

1

1 **Carbon leaks from flooded land: do we need to re-plumb the inland water active**

2 **pipe?**

3

4 Gwenaël Abril^{1,2} and Alberto V. Borges³

5 ¹ Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National

6 d'Histoire Naturelle, 61 rue Buffon, 75231, Paris cedex 05, France.

7 ² Programa de Geoquímica, Universidade Federal Fluminense, Outeiro São João Batista

8 s/n, 24020015, Niterói, RJ, Brazil.

9 ³ Université de Liège, Unité d'Océanographie Chimique, Institut de Physique (B5a), B-

10 4000, Belgium

11

12 MS for Biogeosciences Discussions, Article type: **Ideas and perspectives**

13

14

15 **ABSTRACT**

16 At the global scale, inland waters are a significant source of atmospheric carbon (C),
17 particularly in the tropics. The active pipe concept predicts that C emissions from
18 streams, lakes and rivers are largely fuelled by terrestrial ecosystems. The traditionally
19 recognized C transfer mechanisms from terrestrial to aquatic systems are surface runoff
20 and groundwater drainage. We present here a series of arguments that support the idea
21 that land flooding is an additional significant process that fuels inland waters with C at
22 the global scale. Whether the majority of CO₂ emitted by rivers comes from floodable
23 land (approximately 10% of the continents) or from well-drained land is a fundamental
24 question that impacts our capacity to predict how these C fluxes might change in the
25 future. Using classical concepts in ecology, we propose, as a necessary step forward, an
26 update of the active pipe concept that differentiates floodable land from drained land.
27 Contrarily to well-drained land, wetlands combine strong hydrological connectivity with
28 inland waters, high productivity assimilating CO₂ from the atmosphere, direct transfer of
29 litter and exudation products to water and waterlogged soils, a generally dominant
30 allocation of ecosystem respiration below the water surface and a slow gas exchange
31 rate at the water-air interface. These properties force plants to pump atmospheric C to
32 wetland waters and, when hydrology is favourable, to inland waters as organic C and
33 dissolved CO₂. This wetland CO₂ pump may contribute disproportionately to CO₂
34 emissions from inland waters, particularly in the tropics, and consequently at the global
35 scale. In future studies, more care must be taken in the way that vertical and horizontal
36 C fluxes are conceptualized along watersheds and 2D-models that adequately account
37 for the hydrological export of all C species are necessary. In wetland ecosystems,
38 significant effort should be dedicated to quantifying the components of primary
39 production and respiration in air, water and waterlogged soils, and these metabolic

40 rates should be used in coupled hydrological-biogeochemical models. The construction
41 of a global typology of wetlands also appears necessary to adequately integrate
42 continental C fluxes at the global scale.

43

44

45 1. INTRODUCTION

46 Continental surfaces play a major role on the present and past climates, in particular
47 through the exchange of greenhouse gases (GHGs) such as carbon dioxide (CO_2) and
48 methane (CH_4) with the atmosphere (Ciais et al. 2013). Conversely, the global climate
49 affects the continental carbon (C) budget, as biological productivity and the capacity of
50 ecosystems to store C are influenced by temperature, rainfall and other climatic
51 variables (Heimann and Reichstein 2008; Reichstein et al. 2013). The continental C
52 budget is in addition affected by direct human alterations such as
53 deforestation/reforestation and other land use changes. On continents, the C cycle is
54 tightly coupled to the water cycle, and CO_2 and CH_4 budgets strongly depend on how and
55 how much water circulates through the plants, soil, groundwater, and surface waters to
56 the coastal ocean. Biogeochemical processes and fluxes in the critical zone, the
57 permeable layer of the continents from the vegetation top to the aquifer bottom (Lin
58 2010), have varied drastically at geological time scales (Knoll and James 1987).
59 Emissions of GHGs from continental ecosystems are expected to be highly sensitive to
60 precipitation and hydrology in the future. Water is necessary for plant photosynthesis;
61 moisture strongly controls respiration in soils; the presence of water promotes
62 anaerobic conditions and CH_4 production in wetlands, while soil desiccation promotes
63 soil CH_4 oxidation. Water also considerably contributes to continental C budgets because
64 rivers transport C laterally; C being later trapped in sediments, emitted as CO_2 and CH_4
65 to the atmosphere, or exported to the ocean (Garrels and Mackenzie 1971; Meybeck
66 1982; Cole et al. 2007).

67

68 In terms of CO_2 and CH_4 fluxes, continental landscapes act as a heterogeneous mosaic,
69 and some ecosystems store or emit more atmospheric C than others. Some small

70 surfaces can behave as hotspots and disproportionately contribute to the total C mass
71 balance at the regional, continental and global scales. Surface waters are recognized
72 hotspots for CO₂ and CH₄ fluxes (Cole et al. 1994; Cole and Caraco 2001; Bastviken et al.
73 2011; Raymond et al. 2013; Holgerson and Raymond 2016). Natural surface waters
74 include the open waters of streams, lakes, rivers and estuaries (approximately 3.5% of
75 the continents) as well as intermittently flooded land, where a canopy of vegetation is
76 active above the water and/or when water is temporarily absent: swamps, marshes and
77 floodplains, also called wetlands, that occupy approximately 10% of the continents
78 (Downing 2009). In general, inland waters and wetlands show higher atmospheric C
79 exchange rates per surface area than the surrounding land: Wetlands are recognized for
80 their high productivity, sedimentary organic carbon (OC) burial and CH₄ emissions
81 (Mitsch et al 2013). Inland waters (rivers, streams, lakes and reservoirs) act as a very
82 significant source of atmospheric CO₂ at the global scale (Raymond et al. 2013).

83

84 Although the magnitude of CO₂ outgassing from inland surface waters at the global scale
85 is still subject to large uncertainties, there is consensus that the quantity of C exported
86 from land to freshwaters (1.9-3.2 PgC yr⁻¹) was larger than the C flux ultimately reaching
87 the ocean (0.9 PgC yr⁻¹, Fig. 1b). Cole et al. (2007) have conceptualized inland waters as
88 an active pipe (Fig. 1b), receiving, processing, emitting, and storing terrestrial C during
89 its travel from land to the ocean, as opposed to a passive pipe that simply transports
90 terrestrial C conservatively to the ocean (Fig. 1a), as generally assumed in earlier
91 literature from the 1970's and 1980's (Garrels and Mackenzie 1971; Meybeck 1982).
92 Since this definition, it has been assumed that most of the C emitted by inland waters
93 was initially fixed upland by terrestrial vegetation, then transported from soils to
94 aquatic systems with runoff and drainage, and finally emitted downstream as CO₂ to the

95 atmosphere. Because no satisfactory methods are available yet to estimate directly the
96 flux of C across the land-water boundary (e.g., Deirmendjian et al. 2018), this flux is
97 calculated as the sum of outgassing from inland waters, burial in freshwater and
98 estuarine sediments, and export to the coastal ocean (Cole et al. 2007). However, the
99 processes controlling C fluxes at the land-water interface are poorly understood and
100 some potential inconsistencies could arise when comparing C budget derived from
101 terrestrial studies with those derived from aquatic studies. Here, we provide some
102 additional evidence demonstrating that the transfer of terrestrial C to rivers could occur
103 preferentially from floodable ecosystems. We suggest that wetlands behave not only as a
104 significant source of atmospheric CH₄ and a long-term C sink in soils (Mitsch et al. 2013)
105 but also as an efficient CO₂ pump that exports dissolved and particulate C to inland
106 waters. Using classical concepts in ecology, we analyse qualitatively and quantitatively
107 how ecosystem production and respiration affect C export from drained-land and from
108 wetlands. We stress that our current understanding of processes and our ability to
109 measure and quantify C metabolic and hydrological fluxes must be considerably
110 improved to understand the origin of carbon in inland waters and predict future
111 continental GHG budgets in the mosaic of continental ecosystems.

112

113 **2. CONCEPTUALIZING AND FORMULATING C FLUXES**

114 Fluxes of C through the boundaries of an ecosystem, *i.e.*, vertical exchange with the
115 atmosphere and burial in soils and sediments on the one hand, and horizontal exchange
116 between lands, wetlands and aquatic ecosystems on the other hand, are driven by
117 metabolic processes in each ecosystem and physical processes that transport C such as
118 hydrology, wind, turbulent mixing, sediment deposition/resuspension, etc. Following

119 the conventions of Chapin et al. (2006), the net CO₂ exchange of an ecosystem with the
120 atmosphere is partitioned into several forms of C fluxes (Fig. 2):

121
$$-NEE = NECB + F_{other} + E \text{ (Eq. 1)}$$

122 where NEE is net ecosystem exchange (the net CO₂ flux from the ecosystem to the
123 atmosphere), NECB is the net ecosystem carbon balance (the net C accumulation in the
124 ecosystem), F_{other} is the sum of vertical fluxes of volatile forms of C other than CO₂ (CH₄,
125 carbon monoxide, volatile organic carbon) from the ecosystem to the atmosphere and E
126 is horizontal C export by hydrological transport, trading of food, feed and wood (Ciais et
127 al. 2008). Among the components of E, only hydrological horizontal transport of C will
128 be discussed in this paper. Note that, by convention, NEE is opposite in sign to NECB
129 because NEE is defined by atmospheric scientists as a C input to the atmosphere,
130 whereas NECB is defined by ecologists as a C input to ecosystems (Chapin et al. 2006).

