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Abstract. In a context of global changes, modeling and pre-
dicting the dynamics of soil carbon stocks (CSs)CE1 in forest
ecosystems are vital but challenging. Yasso07 is considered
to be one of the most promising models for such a purpose.
We examine the accuracy of its prediction of soil carbon dy-5

namics over the whole French metropolitan territory at a de-
cennial timescale.

We used data from 101 sites in the RENECOFOR net-
work, which encompasses most of the French temperate
forests. These data include (i) the quantity of above-ground10

litterfall from 1994 to 2008, measured yearly, and (ii) the soil
CSs measured twice at an interval of approximately 15 years
(once in the early 1990s and around 2010). We used Yasso07
to simulate the annual changes in carbon stocks (ACCs; in
tC ha−1 yr−1) for each site and then compared the estimates15

with actual recorded data. We carried out meta-analyses to
reveal the variability in litter biochemistry in different tree
organs for conifers and broadleaves. We also performed sen-
sitivity analyses to explore Yasso07’s sensitivity to annual
litter inputs and model initialization settings.20

At the national level, the simulated ACCs (+0.00±
0.07 tC ha−1 yr−1, mean±SE) were of the same order of
magnitude as the observed ones (+0.34±0.06 tC ha−1 yr−1).
However, the correlation between predicted and mea-
suredCE2 ACCs remained weak (R2<0.1). There was signifi- 25

cant overestimation for broadleaved stands and underestima-
tion for coniferous sites. Sensitivity analyses showed that the
final estimated CS was strongly affected by settings in the
model initialization, including litter and soil carbon quantity
and quality and also by simulation length. Carbon quality set 30

with the partial steady-state assumption gave a better fit than
the model with the complete steady-state assumption.

With Yasso07 as the support model, we showed that there
is currently a bottleneck in soil carbon modeling and predic-
tion due to a lack of knowledge or data on soil carbon quality 35

and fine-root quantity in the litter.

1 Introduction

The current global carbon stock (CS) in soils, including for-
est litter and peatlands, is 1500 to 2400 GtC and thus greatly
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2 Z. Mao et al.: Modeling soil organic carbon dynamics

exceeds stocks in vegetation, found mainly in forests (350
to 550 GtC) and in the atmosphere (829 GtC in 2011; IPCC,
2014). Soils share a common interface with all the other
spheres and play a key role in driving the global carbon cy-
cle. Soil CS dynamics are directly related to the greenhouse5

gas emissions (notably carbon dioxide; CO2) that are lead-
ing to the global warming effect (IPCC, 2014). An accurate
estimation of soil CS dynamics would allow us to better un-
derstand the turnover rate and fate of soil carbon flux at both
local and global geographical scales. In the context of global10

changes, accurate estimation is essential in evaluating the cli-
mate change mitigation potential of forests and supporting
environmental policy decisions.

Significant challenges exist when attempting to accurately
estimate changes in soil CSs. Current soil monitoring net-15

works are generally not able to detect changes on timescales
of less than 10 years (Saby et al., 2008). To obtain estimates
for changes in soil CSs at shorter intervals, as is, for example,
required for annual reporting to the United Nations Frame-
work Convention on Climate Change and the Kyoto Protocol,20

using models is encouraged (IPCC, 2011). Numerous mod-
els have been elaborated to evaluate soil carbon dynamics
(Manzoni and Porporato, 2009). The vast majority of terres-
trial soil carbon models developed at the global or the plot
scale (e.g., CENTURY in Parton et al., 1987; RothC in Cole-25

man and Jenkinson, 1996; and ORCHIDEE in Krinner et al.,
2005) assume that decomposition is the first-order decaying
process, which accounts for the size of soil carbon pools.
However, the assumption has been criticized, and it has been
argued that a priming effect and the associated carbon pool30

interactions should also be considered in model algorithms
(Wutzler and Reichstein, 2013). The dynamics of carbon
pools depend on the quantity and quality of litter inputs and
on temperature, soil moisture and other soil parameters, e.g.,
texture, structure, chemical richness, pH, etc. (Todd-Brown35

et al., 2012). Incorporating explicit mechanisms such as mi-
crobial activities or carbon protection by the soil matrix into
soil carbon models has repeatedly been suggested in recent
years (Schmidt et al., 2011; Lehmann and Kleber, 2015).
However, for forest ecosystems, refined mechanistic input40

data often remain limited. Accordingly, the typical time step
for litter input demanded by most forest soil carbon mod-
els is yearly, rather than monthly (but see RothC, Coleman
and Jenkinson, 1996) or daily (but see Romul in Chertov et
al., 2001; Didion et al., 2016). At this yearly timescale, it is45

common to consider microbial communities and processes to
be relatively stable factors (Todd-Brown et al., 2012); in this
case, the assumption that carbon dynamics are governed by
first-order decay may therefore be reasonable.

This is the choice made by the group who built the Yasso50

(Liski et al., 2005) and Yasso07 (Tuomi et al., 2009, 2011a,
b) models. Yasso07 is an improved version of Yasso with
more refined carbon pooling and abundant data for calibra-
tion. The model developers’ intention was to make their
models suitable for general forestry applications by taking55

into account the limited availability of forest soil and lit-
ter data (Liski et al., 2005). Yasso07 explicitly defines sev-
eral pools of chemical compounds in litter carbon (Tuomi et
al., 2011b) and possesses well defined, biologically mean-
ingful and measurable parameters. Thanks to these qualities, 60

Yasso or Yasso07 has been applied in more than 70 case stud-
iesCE3 (https://en.ilmatieteenlaitos.fi/yasso-publications, last
access: 21 April 2019) in forest ecosystems in the North-
ern Hemisphere, with generally high satisfaction levels when
compared with measured carbon values (e.g., Karhu et al., 65

2011; Rantakari et al., 2012; Ortiz et al., 2013; Didion et
al., 2014; Lu et al., 2015; Wu et al., 2015). Yet so far most
of these applications have been limited to local case studies,
especially in cold forests with limited tree species diversity
(e.g., boreal or montane forests). Rarely have previous stud- 70

ies validated Yasso07 based on data (i) from long-term ob-
servations (here defined as >10 years), (ii) from temperate
forests with a much higher diversity of tree species or (iii) on
changes in CSs (in tC ha−1 yr−1). This is partially due to the
lack of extensive long-term soil carbon monitoring in forest 75

ecosystems, which differs in climatic and soil conditions and
species and stretches over large territorial scales. Neverthe-
less, Yasso07 is considered to be one of the potentially appro-
priate models for evaluating national and continental inven-
tories of the forest carbon balance in Europe (Hernández et 80

al., 2017). It is therefore of considerable interest to assess the
ability of Yasso07 to reflect the carbon balance in different
European forest ecosystems at large spatio-temporal scales.
Moreover, as a carbon-pool-based model, Yasso07 shares
certain principles with other prevailing soil carbon models 85

in the same genre (e.g., RothC, CENTURY, etc.). Applying
Yasso07 as an example model in this case study may also
allow us to improve future carbon modeling for temperate
forests in general.

The recorded field data for CSs and litter quantity dy- 90

namics from the RENECOFOR network (http://www.onf.fr/
renecofor/@@index.html, last access: 21 April 2019), Na-
tional Forests Office (ONF), France, offered us a valuable
opportunity for model validation. The 101 forest sites in-
cluded in this study are located all over the French metropoli- 95

tan territory and cover the most common forest types and tree
species. For each site, annual measurements of litterfall were
available in addition to two inventories of soil organic CSs
with an average interval of 15 years (minimum of 12 years
and maximum of 20 years). These data allowed us to use 100

site-specific observed soil CSs and above-ground litterfall
dynamics as model input data. Approximations in model in-
put data have been identified as a major source of uncertainty
for estimates in models for changes in soil CSs (Ortiz et al.,
2013). By ensuring solid input data, we were able to min- 105

imize this source of uncertainty and focus on the inherent
model structure.

