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Abstract. Facing global changes, modeling and predicting the dynamics of soil carbon stock in forest 22 

ecosystems is vital but challenging. Yasso07 is considered as one of the most promising models for such a 23 

purpose. We aim at examining the accuracy of its prediction of the soil carbon dynamics over the whole French 24 

metropolitan territory at a decennial time scale.  25 

We used data from 101 sites of the RENECOFOR network, which encompasses most of the French temperate 26 

forests. These data include (i) yearly measured quantity of aboveground litterfall from 1994 to 2008, and soil 27 

carbon stocks measured twice at an interval of c.a. 15 years (early 1990s versus around 2010). Using Yasso07, 28 

we simulated the stock changes (tC ha-1 yr-1) per site and compared them with the measured ones. We carried out 29 

meta-analyses to reveal the variability in litter biochemistry between different tree organs for conifers and 30 

broadleaves. We also performed sensitivity analyses to explore Yasso07’s sensitivity to inputs, including litter 31 

carbon quality and initial carbon stocks.  32 

At the national level, the simulated annual carbon stock changes (ACC, +0.45 ± 0.09 tC ha-1 year-1, mean ± 33 

standard error) stayed in the same order of magnitude as the observed ones (+0.34 ± 0.06 tC ha-1 year-1). The 34 

correlation between predicted and measured ACC remained weak (R² <0.1). There was significant 35 

overestimation for broadleaved stands and underestimation for conifers sites. Sensitivity analyses showed that 36 

the final carbon stock was weakly affected by litter carbon quality, but strongly affected by simulation length 37 

and initial soil carbon quality. 38 
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Taking Yasso07 as model support, we revealed the current bottleneck of soil carbon modelling due to 1 

lacking knowledge or data on soil and litter carbon quality and fine root litter quantity, rendering high 2 

uncertainties for model inputs.We revealed both interest and challenges of applying Yasso07 for 3 

temperate forests, which reflected the whole state-of-the-art of soil carbon modelling due to lacking 4 

knowledge or data on soil and litter carbon quality and fine root litter quantity, rendering high 5 

uncertainties for model inputs. 6 

  7 
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Nomenclature and abbreviations 1 

Name Meaning 

carbon stock (CS) Quantity of soil organic carbon stock (in tC ha-1) 

carbon stock change Increment (positive value) or decrement (negative value) of soil organic 
carbon stock from the year t1 to the year t2 (in tC ha-1) 

annual carbon stock 
change (ACC) 

carbon stock change standardized by duration (in tC ha-1 year -1) 

carbon pools The Yasso07 model contains a series of organic compounds differing in 
solubility in solvents and mean residence time in decomposition processes: 
water soluble compounds (W), acid-hydrolysable compounds (A); non-polar 
solvent, ethanol or dichloromethane compounds (E), non-soluble and non-
hydrolyzable compounds (N). For soil, there is an extra recalcitrant pool 
named “humus” (H). Note: in this paper, “N” only denotes non-soluble and 
non-hydrolyzable compounds; nitrogen is spelled in full letter when 
mentioned. 

coarse woody litter Litter yield from either coarse aboveground residues due to either harvests or 
storms (including coarse branches, defined as branched of >4 cm in diameter 
and miscellaneous) and coarse roots (defined as those of >5 mm in diameter) 

fine non-woody litter Litter yield from either natural above-ground litterfall (leaves, small 
branches) or fine roots activities 

litter carbon quality Composition of litter carbon belonging to A, W, E and N carbon pools (in %) 

litter quantity Annual litter input (in tC ha-1 year-1) 

soil carbon quality Composition of soil carbon belonging to A, W, E, N and H carbon pools 
(in %) 

  2 
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1 Introduction 1 

The carbon stock in global soils, including litter and peatlands is 1500 to 2400 GtC, greatly 2 

exceeding that in vegetation (350 à 550 GtC, mainly in forests) and in the atmosphere (829 3 

GtC in 2011, IPCC, 2014). Soils share a common interface with all the other spheres and play 4 

a key role in driving the global carbon cycle. Soil carbon stock dynamics are directly related 5 

to the greenhouse gas emissions (notably carbon dioxide (CO2)) that are leading to the global 6 

warming effect (IPCC, 2014). An accurate estimation of soil carbon stock dynamics allows us 7 

to better understand the turnover rate and fate of soil carbon flux at both local and global 8 

geographical scales. Facing global changes, this task is essential for the evaluation of the 9 

climate change mitigation potentials of forests and the support of environmental policy 10 

decisions. 11 

Significant challenges exist for accurate estimation of soil carbon stock changes. Current soil 12 

monitoring networks are generally not able to detect changes on timescales of less than 10 13 

years (Saby et al. 2008). To obtain soil C stock change estimates at shorter intervals such as 14 

for the annual reporting to the United Nations Framework Convention on Climate Change and 15 

the Kyoto Protocol, the use of models is encouraged (IPCC, 2011). Numerous models have 16 

been elaborated for evaluating soil carbon dynamics (Manzoni and Porporato, 2009). The vast 17 

majority of terrestrial soil carbon models developed at the global or at the plot scales, e.g., 18 

CENTURY (Parton et al., 1987), RothC (Coleman and Jenkinson, 1996) and ORCHIDEE 19 

(Krinner et al., 2005), assume that decomposition is the first order decay process accounting 20 

for the size of soil carbon pools, despite the existence of criticism to this, arguing that priming 21 

effect and the associated induced carbon pool interactions should be considered in model 22 

algorithms (Wutzler and Reichstein, 2013). The dynamics of carbon pools depend on the 23 

quantity and quality of litter inputs and on temperature, soil moisture and other soil 24 

parameters, e.g. texture, structure, chemical richness, pH etc. (Todd-Brown et al., 2012). 25 

Incorporating explicit mechanisms such as microbial activities or carbon protection by the soil 26 

matrix into soil carbon models has repeatedly been suggested in the last years (Schmidt et al., 27 

2011; Lehmann and Kleber, 2015). However, for forest ecosystems, such refined mechanistic 28 

input data remain often limited. Accordingly, the typical time-step for litter input demanded 29 

by most of soil carbon models for forests is year, not month (but see RothC, Coleman and 30 

Jenkinson, 1996) or day (but see Romul, Chertov et al., 2001) (Didion et al., 2016). At this 31 

yearly-timescale, it is common to consider microbial communities and processes as a 32 

relatively stable factor (Todd-brown et al, 2012), and the assumption of carbon dynamics 33 

governed by first order decay may therefore be reasonable.  34 



5 

 

This is the choice made by the group who built the Yasso model (Liski et al., 2005) and 1 

Yasso07 model (Tuomi et al., 2009; 2011a and 2011b), i.e. an improved version of Yasso 2 

with more refined carbon pooling and abundant data for calibration. The intention of the 3 

models’ developers is to let their models be suitable for general forestry applications by 4 

taking into account the low availability of forest soil and litter data (Liski et al., 2005). 5 

Yasso07 explicitly defines several chemical pools of chemical compounds in litter carbon 6 

(Tuomi et al., 2011b) and possesses well-defined, biological meaningful and measurable 7 

parameters. Due to these qualities, Yasso and Yasso07 were applied in more than 70 case 8 

studies (URL: http://www.syke.fi/en-9 

US/Research__Development/Research_and_development_projects/Projects/Soil_carbon_mod10 

el_Yasso/) in forest ecosystems in the northern hemisphere with generally high satisfaction 11 

levels in comparison with measured carbon values (e.g. Karhu et al., 2011 ; Rantakari et al., 12 

2012; Ortiz et al., 2013 ; Didion et al., 2014; Lu et al., 2015; Wu et al., 2015). Yet, so far most 13 

of these applications have been limited to local case studies, especially those on cold forests 14 

with limited tree species diversity (e.g. boreal or montane forests). Rarely have previous 15 

studies validated Yasso07 based on data (i) of long-term observations (here defined as data of 16 

>10 years), (ii) from temperate forests with a much higher diversity of tree species or (iii) on 17 

carbon stock changes (in tC ha-1 year-1). This is partially due to the lack of extensive long 18 

term soil carbon monitoring in forest ecosystems which differ in climatic and soil conditions 19 

and species, stretch over a large territorial scale. Nevertheless, Yasso07 has been considered 20 

as one of potential models appropriate for evaluating national and continental inventories of 21 

forest carbon balance in Europe (Hernández et al. 2017). It is therefore of high interest to 22 

assess the ability of Yasso07 to reflect the carbon balance in different European forest 23 

ecosystems at large spatial-temporal scales. Moreover, as a carbon pool based model, 24 