131

132 Regarding metabolic fluxes, net ecosystem production (NEP) is defined as:

133
$$NEP = GPP - ER \text{ (Eq. 2)}$$

134 where GPP is gross primary production and ER is ecosystem respiration. For conceptual
135 and methodological reasons, it is necessary to consider separately the autotrophic and
136 heterotrophic components of ER as:

137
$$NEP = GPP - AR - HR \text{ (Eq. 3),}$$

138
$$NPP = GPP - AR \text{ (Eq. 4), and:}$$

139
$$NEP = NPP - HR \text{ (Eq. 5)}$$

140 where AR and HR are, respectively, the autotrophic and the heterotrophic components
141 of ER and NPP is net primary production. A positive NEP (Eq. 2) reduces the
142 concentration of CO₂ and/or dissolved inorganic carbon (DIC) inside the ecosystem and
143 generates a gradient that causes atmospheric CO₂ to enter the ecosystem. One process

144 that makes -NEE diverge from NEP and NECB is when significant amounts of inorganic C
145 enter or leave the ecosystem as DIC in the aquatic phase with horizontal hydrological
146 transport rather than through atmospheric exchange (Chapin et al. 2006). In addition to
147 this divergence between -NEE and NEP, NECB deviates from NEP when C enters or
148 leaves the ecosystem in forms others than CO₂ or DIC (Eq. 1). This includes horizontal
149 transport of particulate and dissolved OC by hydrological processes, as well as vertical
150 CH₄ fluxes, a secondary C flux that is significant for the active pipe concept, as well as for
151 climate regulation.

152

153 An adequate conceptualization of atmospheric C fluxes along watersheds implies first
154 the definition of functional boundaries inside the boundless C cycle (Battin et al. 2009),
155 at least between three types of ecosystems that have fundamentally different properties
156 with respect to atmospheric CO₂ (Fig. 2): (1) the terrestrial, never flooded land and its
157 biosphere (forest, crops, shrub, grassland and their well-drained soils and
158 groundwater); (2) the floodable land and its mosaics of wetlands with extremely
159 variable ecological and hydrological properties; (3) the open waters of streams, lakes
160 and rivers. Some estimations of CO₂ outgassing from inland waters have included
161 wetland surface areas (Richey et al. 2002; Aufdenkampe et al. 2011; Sawakuchi et al.
162 2017), while some others have not (Cole et al. 2007; Tranvik et al. 2009; Raymond et al.
163 2013). However, wetlands are functionally different from inland waters because their
164 canopy of vegetation can alter the direction of atmospheric CO₂ exchange (Raymond et
165 al. 2013; Abril et al. 2014). Assuming that the CO₂ flux at the water-air interface
166 equals -NEE in wetlands (Richey et al. 2002) implicitly supposes that GPP and the aerial
167 compartment of AR (Fig. 2b) are null or exactly balanced, which is incorrect. A functional
168 definition of wetlands with respect to C cycling could be the *intermittent and/or*

169 *vegetated flooded land*, in contrast with the well-drained land which is never flooded and
170 whose topsoil is never waterlogged, and with the permanent and open waters of lakes
171 and rivers without emerged or floating vegetation. This definition allows clear
172 delineation of the three sub-systems using remote sensing (e.g., Melack and Hess 2010)
173 and is also functional with respect to the conceptualization and quantification of C
174 cycling (Fig. 2).

175

176 Second, our conceptual model should be two-dimensional (vertical and up-downriver),
177 and should consider the hydrological net export term E in Eq. 1 as a potentially
178 significant component of -NEE and NECB (Fig. 2), in accordance with the active pipe
179 concept. In well-drained terrestrial ecosystems, surface runoff and drainage export C to
180 inland water, and E is necessarily always positive. In inland water and wetlands, E must
181 be conceptualized and quantified as the net balance between hydrological import to and
182 export from the ecosystems and, depending on each case, E can be positive or negative.
183 In fact, C fluxes along watersheds must be seen as a cascade from one sub-system
184 upstream to another sub-system downstream. Several chemical forms of C are involved
185 in the E term, which can be written as the sum of the export of four terms:

$$186 \quad E = E_{POC} + E_{DOC} + E_{CO2} + E_{CH4} \quad (\text{Eq. 6})$$

187 Particulate and dissolved organic C (POC and DOC) are derived from NPP; DIC is in part
188 the result of ER, that release dissolved CO₂ (as well as CH₄) to waters and in part the
189 result of chemical weathering that generates alkalinity. Weathering of carbonate and
190 silicate rocks is mediated by soil CO₂ derived from respiration, so that weathering is also
191 a component of ER. Because chemical weathering is assumed to occur mostly upland,
192 alkalinity is considered as a relatively conservative chemical form of river C, although
193 some exceptions have been reported in floodplains of tropical rivers (Boucher et al.

194 2012; Geeraert et al. 2017). Here, we will discuss only the fraction of DIC that occurs as
195 excess CO₂, that is, the DIC that is potentially lost after complete water-air equilibration
196 (Abril et al. 2000). Concerning dissolved CH₄, the role of wetlands was identified in the
197 literature for sustaining CH₄ emissions in adjacent rivers (Borges et al. 2015b) and lakes
198 (Juutinen et al. 2003). However, owing to its low solubility and the fact that emissions
199 from wetlands occur mostly as ebullition or through plants (contributing to the F_{other}
200 term in Fig. 2B), the contribution of E_{CH₄} to E is small (few percent) in most ecosystems.

201

202 NEE is generally negative in forests (Luyssaert et al. 2010; Ciais et al. 2013) and
203 wetlands (Morison et al. 2000; Saunders et al. 2007; Lu et al. 2016) but positive in lakes
204 and rivers (Cole et al. 1994; 2007; Raymond et al. 2013) (Fig. 3). Compared to NEE,
205 exchange of CH₄ with the atmosphere (F_{other} in Eq. 1) is significant in wetlands but not in
206 forests (Ciais et al. 2013; Saunois et al. 2016) and probably not in inland waters. Indeed,
207 budgets of CH₄ emissions from inland waters strongly depend on whether wetland areas
208 were included or not and, in general, open waters of rivers and lakes emit CH₄ at rates
209 approximately 100 times lower than CO₂ (Melack et al. 2004; Bastviken et al 2011;
210 Borges et al. 2015a). The occurrence of a horizontal transport of C by streams and rivers
211 implies a positive E term in terrestrial ecosystems, where -NEE should exceed NECB.
212 The E is probably also large in wetlands, where -NEE likely exceeds net storage in soils
213 plus CH₄ emissions (Eq. 1; Fig. 1c). In contrast, in aquatic systems NECB exceeds -NEE
214 and E is negative (Cole and Caraco 2001; Battin et al. 2008) because these ecosystems
215 receive in general more C from upstream than they export downstream. In addition, the
216 fact that part of E occurs as OC implies that NEP exceeds NECB in terrestrial systems and
217 wetlands that export OC, whereas NECB will exceed NEP for instance in lakes or
218 estuaries that receive and store large amounts of allochthonous OC in their sediments

219 (Lovett et al. 2006; Cole et al. 2007; Tranvik et al. 2009). In general, C fluxes at the
220 boundaries of ecosystems and metabolic fluxes inside the ecosystems suggest that the
221 magnitude of the export term E in Eq. 1 and Fig. 2 and the deviation of -NEE from NECB
222 and from NEP, will strongly depend on their hydrological connectivity, together with the
223 allocation of GPP and ER in air and water.