We hope to contribute to the further development of soil
carbon modeling by (i) testing and characterizing the ability
of Yasso07 to model soil CS dynamics for temperate forests, 110
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(ii) identifying limitations and providing suggestions for a
better adaptation of the model for C dynamics in both decid-
uous and evergreen temperate forests, and (iii) discussing the
perspectives based on the current state of the art in soil car-
bon modeling. Associated with the above aims, our null hy-5

potheses are as follows: (i) Yasso07 predicts accurate and un-
biased CS changes at the national scale, and (ii) the model’s
fit residuals (predicted data minus observed data) have null
relationships with site characteristics (e.g., location, climate,
forest type, soil type and initial CS).10

2 Materials and methods

2.1 The Yasso07 model

The Yasso07 dynamic soil carbon model is based on the gen-
eral assumption that the soil CS is driven by the decomposi-
tion of different litter types, which may differ in quantity and15

quality and by climatic conditions. Litter carbon quality is
represented by four chemical compound groups with differ-
ent decomposition rates (Tuomi et al., 2009). Soil organic
carbon is divided into these four relatively labile carbon
pools and one recalcitrant pool called “humus” (H) (Fig. S120

in the Supplement). The five pools differ in specific mass loss
rates and mass flows. As in many other pool-based models,
the H pool is considered to be the oldest and most stable car-
bon pool, although recent studies have thrown doubt on its
stability and even its physical existence (see Lehmann and25

Kleber, 2015). Some mass flows correspond to CO2 release
(microbial respiration). The mean residence time of carbon in
these pools varies, lasting several months (i.e., water soluble
compounds – W), a few years (i.e., acid-hydrolyzable com-
pounds – A; non-polar solvent, ethanol or dichloromethane30

compounds – E), several decades (i.e., non-soluble and non-
hydrolyzable compounds – N) or even several centuries (i.e.,
H).

Mathematically, the kernel equation of Yasso07 can be
written as follows:35

Ẋ (t)= ApK(c)X (t)I (t), (1a)

where symbols in bold capital letters denote either vectors or
matrices, while those in small letters in parentheses denote
scalars, X (t) is the vector describing the masses of the five
carbon pools (A, W, E, N and H) at time t , Ẋ(t) is the vector40

describing carbon mass changes in soil at time t , Ap is the
mass flow matrix describing carbon allocation among pools,
K(c) is the decomposition matrix describing the decomposi-
tion rates as a function of climatic conditions (c), and I (t)
is litter input to the soil and is equal to 0 for the last pool,45

since “H” does not exist in litter form (Eq. 1a) and can be

expressed in a more detailed form. This form is
∂xA/∂t
∂xW/∂t
∂xE/∂t
∂xN/∂t
∂xH/∂t

=

−1 pW→A pE→A pN→A 0
pA→W −1 pE→W pN→W 0
pA→E pW→E −1 pN→E 0
pA→N pW→N pE→N −1 0
pA→H pW→H pE→H pN→H −1



kA 0 0 0 0
0 kW 0 0 0
0 0 kE 0 0
0 0 0 kN 0
0 0 0 0 kH



xA
xW
xE
xN
xH

+

IA
IW
IE
IN
0

 , (1b)

where pF→T is the relative mass flow parameter between 50

two pools (from F to T ; F and T can be any two pools
among A, W, E, N and H) in the soil (dimensionless,
pF→T ∈[0, 1]).

Temperature and precipitation are assumed not to affect
mass flow p but do influence mass loss rate ki (i =A, W, E, 55

N or H) according to the following:

ki (c)= αi exp
(
β1T +β2T

2
)[

1− exp(γPa)
]
, (2)

where αi is the mass loss rate parameter of the chemical pool
i; and β1, β2 and γ are parameters related to temperature (T ;
in ◦C) and precipitation (Pa; in mm). 60

To take into account the effect of litter size on the litter
decomposition rate, ki was multiplied by a litter size factor
(hs), which makes it possible to distinguish between different
types of litter (e.g., foliage, coarse woody debris, stems, etc.),
differing in diameter (d; in mm): 65

hs (d)=min
{(

1+ϕ1d +ϕ2d
2
)r
,1
}
, (3)

where ϕ1, ϕ1 and r are parameters related to litter size.
Yasso07 has 44 parameters calibrated according to the

Markov chain Monte Carlo (MCMC) method with the
Metropolis–Hastings algorithm (Tuomi et al., 2011a). Cur- 70

rently, several calibrated parameter sets for Yasso07 are
available, including the two most recent sets published by
Tuomi et al. (2011) and Rantakari et al. (2012). Compared
with the Rantakari (2012) set, the Tuomi (2011) set was cal-
ibrated using a wider range of observed foliage and root 75

decomposition data. It is based on a combination of three
sources of data: (i) a global dataset (n>9000) of litterbags for
mass loss of non-woody litter from approximately 100 sites
in Europe and North and Central America covering a wide
range of climate and soil conditions, forest types and tree 80

species; (ii) a dataset (n>2000) for mass loss of decompos-
ing woody litter measured in northern Europe; and (iii) mea-
sured accumulation rates of soil carbon pools in forest sites
along a 5300-year soil chronosequence in southern Finland
to determine the residence time of the H carbon pool. The 85

Tuomi (2011) parameter set contains 10 000 parameter vec-
tors (each vector contains the values of all 44 Yasso07 param-
eters), which are randomly generated to take into account the
stochastic effect. In this study, we adapted the Tuomi (2011)
set to the RENECOFOR dataset. 90
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4 Z. Mao et al.: Modeling soil organic carbon dynamics

Figure 1. CE4 Geographical distribution of the sites in the
RENECOFOR network used to test Yasso07 performance (see also
Jonard et al., 2017). Forested areas are represented in green. Each
circle represents one site; the color represents the dominant tree
species on the plot. The species abbreviation and number of sites
per species are indicated in parentheses.

2.2 RENECOFOR network

The RENECOFOR network is part of the Level II network
of the International Co-operative Programme on Assessment
and Monitoring of Air Pollution Effects on Forests (ICP
Forests). The 101 sites (Fig. 1) considered in this study cover5

the most common types of forest ecosystems in France, in-
cluding evenly aged forests in plains, pine plantations and
unevenly aged mountain forests. They also host most of the
tree species in France and central Europe, including Quercus
robur, Quercus petraea, Pseudotsuga Menziesii, Picea abies,10

Fagus sylvatica, Pinus pinaster, Pinus sylvestris and Abies
alba. At each forest site, annual woody and non-woody litter
quantities are either directly measured or estimated based on
existing dendrometric data.

2.2.1 Soil carbon and soil physical and chemical15

properties

At each site, soil CSs were measured twice at an interval of
approximately 15 years (1993–1995 for the first assessment
and 2007–2012 for the second one). At each site and for each
assessment, soils were sampled to a depth of 0.4 m at five20

points selected in each of five subplots, and the samples were
divided into different layers (0–0.1, 0.1–0.2 and 0.2–0.4 m),
including both organic and mineral soil layers. The tempo-
ral changes in soil CSs to a depth of 0.4 m were analyzed by
Jonard et al. (2017). Composite samples were produced for25

each layer and subplot then analyzed for mass, bulk density,
soil organic carbon, and physical and chemical properties, in-
cluding texture (proportion of clay, silt and sand; in %); pH
value; total nitrogen stock (in t ha−1), the carbon : nitrogen

ratio (dimensionless); total phosphorus stock (in t ha−1); and 30

stocks of exchangeable aluminum (Al), calcium (Ca), potas-
sium (K) and magnesium (Mg; in kmol ha−1). We used the
soil physical and chemical property data measured during
the first assessment (1993–1995) for residual analyses (see
Sect. 2.7) 35

Regarding the CSs from 0.4–1.0 m in depth, only data
from the first assessment (1993–1995) were available. Soil
samples were obtained from only one soil profile per site at
two mineral layers (0.4–0.8 and 0.8–1.0 m). Bulk density and
carbon concentrations measured at these layers were used to 40

estimate soil CSs to a depth of 1.0 m. Table 2 summarizes the
data source for each of the 101 sites in the RENECOFOR
network (http://www.onf.fr/renecofor/sommaire/renecofor/
reseau/20090119-130815-828957/@@index.html, last ac-
cess: 21 April 2019). More detailed information about each 45

site and the soil sampling procedure is available in Supple-
ment I (Table S1) and Jonard et al. (2017).