Yasso07 shares certain similar principles to other prevailing soil carbon models in the same 25 

genre (e.g., RothC, CENTURY etc.). Via Yasso07 as an example, we may also learn from this 26 

application case for future carbon modelling for temperate forests 27 

The measured data of carbon stock and litter quantity dynamics from the RENECOFOR 28 

network (URL: http://www.onf.fr/renecofor/@@index.html), National Forest Management 29 

Agency (ONF), France, offered us a valuable opportunity for model validation. The 101 forest 30 

sites considered from this network are located all over the French metropolitan territory and 31 

cover the most common forest types and tree species. For each site, annual measurements of 32 

litterfall were available in addition to two inventories of soil organic carbon stock with an 33 

average interval of 15 years (minimum 12 years and maximum 20 years). These data allowed 34 
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us to use site-specific observed soil carbon stock and above-ground litterfall dynamics as 1 

model input estimates, thus reducing the uncertainties of the model input, which were 2 

identified as a major source of uncertainties for model estimates of soil carbon stock changes 3 

(Ortiz et al. 2013). By minimizing this source of uncertainty, we were able to focus on the 4 

inherent model structure. To our best knowledge, this might be the unique dataset available 5 

for the fit of the model.  6 

Consistent with our objective to contribute to the further development of soil carbon 7 

modeling, we aim at (i) testing and characterizing the ability of Yasso07 to model soil carbon 8 

stock dynamics for temperate forests (ii) identifying limitations and providing suggestions for 9 

a better adaptation of the model for C dynamics in both deciduous and evergreen temperate 10 

forests and (iii) discussing the perspectives based on the current state-of-the-art of soil carbon 11 

modelling. Associated with the above aims, our null hypotheses are as follows: (i) Yasso07 12 

predicts accurate and unbiased carbon stock changes at the national scale and (ii) the model’s 13 

fit residuals (predicted data minus observed data) have null relationships with site 14 

characteristics (e.g. location, climate, forest type, soil type and initial carbon stock).  15 
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2 Materials and methods 1 

2.1 The model Yasso07 2 

The dynamic soil carbon model Yasso07 is based on the general assumption that the soil 3 

carbon stock is driven by decomposition of different litter types, which may differ in quantity 4 

and quality, and by climatic conditions. Litter carbon quality is represented by four chemical 5 

compound groups which have different decomposition rates (Tuomi et al., 2009). Soil organic 6 

carbon is divided into these four relatively labile carbon pools and one recalcitrant pool 7 

named “humus” (H) (Fig. S1). The five pools differ in specific mass loss rates and mass flows 8 

among them. As in many other pool-based models, the H pool is considered the oldest and 9 

most stable carbon pool, although recent studies doubted its physical existence and stability 10 

(see Lehmann and Kleber, 2015). Some mass flows correspond to CO2 release (microbial 11 

respiration). The mean residence time of carbon in these pools varies from several months 12 

(i.e., water soluble compounds, W), a few years (i.e., acid-hydrolysable compounds, A; non-13 

polar solvent, ethanol or dichloromethane compounds, E), several decades (i.e., non-soluble 14 

and non-hydrolyzable compounds, N), or even several centuries (i.e., H). 15 

Mathematically, the kernel equation of Yasso07 can be written as follows: 16 

�� ��� = ��	�
����� + ���� (Eq. 1a) 17 

where, symbols in capital letters in bold denote either vectors or matrices whilst those in small 18 

letters in parentheses denote scalars; ���� and ����	� are vectors describing the masses of the 19 

five carbon pools (A, W, E, N, H) and carbon mass changes in soil at time (t), respectively; 20 

�� is mass flow matrix describing carbon allocation among pools; K�c� is decomposition 21 

matrix describing the decomposition rates as a function of climatic conditions (c); I(t) is litter 22 

input to the soil, with the last element equal to 0, as “H” does not exist in litters. (Eq. 1a) can 23 

be expressed in a more detailed form: 24 

25 

 (Eq. 1b) 26 

where, ��→� is the relative mass flow parameters between two pools (from F to T; F and T 27 

can be any two pools in A, W, E, N and H) in the soil (dimensionless, ��→� ∈[0, 1]).  28 

Temperature and precipitation are supposed not to affect the mass flows p, but influence the 29 

mass loss rates ki (i = A, W, E, N or H) according to: 30 
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���
� = �� exp���� + �����[1 − exp�#$%�] (Eq. 2) 1 

where, �� is the mass loss rate parameter of the chemical pool i; ��, �� and	# are parameters 2 

related to temperature (T, in °C) and precipitation (Pa, in mm).  3 

To consider the effect of litter size on the decomposition rate of litters, ki was multiplied by a 4 

litter size factor (hs), which allows making the distinction between different types of litters, 5 

e.g. foliage, coarse woody, stem etc., which differ in diameter (d, in mm): 6 

ℎ(�)� = min-�1 + .�) + .�)��/ , 11  (Eq. 3) 7 

where, .�, .� and r are parameters related to litter size. 8 

Yasso07 has 44 parameters calibrated using the Markov chain Monte Carlo (MCMC) method 9 

with the Metropolis-Hastings algorithm (Tuomi et al., 2011a). Currently, several calibrated 10 

parameter sets for Yasso07 are available, including the two most recent sets published by 11 

Tuomi et al. (2011) and Rantakari et al. (2012). In this present study, the Tuomi 2011 set was 12 

chosen to fit the RENECOFOR dataset containing various forest species, as it had been 13 

calibrated using a wider range of observed foliage and root decomposition data. The Tuomi 14 

2011 set was calibrated using a combination of three sources of dataset: (i) a global dataset 15 

(n >9000) of litterbags for mass loss of non-woody litters from approximately 100 sites in 16 

Europe, Northern and Central America. These sites covered a wide range of climate and soil 17 

conditions, forest types and tree species; (ii) a dataset (n > 2000) of mass loss of decomposing 18 

woody litter measured in Northern Europe; (iii) measured accumulation rate of soil carbon 19 

pools of forest sites along a 5300 year soil chronosequence in southern Finland, for 20 

determining the residence time of the H carbon pool. The Tuomi 2011 parameter set contains 21 

10000 parameter vectors (each vector contains the values of all the 44 Yasso07 parameters), 22 

which are randomly generated to take into account stochastic effect.  23 

2.2 RENECOFOR network 24 

The RENECOFOR network is part of the Level II network of the International Cooperative 25 

Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forest). The 26 

101 sites (Fig. 1) considered in this study cover the most common types of forest ecosystems 27 

in France, including even-aged forests in plain area, pine plantations and uneven-aged 28 

mountain forests. They also cover the majority of tree species in France and central Europe, 29 

including Quercus robur. Quercus petraea, Pseudotsuga Menziesii, Picea abies, Fagus 30 

sylvatica, Pinus pinaster, Pinus sylvestris and Abies alba. At each site, annual forest woody 31 

and non-woody litter quantities have been either directly measured or estimated based on the 32 

existing dendrometric data. 33 
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2.2.1 Soil carbon and physical and chemical properties data  1 

At each site, soil carbon stocks were measured twice with an interval of approximately 15 2 

years (1993 – 95 for the first assessment and 2007 – 12 for the second one). The temporal 3 

evolution of soil carbon stocks was analyzed by Jonard et al. (2017). At each site and for each 4 

assessment, soils to a depth of 0.4 m were sampled from five points selected in each of the 5 

five subplots and divided into different layers (0 – 0.1 m, 0.1 – 0.2 m and 0.2 – 0.4 m) until a 6 

depth of 0.4 m, including both organic and mineral soil layers. Composite samples were 7 

produced for each layer and subplot, and analyzed for mass, bulk density, soil organic carbon 8 

and physical and chemical properties, including texture (percentages of clay, silt and sand, in 9 

%), pH value, total nitrogen stock (in t ha-1), carbon:nitrogen ratio (dimensionless), total 10 

phosphor stock (in t ha-1), stocks of exchangeable aluminum (Al), calcium (Ca), potassium 11 