224

225

226 **3. THE INLAND WATER PERSPECTIVE**

227 Global estimates of CO₂ emissions from inland waters (Cole et al. 1994; Raymond et al.
228 2013; Lauerwald et al. 2015) are derived from CO₂ flux intensities computed from the
229 water-air gradient of the partial pressure of CO₂ (pCO₂) and the gas transfer velocity at
230 the water-air interface and scaled to the surface area of lakes and rivers. Each of the
231 three terms suffers for uncertainties and generally poor data coverage. Cole et al. (1994)
232 provided the first quantification of the CO₂ emission to the atmosphere from lakes (0.1
233 PgC yr⁻¹), which was later confirmed by an updated calculation by Sobek et al. (2005).
234 Cole and Caraco (2001) estimated global CO₂ degassing for rivers and streams, which
235 has been recently re-evaluated by Raymond et al. (2013) and Lauerwald et al. (2015).
236 The two latter studies are based on pCO₂ computed from pH and alkalinity from the
237 same database (GLORICH, Hartmann et al. 2014) but with different data selection
238 criteria and scaling approaches. Raymond et al. (2013) extrapolated discrete pCO₂
239 values per COSCATS catchment aggregated units (Meybeck et al. 2006) and obtained a
240 global CO₂ emission to the atmosphere of 0.3 PgC yr⁻¹ from lakes and 1.8 PgC yr⁻¹ from
241 rivers and streams. A potential problem in this estimation comes from the calculation of
242 pCO₂ from pH and alkalinity, which greatly overestimates pCO₂ (up to several hundred
243 percent) in many acidic organic rich “black” waters such as those found in the tropics
244 and the boreal zone (Abril et al. 2015). Lauerwald et al. (2015) computed river pCO₂
245 values on a regular grid (1°x1°), using a multiple regression model based on the
246 GLORICH pCO₂ data and modelled terrestrial NPP on the catchment, population density,
247 air temperature and slope; this method provided a lower estimate of global CO₂
248 emission for rivers of 0.7 PgC yr⁻¹. The strong divergence of global CO₂ emission
249 estimates in these two studies most likely reflects the low data coverage in tropics that
250 account for nearly 80% of the modelled global emission, although in the GLORICH

251 database nearly all of the data in the tropics are from the Amazon. Recent direct pCO₂
252 measurements in several African rivers (Borges et al. 2015a), and in the Amazon (Abril
253 et al. 2014) scaled to the tropics with wetland coverage (Borges et al. 2015b) provide a
254 value of 1.8 ± 0.4 PgC yr⁻¹ of CO₂ outgassing from tropical rivers alone (latitude $< 25^\circ$),
255 and thus support the higher estimate of Raymond et al. (2013). A larger estimate of the
256 global river CO₂ outgassing of 3.9 PgC yr⁻¹ has been published recently (Sawakuchi et al.
257 2017). However, we choose not to consider this number in our analysis because it is
258 based on observations in the Amazon River that include the floodplain areas with a
259 canopy of vegetation above the water.

260

261 According to the active pipe concept (Fig. 1b), the emission of CO₂ to the atmosphere
262 from inland waters is attributed to terrestrial C fixed by plants on the catchment. The
263 transfer occurs as (1) an input of dissolved CO₂ (and CH₄) originating from soil
264 respiration, that will be further degassed from waters (E_{CO2} and E_{CH4} in Eq. 6); (2) an
265 input of particulate and dissolved organic C (E_{DOC} and E_{POC}) followed by heterotrophic
266 degradation to CO₂ and CH₄ in the aquatic system (Del Giorgio et al. 1999; Prairie et al.
267 2002; Cole et al. 2000; Battin et al. 2008; Hotchkiss et al. 2015). Inland waters,
268 particularly lakes, also store significant quantities of OC mainly of terrestrial origin in
269 their sediments (Cole et al. 2007; Tranvik et al. 2009). In aquatic systems, all the GPP
270 and ER occur in water and sediments (Fig. 2c) and can be quantified with *in vitro* or *in*
271 *situ* incubations. In addition, the CO₂ outgassing flux measured with floating chambers in
272 open waters give a direct estimate of -NEE (although this method may create artefacts at
273 the water-air interface), and diurnal changes in water pCO₂ (or oxygen concentration)
274 can provide an estimate of GPP and ER. Battin et al. (2008) made a global synthesis of
275 aquatic metabolism rate measurements and confirmed that stream, river and estuarine

276 ecosystems are overall net heterotrophic and respire a total flux of 0.3 PgC yr⁻¹. The fact
277 that net heterotrophy (negative NEP) is in general lower than CO₂ outgassing in inland
278 waters, led Hotchkiss et al. (2015) to differentiate “internal CO₂” (from -NEP) from
279 “external CO₂” coming from groundwater inputs of DIC. Indeed, inputs of groundwater
280 DIC are acknowledged as sustaining a significant fraction of the CO₂ emissions from
281 lakes (Butman and Raymond 2011; McDonald et al. 2013) and from rivers, especially
282 headwaters (Johnson et al. 2008; Hotchkiss et al. 2015; Deirmendjian and Abril 2018).
283 Horizontal transfer of respiration-derived DIC from terrestrial and wetland ecosystems
284 to aquatic ecosystems explain why aquatic NEE (CO₂ outgassing) greatly exceeds -NEP
285 (negative NEP, net heterotrophic ecosystems) in rivers (Abril et al. 2014; Hotchkiss et al.
286 2015; Borges et al. 2015a). Conversely, this outgassing flux from aquatic systems implies
287 that in terrestrial ecosystems and wetlands that release DIC laterally, NEP exceeds -NEE.
288

289

290 **4. THE TERRESTRIAL PERSPECTIVE**

291 Hydrological C export as a significant loss term for terrestrial ecosystems has been
292 considered in more detail only relatively recently (e.g., Ciais et al. 2008) and is included
293 in only a very limited number of global terrestrial models (Krinner et al. 2005).
294 Terrestrial C budgets at the plot and the continental scales are based on different
295 methods not consistent and precise enough to estimate hydrological C export as a
296 residual flux. In addition, no direct standardized experimental method is available yet to
297 directly estimate the flux of C across the boundary between land and water, and the E
298 term in Eq. 1 for terrestrial systems is almost always calculated from a C mass balance in
299 inland waters (Fig. 1b; Ciais et al. 2013). Terrestrial -NEE calculated as the difference
300 between land use change and net land C flux is estimated at 2.6 PgC yr⁻¹ for the years
301 2000s (Ciais et al. 2013). In a conceptual model that ignores the different functionalities
302 between floodable and drained land (Fig. 1b), depending on what estimates are used for
303 the outgassing term (Raymond et al. 2013; Lauerwald et al. 2015) and for the sediment
304 burial term (Cole et al. 2007; Tranvik et al. 2009), the hydrological export necessary to
305 balance the inland water C budget is 1.9-3.2 PgC yr⁻¹, which corresponds to 75-125% of
306 the present net atmosphere-land C flux (Fig. 1b). The atmosphere-land net C flux of 2.6
307 PgC yr⁻¹ is derived from multiple approaches including atmospheric CO₂ inversion,
308 terrestrial ecosystem models and forest inventories (Ciais et al. 2013). The atmospheric
309 CO₂ inversion method integrates large continental areas that include inland waters.
310 Thus, the global -NEE calculated from continental-scale inversion models accounts for
311 CO₂ outgassing from inland waters. Intriguingly, the results of inversion methods are
312 relatively consistent with forest inventories and process-based models that do not
313 necessarily account for hydrological export (Ciais et al. 2013). However, when a

314 comparison is made at the plot scale with eddy-covariance data, model performance is
315 generally poor (Schwalm et al. 2010), and for instance modelled GPP can be
316 overestimated by more than 100% in tropical forests (Stöckli et al., 2008). If a -NEE
317 from atmospheric inversion is assumed close to NECB from inventories and process-
318 based models, then the E term (Eq. 1) is expected to be small, within the error of flux
319 estimates from the terrestrial perspective. If outgassing of CO₂ from freshwater is
320 already included in -NEE calculated by atmospheric inversion methods, and if this -NEE
321 value (2.0-3.0 PgC yr⁻¹) is very close to that of NECB (1.8-2.3 PgC yr⁻¹), then terrestrial
322 ecosystems cannot export the 0.6-1.0 PgC yr⁻¹ of recalcitrant OC that is buried in inland
323 waters (0.2-0.6 PgC yr⁻¹) and exported to the ocean (0.4 PgC yr⁻¹).

324

325 Spatially, global forest carbon accumulation occurs in boreal and temperate regions,
326 whereas tropical forests were found to be near neutral, with net emissions from land
327 use change being compensated by sinks in preserved tropical forests (Pan et al. 2011).
328 In contrast, Lauerwald et al. (2015) estimated that 78% of global CO₂ outgassing by
329 rivers occurred at a latitude lower than 25°. Such latitudinal uncoupling between CO₂
330 uptake by forests and CO₂ outgassing from rivers and lakes is intriguing and merits an
331 explanation. Indeed, it would imply that different climatic and/or anthropogenic forces
332 are driving these continental fluxes, in contradiction with the positive spatial correlation
333 between river pCO₂, air temperature and terrestrial NPP at the global scale (Lauerwald
334 et al. 2015). It should not be forgotten, however, that these correlations could be
335 indirect. Indeed, field pCO₂ data in the Amazon and in African rivers including the Congo,
336 reveal a strong positive influence of flooding and the presence of wetlands on water
337 pCO₂ (Abril et al. 2014; Borges et al. 2015a,b).