2.2.2 Climate data

The climate data required by Yasso07 include annual mean
precipitation (mm) and annual maximum, mean and mini- 50

mum temperatures (◦C). These measured data were obtained
from the national Météo-France meteorological stations
(http://www.meteofrance.com, last access: 21 April 2019)
nearest to each RENECOFOR site.

2.3 Litter quantity 55

Litter input (in tC ha−1 yr−1) comes from several sources
(see Table 2). We assumed a 0.5 conversion factor between
biomass (dry matter) and carbon (Thomas and Martin, 2012).

Above-ground litter input from living trees includes leaves
for broadleaves and needles for conifers, small branches, 60

fruits and miscellaneous items (e.g., flowers, buds, etc.).
Above-ground litterfall mass was measured annually be-
tween 1994 and 2008. For sites where litter quantity data
from 1992–1993 and 2009–2012 were lacking, we used the
mean litter quantity of all the other years at the same site. 65

The observed branch size in this above-ground category was
less than 2 cm (fine branches). Branches and stems bigger
than 2 cm due to natural mortality were rare (since they can
be salvaged) and were therefore not included in our calcula-
tions. 70

Coarse woody litter input from harvesting residue or
storms were estimated from full inventories performed by the
ONF since 1991. Missing years of litter input for this cate-
gory were gap-filled with the average over the period. On
average, 3 years are missing per site, though there are con- 75

siderable differences amongst sites. The mode was 1 year,
and six sites had 10–11 missing years. We assumed that
the residues due to harvesting or storms would be coarse
branches (> 4 cm in diameter, confirmed with the ONF) based
on above-ground tree characteristics. The quantities were es- 80
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timated on the basis of repeated stand inventory data and
species-specific height–girth relationships and biomass. Lit-
ter input from stems was set to 0, since in most cases, stem
wood was removed from the site after storm damage. Litter
input from coarse woody roots was considered to be equal5

to total root biomass, which was estimated through meta-
analysis-based allometric equations proposed by Cairns et
al. (1997). More detailed information about forest invento-
ries and storm events occurring at each site is available in
Supplement I (Table S1).10

Litter input from fine roots (here defined as roots of ≤
5 mm in diameter), especially the finest ones with a diameter
≤ 2 mm, can significantly contribute to carbon sequestration
in soils (Brunner et al., 2013; Kögel-Knabner et al., 2002;
Berg and McClaugherty, 2008). Fine root litter was assumed15

to be proportional to that of foliage, which was measured
in the RENECOFOR sites (see the following paragraph).
Jonard et al. (2017) suggested using the generic equation
published by Raich and Nadelhoffer (1989) and, simultane-
ously, adopted the hypothesis that fine-root litter production20

represents about one-third of the carbon allocated to roots
(Raich and Nadelhoffer, 1989):

Ifine root = 0.333×
(
1.92× (100× Ifoliage)+ 130

)
× 0.01, (4)

where Ifine root and Ifoliage are the litter input of fine roots and
foliage, respectively (in tC ha−1 yr−1).25

The relationship between fine-root and foliage litter inputs
can be highly variable depending on tree species, stand char-
acteristics and climate, and the generic equation may not re-
liably represent such variability. To counter this, we carried
out a sensitivity analysis to investigate the response of the30

model fit to the choice of fine-root-to-foliage ratio varying
from 0.1 to 4.0 (see Sects. 2.6 and 3.2). Yet, when applying
the equation of Raich and Nadelhoffer (1989; Eq. 4) over all
the RENECOFOR sites, we found that fine-root-to-foliage
ratios had a median of 1.0 and a mean of 1.0–1.1 for both35

coniferous and broadleaved sites (Fig. S2). Hence, we chose
to use the 1.0 ratio over all the RENECOFOR sites to present
the outcomes of the model fit and residual analyses from the
simulations (see Sect. 3.3). This facilitated our evaluation
of site factors (e.g., dominant tree functional type, climatic40

and soil features) without adding a source of variability in-
troduced by fine-root-to-foliage ratio.

2.4 Litter carbon quality

In the RENECOFOR network, there are no measured data
for litter carbon quality, defined as the relative amount of lit-45

ter carbon belonging to four different carbon pools (A, W,
E and N). Therefore, we carried out a meta-analysis of the
data collected in the literature where authors used chemical
fractioning procedures or near-infrared spectroscopy (NIRS)
techniques to measure litter carbon quality. The data were50

restricted to non-tropical areas. Chemical data on litter com-
posed of coarse tree organs (e.g., stems, coarse branches) are

relatively scarce, so we used the tree stem wood data com-
piled in Pettersen (1984), Rowell et al. (2005) and Row-
ell (2012). These three studies cover a wide range of tem- 55

perate tree species from North America, Japan and Russia.
Data on foliage and root litter carbon quality were taken
either from networks such as CIDET (Trofymow, 1998)
and LIDET (http://andrewsforest.oregonstate.edu/research/
intersite/lidet.htm, last access: 21 April 2019) or from inde- 60

pendent studies in the Northern Hemisphere. The database
we used for our meta-analysis is available in Supplement II.
The root diameter or branching order can play a significant
role in modifying the composition of soil chemical com-
pounds (Fahay et al., 1988; Tingey et al., 2003; Guo et al., 65

2004). All the measurements included in our meta-analysis
on roots refer to fine roots (diameter ≤ 5.0 mm), although
in several studies, e.g., Aber et al. (1990), Aulen et al. (2011)
and Stump and Binkley (1993), root size was not clearly indi-
cated. Yet we still included the data from the latter studies, as 70

data are less abundant for roots than foliage. The coarse-root
data in the literature were too few for a meaningful meta-
analysis; we therefore used stem wood values instead.

We then used the resulting litter carbon quality database
to describe the quality of litter input at each site in our 75

study. We portioned the litter input into biochemical classes
in the following order of priority: (i) values for the target
species, when available in the database; (ii) mean values of
the species from the same genus, if data for the target species
were absent; and (iii) mean values of the species from the 80

same tree functional type (conifers versus broadleaves), if no
data were available at either species or genus level for the
target species (see Table 1).

2.5 Initialization of soil carbon quantity and quality

To initialize Yasso07, both the quantity and the quality of 85

the soil carbon are required. Here, the initial CSs were fixed
as the soil CSs measured during the first RENECOFOR soil
carbon assessment (i.e., model input). Measurement uncer-
tainties of the soil CSs were not considered to be a source of
the stochastic effect when Yasso07 was fed, as we were more 90

interested in the output uncertainties related to the model per
se (i.e., the choice of the model’s parameter set) and in car-
bon quality settings in the model initialization (see below).

Soil carbon quality, defined as the relative amount of soil
carbon in pools A, W, E, N and H in relation to their sum, 95

can be initialized in two ways: with a complete steady-state
assumption or with a partial, or transient, steady-state as-
sumption. The classical approach is based on the assumption
that carbon quality at the initial state is identical to that at
the complete steady state, which can be calculated with the 100

analytical matrix inversion approach based on Eq. (1a). For
steady-state CSs (t = ts), carbon gain is equal to carbon loss.
Setting Ẋ (ts)= 0, (Eq. 1a) becomes

ApK(c)X (ts)+ I (ts)= 0. (5)
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Solving (Eq. 5), we obtain a steady-state CS at time ts, noted
as X (ts):

X(ts)=−(ApK(c))−1I (ts) , (6)

where I (ts) is a constant vector.
The estimated carbon quality of the steady-state CS X (ts) 5

to the depth of 1.0 m (also noted as CSsteady-state; in tC ha−1)
was then applied to the observed CSs to split it into various
carbon pools.