(K) and magnesium (Mg, in kmol ha-1). Soil physical and chemical properties data were used 12 

for residual analyses (see Sect. 2.7) and only those measured in the 1st inventories were used 13 

for this purpose. Regarding the depth 0.4 – 1.0 cm, samples were obtained from only one soil 14 

profile per site at two mineral layers (0.4 – 0.8 m and 0.8 – 1.0 m). Bulk density and carbon 15 

concentration measured at these layers were used to estimate soil carbon stock until a depth of 16 

1.0 m. Table 2 provides a synthesis of the data source for each of the 101 sites of the 17 

RENECOFOR network (URL: 18 

http://www.onf.fr/renecofor/sommaire/renecofor/reseau/20090119-130815-19 

828957/@@index.html). More detailed information about each site and soil sampling 20 

procedure is available in Supplementary Material I (Table S1) and Jonard et al. (2017). 21 

2.2.2 Climate data 22 

Necessary climate data required by Yasso07 includes annual mean precipitation (mm) and 23 

annual maximum, mean and minimum temperature (°C). These measured data were obtained 24 

from the nearest national meteorological stations of Météo-France 25 

(http://www.meteofrance.com) for each RENECOFOR site.  26 

2.3 Litter quantity 27 

Litter input (in tC ha-1 yr-1) comes from several sources (Table 2) as follows. The conversion 28 

factor between biomass (dry matter) and carbon was assumed to be 0.5 (Thomas and Martin, 29 

2012). 30 

Aboveground litter input from living trees includes leaves for broadleaves and needles for 31 

conifers, small branches, fruits and miscellaneous (e.g., flower, bud etc.). Aboveground 32 
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litterfall mass was annually measured between 1994 and 2008. For sites where litter quantity 1 

data from 1992 – 1993 and 2009 – 2012 were lacking, we used mean litter quantity of all the 2 

other years of the same site. The observed branch size in this category is below 2 cm (fine 3 

branches). Branches and stems bigger than 2 cm due to natural mortality should be rare (as 4 

some of them can be salvaged) and thus were not included.  5 

Woody residues due to harvest or storms were estimated on the basis of repeated stand 6 

inventory data and species specific height-girth and biomass. Coarse woody litter inputs from 7 

harvesting residues or storms were estimated from full inventories performed by ONF since 8 

1991. Missing years of litter input of this category are gap-filled using the average over the 9 

period. On average 3 years are missing per site but there are high differences amongst sites. 10 

The mode is one year, and 6 sites have 10-11 missing years. These residuals are assumed to 11 

be coarse branches (> 4 cm in diameter, confirmed with ONF) as a function of aboveground 12 

tree characteristics. Litter input from stems was set to 0, since in most cases stemwood was 13 

removed from the site after storm damage. Litter input from coarse woody roots is considered 14 

to be equal to total root biomass, which could be estimated using meta-analysis based 15 

allometric equations proposed by Cairns et al. (1997). More detailed information about forest 16 

inventories and storm events occurring at each site is available in Supplementary Material I 17 

(Table S1). Litter input from fine roots (here defined as roots of ≤ 5 mm in diameter), 18 

especially those finest ones with diameter ≤2 mm, can significantly contribute to carbon 19 

sequestration in soils (Brunner et al., 2013; Kögel-Knabner et al., 2002; Berg and 20 

McClaugherty, 2008). Fine root litter was supposed to be proportional to that of foliage, 21 

which was measured on the RENECOFOR sites. Jonard et al. (2017) suggested using the 22 

generic equation published by Raich and Nadelhoffer (1989) and, simultaneously, adopting 23 

the hypothesis that fine root litter production represents about one third of the carbon 24 

allocated to roots (Nadelhoffer and Raich, 1992): 25 

23�45	/667 = 	0.333 × <1.92 ×	�100 × 236?�%@5� + 130A × 0.01 (Eq. 4) 26 

Where, 23�45	/667 and 236?�%@5 are litter input of fine root and foliage, respectively (in tC ha-1 27 

year-1). 28 

However, the relationship between fine root and foliage litter inputs can be highly variable as 29 

a function of tree species, stand characteristics and climate (Raich and Nadelhoffer, 2007) and 30 

such variability may not be represented in the generic equation. Therefore, here we estimated 31 

litter input for Yasso07 simulations using fine root:foliage ratios ranging from 0.1 to 4.0. 32 

Based on a sensitivity an analysis on the effect of fine root:foliage ratio, we found that ratios 33 
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of 0.1 for broadleaves and 1.9 for conifers achieved the best fit between simulated and 1 

observed soil C stock changes (Fig. S2). We decided to fix such ratio at 1.0 for all the 2 

modelling and simulation work, because the use of 1.0 (i) achieved a slightly worst, but 3 

comparable model fit for both broadleaved and coniferous forest stand sites (Fig. S2); (ii) 4 

coincidentally corresponded to the median (1.0) and mean (1.0 – 1.1) ratios calculated using 5 

Raich and Nadelhoffer (1989)’s equation (Eq. (4)) over all the RENECOFOR sites (Fig. S3) 6 

and (iii) facilitate computation and comparisons between sites differing in dominant tree 7 

functional types. 8 

2.4 Litter carbon quality 9 

There are no measured data of litter carbon quality, defined as composition of litter carbon 10 

belonging to different carbon pools (A, W, E and N) in the RENECOFOR network. 11 

Therefore, we carried out a meta-analysis on the data collected in literature where authors 12 

measured litter carbon quality via chemical fractioning procedures or near-infrared 13 

spectroscopy (NIRS) techniques. This data collection was restricted to non-tropical areas. 14 

Chemical data on litters of tree coarse organs (e.g. stems, coarse branches) are relatively 15 

scanty, so we used tree stemwood data compiled in Pettersen (1984), Rowell et al., (2005) and 16 

Rowell (2012). Assembly of these works covers a wide range of temperate tree species from 17 

North America, Japan and Russia, but no data are available for Europe. Data on foliage and 18 

root litter carbon quality were manually searched from either networks, e.g. CIDET 19 

(Trofymow et al., 1998) and LIDET 20 

(http://andrewsforest.oregonstate.edu/research/intersite/lidet.htm) or independent studies in 21 

northern hemisphere, including Europe. The database for the meta-analysis is available in 22 

Supplementary Material II. Root diameter or branching order can play a significant role in 23 

modifying the composition of the chemical compounds (Fahay et al., 1988; Tingey et al., 24 

2003; Guo et al., 2004). All the measurements included in the meta-analysis on roots refer to 25 

fine roots (diameter < 5.0 mm), although in several studies, e.g. Aber et al. (1990), Aulen et 26 

al. (2011) and Stump and Binkley (1993), root size was not clearly indicated. Yet, we still 27 

included the data from these above studies, as available root data are less abundant than 28 

foliage. The collected coarse roots data in literature were too few for a meaningful meta-29 

analysis and thus values for stemwood were used instead.  30 

We then used the litter carbon quality database to assign the quality of litter input of each site 31 

of our study. Partitioning of litter inputs in biochemical classes respects the following order of 32 

priority: (i) values for the target species, when available in the database (ii) mean values of the 33 
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species from the same genus, if data for the target species are absent, and (iii) mean values of 1 

the species from the same tree functional type (conifers versus broadleaves), if data are 2 

available at neither species nor genus level for a target species (see Table 1).  3 

2.5 Initialization of soil carbon quality 4 

To calculate steady-state carbon stock, we used an analytical approach on the basis of (Eq. 1a). 5 

At steady-state carbon stock (t = ts), carbon gain is equal to carbon loss. Setting �� ��(� = 0, 6 

(Eq. 1a) becomes:  7 

��	�
����(� + ���(� = 0 (Eq. 5) 8 

Solving (Eq. 5), we obtained steady-state carbon stock at time ts: ���(�: 9 

���(� = −��B	�
��C����(� (Eq. 6) 10 

Where ���(� is a constant vector. 11 

This steady-state carbon stock to the depth of 1.0 m (Csteady-state, in tC ha-1) was only used to 12 

calculate the soil carbon quality distribution, here defined as the composition of soil carbon 13 

pools (A, W, E, N and H). Such calculation was performed for each site and for each 14 

randomly chosen Yasso07 parameter vector (see Sect. 2.7). Regarding the initial soil carbon 15 

quantity, we used the measured one during the first period of assessment of the 16 

RENECOFOR network. Measurement uncertainties of soil carbon quantity were not 17 

considered as a source of stochastic effect when Yasso07 was fed, as we were more interested 18 

in the output uncertainties related to the model per se (i.e., the choice of model parameter set) 19 

and that of root:foliage ratios, on which huge knowledge gaps in ecology still exist. 20 