338

339 In terrestrial systems, few local studies at the plot scale compare -NEE or NECB
340 measurements with E derived from groundwater, spring and/or stream sampling. These
341 studies lead to very different conclusions from those of global modelling studies. In
342 remnant mature forests of Para, Brazil, Davidson et al. (2010) estimated the export of
343 dissolved CO₂ from soil and groundwater to streams at a value of 2-3 orders of
344 magnitude lower than the soil respiration and NPP. In temperate climate, Kindler et al.
345 (2011) quantified C leaching by combining a soil-water model and dissolved C analysis
346 in soil water; these authors reported significant E flux in croplands (25% of NECB),
347 grasslands (22%) but not in forests (less than 3%). In a temperate, forested and well-
348 drained watershed, Deirmendjian et al. (2018) monitored dissolved C concentrations in
349 groundwater and streams and estimated a total export E of 2% of -NEE as measured by
350 eddy-covariance at the same site. These modest export rates from forests in this limited
351 number of studies appear contradictory with the necessity of a large E term from
352 terrestrial ecosystems (1.9-3.2 PgC yr⁻¹ in Fig. 1b) to fuel inland waters at the global
353 scale (Cole et al. 2007; Ciais et al. 2013).
354
355 From an ecological point of view, a modest hydrological C export from well-drained
356 lands is also supported by the nature of their NEP components and more specifically by
357 the allocation of GPP and ER between air and water (Fig. 2,3). In terrestrial systems, GPP
358 assimilates atmospheric CO₂, and AR releases CO₂ partly in air (ARa), as foliar
359 respiration, woody tissue respiration, and partly in soil (ARs), as root respiration. HR
360 occurs almost entirely in soils (HRs). In forests, belowground respiration generally
361 accounts for 30-80% of ER, and aboveground respiration accounts for the remaining
362 fraction of ER (Davidson et al. 2006). Belowground respiration in soils (ARs and HR)
363 produces CO₂ mainly in superficial well-drained soils, where root density is highest and

364 which are enriched in biodegradable organic matter by litter fall and root exudation
365 (Ryan and Law 2005). When the land is well-drained, this CO₂ is released in the
366 unsaturated zone of the soil and mostly returns to the atmosphere across the soil-air
367 interface. In a tallgrass prairie, downward transfer of soil CO₂ to groundwater was only
368 approximately 1% of the soil-air CO₂ efflux (Tsypin and Macpherson 2012). For this
369 reason, CO₂ efflux from soils as measured with static chambers (Fig. 3) is commonly
370 used as an integrative measure of soil respiration (Ryan and Law 2005; Davidson et al.
371 2006) and until now, by considering the loss of CO₂ that dissolves in groundwater as
372 negligible or within the error of estimation of metabolic flux at the ecosystem scale.
373
374 The transfer of C from well-drained terrestrial ecosystems to aquatic systems (Fig. 3)
375 occurs through mechanical erosion of superficial soil by runoff that mobilizes POC
376 including young litter, more refractory mineral-bound OC, as well as dissolved humic
377 OC, and percolation of rainwater through soils that dissolves gaseous CO₂ and soil OC
378 and liberates DIC and DOC in groundwater, which is further drained to streams and
379 rivers. The fraction of HR that occurs in groundwater is probably modest in well-drained
380 ecosystems, as the deepest water-saturated soil horizons contain much less
381 biodegradable organic matter than the superficial soil (Ryan and Law 2005;
382 Deirmendjian et al. 2018). A modest export rate from forests is thus consistent with the
383 allocation of forest metabolism (in particular ER) mainly above the water table (Fig. 2a),
384 and with only few percent of -NEE ultimately reaching the aquatic system in non-
385 flooding conditions (Fig. 3).
386
387

388 **5. THE WETLAND PERSPECTIVE**

389 Even though wetlands cover an area of only approximately 10% of land surface
390 (Downing 2009), they act as hotspots of productivity and CH₄ emissions (Saunois et al.
391 2016). In addition, wetlands have strong hydrological connections with streams, rivers
392 and lakes. Ecologists formulated the hypothesis of wetlands as efficient C-exporters long
393 ago. Mulholland and Kuenzler (1979) reported several-fold higher DOC export from
394 swamps than from the surrounding landscape in North Carolina (US). Junk (1985)
395 described floodplain wetlands as a source of POC for the Amazon River; Wetzel (1992)
396 named littoral wetlands of lakes has “metabolic gates” for nutrients and organic C
397 between terrestrial and aquatic ecosystems. More recently, using a landscape ecological
398 approach, Jenerette and Lal (2005) commented on the determinant influence of
399 hydrology on wetland C fluxes, including downstream export to open waters.
400 Consequently, hydrological variation (the second dimension of the conceptual 2D-
401 Model) was identified as a factor of large uncertainty in wetland C cycling (Jenerette and
402 Lal 2005). Indeed, current available quantitative information on the C export flux (Eq. 6)
403 is particularly scarce. In wetlands, the quantification of metabolic C fluxes, and the
404 understanding of biogeochemical processes regulating -NEE, NEP, ER, and NECB have a
405 high degree of uncertainty. The partitioning of wetland community metabolism between
406 air, water and sediment, and the complex biological and physical processes that transfer
407 C in gaseous, dissolved, and particulate forms between these three sub-compartments
408 are only partially understood (e.g., Hamilton et al. 1995); they are also highly variable in
409 time and space, and difficult to measure in practice.

410

411 The few estimates of wetland C fluxes at the global scale strongly vary depending first on
412 the surface area considered for upscaling (Fig. 1c). Lenher and Döll (2004) calculated a

413 wetland surface area of 9-11 10^6 km 2 , Mitsch et al. (2013) have used a value of 7 10^6
414 km 2 , and Downing (2009) re-evaluated the total wetland area including smaller systems
415 to 13-16 10^6 km 2 . Based on remote sensing data, Papa et al. (2010) provide a mean total
416 surface area of 3.4 10^6 km 2 , with 56% located in the tropics, in agreement with previous
417 estimates by Pringent et al. (2001; 2007). More recently, Lu et al. (2016) use a larger but
418 probably unrealistic value of 33 10^6 km 2 . Global wetland C fluxes consist in three major
419 terms in Eq. 1: (1) -NEE obtained from eddy-covariance measurements was up-scaled to
420 a value of 3.2 PgC yr $^{-1}$ (Lu et al. 2016), an estimate that needs to be corrected to 1.3 PgC
421 yr $^{-1}$ when applying the surface area re-evaluated by Downing (2009); in addition, the
422 arithmetic mean of available eddy covariance data (Lu et al. 2016) is probably not the
423 most appropriate way to upscale -NEE at the global scale, and a more precise typology of
424 wetland -NEE is necessary, based for instance on the classification of Lehner and Döll
425 (2004). (2) NECB is assumed as equal to organic C sequestration in soils and estimated
426 from ^{210}Pb and ^{137}Cs core dating (Mitsch et al. 2013), a method that ignores slow decay
427 in the soil C pool and can result in unrealistically high soil C sequestration rates
428 (Bridgham et al 2014); Indeed, Mitsch et al. (2013) proposed a global C sequestration
429 value of 0.8 PgC yr $^{-1}$, whereas Bridgham et al. (2014) re-evaluated this value to less than
430 0.1 PgC yr $^{-1}$. (3) The F_{other} term for wetlands is mainly composed of CH $_4$ emissions and
431 estimated from bottom-up approaches using static chambers and process-based models
432 (Mitsch et al. 2013; Saunois et al. 2016), and top-down inversion models based on
433 atmospheric data (Saunois et al. 2016). Recent published estimates for the global
434 wetland CH $_4$ flux range between 0.2 PgC yr $^{-1}$ (Saunois et al. 2016) and 0.6 PgC yr $^{-1}$
435 (Mitsch et al. 2013). Wetland C sources and sinks are thus subject to large uncertainties
436 but still support the possibility of a residual C flux able to contribute significantly to
437 river C budgets at the global scale (Fig. 1c.).

438

439 Eddy covariance reveals strong negative NEE (CO₂ sink) in most wetlands (Morison et al.
440 2000; Jones and Humphries 2002; Saunders et al. 2007; Lu et al. 2016). However, if
441 wetland E is ignored but significant, GPP, NPP, NEP, and NECB deduced from the diurnal
442 changes of eddy CO₂ fluxes (Lu et al. 2016) would be overestimated and, inversely, ER
443 would be underestimated (Eqs.1-6). This point is particularly crucial because in
444 wetlands the aerial compartment contains most of the photosynthetic parts of the
445 ecosystem (GPP, NPP) fixing CO₂ directly from the atmosphere, whereas the aquatic
446 compartment contains the respiratory parts of the ecosystem (ER, HR and a large
447 fraction of AR) releasing CO₂ to waters but only part of it back to the atmosphere
448 because of gas-exchange limitation at the water-air interface (Fig. 3). Wetland 1D mass-
449 balance budgets also include an estimation of NPP, based on biomass inventories
450 (Mitsch et al. 2013; Sjögersten et al. 2014). One problem with NPP data is not accounting
451 for all the C transferred by the plant from the atmosphere to soil and waters. As the sum
452 of NEP and HR (Eq. 5), NPP does not include the fraction of GPP that is recycled by AR,
453 and most importantly, the root respiration in sediment and water, which is highly
454 significant below floating plant meadows (Bedford et al. 1991; Hamilton et al. 1995) and
455 in flooded forest (Piedade et al. 2010). Total AR should be divided into three
456 components according to:

$$457 \quad AR=AR_a+AR_w+AR_s \quad (Eq. 7)$$

458 where AR_a, AR_w and AR_s are the fraction of AR occurring in air, water and soils,
459 respectively (Fig. 3). In wetlands, a canopy of vegetation protects the water-air interface
460 from wind stress and the gas transfer velocity is lower compared to surrounding open
461 waters (Foster-Martinez and Variano 2016; Ho et al. 2018). Consequently, only a limited
462 fraction of AR_w and AR_s will contribute to the CO₂ fluxes measured with static chambers