The complete steady-state assumption is commonly used
in the literature despite considerable controversy, since the 10

assumption does not take the difference in stabilization
among the various pools into account (Elliot et al., 1996;
Foereid et al., 2012). Soil carbon pools (especially those at
sites that have undergone disturbances in recent centuries)
may not have achieved a complete steady state but may still 15

be in a transient or partial steady state. In such states, the
slow-cycling pools can still be accumulating carbon, while
the relatively rapid-cycling pools have already recovered a
dynamic equilibrium (Wutzler and Reichstein, 2007). In this
study, we equally adopted the partial steady-state assump- 20

tion to mimic such a circumstance. More precisely, we as-
sumed that the rapid-cycling pools such as A, W and E were
at steady state at the first soil survey, while the slow-cycling
N and H pools might not yet have reached the steady state.
Accordingly, we directly considered the steady-state CS ob- 25

tained from matrix inversion for A, W and E, but we revised
amounts for the N and H pools by calculating the difference
between estimated and observed CSs to a depth of 1.0 m. In
most cases, the sum of steady-state A, W, E and N was lower
than the observed CS; the revised H was then equal to the dif- 30

ference between the latter and the former. Very occasionally,
the sum of steady-state A, W, E and N could be greater than
the observed CS; the revised N was then calculated as the
difference between observed CSsCE8 and pool H was forced
to zero. The new carbon quality, corresponding to the pro- 35

portions among the steady-state A, W and E pools and the
revised N and H pools, was used to split the observed CS
into five pools in real simulations.

2.6 Sensitivity analyses on the impact of initial soil and
litter settings on model output 40

It is important to gain a general idea of the magnitude of the
impact on model output and fit of our choices for initial soil
and litter settings in the process of model initialization. To
this end, we carried out a sensitivity analysis to assess how
assumptions on carbon quality (complete steady state ver- 45

sus partial steady state) and carbon quantity as a function of
soil depth (observed CSs to a depth of 1.0 m versus observed
CSs to 0.4 m) and of fine-root-to-foliage ratios (from 0.1 to
4.0) affected model predictions. Model fit is expressed via the
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comparison between simulated and observed annual changes
in carbon stocks (ACCs) in the soilCE9 .

CE10 In addition, we conducted another sensitivity analysis
to fully explore the effects of all the theoretically possible
initial soil carbon quality distributions and that of simulated5

duration on model outputs. We created a virtual site where
climatic conditions and litter input were constant and equal
to the average values of all the RENECOFOR sites. By fix-
ing its initial soil CS to 100 tC ha−1, we permuted the initial
percentage of the soil carbon pools, with minimum and max-10

imum percentages fixed at 5 % and 80 %, respectively. We
used four levels of simulated duration (1, 10, 100, 1000 and
10 000 years) for each combination of soil carbon quality dis-
tribution. Based on averaged soil and litter carbon data from
the RENECOFOR sites, the simulations were carried out15

for both broadleaved and coniferous forest types. Here, we
present only the results for the virtual broadleaved stands, as
the results between conifers and broadleaves did not change
much, especially over the long term.

2.7 Running Yasso07 and statistical analyses20

We used the same FORTRAN code as Yasso07 version 1.0.1
in Didion et al. (2014) for all the model simulations. For each
type of analysis (both RENECOFOR site-specific and sensi-
tivity analyses), we conducted 10 simulations. In each simu-
lation, one parameter vector was randomly chosen from the25

10 000 parameter vectors.
For each site, we calculated ACC (in tC ha−1 yr−1), i.e.,

the difference in CSs between the two national RENECO-
FOR assessments standardized by the temporal interval (t2−
t1), as follows:30 {

ACCobs =
(
CSobs,t2 −CSobs,t1

)
/(t2 − t1)

ACCsim =
(
CSsim,t2 −CSobs,t1

)
/(t2 − t1)

, (7)

where, CSsim,t2 , CSobs,t2 and CSobs,t1 are, respectively, the
simulated CS to a depth of 1.0 m at year t2 and the observed
CS at years t2 and t1, which are around 1994 and 2010, de-
pending on the site.35

To compute ACCsim (Eq. 7), some previous studies used a
simulated CS at the starting year instead of an observed one
(e.g., Ortiz et al., 2013). In such a case, it is of primary impor-
tance to judge a “steady-state year” prior to the starting year
for which observed data are available. From the estimated40

steady-state year, a spin-up or real model simulation is then
followed to obtain a simulated CS at the starting year. In our
simulations, the observed soil CS at t1 served as the model
input to set initial soil quantity and to calculate ACC (Eq. 7).
This allows avoiding such a judgement on steady-state year,45

which can be sometimes subjective. This allowed us to bet-
ter focus on the effect of initialized soil carbon quality, for
which we calculated both complete and partial steady-state
assumptions (see Sect. 2.5).

Two reasons support our choice to compare ACCsim with50

ACCobs instead of comparing CSsim,t2 with CSobs,t2 . First,

the parameter sets of Yasso07 were calibrated for a soil depth
of 1.0 m, while CS data from the two RENECOFOR assess-
ments were only available to 0.4 m (because no data from
0.4–1.0 m in depth were available from the second assess- 55

ment). It is therefore reasonable to assume that the observed
CS data are not comparable with Yasso07 estimates. How-
ever, focusing on carbon changes instead of CSs may largely
erase this bias. Indeed, previous studies have evidenced that
carbon dynamics are much less active at deep soil layers 60

than at superficial layers (Jandl et al., 2014; Balesdent et al.,
2018). Second, ACC indicates if a site is gaining or losing
soil carbon and whether this information is sometimes more
important than the site’s CS value. Using a metric standard-
ized by the year, such as ACC, can also facilitate comparing 65

results in future studies. One exception was for our sensitivity
analysis on the effect of initial soil carbon quality (Sect. 2.6),
where we chose CSsim,t2 instead of ACCsim, since the initial
soil CS was fixed at 100 tC ha−1. Despite our primary fo-
cus on ACC, we also compared the simulated steady-state 70

CS (CSsteady-state, in tC ha−1) obtained from the initializa-
tion procedure (see Sect. 2.5) with the CSobs,t1 down to 1 m
in depth; this was to check if Yasso07 was able to predict
stocks to 1.0 m depth that indeed reached the level of ob-
served stocks (see Fig. S4). 75

To test the performance of Yasso07 in estimating changes
in soil carbon at the RENECOFOR sites, we used an anal-
ysis of variance (ANOVA) to analyze the residuals of the
changes in carbon, here defined as the difference between
the simulated and observed values. The following environ- 80

mental and biological factors were tested: site geographi-
cal location (latitude, longitude and altitude), the climatic
conditionCE11 (temperature and precipitation), soil type, tree
functional type and tree species. Before each ANOVA, we
tested the normality of the data with a Shapiro–Wilk test. For 85

the sensitivity analyses, we performed loess regressions (Fox
and Weisberg, 2019) to characterize the variation in soil CSs
as a function of the initial soil CS settings and simulated du-
ration (1–10 000 years). Statistical analyses were performed
with R 2.13.0 (R Core Team, 2013). 90