2.6 Sensitivity analyses of litter and soil carbon pool composition 21 

To assess fully explore the effects of initial litter and soil carbon quality on model outputs, we 22 

conducted two modules of sensitivity analyses differing (see below).  23 

2.6.1 Module I - Effect of litter carbon quality on steady-state carbon stock 24 

First, wWe investigated the effect of all the theoretical possibilities of litter carbon quality on 25 

steady-state carbon quality. For this, we permuted the carbon percentage in each pool with the 26 

following constraint: the minimal and maximum percentages are 5 and 85%, respectively (In 27 

permutations, the unitary increment or decrement of each pool is ± 5 %).  28 

Second, we investigated the impact of tree functional type on the steady state of soil carbon 29 

quality. For this, we used the mean and standard deviation of broadleaved and coniferous 30 

litter carbon quality calculated from the meta-analysis in Sect. 2.4. To only focus on the effect 31 
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of litter carbon quality, the litter quantity was the same for broadleaves and conifers. 1 

Outcomes were calculatedCalculations are using based on the matrix method stated in Sect. 2 

2.5 and the Tuomi-2011 parameter set. Possible correlations between A, W, E and N were not 3 

considered in simulations.  4 

2.6.2 Module II - Effect of initial soil carbon quality and simulation length on final soil carbon stock 5 

With a fixed initial soil carbon stock, we carried outinvestigated the response of simulated 6 

final soil carbon quantity and quality to simulations on both the effectthe setting of initial soil 7 

carbon quality and that of simulation length on final soil carbon quantity and quality. For this, 8 

we permuted the initial percentage of chemical soil carbon pools with the following constraint: 9 

the minimal and maximum percentages are 5% and 80%, respectively. For the effect of 10 

simulation length, wWe used four levels of simulation length (1, 10, 100, 1 000 to and 10 000 11 

years) for each combination of soil carbon quality distribution. We created a virtual site where 12 

the climatic condition and litter input were constant and equal to the average values of the 13 

RENECOFOR all the 101 sites.. For carbon dynamics analysis,  Ithe initial carbon stock was 14 

fixed to 100 tC ha-1 and this quantity is in the same order of magnitude of all the measured 15 

carbon stocks. Based on averaged soil and litter carbon data of RENECOFOR sites, the 16 

simulations were carried out for both broadleaved and coniferous forest stand cases.  17 

Regarding the setting of litter input during the simulation length, the following two scenarios 18 

were tested:  19 

S1: mean broadleaved litter carbon quality (obtained from the meta-analysis, idem for the 20 

other scenarios) and mean litter input quantity of all the broadleaves dominated sites (of the 21 

RENECOFOR network, idem for the other scenarios);  22 

S2: mean coniferous litter carbon quality and mean litter input quantity of all the conifers 23 

dominated sites. 24 

In the present paperHere,, only the results of S1 broadleaved stand case were presented, as 25 

results between conifers and broadleaves did not change much, especially in long term. 26 

2.7 Running Yasso07 and statistical analyses 27 

We used the same FORTRAN code of the Yasso07 version 1.0.1 used in Didion et al. (2014) 28 

for all the model simulations. For each analysis (both RENECOFOR site specific and 29 

sensitivity analyses), we conducted 10 simulations. In each simulation, one parameter vector 30 

was randomly chosen from the 10 000 parameter vectors.  31 
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For each site, we calculated annual carbon stock changes (ACC, in tC ha-1 year-1), i.e., the 1 

difference of carbon stock between the two national inventories standardized by the temporal 2 

interval (t2 - t1) as follows:  3 

DEFF6G( = �FH6G(,7� − FH6G(,7��/��� 	− 	���
EFF(�J = �FH(�J,7� − FH6G(,7��/��� 	− 	���	 (Eq. 7) 4 

Where, FH(�J,7�, FH6G(,7� and FH6G(,7� are the simulated carbon stock at the year t2, observed 5 

carbon stock at the year t2 and t1, which are around the year of 1994 and 2010 depending on 6 

each site, respectively. In simulations, while observed soil carbon stock at t1 was used as 7 

input, soil carbon quality at steady state achieved by the analytical matrix transformation 8 

approach (see Sect. 2.5) was used.  9 

Two reasons support our general preference of comparing ACCsim with ACCobs over 10 

comparing FH(�J,7� with FH6G(,7�. First, the parameter sets of Yasso07 were calibrated for a 11 

maximum soil depth of 1.0 m, while carbon stocks at the RENECOFOR sites were only 12 

estimated down to 0.4 m. It is thus reasonable to speculate that the observed carbon stock data 13 

are not comparable with Yasso07 estimates. However, focusing on carbon changes instead of 14 

carbon stocks may largely erase this bias, because previous studies have evidenced that 15 

carbon dynamics are much less active at deep soil layers than at superficial layers (Balesdent 16 

et al., submitted2018). Second, ACC indicates if a site is gaining or losing soil carbon and this 17 

information is sometimes more important than the site’s carbon stock value. Using a 18 

standardized metric (by year) such as ACC can also facilitate result comparison for future 19 

studies. The only exception came to the sensitivity analysis on the effect of initial soil carbon 20 

quality (Sect. 2.6.2), in which we showed FH(�J,7� instead of ACCsim, as the initial soil carbon 21 

stock was fixed at 100 tC ha-1. Despite the primary focus on ACC, we additionally compared 22 

the simulated steady-state carbon stock (CSsteady-state, in tC ha-1), which was obtained from the 23 

initialization procedure (see Sect. 2.5), with the FH6G(,7� down to 1 m soil depth in order to 24 

check if Yasso07’s predicted stocks to 1 m depth reach the level of observed stocks (see Fig. 25 

S4). Then, we calculated the steady-state carbon quality for all the 101 sites, using site-26 

dependent climatic data, litter input quality (broadleaves versus conifers) and quantity. 27 

In order to test the performance of Yasso07 in estimating soil carbon changes at the 28 

RENECOFOR sites, we analyzed the residuals of carbon changes, here defined as thei.e. 29 

difference between the simulated and observed values, using analysis of variance (ANOVA). 30 

The following environmental and biological factors were tested: site geographical location 31 

(latitude, longitude, and altitude), climatic conditions (temperature and precipitation), soil 32 

types, tree functional type and tree species. Before each ANOVA, we tested the normality of 33 
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data using a Shapiro – Wilk test. For the sensitivity analyses, we performed loess regressions 1 

(Fox and Weisberg, 2011) to characterize the variation of soil carbon stock as a function of 2 

initial soil carbon stock settings and simulation length (1 – 10000 years). Statistical analyses 3 

were performed using R 2.13.0 (R Core Team, 2013).  4 
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3 Results 1 

3.1 Litter carbon quality of northern temperate tree species 2 

Our meta-analysis (Fig. 32) showed that the litter carbon quality, i.e., carbon composition, of 3 

northern temperate tree species significantly differed between tree organs. For woody litters 4 

(only using stem data) the percentage of A carbon pool attained up to 80% of the total carbon 5 

pool; the sum of A and N carbon pools corresponded to at least > 75% and, in most cases, 6 

>90%, with consequently only small percentages of W and E (Fig. 2a). Nevertheless, this 7 

dominance of A and N over W and E was much less pronounced in foliage and root litters 8 

(Figs. 2b and 2c). Generally, the different tree organs can be ranked according to the sum of 9 

the proportions of A and N as follows: wood (>90%) > roots (70 – 80%) > foliage (60 – 70%, 10 

Fig. 2d). 11 

The effect of tree functional type on litter carbon quality strongly interacted with that of tree 12 

organs. For wood, broadleaves and conifers had clearly shifted point clouds for the 13 

relationship between A and N carbon pools: greater proportion of A, but lower proportion of 14 

N in broadleaves compared to those in conifers. In foliage and root litter, the effect of tree 15 

functional type on proportions of A and W was less pronounced than in wood. The main 16 

difference between broadleaves and conifers occurred in N rather than in A (Fig. 2d). 17 

Broadleaved litter had lower proportion of N than coniferous litter regardless of tree organ 18 