463 in wetlands. This is a second reason why wetland mass balances are incomplete and
464 may artificially shift wetlands to atmospheric C sources or sinks (Sjögersten et al. 2014).
465
466 The allocation of C stocks and metabolism above and below water is fundamentally
467 different in wetlands compared to well-drained land, and this considerably modifies
468 their ecological functionalities (Fig. 2 and 3). Although some wetland plants also use DIC
469 from water for photosynthesis, a large majority of wetland GPP is made by the emerged
470 part of plants that fix atmospheric CO₂ during the emersion periods, and/or during the
471 flooding because of their emerged or floating canopies (Piedade et al. 1994; Parolin et al.
472 2001; Engle et al. 2008). A large fraction (excluding wood) of the wetland biomass
473 produced annually is transferred directly to water and sediment as litter fall and fine
474 root production, where it fuels HR, including methanogenesis. Albeit important for CH₄
475 oxidation (Segarra et al. 2015), this leads to a F_{other} (Eq. 1) as CH₄ fluxes more
476 significantly in wetlands than in well-drained terrestrial ecosystems (Ciais et al. 2013;
477 Saunois et al. 2016). In addition, because of anaerobic conditions in their soils, water-
478 tolerant plants can develop morphological aeration strategies (Haase and Rätsch 2010)
479 that actively transport oxygen to the root zone and enhance respiration and the release
480 of dissolved CO₂, CH₄ and other fermentative organic compounds such as ethanol to
481 waters and pore waters (Bedford et al. 1991; Hamilton et al. 1995; Piedade et al. 2010).
482 Plants also transport CH₄ directly from sediments to the atmosphere (Byrnes et al.
483 1995). This is why wetland water below plant canopies is generally hypoxic and highly
484 supersaturated in CO₂ (Bedford et al. 1991; Abril et al. 2014) and CH₄ (Hamilton et al.
485 1995; Borges et al. 2015b). Because the water-air interface behaves as a strong physical
486 barrier for gas diffusion, depending on hydrological features, dissolved CO₂ from

487 swamps, marshes and floodplains waters can be transported downriver for long
488 distance before being emitted to the atmosphere (Abril et al. 2014; Borges et al. 2015b).

489

490 The process that captures atmospheric CO₂ and exports organic and inorganic C to
491 rivers and lakes can be called the *wetland CO₂ pump*. This biological pump is also
492 consistent with chamber measurements that generally identify CO₂ sinks in vegetated
493 flooded areas and CO₂ sources in adjacent open waters (Pierobon et al. 2011; Ribaudo et
494 al. 2012; Peixoto et al. 2016). It is worth noting that little is known on how wetland -NEE
495 is affected by hydrology. For instance, a swamp of papyrus (*Cyperus papyrus*) on a
496 sheltered shore of Lake Naivasha, Kenya, was a CO₂ sink during immersion but a CO₂
497 source during emersion, when large amounts of plant detritus accumulated in soils were
498 exposed to air (Jones and Humphries 2002). In contrast, in the more hydrologically
499 dynamic Amazon floodplain, Brazil, a stand of *Echinochloa polystachya*, another C4 plant,
500 was a CO₂ sink during both immersion and emersion (Morison et al. 2000). This suggests
501 that a more efficient hydrological export of C in Amazon floodplains compared to Lake
502 Naivasha could have promoted an annual negative NEE (Eq. 1). Such competition
503 between C export and burial is also consistent with the more efficient C sequestration in
504 low flow-through wetlands (Mitsch et al. 2014).

505

506 Concerning wetland metabolic C balance, the fraction of OC produced by NPP that is not
507 respired *in situ* or buried in the wetland soil is exported to rivers systems as OC (Fig. 3),
508 according to:

509 $NPP = B + HR + E_{POC} + E_{DOC}$ (Eq. 8)

510 $NEP = B + E_{POC} + E_{DOC}$ (Eq. 9)

511 where B is the OC burial in the wetland soil. Thus, the export of POC and DOC from
512 wetlands is expressed as:

513 $E_{POC} + E_{DOC} = NEP - B = NPP - HR - B$ (Eq. 10)

514 Downstream, this organic material will undergo intense degradation in inland water
515 (negative NEP), contributing to CO₂ outgassing through the OC detrital pathway (Cole
516 and Caraco 2001; Battin et al. 2008).

517 Plants and microbes respiring in water, sediments, and the root zone (ARw and ARs and
518 HR) release dissolved CO₂ in wetland water. ARa is the only component of ER not
519 contributing to E_{CO2}. The fraction α of wetland ER occurring in water and sediment
520 (ARw and ARs) and almost all of the microbial HR (Eq. 11), release dissolved CO₂ (and
521 CH₄) to waters:

522 $\alpha ER = ARw + ARs + HR \quad \text{with } (0 < \alpha < 1) \quad (\text{Eq. 11})$

523 part of these dissolved gases are emitted to the atmosphere, and another part is
524 exported by the water flow:

525 $\alpha ER = FCO_2 + FCH_4 + E_{CO2} + E_{CH4}$ (Eq. 12)

526 with $E_{CO2} = \alpha \beta ER$ and $F_{CO2} = \alpha (1 - \beta) ER$ and $(0 < \beta < 1)$ (Eq. 13)

527 For simplification, we do not include E_{CH4} in this last equation because this term is
528 assumed to be modest (few %) compared to E_{CO2}. Indeed, the β term might be much
529 smaller for CH₄ than for CO₂ due to preferential CH₄ ebullition and transport through
530 plants in wetlands (Chanton and Whiting 1995). For CO₂, the fraction β depends on
531 hydrological and geomorphological parameters such as water depth, velocity and gas
532 exchange in the wetland. Using a simple model of lateral dissolved gas transport (Abril
533 et al. 2014), typical values of 1 cm s⁻¹ for the gas transfer velocity (Foster-Martinez and
534 Variano 2016; Ho et al. 2018) and 5000 ppmv for water pCO₂, we calculated a β value of

535 0.93 for a water column of 1 m-depth flowing at a velocity of 10 cm s^{-1} in a 100 m-long
536 wetland. When the water depth is established at 0.1 m instead of 1 m or the water
537 velocity is established at 1 cm s^{-1} instead of 10 cm s^{-1} , β decreases to 0.53. Consequently,
538 a large majority of the CO_2 produced by wetland below-water respiration is outgassed to
539 the atmosphere outside of the wetland. Finally, accounting for all terms in Eq. 6 in
540 wetlands leads to total export expressed as:

541 $E = (E_{\text{DOC}} + E_{\text{POC}}) + (E_{\text{CO}_2} + E_{\text{CH}_4}) = (\text{NPP} - \text{HR} - B) + (\beta \alpha \text{ER} - F_{\text{CO}_2} - F_{\text{CH}_4})$ (Eq. 14)

542 $E = (E_{\text{DOC}} + E_{\text{POC}}) + (E_{\text{CO}_2} + E_{\text{CH}_4}) = (\text{NPP} - \text{HR} - B) + (\beta (\text{ARw} + \text{ARs} + \text{HR}) - F_{\text{CO}_2} - F_{\text{CH}_4})$ (Eq. 14)

543 $E = \text{NPP} - B + \beta \text{ARw} + \beta \text{ARs} + (\beta - 1) \text{HR} - F_{\text{CO}_2} - F_{\text{CH}_4}$ (Eq. 15)

544 The correct 2D wetland mass balance budget in wetlands is also calculated as:

545 $\text{NPP} + \beta \text{ARw} + \beta \text{ARs} - (1 - \beta) \text{HR} = B + F_{\text{CO}_2} + F_{\text{CH}_4} + E$ (Eq. 16).

546 The three terms ARw and ARs and HR together with the E term, are generally neglected
547 in wetland C budgets (Mitsch et al. 2013; Sjögersten et al. 2014).

548

549 WHAT TOOLS DO PLUMBERS NEED?

550 Quantifying hydrological C export from wetlands at the community, ecosystem, regional,
551 and global scales would require information that to date is still missing or incomplete.
552 General recommendations include more systematic field observations of C fluxes across
553 the boundaries of wetlands with the atmosphere, the upland and the river. Eddy
554 covariance data is still lacking in some remote wetlands where logistics are complicated
555 (Lu et al. 2016), for example in floodplains of large tropical rivers, which host highly
556 productive flooded forests and floating macrophytes (Piedade et al 1994; Morison et al.
557 2000), and largely contribute to riverine global CO_2 and CH_4 emissions (Richey et al.
558 2002; Engle et al. 2008; Bloom et al. 2010; Abril et al. 2014; Borges et al. 2015a). Eddy

559 covariance measurements should also be more systematically coupled at the same site
560 with chamber measurements, hydrological C fluxes and C sequestration studies but
561 accounting for the longer time-scale of the sequestration rates based on core dating.

