. Besides, GPP of shaded leaves responds to 330 
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eCO2 stronger than GPP of sunlit leaves for all C3 PFTs. This is because the portion of shaded leaves increase exponentially 

with increasing LAI (Fig. S9), leading to a rapid change of shaded leaf GPP. While for sunlit leaves, GPP shows a saturating 

response because of the decreasing portion of sunlit leaves with increasing LAI (Dai et al., 2004). Our results also indicate that 

saturation of GPP is not only regulated by the leaf-level photosynthetic response, but also by the response of the LAI-dependent 

scaling factor to eCO2. For shaded leaves, the sensitivity of the LAI-dependent scaling factor contributes more to the magnitude 335 

and trend of  𝛽𝛽GPP𝑠𝑠ℎ𝑎𝑎 than that of photosynthesis rate. The evidence all suggests LAI is a key process in modeling the response 

of ecosystem carbon cycle to climate change. 

  

It has been reported that different CMIP5 models have simulated diverse LAI during 1985-2006. And modelled LAI values in 

most CMIP5 models have been overestimated according to satellite products (Anav et al., 2013). Many global vegetation 340 

models simulated increasing LAI trends globally in response to eCO2 during historical period (Zhu et al., 2016). Our modelling 

study also shows that LAI responds positively to eCO2 for all C3 PFTs in all simulations. But experimental results are not 

consistent. In one review paper with 12 FACE experimental results, trees had a 21% increase in LAI, herbaceous C3 grasses 

did not show a significant change in LAI (Ainsworth and Long, 2005). Some studies reported that LAI dynamics did not 

significantly change in specific FACE experiments, such as in a closed-canopy deciduous broadleaf forest (ORNL FACE; 345 

Norby et al., 2003) and in a mature evergreen broadleaf forest (EucFACE; Duursma et al., 2016). The negligible change of 

LAI at the EucFACE probably leads to insignificant response of productivity at this site, even though leaf photosynthesis rate 

significantly increases under eCO2 (Ellsworth et al., 2017). Besides the impact of LAI on global carbon cycle, the increasing 

trend of LAI exerts profound biophysical impacts to climate through altering the energy and water cycles on the Earth’s surface 

(Forzieri et al., 2017; Zeng et al., 2017). But there is a great uncertainty in the relationships between LAI and biophysical 350 

processes among land surface models (Forzieri et al., 2018). 

 

In this study, modelled nutrient-unlimited 𝛽𝛽GPP and 𝛽𝛽NPP values are higher than leaf photosynthetic responses for all C3 

PFTs in C-only simulation (Fig. 3a). Nutrient-limited 𝛽𝛽NPP are still higher than photosynthetic responses for many PFTs in 
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C-N and C-N-P simulations (Fig. 3b, 3c). However, it is generally observed in experiments that the leaf-level response is 355 

consistently larger than the whole plant response (Long et al., 2006; Leuzinger et al., 2011). One possible reason is that models 

overestimate the response of LAI to eCO2, as this study has shown that LAI is an important factor in driving ecosystem 

response to CO2 fertilization. And it is also likely the overestimation of the response of LAI to eCO2 is responsible for the 

overestimation of CO2 fertilization in ESMs reported by previous studies (Smith et al., 2015; Mystakidis et al., 2017). 

 360 

The overall response of LAI to eCO2 depends on several processes in this study: (1) NPP increase, (2) change in allocation of 

NPP to leaf, (3) change in specific leaf area (SLA) in response to eCO2, (4) PFT-specific minimum and maximum LAI values 

prescribed in the model. First, the low responses of LAI to eCO2 for deciduous needleleaf forest and tundra can be attributed 

to smaller NPP enhancements in cold areas. The large divergence of the response of LAI within PFTs is mainly due to the 

large range of NPP increment across different geographical locations. The reduced magnitudes of 𝛽𝛽LAI  under nutrient 365 

limitations is the direct outcome of reduced 𝛽𝛽NPP. Accurate estimate of response of GPP and NPP is therefore fundamental to 

realistic LAI modeling. Second, diverse allocation schemes influence the responses of LAI for different PFTs. And, results 

from two FACE (Duke Forest and Oak Ridge) experiments indicate that the carbon allocated to leaves is decreased and more 

carbon is allocated to woods or roots at higher CO2 concentration (De Kauwe et al., 2014). Unfortunately, CABLE has fixed 

allocation coefficients and likely overestimates LAI response, leading to overestimated responses of GPP, NPP and total carbon 370 

storage. Third, we fixed SLA to calculate LAI in CABLE. But a reduction in SLA is a commonly observed response in eCO2 

experiments (Luo et al., 1994; Ainsworth and Long, 2005; De Kauwe et al., 2014). Tachiiri et al. (2012) also found SLA and 