(Fig. 2d). The proportions of A and N relative to those of E and W were quite stable between 19 

broadleaves and conifers regardless of tree organs (Fig. 2d).  20 

3.2 Simulated versus observed carbon data of carbon changes 21 

The choice of fine root:foliage ratio significantly influenced Yasso07’s performance in 22 

predicting soil C changes (Fig. S2). Based on the criteria of minimum root mean square error 23 

(RMSE), the ideal ratio for conifers appeared between 1.8 and 2.2, while the ideal ratio for 24 

broadleaves was the smallest ratio tested (0.1).  25 

Using only mean litter input, the theoretical carbon stock (CSsteady-state) simulated from the 26 

initialization method and the observed CSobs,t1 to 1 m depth shared the same order of 27 

magnitude and were even comparable (Fig. S4). However, the carbon stock were 28 

overestimated for most coniferous stands, and underestimated for broadleaved stands (Fig. 29 

S4).  30 

When simulated annual carbon stock changes (ACC) were plotted against observed ones, the 31 

point clouds were distributed around the 1:1 diagonal line despite fairly high dispersion (Fig. 32 
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34). The correlation between predicted and measured ACC remained weak (R² < 0.1). The  1 

mean observed and simulated annual carbon stock changes (ACC) of all sites are +0.34 ± 0.06 2 

tC ha-1 year-1 (+0.20 ± 0.06 tC ha-1 year-1 for broadleaved stands and +0.48 ± 0.10 tC ha-1 3 

year-1 for coniferous stands) and +0.45± 0.09 tC ha-1 year-1 (+0.96 ± 0.10 tC ha-1 year-1 for 4 

broadleaved stands and -0.05 ± 0.10 tC ha-1 year-1 for coniferous stands), respectively. 48% of 5 

coniferous stands and 39% of coniferous stands showed significant differences between 6 

observed and simulated ACC (Fig. 3a). In only c.a. 25% of the sites, ACC were significantly 7 

different from 0 for both simulated and observed results (i.e. the case 3 in Fig. 3b). There is a 8 

significant effect of the tree functional type on the observed and simulated values. The model 9 

tended to overestimate ACC in broadleaved stands but to underestimate ACC in coniferous 10 

stands. The quantity of sites in which estimates and observed carbon stock changes share the 11 

same tendency (i.e. data points in the zone I, IV, III and VI, Fig. 4) was approximately two 12 

thirds of the total sites. c.a. one third of sites are in the remaining zones (II, and V) where the 13 

predicted tendency was contrary to the observed tendency.  14 

The simulated carbon stock changes exhibited a negative linear relationship with the initial 15 

soil carbon stock (Fig. 4b), whereas this tendency was not observed for the observed carbon 16 

stock changes (Fig. 4a). Storm damage and soil type could not provide clear tendencies in 17 

explaining the residuals. Only for coniferous stands, residuals showed significantly 18 

differences among the three major types of soil (n of sites >5): cambisol > luvisol > podzol 19 

(Fig. S5). Tree ages in coniferous stands tend to be smaller than those in broadleaved stands. 20 

When considering both tree functional types and tree ages, neither the latter nor their 21 

interaction had a significant effect on residuals. With all sites together, residuals become 22 

higher with increasing latitude, indicating that simulated ACC was more overestimated in 23 

northern zones (ANCOVA, F = 14.9, P<0.001). This pattern was particularly strong for 24 

broadleaved stands, with the exception of several ones in Pyrenees Mountains (Fig. S6a). Yet, 25 

this tendency was not clear for coniferous stands (Fig. S6e). Identical residual sign is 26 

generally present in clusters in all of the main species (Fig. S6b, S6c, S6d, S6f, S6g and S6h). 27 

Broadleaved and coniferous stands differed in their responses to environmental factors: for 28 

coniferous stands, both temperature and precipitation had no little effect on residuals (Fig. 29 

S7a), whilst for broadleaves, precipitation was negatively correlated with residuals 30 

(ANCOVA, F = 7.17, P<0.001, Fig. S7b).  31 

Regarding soil physical and chemical properties, total nitrogen stock soil were significantly 32 

correlated with residuals for both broadleaved and coniferous stands (Fig. 5). Then, soil 33 

texture (proportions of clay and sand) and exchangeable magnesium, calcium and potassium 34 
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were significantly correlated with residuals only for broadleaved stands (Fig. 5; Table S2). 1 

The remaining tested variables, such as proportion of silt, pH, total phosphorus and 2 

carbon:nitrogen ratio, had no relationship with the residuals, except for exchangeable 3 

aluminum, which showed a weak correlation with ACC residuals (P<0.05*) only for 4 

coniferous stands (Table S2). 5 

3.3 Effect of litter carbon quality on model prediction (Sensitivity analyses 2.6.1) 6 

Variation of litter carbon quality (without distinction of original organ) altered the carbon 7 

quality at steady-state distribution of soil carbon pools (Fig. S8). The carbon belonging 8 

toproportion of soil A, W and E carbon pools remained below 15% regardless , whatever the 9 

biochemistry of litter inputs. The percentages of soil N and H pools were more susceptible to 10 

the variation of litter carbon quality than the more labile ones (e.g., A, W and E; ) (Fig. S86). 11 

The size of soil N and H always varied between 25% and 65% of, whenever the pools in litter 12 

varied from 5% to 80% (Fig. 6). 13 

The strong sensitivity of the carbon steady state distribution to litter carbon quality was de 14 

facto greatly discounted in reality, because the variation in chemical composition of tree 15 

species was very limited (Fig. 2). This can also be represented by the quite stable and narrow 16 

variations of the proportion of soil pools at steady-state for all the 101 RENECOFOR sites 17 

(Fig. 6), with the sum of A, W and E pools around 15%, N pool around 55% and H pool 18 

around 30-35 %. Using average compositions of broadleaves and conifers species, we found 19 

that, at the steady- state, the H pool contains 30 – 40% of soil carbon, the N pool 45 to 55 %, 20 

the A pool <5% and W and E pools <2% (Fig. 7). Broadleaves dominated sites differed from 21 

conifers dominated sites with a slightly lower percentage N-carbon in the steady-state soil 22 

carbon stock, but a higher percentage of H-carbon (Fig. 7). 23 

3.4 Impact of initial condition of soil carbon stock on model prediction (Sensitivity analyses 2.6.2) 24 

Fig. S98 obtained from the sensitivity analysis visualized all the theoretically possible final 25 

carbon stocks by varying initial carbon stocks and simulation length (from 1 to 10 000 years). 26 

The initial soil carbon quality had a pronounced impact on the final soil organic carbon stocks 27 

(including both total stock and stocks in each chemical pools) at annual and decennial scales. 28 

For example, when the initial proportion of A pool increased from 0 to 80%, the final 29 

proportion of A could increase by +30 to +40 tC ha-1 (Fig. S9a) and the final total carbon 30 

stock could decrease by c.a. -20 to -30 tC ha-1(Fig. S9u) at annual (i.e., axis log(Year) = 0) 31 

and decennial (i.e., axis log(Year) = 1) scales. When simulations were performed over 32 
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millennium timescale, the initial soil carbon quality did not impact the final soil carbon 1 

quality anymore. In other words, the same final soil carbon quality was obtained regardless 2 

what the initial soil quality was (Fig. S9). The final stocks of A and the sum of W and E were 3 

generally much less sensitive to the variations of initial soil carbon quality than did the final 4 

stocks of N and H (Fig. 8, the 1st and 2nd rows versus the 3rd and 4th rows).  5 
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4 Discussion 1 

4.1 Agreement between simulated and observed annual soil carbon stock changes 2 

Testing widely popularized soil carbon models using large dataset is highly meaningful work 3 

that enables not only assessing the model’s ability over various climatic and ecosystem types, 4 

but also providing lessons and implications for future modelling work. Here, based on the 5 

observed carbon stock data to 1 m soil depth from the RENECOFOR network, on average 15 6 

year interval between the measurements of two soil carbon stock change at the RENECOFOR 7 

site, we found the simulated and observed carbon stocks (CSsteady-state versus CSobs, t1) to 1 m 8 

showed the same order of magnitude, validating Yasso07’s good capability to predict carbon 9 

stock in average at the scale of the French territory. Such good performance at the national 10 

scale is consistent with Yasso’s aim for generality and supported by previous studies (see 11 

Ortiz et al. 2013; Lehtonen et al. 2016; Hernández et al. 2017). 12 

Then, based on the observed annual soil carbon stock changes (ACC) with average 15-year 13 

interval between the two inventories, we found the simulated ACC using Yasso07 were 14 

significantly biased for more than one third of the French RENECOFOR sites. Particularly, 15 