562

563 The quantification in the field of the amount of C that enters or leaves wetland
564 ecosystems horizontally with water flow is challenging because many wetlands have
565 complex morphologies and multiple pathways of hydrological transport that should be
566 apprehended using hydrodynamical modelling. In addition to hydrological complexity,
567 the C forms may largely change when water crosses the wetland and for instance,
568 terrestrial mineral-bound POC can be trapped and replaced by wetland POC, DOC and
569 dissolved CO₂. Isotopic and molecular tracers can help in differentiating terrestrial from
570 wetland OC, when the signatures of the two sources are well separated, for instance, in
571 watersheds dominated by C3 forests, the contribution of wetland C4 macrophytes can
572 be tracked in riverine POC, DOC and DIC (Quay et al. 1992; Mortillaro et al. 2011; Albéric
573 et al. 2018). In contrast, OC from flooded forests is more difficult to differentiate from
574 that coming from *terra firme* forests (Ward et al. 2013) when many tree species are
575 common to both ecosystems (Junk et al. 2010). Radiocarbon age in rivers can be
576 interpreted as the time spent by C in soils and, when young C predominates, they
577 suggest a rapid transfer from plants to waters (Mayorga et al. 2005), as in wetlands
578 ecosystems. However, some wetlands such as peats can also export old dissolved C to
579 streams (Billet et al. 2007).

580

581 Original experimental work in mesocosms that simulate flooding, as well as wetland
582 ecosystem manipulations are necessary to characterize and quantify hydrological C
583 export per flooded area, as well as the fraction of ecosystem respiration occurring below

584 water; methods must be developed to estimate HR, ARw and ARs (Eq. 11-13). Soil core
585 incubations or submerged static chambers for instance, provide an estimate of HRs plus
586 a fraction of ARs in some wetlands with small plants; in the absence of phytoplankton,
587 dark bottle incubations measure HRw but miss ARw released by the submerged part of
588 plants. Special mesocosms adapted to the metabolism of semi-aquatic plants are
589 necessary. Data of metabolic rates are still missing but would be necessary to build
590 coupled hydrological-biogeochemical models for wetlands and inland waters. Process-
591 based biogeochemical models are indeed promising approaches for quantifying C
592 exports from flooded lands (e.g., Sharifi et al. 2013; Lauerwald et al. 2017). Ideally, these
593 models could simulate the most important biological processes in the wetland: GPP,
594 NPP, litter fall, and the different components of ER in air, water and soil, together with
595 hydrological transport and gas emission. Few modelling studies account for DOC export
596 (Sharifi et al. 2013), most miss the DIC export as dissolved CO₂ and do not correctly
597 account for the autotrophic respiration terms (ARw and ARs), or the heterotrophic
598 microbial processes in the root zone (HRs) (Fig. 2). Recently, Lauerwald et al. (2017)
599 developed a new type of model of C cycling in large rivers that mimics the most
600 important physical and biological processes, including land flooding; when applied to
601 the Amazon River, the model calculated a total CO₂ outgassing flux close to that upscaled
602 from field measurements (Richey et al. 2002); in addition, the computed relative
603 contributions to the total dissolved C inputs of surface runoff (14%), drainage (28%)
604 and flooding (57%) were consistent with recent field evidence that wetlands
605 predominantly fuel CO₂ outgassing from the Amazon River (Abril et al. 2014).
606
607 Finally, a precise upscaling of wetland and inland waters global C budgets requires an
608 adequate typology of C cycles that accounts for the different hydrological and

609 biogeochemical functioning of peats, swamps, marshes and floodplains, and their spatial
610 distributions along climatic zones (Lehner and Döll 2004). Ideally, process-based
611 models should be built and validated in individual wetland types, and then aggregated to
612 a global model able to quantify C fluxes between drained land, floodable land, rivers and
613 lakes and the atmosphere at the continental scale. Such modelling tools will also be
614 highly valuable to predict the impacts of climate and land use changes on these
615 continental C fluxes. Knowing the relative contribution of well-drained land and wetland
616 to inland water CO₂ emissions is crucial for quantifying the continental greenhouse gas
617 budget (Fig. 1) and to predict its sensitivity and feedback on climate warming. For
618 instance, the intensification of floods and droughts or river damming have the potential
619 to drastically modify C fluxes at the land-water-atmosphere interface and alter or
620 enhance the hotspot character of wetlands in the continental C cycle. Such evolution
621 must be monitored in the field, better understood, conceptualized, and modelled in
622 order to guide environmental conservation strategies in the next decades.

623

624 ACKNOWLEDGEMENTS

625 This contributes to the European Research Council Starting Grant AFRIVAL (240002),
626 the French national research agency CARBAMA project (grant n° 08-BLANC-0221), and
627 the CNP-Leyre project funded by the Cluster of Excellence COTE at the Université de
628 Bordeaux (ANR-10-LABX-45). AVB is a senior research associate at the Fonds National
629 de la Recherche Scientifique.

630

631

632

633 REFERENCES

634 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C., Marwick, T., Tamooh, F., Ochieng
635 Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges A.V.:
636 Technical Note: Large overestimation of pCO₂ calculated from pH and alkalinity in
637 acidic, organic-rich freshwaters. *Biogeosciences* 12, 67-78, 2015.

638 Abril, G., Etcheber, H., Borges, A.V. & Frankignoulle, M.: Excess atmospheric carbon
639 dioxide transported by rivers into the Scheldt Estuary. *Comptes Rendus de*
640 *l'Académie des Sciences Série IIA* 330, 761-768, 2000.

641 Abril, G., Martinez, J.-M., Artigas, L.F., Moreira-Turcq, P., Benedetti, M.F., Vidal L.,
642 Meziane, T., Kim, J.-H., Bernardes, M.C., Savoye, N., Deborde, J., Albéric, P., Souza,
643 M.F.L., Souza, E.L. and Roland, F.: Amazon River Carbon Dioxide Outgassing fuelled
644 by Wetlands, *Nature* 505, 395-398, 2014.

645 Albéric P., Pérez M.A.P., Moreira-Turcq P., Benedetti M., Bouillon S. and Abril G.:
646 Variation of dissolved organic carbon isotopic composition during the runoff cycle
647 in the Amazon River and floodplains. *CR Geoscience*. 350, 65-75, 2018.

648 Aufdenkampe, A.K., Mayorga, E., Raymond, P.A. Melack, J.M., Doney, S.C., Alin, S.R., Aalto,
649 R.E., and Yoo, K.: Rivers key to coupling biogeochemical cycles between land,
650 oceans and atmosphere. *Front. Ecol. Environ.* 9, 53-60, 2011.

651 Bastviken, D., Tranvik, L., Downing, J.A., Crill P.M., Enrich-Prast, A.: Freshwater methane
652 emissions offset the continental carbon sink. *Science* 331, 50, 2011.

653 Battin, T.J., Luyssaert S., Kaplan L.A., Aufdenkampe A.K., Richter A., and Tranvik L.J.: The
654 boundless carbon cycle. *Nature Geosci.* 2, 598-600, 2009.

655 Battin, T.J., Kaplan, L.A., Findlay, S., Hopkinson, C.S., Marti, E., Packman, A.I., Newbold,
656 J.D., and Sabater, F.: Biophysical controls on organic carbon fluxes in fluvial
657 networks. *Nature Geosci* 2, 595–595, 2008.

658 Bedford, B.L., Bouldin, D.R. and Beliveau, B.: Net oxygen and carbon dioxide balances in
659 solutions bathing roots of wetland plants. *J. Ecol.* 79, 943-959, 1991.

660 Billett, M.F., Garnett, M.H., Harvey, F.: UK peatland streams release old carbon dioxide to
661 the atmosphere and young dissolved organic carbon to rivers. *Geophys. Res. Lett.*,
662 34, L23401, doi:10.1029/2007GL031797, 2007.

663 Bloom, A.A., Palmer, P.I., Fraser, A., Reay, D., Frankenberg, C.: Methanogenesis Inferred
664 from Methane and Gravity Spaceborne Data. *Science*, 327, 322-325, 2010.

665 Borges, A.V., Darchambeau, F., Teodoro, C.R., Marwick, T.R., Tamooh, F., Geeraert, N.,
666 Omengo, F.O., Guérin, F., Lambert, T., Morana, C., Okuku, E., and Bouillon, S.:
667 Globally significant greenhouse gas emissions from African inland waters, *Nature
668 Geosci.*, 8, 637-642, 2015a.

669 Borges, A.V., Abril, G., Darchambeau, F., Teodoro, C.R., Deborde, J., Vidal, L.O., Lambert, T.,
670 & Bouillon, S.: Divergent biophysical controls of aquatic CO₂ and CH₄ in the
671 World's two largest rivers, *Scientific Reports*, 5:15614, doi: 10.1038/srep15614,
672 2015b.

673 Bouchez, J., Gaillardet, J., Lupker, M., Louvat, P., France-Lanord, C., Maurice, L., Armijos,
674 E., and Moquet, J.-S. Floodplains of large rivers: weathering reactors or simple
675 silos? *Chemical Geology* 332-333, 166-184 (2012).