𝛽𝛽 values are most effectively constrained by observed LAI to smaller values in a model. Therefore, the fixed SLA may also 

lead to over-prediction of the response of canopy cover to eCO2. Forth, in our results, LAI values for most C3 PFTs are below 

the maximum LAI limits with eCO2 in C-only simulation. With only one exception, LAI values of many evergreen broadleaf 375 

forest patches saturate at the prescribed maximum value under high CO2 concentration (Fig. S1a and Table. S1). That’s why 

the sensitivity of LAI for evergreen broadleaf forest is low and thus leads to small relative GPP enhancements. If the preset 

LAI upper limits are narrowed, 𝛽𝛽 values are expected to be significantly reduced. Hence model parameters related to LAI 
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need to be better calibrated according to experiments and observations in order to better represent the response of ecosystem 

productivity to eCO2 (De Kauwe et al., 2014; Qu and Zhuang, 2018). 380 

 

In this study, the almost identical values and variance of 𝛽𝛽NPP  as those of 𝛽𝛽GPP  within and across C3 PFTs in C-only 

simulation suggests carbon use efficiency (CUE) does not change with eCO2, as autotrophic respiration is calculated from GPP 

and plant carbon. In C-N and C-N-P simulations, magnitudes of 𝛽𝛽NPP for all C3 PFTs except evergreen broadleaf forest all 

decline compared with those of 𝛽𝛽GPP, indicating CUE also decline with eCO2 under nutrient limitations. However, FACE 385 

experimental results indicate that CUE values under eCO2 are not changed in N-limited Duke site (Hamilton et al., 2002; 

Schäfer et al., 2003), increase in fertile POPFACE site (Gielen et al., 2005) or decrease in fertile ORNL site (DeLucia et al., 

2005). Thus, representations of nutrient effects on GPP and autotrophic respiration in land surface models should be carefully 

calibrated with experimental data (DeLucia et al., 2007). Our results also show that 𝛽𝛽NPP values diverge more than 𝛽𝛽GPP 

values across different PFTs in nutrient-coupled simulations, because the different nutrient-limiting effects on autotrophic 390 

respiration introduce additional variation across different PFTs. Although 𝛽𝛽 values at ecosystem levels are more variable 

with nutrient effects, LAI responses are still linearly correlated well with 𝛽𝛽GPP, 𝛽𝛽NPP and 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  across C3 PFTs in nutrient-

coupled simulations as in C-only simulation, confirming the dominant role of LAI in regulating carbon cycle response under 

CO2 fertilization. 

 395 

The reduced magnitudes of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  compared with those of 𝛽𝛽GPP and 𝛽𝛽NPP in all simulations indicates carbon turnover 

processes make ecosystems respond to eCO2 less sensitively due to the slow allocation and carbon turnover processes. A 

previous study using seven global vegetation models identified carbon residence time as the dominant cause for uncertainty in 

terrestrial vegetation responses to future climate and atmospheric CO2 change (Friend et al., 2014). The response of soil carbon 

storage to eCO2 also depends on soil carbon residence time (Harrison et al., 1993). In this study and many other models, 400 

allocation coefficients are fixed over time (Walker et al., 2014). But allocation pattern to plant organs with different lifespan 

has been reported to change in response to eCO2 in experiments, thereby altering carbon residence time in plants and soil (De 
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Kauwe et al., 2014). Therefore, the fixed allocation scheme we adopted in this study might lead to some biases in simulating 

the response of carbon residence time to eCO2. In our study, soil decomposition rate is assumed not to be affected by CO2 

level, as in most other conventional soil carbon models (Friedlingstein et al., 2006; Luo et al., 2016). However, recent synthesis 405 

of experimental data suggests replenishment of new carbon into soil due to eCO2 increases turnover rate of soil carbon (Van 

Groenigen et al., 2014; Van Groenigen et al., 2017). Within a certain PFT, the variation of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  across different geographical 

locations is usually smaller than that of 𝛽𝛽NPP. While the greater variation of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  than that of 𝛽𝛽NPP across different C3 

PFTs in C-only simulation suggests other processes such as different carbon allocation patterns, plant carbon turnover, and the 

soil carbon dynamics of various PFTs, are responsible for the additional divergence. In nutrient-coupled simulations, the 410 

variations of 𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  across different C3 PFTs are only slightly larger than those of 𝛽𝛽NPP, indicating that nutrients do not bring 

much differential effects on carbon turnover processes for different PFTs. 