3 Results

3.1 Litter carbon quality of northern temperate tree
species

Our meta-analysis (Fig. 2) showed that the litter carbon
quality, i.e., carbon composition, of northern temperate tree 95

species significantly differed between tree organs. For woody
litter (stem data alone), the A carbon pool reached up to 80 %
of the total carbon pool; the sum of the A and N carbon
pools corresponded to at least 75 % and, in most cases, was
greater than 90 %. W and E accounted for only small per- 100

centages of the carbon composition (Fig. 2a). Nevertheless,
this dominance of A and N over W and E was much less pro-
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Figure 2. A meta-analysis of the carbon composition for northern temperate tree species: the x axis represents the percentage of acid-
hydrolyzable compounds (e.g., cellulose, noted as A; in %), and the y axis represents the percentage of non-soluble and non-hydrolyzable
compounds (e.g., lignin, noted as N; in %). The oblique red dashed lines show the sum of A and N and their values. The remaining percent-
age, i.e., 100− (A+N), refers to the portion of non-polar extractives, ethanol or dichloromethane compounds (E),CE12 and water soluble
compounds (W). Analyses are conducted (a) for wood (106 data points for broadleaves, and 79 for conifers), (b) for foliage litter (106 data
points for broadleaves, and 83 for conifers) and (c) for root litter (58 data points for broadleaves, and 49 for conifers). (d) is a statistical
summary (symbols and means and error bars – 1.96×SE) for wood (W), foliage (F) and roots (R) in a common coordinate system. Note the
use of different axis graduations in each plot. See Supplement II for the data sources.

nounced in foliage and root litter types (Fig. 2b and c). Gen-
erally, the different tree organs can be ranked according to the
sum of the proportions of A and N as follows: woody debris
(> 90 %) > roots (70 %–80 %) > foliage (60 %–70 %; Fig. 2d).

The effect of tree functional type on litter carbon qual-5

ity strongly interacted with that of the tree organ. For wood,
broadleaves and conifers had clearly shifted point clouds for
the relationship between A and N carbon pools: there was
a greater proportion of A and a lower proportion of N in
broadleaves than in conifers. In foliage and root litter, the10

effect of tree functional type on the proportions of A and W
was less pronounced than for wood. The main difference be-
tween broadleaves and conifers occurred in N rather than in
A (Fig. 2d). Broadleaved litter had a smaller N proportion
than coniferous litter, regardless of the tree organ (Fig. 2d).15

The proportions of A and N relative to those of E and W were

quite stable between broadleaves and conifers regardless of
the tree organ (Fig. 2d).

3.2 Sensitivity analyses on the impact of initial soil and
litter settings on model output 20

Figure S3 shows the impact of different settings of lit-
ter and carbon quantity and quality on the model fit for
the RENECOFOR sites. For soil carbon quality, the partial
steady-state assumption (Fig. S3c and d) achieved signifi-
cantly better model fits (with lower model root-mean-square- 25

error) than the complete steady-state assumption (Fig. S3a
and b). Next, we found that model fits were better when an
observed CS to 0.4 m in depthCE13 was used as the initial
carbon quantity than when a CS to 1.0 m in depthCE14 was
used (Fig. S3a and c). Nevertheless, it remained more ad- 30
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10 Z. Mao et al.: Modeling soil organic carbon dynamics

vantageous to use the CS to 1.0 m observed during the first
assessment as the model input because Yasso07 is calibrated
to predict the CS down to 1.0 m in depth (Rantaraki et al.,
2012).

Different choices of fine-root-to-foliage ratio for fine-root5

litter input also significantly influenced Yasso07’s perfor-
mance in predicting changes in soil C (Fig. S3). Ratios of
0.1–0.8 for broadleaves and 1.8–3.0 for conifers achieved the
best fits between simulated and observed changes in the soil
CS according to different scenarios (Fig. S3). Using a con-10

stant value of 1.0 for both broadleaved and coniferous sites
seems to be an acceptable compromise between the two tree
functional types, even though the choice is not optimal for
each functional type taken individually.

As a result of the above diagnoses, we only show fit and15

residual analysis results for the simulations based on the par-
tial steady-state assumption, observed CS to 1.0 m and fine-
root-to-foliage ratio of 1.0 (see Fig. S3d and Sect. 3.3).

Figure S4 visualized all the theoretically possible final CSs
by varying initial CSs and simulated duration (from 1 to20

10 000 years). Initial soil carbon quality had a pronounced
impact on final soil organic CSs at the annual and decennial
scales. For example, when the initial proportion of the A pool
increased from 0 % to 80 %, the final proportion of A could
increase by +30 to +40 tC ha−1 (Fig. S4a) and the final total25

CSs could decrease by approximately −20 to −30 tC ha−1

(Fig. S4u) at annual and decennial scales. When simulations
were performed for a millennium timescale, the initial soil
carbon quality no longer impact final soil carbon quality. In
other words, the same final soil carbon quality was obtained30

regardless of the initial soil quality (Fig. S4).

3.3 Simulated versus observed carbon data

Using only mean litter input, the theoretical CSs
(CSsteady-state) simulated from the initialization method
and the observed CSobs,t1 to 1 mCE15 in depth shared35

the same order of magnitude and were quite comparable
(Fig. S5). However, the CSs were overestimated for most
coniferous stands and underestimated for broadleaved stands
(Fig. S5).

When simulated ACCs were plotted against the ob-40

served ones, the point clouds were distributed around
the 1 : 1 diagonal line despite fairly high dispersion
(Fig. 3). The correlation between predicted and mea-
sured ACC remained weak (R2<0.1). The mean ob-
served and simulated ACCs for all sites were, respec-45

tively,+0.34±0.06 tC ha−1 yr−1 (+0.20±0.06 tC ha−1 yr−1

for broadleaved stands and +0.48± 0.10 tC ha−1 yr−1 for
coniferous stands) and +0.00± 0.07 tC ha−1 yr−1 (+0.28±
0.09 tC ha−1 yr−1 for broadleaved stands and −0.28±
0.11 tC ha−1 yr−1 for coniferous stands); 23 % of the50

broadleaved stands and 39 % of the coniferous stands
showed significant differences between observed and sim-
ulated ACCs (Fig. 3a). In only approximately 17 % of the

sites, ACCs were significantly different from 0 for both sim-
ulated and observed results (i.e., case 3 in Fig. 3b). Here, 55

there was a significant effect of tree functional type on the
observed and simulated values. The model tended to over-
estimate ACC in broadleaved stands but to underestimate
ACC in coniferous stands. Approximately two-thirds of all
the sites showed predicted and observed changes in CSs of 60

the same trend (i.e., data points in zones I, III, IV and VI;
Fig. 3), while approximately one-third of the sites were in
the remaining zones (II and V) where the predicted trend
was contrary to the observed trend. From the residual dis-
tribution, we also found that the model where carbon quality 65

was set with the partial steady-state assumption (Fig. 3) had
a better fit than the model set with the complete steady-state
assumption (Fig. S6).

The simulated ACCs exhibited a negative linear relation-
ship with the initial soil CSs (Fig. 4b), whereas this trend 70

was not found for the observed ACCs (Fig. 4a). Storm dam-
age and soil type could not clearly explain these trends in the
residuals. For coniferous stands only, the residuals showed
significant differences among the three major types of soil
(n of sites > 5): cambisol > luvisol > podzol (Fig. S7). The 75

coniferous stands tended to be younger than the broadleaved
stands. Neither tree age nor the interaction between tree age
and tree functional type had any significant effect on resid-
uals. For all the sites together, the residuals became higher
with increasing latitude, indicating that simulated ACCs 80

were more overestimated in northern zones (analysis of co-
variance – ANCOVA; F = 11.2, P <0.001). This pattern
was particularly strong for broadleaved stands (Fig. S8a).
No similar trend was found for coniferous stands (Fig. S8e).
Both residual signs were generally present for all of the main 85

species (Fig. S8b, c, d, f, g and h). Broadleaved and conifer-
ous stands differed in their responses to environmental fac-
tors: for coniferous stands, neither temperature nor precipi-
tation had much effect on residuals, while for broadleaves,
precipitation was negatively correlated with residuals (AN- 90