676 Bridgman, S.D., Moore, T.R., Richardson, C.J. and Roulet, N.T.: Errors in greenhouse
677 forcing and soil carbon sequestration estimates in freshwater wetlands: a
678 comment on Mitsch et al. (2013). *Landscape Ecology* 29: 1481-1485. 2014.

679 Butman, D., Raymond, P.A., 2011. Significant efflux of carbon dioxide from streams and
680 rivers in the United States. *Nature Geosci.* 4, 839–842, 2011.

681 Byrnes, B.H., Austin, E.R., and Tays, B.K.: Methane emissions from flooded rice soils and
682 plants under controlled conditions. *Soil Biol Biochem* 27:331–9. 1995

683 Chanton, J.P., and Whiting, G.: Trace gas exchange in freshwater and coastal marine
684 systems: ebullition and plant transport. In: *Methods in Ecology: Biogenic Trace*
685 *Gases: Measuring Emissions from Soil and Water*, eds. P. Matson and R. Harriss.
686 Blackwell Scientific, 98-125, 1995.

687 Chapin III, F.S., Woodwell, G.M., Randerson, J.T., Rastetter, E.B., Lovett, G. M., Baldocchi,
688 D.D., Clark, D.A., Harmon, M.E., Schimel, D.S., Valentini, R., Wirth, C., Aber, J.D., Cole,
689 J.J., Goulden, M.L., Harden, J.W., Heimann, M., Howarth, R.W., Matson, P. A., McGuire,
690 A.D., Melillo, J.M., Mooney, H.A., Neff, J.C., Houghton, R.A., Pace, M.L., Ryan, M.G.,
691 Running, S.W., Sala, O.E., Schlesinger, W.H., and Schulze, E.-D. (2006) Reconciling
692 Carbon-cycle Concepts, Terminology, and Methods. *Ecosystems* 9, 1041–1050,
693 2006.

694 Ciais, P., Borges, A.V., Abril, G., Meybeck, M., Folberth, G., Hauglustaine, D. & Janssens, I.A.:
695 The impact of lateral carbon fluxes on the European carbon balance
696 *Biogeosciences*, 5, 1259-1271, 2008

697 Ciais, P., et al. In *Climate Change 2013: The Physical Science Basis. Contribution of*
698 *Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on*
699 *Climate Change* 465–570 (Cambridge University Press, 2014).

700 Cole, J.J., Pace, M.L., Carpenter, S.R., and Kitchell, J.F.: Persistence of net heterotrophy in
701 lakes during nutrient addition and food web manipulations. *Limnol Oceanogr*, 45,
702 1718–1730, 2000.

703 Cole, J.J., and Caraco N.F.: Carbon in catchments: connecting terrestrial carbon losses
704 with aquatic metabolism. *Mar. Fresh. Res.*, 52, 101-110, 2001.

705 Cole, J.J., Caraco, N.F., Kling, G.W., and Kratz, T.K.: Carbon dioxide supersaturation in the
706 surface waters of lakes, *Science*, 265, 1568–1570, 1994

707 Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M.,
708 Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J.: Plumbing the Global
709 Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget.
710 *Ecosystems*, 10, 171–184, 2007.

711 Davidson, E.A., Richardson, A.D., Savage, K.E., and Hillinger, D.Y.: A distinct seasonal
712 pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-
713 dominated forest *Glob. Change Biol.*, 12, 230–239, 2006.

714 Davidson, E.A., Figueiredo, R.O., Markewitz, D., and Aufdenkampe, A.K.: Dissolved CO₂ in
715 small catchment streams of eastern Amazonia: A minor pathway of terrestrial
716 carbon loss. *J. Geophys. Res.*, 115 : G04005, 2010

717 Deirmendjian, L. and Abril, G.: Carbon dioxide degassing at the groundwater-stream-
718 atmosphere interface: isotopic equilibration and hydrological mass balance in a
719 sandy watershed. *J. Hydrol.*, 558, 129-143, 2018.

720 Deirmendjian, L., Loustau, D., Augusto, L., Lafont, S., Chipeaux, C., Poirier, D., and Abril, G.:
721 Hydro-ecological controls on dissolved carbon dynamics in groundwater and
722 export to streams in a temperate pine forest. *Biogeosciences* 15: 669–691, 2018.

723 Del Giorgio, P.A., Cole, J.J., Caraco, N.F., and Peters, R.H.: Linking planktonic biomass and
724 metabolism to net gas fluxes in northern temperate lakes. *Ecology*, 80, 1422–1431,
725 1999.

726 Downing, J.A.: Plenary lecture Global limnology: up-scaling aquatic services and
727 processes to planet Earth. *Verh. Int. Verein. Limnol.*, 30, 1149–1166, 2009.

728 Engle, D.L., Melack, J.M., Doyle, R.D. & Fisher, T.R.: High rates of net primary production
729 and turnover of floating grasses on the Amazon floodplain: implications for aquatic
730 respiration and regional CO₂ flux. *Glob. Change Biol.*, 14, 369–381, 2008.

731 Foster-Martinez, M.R., and Variano, E.A.: Air-water gas exchange by waving vegetation
732 stems, *J. Geophys. Res. Biogeosci.*, 121, doi:10.1002/2016JG003366, 2016.

733 Garrels, R.M., and Mackenzie, F.T.: *Evolution of Sedimentary Rocks*, 397 pp., W. W.
734 Norton, New York, 1971.

735 Geeraert, N., Omengo, F.O., Borges, A.V., Govers, G., Bouillon, S.: Shifts in the carbon
736 dynamics in a tropical lowland river system (Tana River, Kenya) during flooded
737 and non-flooded conditions, *Biogeochemistry*, DOI 10.1007/s10533-017-0292-2,
738 2017.

739 Haase, K., and Rätsch, G.: *The Morphology and Anatomy of Tree Roots and Their
740 Aeration Strategies*. In *Amazonian Floodplain Forests: Ecophysiology, Biodiversity
741 and Sustainable Management* (eds Junk, W. J. et al.) 142-160, Springer, 2010.

742 Hamilton, S. K., Sippel, S.J., and Melack, J., M. : Oxygen depletion and carbon dioxide and
743 methane production in waters of the Pantanal wetland of Brazil *Biogeochemistry*
744 30, 115–141, 1995.

745 Hartmann, J., Lauerwald, R., and Moosdorf, N.: A Brief Overview of the GLObal RIver
746 Chemistry Database, *GLORICH*, *Procedia Earth and Planetary Science*, 10, 23–27,
747 2014.

748 Heimann, M., and Reichstein, M.: Terrestrial ecosystem carbon dynamics and climate
749 feedbacks. *Nature*, 451, 289–292, 2008.

750 Holgerson, M.A., and Raymond, P.A.: Large contribution to inland water CO₂ and CH₄
751 emissions from very small ponds. *Nat. Geosci.* 9, 222–226, 2016.

752 Ho, D.T., Engel, V.C., Ferrón, S., Hickman, B., Choi, J., and Harvey, J.W.: On Factors
753 Influencing Air-Water Gas Exchange in Emergent Wetlands. *Journal of Geophysical*
754 *Research: Biogeosciences*, 123, doi.org/10.1002/2017JG004299, 2018.

755 Hotchkiss, E.R., Hall Jr, R.O., Sponseller, R.A., Butman, D., Klaminder, J., Laudon, H.,
756 Rosvall, M., and Karlsson, J.: Sources of and processes controlling CO₂ emissions
757 change with the size of streams and rivers. *Nat. Geosci.* 8, 696–699, 2015

758 Jenerette G.D. and Lal R.: Hydrologic sources of carbon cycling uncertainty throughout
759 the terrestrial–aquatic continuum. *Global Change Biol.*, 11, 1873–1882, 2005.

760 Johnson, M.S., Lehmann, J., Riha, S.J., Krusche, A.V., Richey, J.E., Ometto, J.P.H.B., and
761 Guimaraes Couto, E. : CO₂ efflux from Amazonian headwater streams represents a
762 significant fate for deep soil respiration. *Geophys. Res. Lett.* 35, L17401, 2008.

763 Jones, M.B., and Humphries, S.W. : Impacts of the C₄ sedge *Cyperus papyrus* L. on carbon
764 and water fluxes in an African wetland. *Hydrobiol.*, 488, 107–113, 2002.

765 Jung M., Le Maire, G., Zaehle, S., Luyssaert, S., Vetter, M., Churkina, G., Ciais, P., Viovy, N.,
766 and Reichstein, M. Assessing the ability of three land ecosystem models to simulate
767 gross carbon uptake of forests from boreal to Mediterranean climate in Europe.
768 *Biogeosciences*, 4, 647–656, 2007.

769 Junk, W.J. The Amazon Floodplain – a sink or source for organic carbon ? In *Mitt. Geol.*
770 *Paleont. Inst. Univ. Hamburg. SCOPE/UNEP Sonderband Heft 58.* 287-293, 1985.