4.3 Implication for understanding 𝜷𝜷 in other models 

Although we analyze a single land-surface model in detail, the patterns of and mechanisms underlying the variability of 𝛽𝛽 we 

found may be generally applicable to other models. The basic Farquhar photosynthesis model and two-leaf scaling scheme in 415 

the CABLE model are shared by many land surface models. Some models use variants of Farquhar photosynthesis model such 

as co-limitation approach described by Collatz et al. (1991). Inflection point from Rubisco- to RuBP- limited processes is an 

important control of the absolute photosynthetic response to eCO2 (Rogers et al., 2017). However, the relative photosynthetic 

responses for different ecosystems will converge to a small range because the normalized photosynthetic response to eCO2 

only depends on estimates of intercellular CO2 concentration ( 𝐶𝐶𝑖𝑖 ), Michaelis-Menten constants (𝐾𝐾𝑐𝑐 , 𝐾𝐾𝑜𝑜 ) and CO2 420 

compensation point ( Γ∗ ), and the relative photosynthetic responses are similar for either Rubisco- or RuBP-limited 

photosynthesis (Luo et al., 1996; Luo and Mooney, 1996). Soil moisture availability is another key constraint on photosynthetic 

response. Water stress on plants is generally alleviated under eCO2 due to reduced stomatal conductance (Leuzinger and Körner, 

2007; Fatichi et al., 2016). Different models simulate diverse levels of water stress on productivity (De Kauwe et al., 2017). 

Water stress is simulated in many models to regulate stomatal conductance (Rogers et al., 2017; Wu et al., 2018). For example, 425 
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the CABLE model represents water stress by an empirical relationship based on soil texture and limits the slope of the coupled 

relationship between photosynthesis rate and stomatal conductance as Eq. (S11). The influence of water stress is reflected by 

𝐶𝐶𝑖𝑖. Synthesis of many empirical study results and our results in this study all show that ratio of 𝐶𝐶𝑖𝑖 to 𝐶𝐶𝑎𝑎 is relatively constant, 

probably due to homeostatic regulations through photosynthetic rate and stomatal conductance (Pearcy and Ehleringer, 1984; 

Evans and Farquhar, 1991). Wong et al. (1979) showed plant stomata could maintain a constant 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 ratio across wide range 430 

of environmental conditions, including water stress condition. Land surface models might simulate relatively constant 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 

ratios under water stress as well since photosynthesis and stomatal conductance are theoretically depicted based on 

experimental results. Moreover, Luo and Mooney (1996) found that changing 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 ratio from 0.6 to 0.8 caused less than 

variation of 0.08 in sensitivity of leaf photosynthesis to a unit of increase in 𝐶𝐶𝑎𝑎. 𝐾𝐾𝑐𝑐, 𝐾𝐾𝑜𝑜 are variable among species, but only 

slightly affect leaf-level response (Luo and Mooney, 1996). Different leaf temperature will exert limited influence on the 435 

variability of leaf-level 𝛽𝛽 as we discussed above. Therefore, leaf-level 𝛽𝛽 values for different C3 PFTs are more likely to 

converge in other land surface models.  

 

A recent study used 16 crop models to simulate rice yield at two FACE sites (Hasegawa et al., 2017). These models have 

diverse representations of primary productivity. Their results showed that the variation of yield response across models was 440 

not much associated with model structure or magnitude of primary photosynthetic response to eCO2, but was significantly 

related with the estimations of leaf area. This is consistent with our conclusion and highlights the great need to improve 

prognostic LAI modeling. Other land-surface modelling groups may benefit from a similar analysis to identify major causes 

of variability of 𝛽𝛽 across the hierarchical levels from biochemistry to land carbon storage. Candidate causes that can make 

substantial contributions to the variability include changes in changes in leaf area index, changes in carbon use efficiency and 445 

changes in land carbon residence times. If modelling groups can add leaf-level diagnostics in the next inter-model comparison 

project, it will greatly help disentangle the uncertainty of concentration-carbon feedback. 
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5. Conclusions  