Yasso07 generally overestimated the ACC at the broadleaved stands located in the north of 16 

France (Fig. S6a-d) and the overestimation can be exacerbated with lower precipitation. 17 

Yasso07 tended to underestimate the ACC in our coniferous stands. Nevertheless, we would 18 

expect slightly better performance of Yasso07 in coniferous stands than in broadleaved ones, 19 

since the model’s estimates have shown good correspondence to measurements (of stocks 20 

and/or changes) in coniferous forests, especially the Nordic boreal ones (e.g., Karhu et al., 21 

2011; Ortiz et al., 2013). Except for tree functional type and geographical location (e.g. 22 

latitude, which is correlated with climatic variables), qualitative ecological variables that are 23 

assumed as key factors influencing carbon sequestration processes, e.g. soil type (except for 24 

coniferous stands), storm damage and stand age range, did not showed limitedclear tendencies 25 

in explaining residuals. Note that those factors were not fully crossed in the 101 sites, 26 

rendering testing each signer factor difficult.  27 

The simulated ACC by Yasso07 showed strongly negative correlation with the observed 28 

initial soil carbon stock (CSobs,t1) , with an overestimation of ACC at sites of lower CS obs,t1  29 

and an underestimation at sites of higher CS obs,t1 which was served as input in Yasso07 (Figs. 30 

4 and S7). Such phenomenon can be logically explained by the model’s mechanism.: wWith 31 

increasing initial carbon stock, due to the fairly stable steady-state carbon quality (Fig. 6), 32 

there is an increase in the quantity of those easily decomposable compounds, i.e. A, W and E, 33 
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in soil, which triggers a more substantial mass loss in the followingat a decennial yearsscale. 1 

However, the observed data on carbon stock changes did not support this trend, suggesting 2 

that initial soil carbon pool size is not a controlling factor for soil carbon accumulation at 3 

these sites.suggesting that Yasso07’s configuration tends to penalize too much the loss of 4 

labile carbon at decennial scale. Compared to broadleaved stands, the slightly steeper slope 5 

for coniferous stands in Fig. 4b might be attributed to their higher steady-state proportion of 6 

the extremely labile pools (A, W and E) in soil at a given soil carbon stock (Fig. 6a) due to the 7 

higher proportion of A, W and E pools in the litter quality of broadleaves (Fig.2).  8 

Several soil physical and chemical properties showed clear correlations (especially for 9 

broadleaved stands) with ACC residuals (Fig. 5). Also, in the principle component analyses 10 

(Fig. S7), the arrows standing for soil variables are generally closer to the pivoting axis of 11 

“initial carbon stock – ACC residuals” than those standing for climatic and geographic 12 

variables. The correlations (Table S2 and Fig. S7) may indicate that texture and nitrogen 13 

content contribute to lower ACC for broadleaved stands compared to model predictions and 14 

that aluminum and perhaps also pH (Fig.S7) could be involved in the mechanisms that allow 15 

increasing microbial activities and carbon mineralization in soils of coniferous stands 16 

compared to model predictions. All these results suggest a potential interest of incorporating 17 

soil properties into new versions of Yasso model family, in which soil parameters are lacking 18 

or only implicitly incorporated. Indeed, there are numerous evidences that soil physical and 19 

chemical properties can greatly govern soil carbon dynamics and stock capacity (Beare et al., 20 

2014; Dignac et al., 2017; Rasmussen et al., 2018), 21 

The limitations of the model at the site-scale are not surprising as the model was developed 22 

for primarily large-scale application integrating processes that dominate at the site scale. 23 

Despite Yasso07’s significant prediction bias at a number of sites, it is unreasonable to simply 24 

attribute the bias to the model per se, as multiple uncertainties affecting the quality of the 25 

model’s input data can be identified (see Sects. 4.2 – 4.4). These uncertainties can occur not 26 

only with Yasso07, but also with other prevailing models one may choose, highlighting large 27 

knowledge gaps in ecology and soil carbon modelling.  28 

 29 

4.2 Setting sSoil carbon quality: a recurrent challenge in soil carbon modelling 30 

A great uncertainty is associated with the model initialization of soil carbon quality, as it was 31 

not measured, but obtained by matrix inversion with the assumption that the litter input has 32 

been the same for decades. Compared to total soil carbon stock, measuring soil carbon quality 33 
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is much labour intensive and time-consuming. Moreover, data of soil carbon quality from 1 

different sources are sometimespartly or totally incompatible or incomparable due to the use 2 

of different chemical pools or protocols of fractionation (Blair et al., 1995). Therefore, 3 

measured data of soil carbon quality are generally lacking at worldwide scale. Such lack of 4 

information is a recurrent issue for soil carbon dynamics modeling (see Elliot et al. (1996), 5 

who has discussed the issue of “Measuring the modelable”). Nearly all the existingMany 6 

prevailing soil carbon models require setting carbon quality besides carbon quantity, e.g., 7 

Romul (Chertov et al., 2001), RothC (Coleman and Jenkinson, 1996), CENTURY versions 8 

Parton et al., 1987; Metherell et al., 1993, CBM-CFS3 (Kurz et al., 2009). Inappropriate 9 

setting of carbon quality in models may greatly change carbon stock predicts (Wutzler and 10 

Reichstein, 2007; Carvalhais et al., 2008; 2010). 11 

In the present study, soil carbon quality data were unavailable at the French RENECOFOR 12 

sites. As a result, we used the simulated carbon quality at steady-state to feed Yasso07. This is 13 

a strong, but widely adopted hypothesis assumption in soil carbon modelling work (Foereid et 14 

al., 2012). Alternative to the steady-state assumption, a relaxed equilibrium assumption has 15 

been recently proposed (see Wutzler and Reichstein, 2007). The latter assumes that soil 16 

carbon pools (especially at sites that underwent disturbances in recent centuries) are not in 17 

steady-state, but in a transient state. At such a site, while the relatively labile pools (e.g., A, W, 18 

E and N pools in Yasso07) are able to recover until a dynamic equilibrium, the slow cycling 19 

pool (e.g., H) can be still accumulating carbon (Wutzler and Reichstein, 2007). In this study, 20 

we did not use the relaxed equilibrium assumption for simulations due to the lack of 21 

information for setting the modified the decomposition-accumulation dynamics of H pool 22 

required by the assumption. However, for future work, it would be definitely worthwhile to 23 

have both assumptions compared using prevailing carbon models (e.g., Yasso07, RothC, 24 

Century etc.), as studies comparing initialization assumptions still remain scanty compared to 25 

those on model comparisons. 26 

In order to know gain a global overview on Yasso07’s sensitivity to initial soil carbon quality, 27 

here we conducted a sensitivity analysis that computed the final soil carbon stocks using all 28 

the possible combinations of the composition of chemical pools. This sensitivity analysis 29 

confirmed the high influence of initial soil carbon quality on soil carbon stock estimates (Fig. 30 

S9), notably at short temporal scales (i.e., yearly and decennial). This result is in line with the 31 

previous carbon stock modelling studies (Parton et al., 1993; Kelly et al., 1997; Smith et al., 32 

2009; Foereid et al., 2012), confirming that it is a general problem for all of the chemical pool 33 

based carbon models. Besides this consensus, our sensitivity analysis further showed that such 34 
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effect of initial composition carbon stocks will gradually vanish with increasing length of 1 

simulation and especially when the length is up to several centuries or millenniums. Our 2 

analysis provides new insights on the sensitivity of model estimated carbon stocks to the 3 

method and assumptions used in model initialization. Such analysis can be transplanted to the 4 

other carbon models to test their theoretical performance and robustness of each model at 5 

different temporal scales and also, to compare models.  6 

Finally, solely testing different initialization assumptions or performing sensitivity analysis 7 

does not allow radically solving the prediction issue related to uncertainties of soil carbon 8 

quality. Based on ground truth data, Balesdent et al. (2018) showed that carbon age shows 9 

strong patterns as a function of soil depth and ecosystem type. It appears highly necessary for 10 

future modelling work to consider such specific or generic patterns, as shown in Balesdent et 11 

al. (2018), into the procedure of model initialization. For this, it is to be noted that Yasso07’s 12 

particular model configuration, i.e. the use of measurable chemical pools, may open the 13 

possibility of using measured data of soil carbon quality for model initialization instead of 14 

simulated steady-state ones. Future measurements on soil carbon radiocarbon age of the 15 

