Supplymentary materials

Table S1 Prescribed minimum LAI and maximum LAI values for C3 plants in CABLE. Abbreviations are the same as Figure 1.

PFT	LAImin	LAImax
ENF	0.5	7
EBF	1	7
DNF	0.35	7
DBF	0.35	7
SHB	0.1	3
C3GRAS	0.1	3
TUN	0.1	3

Figure S1 Correlations between $\boldsymbol{\beta}_{\mathrm{GPP}}$ and $\boldsymbol{\beta}_{\mathrm{LAI}}$ for patches within each C_{3} vegetation type. Plants of the same type but at different locations show diverse responses of GPP primarily because the sensitivities of LAI vary. The relationships are all significant at the 0.01 level.

Figure S2 Correlations between $\boldsymbol{\beta}_{\mathrm{NPP}}$ and $\boldsymbol{\beta}_{\mathrm{LAI}}$ for patches within each C_{3} vegetation type. Plants of the same type but at different locations show diverse responses of NPP primarily because the sensitivities of LAI vary. The relationships are all significant at the 0.01 level.

Figure $S 3$ Correlations between $\beta_{\text {cpool }}$ and $\boldsymbol{\beta}_{\mathrm{LAI}}$ for patches within each C_{3} vegetation type. The correlations between $\beta_{\text {cpool }}$ and β_{LAI} are lower than those between β_{NPP} and $\boldsymbol{\beta}_{\mathrm{LAI}}$. The relationships are all significant at the 0.01 level.

Figure S4 Correlations between NPP and GPP with eCO_{2} from 2011 to 2100 for C_{3} plants in CABLE. Abbreviations are the same as Figure 1.

Figure 55 Comparision between leaf level $\boldsymbol{\beta}$ calculated through biochemical parameters $\boldsymbol{C}_{\boldsymbol{i}}$ and $\boldsymbol{\Gamma}_{*}$ for sunlit leaf ($\boldsymbol{\beta}_{-}$psun) and shaded leaf ($\boldsymbol{\beta}_{\mathbf{\prime}}$ psha) and sensitivity of GPP/LAI ($\boldsymbol{\beta}_{-}$GPP/LAI) for different C3 plants at the year 2056 in CABLE. Abbreviations are the same as Figure 1.

Figure S6 Temporal trends of yearly average LAI in response to eCO_{2} for C_{3} plants from 1901 to 2100. LAI value of evergreen broadleaf forest increases with time but gradually saturates at the prescribed maximum value. LAI values of other plants also increase but are far below the prescribed maximum values at $\mathbf{2 1 0 0}$. Abbreviations and symbols are the same as Figure 1.