COVA, F = 10.8, P <0.001).
Regarding soil physical and chemical properties, total soil

nitrogen stocks were significantly correlated with residuals
for both broadleaved and coniferous stands (Fig. 5). Soil tex-
ture (proportion of clay and sand) and exchangeable magne- 95

sium and potassium were significantly correlated with resid-
uals only for broadleaved stands (Figs. 5 and S9; Table S2).
The remaining tested variables, exchangeable aluminum and
calcium, pH, total phosphorus and carbon-to-nitrogen ratio,
showed no relationships with the residuals (Table S2). 100
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Z. Mao et al.: Modeling soil organic carbon dynamics 11

Figure 3. Comparison between simulated and observed changes in annual carbon stocks (ACCs; in tC ha−1 yr−1). Circles and triangles
represent sites dominated by broadleaves and conifers, respectively. The partial steady-state assumption was used when initializing CS
quality to 1.0 m in depth. The fine-root-to-foliage ratio for broadleaves and conifers is 1.0. To facilitate readability, Roman numerals (I–VI)
denote the six zones in which data points are distributed. In (a), error bars represent standard errors; hollow and filled points represent
non-significant and significant differences, respectively, between simulated and observed ACCs according to the t test (at a 95 % confidence
interval). In (b) the case of significance is as follows: 1 – no significant difference from 0 for either observed or simulated ACC; 2 – a
significant difference from 0 for either observed or simulated ACC; and 3 – a significant difference from 0 for both observed and simulated
ACC.

4 Discussion

4.1 Agreement between simulated and observed
annual changes in soil carbon stock

Testing widely popularized soil carbon models on a large
dataset is highly meaningful work that enables researchers5

not only to assess the model’s predictive ability over vari-
ous climatic and ecosystem types but also to provide lessons
and implications for future modeling work. Here, compared
with observed CS data to 1.0 m in soil depth from the
RENECOFOR network, we found that the simulated stocks10

(CSsteady-state versus CSobs,t1 ) to 1.0 m showed the same or-
der of magnitude and validated Yasso07’s ability to predict
average CSs at the scale of the French territory. This solid
performance at the national scale supports Yasso’s aim to
be generalizable and is consistent with previous studies (see15

Ortiz et al., 2013; Lehtonen et al., 2016; Hernández et al.,
2017). Nevertheless, the observed CS to 1.0 m in depth at t1
already exceeded the CSsteady-state for most coniferous stands
(Fig. 5S), suggesting, to some extent, that the model param-
eters were not adapted to the RENECOFOR dataset. Such20

inadaptability may simply be due to setting an overly high
decomposition rate for the slow carbon pools in the model.
As the coniferous stands were on average younger being af-

forested more recently than the broadleaved stands (Jonard
et al., 2017), the model may also not have been able to ac- 25

count for historic land use changes when the soil organic CS
was calculated at the steady state. Figure S5 shows that for
most broadleaved stands, observed stocks were lower than
their CSsteady-state, possibly indicating that steady-state equi-
librium had not yet been reached at these sites. 30

Furthermore, compared with the average observed ACCs
over the 15-year interval between the two assessments, we
found that the simulated ACCs wereCE16 significantly biased
for more than one-third of the French RENECOFOR sites.
Particularly, Yasso07 generally overestimated the ACC in the 35

broadleaved stands located in the north of France (Fig. S8a–
d); this overestimation was sometimes exacerbated by lower
precipitation. On the other hand, Yasso07 tended to under-
estimate the ACCs in the coniferous stands. Nevertheless,
we expected Yasso07 to perform slightly better in the conif- 40

erous stands thanCE17 in the broadleaved ones, since the
model’s estimates have shown good correspondence to mea-
surements (of stocks and/or changes) in coniferous forests,
especially Nordic boreal forests (e.g., Karhu et al., 2011; Or-
tiz et al., 2013). Probably due to the younger age of the conif- 45

erous stands in our study, the observed ACCs in the conifer-
ous stands were greater than those in the broadleaved stands
(Fig. 3; Jonard et al., 2017). Again, Yasso07 was unable to re-
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12 Z. Mao et al.: Modeling soil organic carbon dynamics

Figure 4. Observed (y axis; a) and simulated annual changes in
carbon stocks (y axis; b) plotted against the CSs observed to 1.0 m
in depth (x axis) during the first soil CS assessment. Regressions
are as follows: y =−0.003x+0.422 (R2

= 0.03) for observed val-
ues at the sites dominated by broadleaves, y = 0.001x+ 0.353
(R2
= 0.01) for observed values at the sites dominated by conifers,

y =−0.016x+1.715 (R2
= 0.62) for simulated values for the sites

dominated by broadleaves and y =−0.008x+ 0.648 (R2
= 0.60)

for simulated values for the sites dominated by conifers.

produce this observed effect of tree functional type on ACC,
as the model does not take into account changes in land use
history, as for the case of steady-state CSs mentioned above.

Except for tree functional type and geographical location
(e.g., latitude, which is correlated with climatic variables),5

qualitative ecological variables that are assumed to be key
factors influencing carbon sequestration processes (e.g., soil
type – except for coniferous stands, storm damage and stand
age range) showed limited ability to explain residuals. Note
that these factors were not fully crossed for the 101 sites,10

making it difficult to test each single factor.
Simulated ACCs showed a strongly negative correlation

with the observed initial soil CSs (CSobs,t1 ), with an overes-
timation of ACC at sites with lower CSobs,t1 and an underes-
timation at sites with higher CSobs,t1 (Figs. 4 and S9). This is15

logical in view of the model’s inherent mechanism. With in-

creasing initial CS, there is an increase in the quantity of the
easily decomposable compounds in the soil, i.e., A, W and
E, which triggers a more substantial mass loss at a decennial
scale. However, the data on observed changes in CSs did not 20

support this trend.
Several quantitative soil physical and chemical properties

showed clear correlations (especially for broadleaved stands)
with ACC residuals (Fig. 5). Also, in the principle compo-
nent analyses (Fig. S9), the arrows representing soil vari- 25

ables are slightly closer to the pivoting axis of “initial CS
and ACC residuals” than those representing climatic and ge-
ographic variables, notably for broadleaved stands. These
results highlight the potential interest of incorporating soil
properties into new versions of the Yasso model, which cur- 30

rently lacks, or only implicitly incorporates, soil parameters.
Indeed, there is considerable evidence that soil physical and
chemical properties can greatly influence soil carbon dynam-
ics and storage capacity (Beare et al., 2014; Dignac et al.,
2017; Rasmussen et al., 2018). 35

Despite Yasso07’s significant prediction bias at a number
of sites, it is unreasonable to simply attribute the bias to the
model per se, since multiple uncertainties affecting the qual-
ity of the model’s input data can be identified (see Sect. 4.2–
4.3). These uncertainties can occur not only with Yasso07 but 40

also with other prevailing models, highlighting large knowl-
edge gaps in ecology and soil carbon modeling.