RENECOFOR sites may offer an ideal opportunity to compare the impact of the two sources 16 

of soil carbon quality on Yasso07’s predictions. 17 

4.3 A precise estimation of root litter quantity may greatlyhelps improve Yasso07 prediction 18 

An important source of uncertainty in the estimates of litter quantity at the RENECOFOR 19 

sites was the fine root litter input. Many studies have revealed that fine roots act as a major 20 

source contributing to total litter quantity due to their fast turnover rates (Brunner et al., 2013; 21 

Kögel-Knabner et al., 2002; Berg and McClaugherty, 2008). In some forest ecosystems, the 22 

proportion of fine root litter is even comparable to that of foliage (Freschet et al., 2013; Xia et 23 

al. 2015). However, estimating fine root litter inputs is, again, a time-consuming and 24 

challenging task. Due to this reason, so far rarely have national wide forest inventory projects 25 

ever incorporated direct measurement of the dynamics of fine root litter input (i.e. the case of 26 

RENECOFOR network). Fine root turn-overs of forest species are variable depending on 27 

climate, tree species and management scenarios (Kögel-Knabner et al., 2002; Litton et al., 28 

2003; Mokany et al., 2006), rending the choice of model input values highly subjective and 29 

difficult. By testing variable fine root:foliage ratios of litter input, we observed a significant 30 

shift in the predicted carbon stock changes by Yasso07 (Fig. S1). This finding not only 31 

highlights the importance of precisely quantification of fine root litter input, but also suggests 32 

that broadleaves and conifers may have separated quantification of fine root litter input with 33 
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regard to that of foliage, although here we chose the same ratio for both broadleaved and 1 

coniferous stands. We also noted that using one ratio per tree functional type (conifers versus 2 

broadleaves) could only change the overall prediction baseline, but cannot reduce the data 3 

dispersion. Consequently, it is of great interest to estimate root litter input quantity at species 4 

level on the basis of direct measurement and then couple specific data with Yasso07.  5 

Another potentially important litter inputs may come from the understory shrubby and 6 

herbaceous species, which were not taken into account in this study due to data unavailability. 7 

Herb and shrub layer are typically not estimated in forest inventories but they can contribute 8 

significantly to the annual litter production in forests (eg. de Wit et al. 2006, Gilliam 2007, 9 

Lehtonen et al. 2016). Muukkonen and Mäkipää (2006) estimated that the carbon inputs from 10 

herb and shrub vegetation in Finnish forests were in the range of 0.50 to 0.66 tC ha-1 year-1. 11 

Such value is apparently high, as it attains 12% - 23% of the mean total tree litter inputs of all 12 

the RENECOFOR sites (Table 1). This is in line with the preliminary data from Etzold et al. 13 

(2014), who suggested that understory vegetation contributed c.a. 12% (0.1 to 36.8%) to the 14 

total observed annual C turnover at six sites of the Long-term Forest Ecosystem Research 15 

Programme LWF (ICP-Level II plots).  16 

Also, Yasso07’s parameter set was calibrated using one of the richest litterbag datasets in the 17 

world in terms of number of observation. The state-of-the-art of soil carbon modeling is based 18 

on the litter input and decomposition processes as the driving forces in soil carbon 19 

accumulation where measured mass loss of litter is used to fit model parameters. Our 20 

knowledge on the importance of other sources of biological carbon input, e.g. soil fauna and 21 

rhizodepostion, as well as how to take them into account in modelling processes still remains 22 

poor. Accordingly, whether and to which extent the bias of Yasso07 is related to these 23 

alternative sources of biological carbon input is unknown. 24 

4.4 Limited but potentially strong effect of litter carbon quality on Yasso07 prediction 25 

Litter carbon quality, especially the content of litter carbon in the N carbon pool, controls the 26 

bulk litter decomposition rate and this has been well-known (De Deyn et al., 2008). Indeed, 27 

the meta-analysis (Fig. 23) confirmed the significant disparity of carbon allocation between 28 

litters of broadleaves and conifers in all the investigated organs. However, little has been 29 

known about how this disparity of litter carbon quality between broadleaved and coniferous 30 

stands will be projected into the long-term prediction of soil carbon stock. Our sensitivity 31 

analysis Module I (Sect. 2.6.1) with Yasso07 showed a generally limited impact of such 32 

disparity on the soil carbon quality of steady-state (Figs. 6 and S86) and this impact only 33 
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occurred in N and H pools (Fig. 7). Litter carbon quality seems to be a less important factor 1 

determining the model predictions via affecting soil stock initialization. This is especially true 2 

for the three more labile carbon pools (i.e. A, W and E) and their mean residence time has 3 

quite low disparity between themselves (Fig. S1). This seems to more or less weaken the 4 

meaningfulness of splitting litter and soil labile carbon compounds into the three carbon pools 5 

(A, W and E) in Yasso07.  6 

4.5 Suggestions for model improvement in the future 7 

First of all, we found the model structure and algorithm good, clear and simple to operate and 8 

this goes along well with the positive remarks toward Yasso and Yasso07 in literature 9 

(Rantakari et al., 2012; Didion et al., 2014; Lu et al., 2015; Wu et al., 2015). Fig. S1 only 10 

showed the mass flows that are statistically significant for the case of using the Tuomi 2011 11 

parameter set. Yasso07 keeps all the theoretical mass flow possibilities in the Ap matrix in 12 

(Eq. 1b). However, a mass flow parameter with a statistical significance does not signify that 13 

it is biologically meaningful. For this we can quote the flow N � A of the model (Fig. S1), 14 

for which the modeler had assigned an astonishingly high percentage: �K→L = 83%. This 15 

quantity is disputable in the angle of soil biochemistry, because as lignin, i.e. the major 16 

component constituting the N carbon pool, likely does not turn into the A pool, but would 17 

condense with other nearby phenol, peptides or saccharides (Burns et al., 2013). 18 

As a model aiming at predicting soil carbon dynamics, Yasso07 is still highly simple in the 19 

description of soil variables that are known to impact decomposition processes in soil, For 20 

example, the effect of soil mineralogy or aggregation have not been considered in Yasso07 21 

yet. Indeed, the model was often applied on soils fairly rich in organic matter (e.g., Karhu et 22 

al., 2011), where the consideration of soil mineral properties was not particularly relevant, 23 

and where the authors’ assumption that litter quantity is a good proxy for soil properties was 24 

reasonable. In addition, when Yasso, i.e., Yasso07’s prototype, came up in 2005 (Liski et al., 25 

2005), information on mineral soil properties in the various forest soil horizons was not 26 

commonly available, but nowadays it is easier to obtain it, although there is still a lack of such 27 

detailed data for consistent application across large regions or at the national scale (Didion et 28 

al., 2016).  29 

In spite of the lack of explicit description of soil variables, the framework of Yasso07, based 30 

on a chemical partitioning of soil organic carbon inputs and pools, holds two advantages: (i) it 31 

enables the measurement of the model pools, and (ii) it offers a clear structure based on litter 32 

and soil chemistry. These advantages make the model appropriate for future improvement by 33 
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incorporating the most recent findings with regard to the mechanisms on soil organic carbon 1 

dynamics. Indeed, the chemistry of organic substrates rules the interaction level with mineral 2 

surfaces, and thus the level of protection from degradation. It also regulates the interactions 3 

with extracellular enzymes, and thus the soil organic carbon degradation rates.  4 

5 
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5 Conclusions 1 

We tested the performance of the soil carbon model Yasso07 using the decennial scale French 2 

national wide forest data thank to the RENECOFOR network, as well as a meta-analysis 3 

database for litter carbon quality and sensitivity analyses to characterize the effect of inputs of 4 

initial litter and soil carbon quality on the model’s predicts. We showed that while the 5 

model’s predicts of the carbon stock to 1 m soil depth and annual soil organic carbon changes 6 

(ACC) stay within the same order of magnitude with the observed ones, correlation 7 

accordance between the observed and simulated ACC at the site scale remained weak. There 8 

was a bias of model prediction for the carbon change tendency at more than one third of the 9 