Exploring the variability of 𝛽𝛽  at different hierarchical levels within and across different C3 PFTs helps unravel model 

mechanisms that govern terrestrial ecosystem responses to elevated CO2. Our study shows that the sensitivities of biochemistry 450 

and leaf-level photosynthesis to eCO2 are very similar within and across C3 PFTs in C-only, C-N and C-N-P simulations of 

CABLE, in accordance with previous theoretical analysis. While 𝛽𝛽 values of GPP, NPP and ecosystem carbon storage diverge 

primarily because the sensitivities of LAI significantly differ within and across different PFTs in all simulations. After 

decomposing 𝛽𝛽  into photosynthetic and LAI components, we find LAI contributes more than photosynthesis to the 

magnitudes and trends of model responses. Our results indicate that processes related to LAI need to be better constrained with 455 

results from experiments and observations in order to better represent the responses of ecosystem carbon cycle processes to 

changes in CO2 and climate. 
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Table 1. The ratio of intercellular CO2 concentration (𝑪𝑪𝒊𝒊) to atmospheric CO2 concentration (𝑪𝑪𝒂𝒂) for different C3 PFTs, 

mean and coefficient of variation (CV) across these PFTs of 𝑪𝑪𝒊𝒊/𝑪𝑪𝒂𝒂 in C-only, C-N, C-N-P simulations of CABLE under 750 

RCP8.5 scenario. Values for shaded leaves are in brackets. Abbreviations are the same as Figure 1. 

 
PFT 𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 (C-only) 

sunlit(shaded) 
𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 (C-N) 
sunlit(shaded) 

𝐶𝐶𝑖𝑖/𝐶𝐶𝑎𝑎 (C-N-P) 
sunlit(shaded) 

ENF 0.69(0.74) 0.66(0.74) 0.66(0.79) 

EBF 0.70(0.76) 0.65(0.78) 0.65(0.78） 

DNF 0.64(0.68) 0.61(0.67) 0.61(0.67) 

DBF 0.67(0.73) 0.63(0.73) 0.64(0.73) 

SHB 0.70(0.73) 0.65(0.73) 0.65(0.73) 

C3GRAS 0.69(0.73) 0.63(0.73) 0.63(0.73) 

TUN 0.68(0.71) 0.63(0.71) 0.63(0.71) 

Mean 0.68(0.73) 0.64(0.73) 0.64(0.73) 

CV 0.03(0.03) 0.03(0.05) 0.03(0.06) 
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Table 2. Coefficients of variation of 𝓛𝓛, 𝜷𝜷𝒑𝒑, 𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆, 𝜷𝜷𝐍𝐍𝐍𝐍𝐍𝐍 and 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 across different geographical locations within 

each C3 PFT at the year of 2023 in CABLE-C only simulation. The two numbers in the same unit are for sunlit leaves 55 

and shaded leaves respectively. Values for shaded leaves are in brackets. Abbreviations are the same as Figure 1. 

PFT CV(ℒ) 

sunlit(shaded) 

CV(𝛽𝛽𝑝𝑝) 

sunlit(shaded) 

CV(𝛽𝛽GPP) CV(𝛽𝛽NPP) CV(𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

 

ENF 0.27(0.30) 0.41(0.42) 1.77 2.68 1.40 

EBF 0.26(0.29) 0.24(0.28) 0.55 0.54 0.60 

DNF 0.26(0.28) 0.25(0.28) 1.19 1.20 0.30 

DBF 0.39(0.38) 0.42(0.37) 1.29 1.42 0.85 

SHB 0.33(0.32) 0.30(0.49) 1.24 1.23 1.12 

C3GRAS 0.38(0.34) 0.35(0.34) 1.12 1.10 0.98 

TUN 0.35(0.34) 0.36(0.37) 1.86 1.85 1.92 
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Figure 1. Temporal trends of 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 from 2011 to 2100 for C3 PFTs from CABLE-C only (a), CABLE-CN (b), and 

CABLE-CNP (c) simulations. 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  values for different C3 PFTs all decline with time from 2011 to 2100 under 760 

RCP8.5 scenario, but the magnitudes of 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 differ across them in all simulations. In C-N and C-N-P simulations, 

magnitudes of 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄  are reduced compared with those in C-only simulation for all C3 PFTs except evergreen 

broadleaf forest. ENF, Evergreen Needleleaf Forest (light green squares); EBF, Evergreen Broadleaf Forest (red 

circles); DNF, Deciduous Needleleaf Forest (dark blue triangles); DBF, Deciduous Broadleaf Forest (pink triangles); 