4.2 Setting soil carbon quality for model initialization:
a recurrent challenge in soil carbon modeling

Great uncertainty is associated with model initialization in 45

terms of soil carbon quality, as it is usually estimated, not
measured, for example, through matrix inversion with the as-
sumption that the litter input has been the same for decades.
Compared to measuring total soil CSs, measuring soil carbon
quality is much more labor-intensive and time-consuming. 50

Moreover, soil carbon quality data from different sources
may be partly or totally incompatible due to the use of dif-
ferent chemical pools or fractionation protocols (Blair et al.,
1995). Therefore, measured data for soil carbon quality are
generally lacking at the worldwide scale. This lack of infor- 55

mation is a recurrent issue for soil carbon dynamics mod-
eling (see Elliot et al., 1996, who have discussed the issue
of “measuring the modelable”). Many prevailing soil carbon
models require setting carbon quality in addition to carbon
quantity, e.g., Romul (Chertov et al., 2001), RothC (Cole- 60

man and Jenkinson, 1996), CENTURY versions (Parton et
al., 1987; Metherell et al., 1993) and CBM-CFS3 (Kurz et
al., 2009). Setting carbon quality in models inappropriately
may greatly change CS predictions (Wutzler and Reichstein,
2007; Carvalhais et al., 2008, 2010). 65

In this study, soil carbon quality data were unavailable
at the French RENECOFOR sites. We therefore tested both
complete and partial steady-state assumptions for setting the
initial carbon quality. Compared to the complete steady-state
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Z. Mao et al.: Modeling soil organic carbon dynamics 13

Figure 5. Residuals of annual carbon stock change (ACC) plotted against selected soil physical and chemical properties. Top plots with green
triangles represent sites dominated by conifers, and bottom plots with orange dots represent sites dominated by broadleaves. Regressions in
all five subplots for the broadleaved sites (b, d, f, h, j) and in one subplot for the stands dominated by conifers (a) are significant (∗ P<0.5).
See Table S2 for linear regression results for all 11 soil variables. Red dashed line indicates the zero line.

assumption, the partial steady-state assumption made it pos-
sible to account for slow-cycling pools, which could still be
accumulating carbon, and fast cycling pools in equilibrium
(Wutzler and Reichstein, 2007). We did not use the precise
method proposed by Wutzler and Reichstein (2007) to esti-5

mate initial carbon quality due to a lack of information nec-
essary for the decomposition–accumulation dynamics of the
H pool. Instead, while we followed the same partial steady-
state assumption, we revised the proportions of the N and H
pools and assumed that the A, W and E pools were in equi-10

librium and equal to the simulated values. We also assumed
that the sum of all pools at t1 was equal to the observed stock.
We found that our partial steady-state assumption gave rise
to generally better model fits than the complete steady-state
assumption (Fig. S3; see also Figs. 3 and S6), indicating its15

good suitability to the RENECOFOR sites. When plotting
CSstead-state against CSobs (Fig. S5), we found a discrepancy:
while the CSobs values of most of the broadleaved stands
were smaller than CSstead-state, the CSobs of most of the conif-
erous stands were greater than CSstead-state. This discrepancy20

was brought into the ACC fit when the complete steady-state
assumption was adopted (Fig. S6). Nevertheless, the partial
steady-state assumption can, to some extent, mitigate such
a discrepancy. For broadleaved stands, the revised propor-
tions of the A+W+E pools became higher than those at25

the complete steady state (Fig. 6; with 70 % of stands above
the steady-state line), thus reducing the model’s overestima-
tion of ACC. For coniferous sites, the proportions of the
A+W+E pools were often compressed (Fig. 6; with < 50 %
of the stands above the steady-state strip), thus reducing the30

model’s underestimation of ACC at the steady state.
For future work, it would definitely be worthwhile to com-

pare both assumptions for several prevailing carbon models
(e.g., Yasso07, RothC, Century, etc.), as studies comparing

Figure 6. Distribution of estimated carbon quality based on the par-
tial steady-state assumption (box plots) versus those based on the
complete steady-state assumption (whose ranges are all very nar-
row and are expressed with strips in color: 13 %–15 % for the sum
of A, W and E – cyan; 49 %–53 % for N – brown; and 33 %–36 %
for H – purple). For each box plot, the low and top edges of the
box correspond to the 25th and 75thTS1 percentile data points, re-
spectively; the line inside the box represents the median, and there
are no outlier points in this case. Br. – broadleaved stands; Co. –
coniferous stands.

initialization assumptions still remain scarce compared to 35

those on model comparisons.
In order to gain a global overview of Yasso07’s sensitiv-

ity to initial soil carbon quality, we also conducted a sensi-
tivity analysis that computed the final soil CSs for all pos-
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14 Z. Mao et al.: Modeling soil organic carbon dynamics

sible chemical-pool compositions. This sensitivity analysis
confirmed the high influence of initial soil carbon quality on
soil CS estimates (Fig. S4), notably at short temporal scales
(i.e., yearly and decennial). This result is in line with pre-
vious CS modeling studies (Parton et al., 1993; Kelly et al.,5

1997; Smith et al., 2009; Foereid et al., 2012), confirming
that initialization is a crucial step for all chemical-pool-based
carbon models. Our sensitivity analysis further showed that
the effect of initial CS composition would gradually vanish
with increasing length of time, especially in the case of sev-10

eral centuries or millennia. Our analysis provides new in-
sights on the sensitivity of CS estimates to the method and
assumptions used in model initialization. This analysis can
be transposed to other carbon models to test their theoretical
performance and robustness at different temporal scales and15

to compare models.
Finally, testing different initialization assumptions and

performing sensitivity analyses are not enough to solve the
predictability issues related to uncertainties in soil carbon
quality. Based on ground truth data, Balesdent et al. (2018)20

showed that carbon age strongly reflects soil depth and
ecosystem type. It appears to be highly necessary for future
modeling work to capture better indicators of carbon stabi-
lization mechanisms in the model initialization procedure.
Yasso07’s particular model configuration, i.e., based on mea-25

surable chemical pools, may make it possible to use mea-
sured soil carbon quality data for model initialization instead
of steady-state assumptions. Future measurements of radio-
carbon age for soil organic matter at the RENECOFOR sites
may offer an ideal opportunity to compare the impact of ini-30

tial soil carbon quality on Yasso07’s predictions.

4.3 A precise estimation of root litter quantity helps
improve Yasso07 predictions

An important source of uncertainty in the estimates of litter
quantity at the RENECOFOR sites concerned fine-root lit-35

ter input. Many studies have revealed that fine roots are a
major source contributing to total litter quantity due to their
fast turnover rates (Brunner et al., 2013; Kögel-Knabner et
al., 2002; Berg and McClaugherty, 2008). In some forest
ecosystems, the proportion of fine-root litter is even com-40

parable to that of foliage (Freschet et al., 2013; Xia et al.,
2015). However, estimating fine-root litter input is, again,
a time-consuming and challenging task. For this reason, to
our best knowledge, probably no nationwide forest inven-
tory projects have ever incorporated direct measurements of45

the dynamics of fine-root litter input (and this information
is also lacking for the RENECOFOR network). Fine root
turnover for forest species varies depending on climate, tree
species and management scenarios (Kögel-Knabner et al.,
2002; Litton et al., 2003; Mokany et al., 2006), and this50

makes choosing model input values highly subjective and
difficult. By testing variable fine-root-to-foliage ratios of lit-
ter input, we observed a significant shift in the ACCs pre-

dicted by Yasso07 (Fig. S2)CE18 . This finding not only high-
lights the importance of precisely quantifying fine-root litter 55

input but also suggests that broadleaves and conifers may
have a different fine-root litter input ratio with regard to
that of foliage, although we chose the same ratio for both
broadleaved and coniferous stands in this study. It should be
noted that using one ratio per tree functional type (conifers 60

versus broadleaves) can only change the overall prediction
baseline and cannot reduce data dispersion. Consequently, it
is of great interest to estimate fine-root litter input quantity at
the species level through direct measurements and then cou-
ple the specific data with Yasso07. 65

Potentially important litter input may also come from the
shrubby and herbaceous understory species, which we did
not take into account in this study due to data unavailabil-
ity. The herb and shrub layers are typically not included in
forest inventories, though they can contribute significantly 70

to the annual litter production in forests (e.g., de Wit et al.,
2006; Gilliam, 2007; Lehtonen et al., 2016). Muukkonen and
Mäkipää (2006) estimated that the carbon input from herba-
ceous and shrub vegetation in Finnish forests was from 0.50
to 0.66 tC ha−1 yr−1. This is quite high, as the value repre- 75

sents 12 %–23 % of the mean total tree litter input for all the
RENECOFOR sites combined (Table 1). CE19This is in line
with preliminary data from Didion et al. (2018), who suggest
that understory vegetation contributes approximately 12 %
(0.1 % to 36.8 %) to the total observed annual C turnover at 80

six sites in the Long-term Forest Ecosystem Research (LWF)
program (Swiss part of the ICP Forests Level II network).