French sites. The performance of Yasso07, as well as the other soil carbon models, should be 10 

examined before their application for management guidelines and policy-making for forest 11 

ecosystems at any study scales.  12 

Such bias can be attributed to multiple reasons concerning model input, such as (i) large 13 

uncertainty in the measured soil carbon stock and changes; (ii) lack of information on initial 14 

soil carbon quality at the site level and (iii) lack of information on below ground litter 15 

production. For the latter two aspects, their importance was explicitly confirmed by our 16 

sensitivity analyses. These reasons are valid for the whole state-of-the-art of soil carbon 17 

modelling, regardless of the model that one uses. Some of the model’s parameters governing 18 

the transfer among soil pools are statistically derived but not directly measured, and thus may 19 

poorly represent the real biochemical processes of decomposition. Residual analysis also 20 

suggests a potentially important role of soil physical and chemical properties in explaining the 21 

model’s prediction. 22 

These findings allow us to provide a series of suggestions to modelers, users and policy 23 

makers:  24 

• To Yasso07 modelers, we suggest keeping the current model structure, algorithm and 25 

parameter natures, but incorporating more refined some biochemical processes, 26 

including (i) revising certain mass flows to achieve both statistically and biologically 27 

meaningful process (especially the N� A flow) and (ii) refining decomposition 28 

process (i.e., the residence times between the A, W and E soil carbon pools) and 29 

possibly, (iii) explicitly incorporating easy-measured soil parameters to better 30 

represent biophysical and biochemical interactions in soil carbon cycling. 31 

• To Yasso07 users, we suggest working in conjunction with modelers in order to better 32 

reduce the uncertainties in both model initialization of soil carbon stock. We also 33 
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suggest using measurement based forest litter input quality and quantity, especially the 1 

belowground fine root litter data.  2 

• To policy makers, we suggest keeping prudent toward diagnosis from based on a 3 

single carbon model, especially when long term trend is predicted. Predictions from 4 

multiple models served as a cross-validation procedure are preconized for both global 5 

and local scales areas. 6 

Our decennial observation sites spreading at a large spatial scale that covers different 7 

ecosystems can facilitate and provide good opportunities for future calibration, improvement, 8 

and re-evaluation assessment of the model. Finally, taking Yasso07 as an example, this work 9 

highlighted both the interest and the bottleneck of soil carbon modelling due to lacking 10 

knowledge or data on soil and litter carbon quality and fine root litter quantity, rendering high 11 

uncertainties for model inputs, and also demonstrated. Simultaneously, this study 12 

demonstrated methodologies of testing the other soil carbon models using via sensitivity 13 

analyses, which enable us to better understand the limits of the model and of data input for 14 

future improvements in soil organic carbon modelling.   15 
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Table 1 Litter carbon quality of the species present in the French RENCOFOR network 16 

estimated based on literature. In the column “Case,” each number corresponds to one case of 17 

data availability in literature: 1- at least one dataset of complete chemical composition (i.e. for 18 

AWEN) exists at species level; 2 - at least one dataset of incomplete chemical composition 19 

(only for A, N and the sum of W and E) exists at species level; in this case, the mean 20 

proportion of W and E at genus level is used; 3 – no data are available at species level, but at 21 

least one complete dataset of chemical composition exists at genus level; 4 - no data are 22 

available at species level, but at least one dataset of chemical composition exists at genus 23 

level; in this case, the mean proportion of W and E at tree functional type level is used; 5 – no 24 

data are available at neither species nor genus level, in this case, the mean AWEN 25 

composition at tree functional type level is used. From Case 1 to 5 is in descending order of 26 

priority.  27 
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 7 

Table 2 A summary of the data used for Yasso07 simulations in the present study. In the 8 

“Year” columns: M - measured data; E - estimated data according to the measured ones; 0 – 9 

noted, but the contribution to litter is negligibleignorable. For soil carbon stock measurement, 10 

dashed line zones denote the inventory duration. For each year, each symbol (M and E) only 11 

account for the general case and hence it is possible that measurement was occasionally 12 

omitted at some sites. * - litter input caused by harvest or storms were included (once they 13 

occurred); SD - standard deviation; litter inputs are dry matters. Diameters used for defining 14 

each litter type: ≤2 cm for fine branches, >4 cm for coarse woody branches, > 5 mm for 15 

coarse woody roots and ≤ 5 mm for fine roots.  16 

  17 
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Figures 1 

 2 

Figure 1 Geographical distribution of the sites of RENECOFOR network used for testing the 3 

performance of Yasso07 (see also Jonard et al., 2017). Forested areas are represented in green. 4 

Each circle represents one site; the color represents the dominant tree species of the plot. In 5 

each pair of parentheses, the species abbreviation and number of sites by species are 6 

indicated.  7 
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 1 

Figure 2 A meta-analysis of the carbon composition for northern temperate tree species: x-2 

axis represents the percentage of acid-hydrolysable compounds (e.g. cellulose, noted by A, in 3 

%) and y-axis represent the percentage of non-soluble and non-hydrolyzable compround (e.g. 4 

lignin, noted by N, in %). The oblique dashed red lines notify the sum of A and N, the values 5 

of which are shown here. The remaining percentage, i.e. 100 - A - N, refers to the portion of 6 

compounds like non-polar extractives, ethanol ordichloromethane (E), or in water (W). (a) 7 

Analysis conducted for wood (106 data points for broadleaves; 79 for conifers), (b) for foliage 8 

litter (b, 106 data points for broadleaves; 83 for conifers) and (c) for root litter (58 data points 9 

for broadleaves; 49 for conifers); (d) is a statistical synthesis (symbols – means and error bars 10 

– 1.96 * standard error) of wood (W), foliage (F) and roots (R) in a common coordinates 11 

system. Attention to the use of different axis graduations in each plot. See Supplementary 12 

Material II for the data sources. Note the different y-axis scales. 13 

  14 
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 1 

Figure 3 Comparison between simulated and observed annual carbon stock changes (ACC, in 2 

tC ha-1 year-1). Round and triangle symbols represent sites dominated by broadleaves and 3 

conifers, respectively. The chosen fine root:foliage ratio for broadleaves and conifers is 1.0. 4 

To facilitate discussions, we set Roman numbers (I-VI) denoting the six zones in which data 5 

points are distributed. In (a), error bars represent standard errors; hollow and filled points 6 

represent non-significant and significant differences between simulated and observed ACC 7 

according to t-test (at 95% confidence level). In (b), case of significance: 1 – no significant 8 

difference from 0 for neither observed nor simulated ACC; 2 - a significant difference from 0 9 

for either observed or simulated ACC and 3: - a significant difference from 0 for both 10 

observed and simulated ACC. 11 
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 1 

Figure 4 Observed (y-axis, a) and simulated annual change changes (y-axis, b) plotted against 2 

the observed carbon stock until 0.4 m (x-axis) during the first soil carbon stock inventory. 3 

Regressions: y = -0.002x + 0.360 (R² = 0.00) for observed values in the sites dominated by 4 

broadleaves; y = 0.0004x + 0.440 (R² = -0.02) for the sites dominated by conifers; y = -0.027x 5 

+ 2.881 (R² = 0.62) for simulated values of the sites dominated by broadleaves; y = -0.016x + 6 

1.449 (R² = 0.60) for simulated values of the sites dominated conifers. 7 
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 1 

Figure 5 Residuals plotted against selected soil physical and chemical properties. Top plots with green triangles stand for the sites dominated by 2 

conifers and bottom plots with orange dots stand for the sites dominated by broadleaves. Regressions in all the five subplots for the broadleaved 3 

sites (b, d, f, h and i) and in one subplot for the stands dominated by conifers (a) are significant (P<0.5*). See Table S2 for results of linear 4 

regressions of all the 11 soil variables. Red dashed line indicates the zero line. 5 
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 1 

Figure 6 Proportions of carbon pools (AWENH) at steady-state for all the RENECOFOR sites 2 

(y-axis) plotted against observed carbon stock at t1 until 0.4 m (x-axis). Each symbol 3 

represents one RENECOFOR site: green triangles stand for the sites dominated by conifers 4 

and orange dots stand for the sites dominated by broadleaves. For each boxplot, the lower and 5 

top edge of the box corresponds to the 25th and 75th percentile data points; lower and top bars 6 

the line within the box represents the median and the hollow points indicate outliers. Red 7 

letters below the boxplot denote the statistical diagnoses (t-test) with a significance level of 8 

P= 0.05*. No clear linear relationship was found between carbon quality and observed carbon 9 

stock at t1.  10 
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