SHB, Shrub (dark green diamonds); C3GRAS, C3 grass (dark blue stars); TUN, tundra (orange diamonds).  765 
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Figure 2. Responses of yearly intercellular CO2 concentration (𝑪𝑪𝒊𝒊) to eCO2 of a single sunlit leaf (a) and shaded leaf (b) 

for C3 PFTs from CABLE-C only simulation. Temporal trends of CO2 compensation point in the absence of day 

respiration (𝚪𝚪∗) for sunlit leaf (c) and shaded leaf (d) from 2011 to 2100 from CABLE-C only simulation. The ratio of 

𝑪𝑪𝒊𝒊 to 𝑪𝑪𝒂𝒂 (𝑪𝑪𝒊𝒊/𝑪𝑪𝒂𝒂) is approximately constant with eCO2 for each PFT and varies little across PFTs. 𝚪𝚪∗ values vary 770 

across different PFTs, but do not change over time for each PFT. Abbreviations and symbols are the same as Figure 1. 
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Figure 3. Biome-level 𝜷𝜷 values at different levels at the year 2023 from CABLE-C only (a), CABLE-CN (b), and 

CABLE-CNP (c) simulations. CV means coefficient of variation of biome-level 𝜷𝜷  across C3 PFTs. 𝜷𝜷  values at 775 

biochemical (𝓛𝓛𝐬𝐬𝒖𝒖𝒖𝒖 and 𝓛𝓛𝐬𝐬𝒉𝒉𝒉𝒉 for sunlit and shaded leaves) and leaf levels (𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔  and 𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔) are very similar across 

PFTs, but greatly diverge at canopy level (𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆), and ecosystem levels (𝜷𝜷𝐍𝐍𝐍𝐍𝐍𝐍 and 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄) in all simulations. Unlike in 

C-only simulation, 𝜷𝜷𝐍𝐍𝐍𝐍𝐍𝐍  diverges more than 𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆  across different PFTs in nutrient-coupled simulations. 

Abbreviations and symbols are the same as Figure 1. 
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 780 

Figure 4. Correlations between 𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆 and 𝜷𝜷𝐋𝐋𝐋𝐋𝐋𝐋, 𝜷𝜷𝐍𝐍𝐍𝐍𝐍𝐍 and 𝜷𝜷𝐋𝐋𝐋𝐋𝐋𝐋, 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 and 𝜷𝜷𝐋𝐋𝐋𝐋𝐋𝐋 at the year 2023 across C3 PFTs 

from CABLE C-only (a)~(c), CABLE-CN (d)~(f) and CABLE-CNP (g)~(i) simulations. 𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆, 𝜷𝜷𝐍𝐍𝐍𝐍𝐍𝐍 and 𝜷𝜷𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 all 

have significant linear correlations with 𝜷𝜷𝐋𝐋𝐋𝐋𝐋𝐋 in all simulations. Abbreviations and symbols are the same as Figure 1. 
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Figure 5. Temporal trends of 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔 (red points) and 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔 (black points) for C3 PFTs from 1901 to 2100 from 

CABLE C-only simulation. 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔  is higher than  𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔  for all PFTs. With significant increase of CO2 790 

concentration from 2011, 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔 responds more drastically than 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔. 
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Figure 6. Temporal trends of  𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔  (sensitivity of sunlit leaf GPP; red squares),  𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔 (sensitivity of shaded leaf 

GPP; green squares), 𝜷𝜷𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 (sensitivity of scaling fatcor for sunlit leaf; pink triangles), 𝜷𝜷𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 (sensitivity of scaling 

fatcor for shaded leaf; dark blue triangles), 𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔  (photosynthetic response for sunlit leaf; purple diamonds) and 800 

𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔 (photosynthetic response for shaded leaf; sky blue diamonds) for C3 PFTs from CABLE C-only simulation. The 

sensitivities of 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔  and 𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔  tend to approach zero through time because the decomposing factors 𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔 , 

𝜷𝜷𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔, 𝜷𝜷𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔  and 𝜷𝜷𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 all decline with time. 𝜷𝜷𝑺𝑺𝒔𝒔𝒔𝒔𝒔𝒔 determines the magnitudes and trends of  𝜷𝜷𝐆𝐆𝐆𝐆𝐆𝐆𝒔𝒔𝒔𝒔𝒔𝒔 for almost all 

PFTs. 
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