Finally, Yasso07’s parameter set was calibrated based on
one of the richest litterbag datasets in the world in terms
of number of observations. The state of the art of soil car- 85

bon modeling assumes that litter input and decomposition
processes are the driving forces in soil carbon accumulation.
However, other important sources of biological carbon input
exist, e.g., soil fauna and rhizodeposition; unfortunately, our
ability to take them into account in modeling processes re- 90

mains poor. Whether, and to what extent, the bias found in
our Yasso07 results is related to these alternative sources of
biological carbon input is unknown.

4.4 Suggestions for future modeling improvements

First, we found the Yasso07 model structure and algorithm 95

solid, clear and simple to operate, in agreement with the pos-
itive remarks in the literature (Rantakari et al., 2012; Didion
et al., 2014; Lu et al., 2015; Wu et al., 2015). Regarding its
mass flow parameters, Fig. S1 only shows the mass flows that
are statistically significant in the case of the Tuomi (2011) pa- 100

rameter set. Yasso07 keeps all the theoretical mass flow pos-
sibilities in the Ap matrix in (Eq. 1b). However, a mass flow
parameter with a statistical significance does not signify that
it is biologically meaningful. For example, we can quote the
flow N→A in the model (Fig. S1), for which the modeler 105

assigned an astonishingly high percentage: pN→A = 83 %.
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Z. Mao et al.: Modeling soil organic carbon dynamics 15

This quantity is disputable in light of soil biochemistry, be-
cause lignin, the major component constituting the N carbon
pool, is not likely to pass into the A pool but would instead
probably condense with other nearby phenols, peptides or
saccharides (Burns et al., 2013).5

As a model for predicting soil carbon dynamics, Yasso07
is still overly simple in the description of some soil variables
that are known to strongly impact decomposition processes.
For example, soil mineralogy or aggregation is yet to be ac-
counted for in Yasso07. Indeed, the model has often been10

applied on soils fairly rich in organic matter (e.g., Karhu et
al., 2011), where the consideration of soil mineral properties
was not particularly relevant and where the authors’ assump-
tion that litter quantity is a good proxy for soil properties
was reasonable. In addition, when Yasso, Yasso07’s proto-15

type, was published in 2005 (Liski et al., 2005), information
on mineral soil properties in the various forest soil horizons
was not commonly available. Nowadays, however, it is easier
to obtain, although there is still not enough detailed data for
consistent application across large regions or at the national20

scale (Didion et al., 2016).

5 Conclusions

We tested the performance of the Yasso07 soil carbon model
on decennial-scale French nationwide forest data collected
through the RENECOFOR network. We also compiled a25

meta-analysis database for litter carbon quality and carried
out sensitivity analyses to characterize the effect of initial
litter input and soil carbon quality on the model’s predic-
tions. We showed that, while the model’s estimates of CS
to 1.0 m in depth and of ACC stayed within the same or-30

der of magnitude as observed values, the accordance between
the observed and simulated ACCs at the site scale remained
weakCE20 . There was a bias in the model’s predicted trends
for changes in CS at more than one-third of the French sites.
As we have shown for Yasso07, the performance of soil car-35

bon models should be examined before their application to
management guidelines and policymaking for forest ecosys-
tems at any scales.

Biases can be attributed to multiple factors concerning
model input, such as (i) uncertainty in the measurement data40

for soil CSs and changes, (ii) a lack of information on initial
soil carbon quality at the site level, and (iii) a lack of in-
formation on below-ground litter production. These factors
are valid for the state-of-the-art soil carbon modelingCE21 ,
regardless of the model that one uses. Our sensitivity analy-45

ses explicitly confirmed the importance of factors (i) and (ii)
above. Appropriately setting soil carbon quality is one of the
most crucial steps to guarantee the model’s fit. We found
that the partial steady-state assumption gives rise to a signif-
icantly better model fit than does the complete steady-state50

assumption, when setting soil carbon quality. Some of the
model’s parameters governing the transfer among soil pools

are statistically derived and not directly measured and thus
may poorly represent actual biochemical decomposition pro-
cesses. Residual analysis also suggests a potentially impor- 55

tant role of physical and chemical soil properties in explain-
ing the model’s prediction ability.

Our findings allow us to provide modelers, users and poli-
cymakers with the following suggestions:

– We suggest that Yasso07 modelers keep the current 60

model structure, algorithm and parameters but incorpo-
rate some more refined biochemical processes: for ex-
ample, that they (i) revise certain mass flows to achieve
both statistically and biologically meaningful processes
(especially the N→A flow), (ii) refine the decompo- 65

sition process (i.e., the residence times between the A,
W and E soil carbon pools); and, possibly, (iii) explic-
itly incorporate easily measured soil parameters to bet-
ter represent biophysical and biochemical interactions
in soil carbon cycling. 70

– We suggest that Yasso07 users work in conjunction with
modelers in order to better reduce the uncertainties in
model initialization for soil CSs. We also suggest mea-
suring forest carbon quality and quantity and below-
ground fine-root litter to better feed the model. 75

– We suggest that policymakers remain prudent toward
diagnoses based on a single carbon model, especially
when a long-term trend is predicted. Predictions from
multiple models should be cross-validated for both
global and local areas. 80

This study, involving decennial observations at sites
spread over a large spatial scale and covering different
ecosystems, provides a good opportunity to facilitate future
model calibration, improvement and reassessment. Finally,
with Yasso07 as an example, this work highlighted the bot- 85

tleneck in soil carbon modeling caused by the lack of knowl-
edge or data on soil and litter carbon quality and on fine-root
litter quantity, which creates high uncertainties for model ini-
tialization. Simultaneously, we demonstrated methodologies
for testing other soil carbon models via sensitivity analyses to 90

better enable us to understand the limits of the model and of
the input data and to plan future improvements in soil organic
carbon modeling. In this study, we used the model structure
and parameters published in Tuomi et al. (2011a) without any
modifications. Further work on sensitivity analyses incorpo- 95

rating modifications in both the carbon quality and litter in-
put settings and Yasso07’s configuration and parameters is
needed to confirm the reliability of the current diagnoses.

Data availability. The plant and soil data used for model fit and
validation are those published in Jonard et al. (2017). These data 100

can be accessible via contacting the RENECOFOR network (http:
//www.onf.fr/renecofor/@@index.htmlTS2 ., last access: 21 April
2019).
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Appendix A: Nomenclature and abbreviations

Name Meaning

Carbon stock (CS) Quantity of organic carbon stockedCE22 in the soil (in tC ha−1)

Carbon stock change Increment (positive value) or decrement (negative value) of organic carbon stocked in the soil
between year t1 and year t2 (in tC ha−1)

Annual carbon stock
change (ACC)

Change in CSs per year (in tC ha−1 yr−1)

Carbon pools The Yasso07 model contains a series of organic compounds involved in decomposition processes
differing in solubility and mean residence time: water soluble compounds (W), acid-hydrolyzable
compounds (A), non-polar solvent, ethanol or dichloromethane compounds (E), and non-soluble
and non-hydrolyzable compounds (N). For soil, there is an additional recalcitrant pool called “hu-
mus” (H). Note that in this paper, “N” only denotes non-soluble and non-hydrolyzable compounds;
nitrogen is spelled in full when mentioned.

Coarse woody litter Litter originating from either coarse above-ground residues due to either harvests or storms (includ-
ing coarse branches of > 4 cm in diameter and miscellaneous residues) and coarse roots of >5 mm in
diameter

Fine non-woody lit-
ter

Litter originating from either natural above-ground litterfall (leaves, small branches) or fine-root
activities

Litter carbon quality Litter carbon (in %) belonging to the A, W, E and N carbon pools (see “carbon pools” above)

Litter quantity Annual litter accumulation (in tC ha−1 yr−1)

Soil carbon quality Soil carbon (in %) belonging to the A, W, E, N and H carbon pools
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