771 Junk, W.J., Piedade, M.T.F., Parolin, P., Wittmann, F. and Schöngart, J.: Ecophysiology,
772 Biodiversity and Sustainable Management of Central Amazonian Floodplain

773 Forests: A Synthesis in *Amazonian Floodplain Forests: Ecophysiology, Biodiversity*
774 *and Sustainable Management* (eds Junk, W. J. *et al.*) 511–540, Springer, 2010.

775 Juutinen, S., Alm, J., Larmola, T., Huttunen, J.T., Morero, M., Martikainen P.J., and Silvola,
776 J.: Major implication of the littoral zone for methane release from boreal lakes,
777 Global Biogeochem. Cycles, 17(4), 1117, doi:10.1029/2003GB002105, 2003.

778 Kindler, R., et al.: Dissolved carbon leaching from soil is a crucial component of the net
779 ecosystem carbon balance. Glob. Change Biol., 17, 1167–1185, 2011.

780 Knoll M.A., and James W.C: Effect of the advent and diversification of vascular land
781 plants on mineral weathering through geologic time. Geology, 15, 1099–1102,
782 1987.

783 Krinner, G., Viovy, N., de Noblet-Ducoudre, N., Ogee, J., Polcher, J., Friedlingstein, P., Ciais,
784 P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model for studies of the
785 coupled atmosphere-biosphere system, Global Biogeochem. Cycles, 19, Gb1015,
786 10.1029/2003gb002199, 2015.

787 Lauerwald, R., Regnier, P., Camino-Serrano, M., Guenet, B., Guimberteau, M., Ducharne A.,
788 Polcher, J., Ciais, P.: ORCHILEAK: A new model branch to simulate carbon transfers
789 along the terrestrial-aquatic continuum of the Amazon basin, Geosci. Model Dev.
790 Discuss., doi:10.5194/gmd-2017-79, 2017

791 Lauerwald, R., Laruelle, G.G., Hartmann, J., Ciais P., and Regnier P.A.G. : Spatial patterns in
792 CO₂ evasion from the global river network, Global Biogeochem. Cycles, 29, 534–
793 554, doi:10.1002/ 2014GB004941. 2015.

794 Lehner, B., and Döll, P.: Development and validation of a global database of lakes,
795 reservoirs and wetlands. J. of Hydrology, 296, 1-22, 2004.

796

797 Lin H.: Earth's Critical Zone and hydrometeorology: concepts, characteristics, and advances.
798 *Hydrol. Earth Syst. Sci.*, 14, 25–45, 2010.

799 Lovett, G., M., Cole J. J., and Pace M. L. : Is Net Ecosystem Production Equal to Ecosystem
800 Carbon Accumulation? *Ecosystems* 9: 1–4, 2006

801 Lu, W., Xiao, J., Liu, F., Zhang, Y., Liu, C. and Lin G. : Contrasting ecosystem CO₂ fluxes of
802 inland and coastal wetlands: a meta-analysis of eddy covariance data. *Glob. Change
803 Biol.* doi: 10.1111/gcb.13424, 2016.

804 Luyssaert S., Ciais P., Piao S., Schulze, E.-D., Jung M., Zaehle S., Reichstein M., Churkina G.,
805 Papale D., Abril G., Beer C., Grace J., Loustau D., Matteucci G., Magnani F., Schelhaas
806 M.-J., Nabuurs G.-J., Verbeeck H., Sulkava M., van der Werf G. and Janssens I.: The
807 European carbon balance revisited. Part 3: forests. *Glob. Change Biol.* 16: 1429–
808 1450, 2010.

809 Mayorga E., Aufdenkampe A.K., Masiello C.A., Krusche A.V., Hedges J.I., Quay P.D., Richey
810 J.E., Brown T.A.: Young organic matter as a source of carbon dioxide outgassing
811 from Amazonian rivers. *Nature* 436, 538-541, 2005.

812 McDonald, C.P., Stets, E.G., and Striegl, R.G.B.D.: Inorganic carbon loading as a primary
813 driver of dissolved carbon dioxide concentrations in lakes and reservoirs of the
814 contiguous United States. *Glob. Biogeochem. Cycles* 27, 285–295, 2013.

815 Melack, J.M., and Hess, L.L.: Remote sensing of the distribution and extent of wetlands in
816 the Amazon basin. In *Amazonian Floodplain Forests: Ecophysiology, Biodiversity
817 and Sustainable Management* (eds Junk, W. J. et al.) 43-59, Springer, 2010.

818 Melack, J.M., Hess, L.L., Gastil, M., Forsberg, B.R., Hamilton, S.K., Lima, I.B.T., and Novo,
819 E.M.L.M.: Regionalization of methane emissions in the Amazon Basin with
820 microwave remote sensing. *Global Change Biol.* 10, 530-544, 2004.

821 Meybeck, M.: Carbon, nitrogen, and phosphorus transport by world rivers. *Am. J. Sci.*
822 282: 401–450, 1982.

823 Meybeck, M., Dürr, H.H., and Vörösmarty, C.J.: Global coastal segmentation and its river
824 catchment contributors: A new look at land-ocean linkage, *Global Biogeochem.*
825 *Cycles*, 20, GB1S90, doi:10.1029/2005GB002540, 2006.

826 Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E.,
827 and Brix, H.: Wetlands, carbon, and climate change. *Landscape Ecol.* 28, 583–597,
828 2013.

829 Morison, J.I.L., Piedade, M.T.F., Muller, E., Long, S.P., Junk, W.J., and Jones, M.B.: Very high
830 productivity of the C₄ aquatic grass *Echinochloa polystachya* in the Amazon
831 floodplain confirmed by net ecosystem CO₂ flux measurements. *Oecologia*, 125,
832 400–411, 2000.

833 Mortillaro, J.M., Abril, G., Moreira-Turcq, P., Sobrinho, R., Pérez, M., and Meziane, T.: Fatty
834 acid and stable isotopes ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$) signatures of particulate organic matter in
835 the Lower Amazon River: seasonal contrasts and connectivity between floodplain
836 lakes and the mainstem. *Org. Geochem.* 42: 1159–1168, 2011.

837 Mulholland, P.J., and Kuenzler, E.J.: Organic carbon export from upland and forested
838 wetland watersheds, *Limnol. Oceanogr.* 24, 960–966, 1979

839 Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L.,
840 Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W.,
841 McGuire, A.D., Piao, S., Rautiainen, A., Sitch, S., Hayes, D.: A large and persistent
842 carbon sink in the world's forests. *Science*, 333, 988–993, 2011.

843 Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W.B., and Matthews, E.: Interannual
844 variability of surface water extent at the global scale, 1993–2004, *J. Geophys. Res.*,
845 115, D12111, doi:10.1029/2009JD012674, 2010.

846 Parolin, P., Junk, W.J., and Piedade, M.T.F.: Gas exchange of six tree species from Central
847 Amazonian floodplains. *Trop. Ecol.*, 42, 15-24, 2001.

848 Peixoto R.B., Marotta H., Bastviken D., Enrich-Prast A.: Floating Aquatic Macrophytes Can
849 Substantially Offset Open Water CO₂ Emissions from Tropical Floodplain Lake
850 Ecosystems. *Ecosystems* 19: 724 - 736, 2016.

851 Piedade, M. T. F., Ferreira C. S., de Oliveira Wittmann, A., Buckeridge, M., and Parolin, P.:
852 Biochemistry of Amazonian Floodplain Trees. in Amazonian floodplain forests:
853 ecophysiology, biodiversity and sustainable management. (eds Junk, W.J., et al.,
854 Springer) 127-139, 2010.

855 Piedade, M.T.F., Long, S.P. and Junk, W.J.: Leaf and canopy photosynthetic CO₂ uptake of
856 a stand of *Echinochloa polystachya* on the Central Amazon floodplain. Are the high
857 potential rates associated with the C4 syndrome realized under the near-optimal
858 conditions provided by this exceptional natural habitat? *Oecologia* 97, 193-201,
859 1994.

860 Pierobon, E., Bolpagni, R., Bartoli, M., Viaroli, P. :Net primary production and seasonal
861 CO₂ and CH₄ fluxes in a *Trapa natans* L. meadow. *J. Limnol.*, 69, 225-234, 2010.

862 Prairie, Y.T., Bird, D.F., and Cole, J. J.: The summer metabolic balance in the epilimnion of
863 southeastern Quebec lakes, *Limnol. Oceanogr.*, 47, 316– 321, 2002.

864 Prigent, C., Matthews, E., Aires, F., and Rossow, W.B.: Remote sensing of global wetland
865 dynamics with multiple satellite data sets, *Geophys. Res. Lett.*, 28, 4631– 4634,
866 2001.

867 Prigent, C., Papa F., Aires F., Rossow W. B., and Matthews E.: Global inundation dynamics
868 inferred from multiple satellite observations, 1993–2000, *J. Geophys. Res.*, 112,
869 D12107, doi:10.1029/2006JD007847, 2007.

870 Quay, P.D., Wilbur, D.O., Richey, J.E., Hedges, J.I., Devol, A.H., and Victoria, R. : Carbon
871 cycling in the Amazon River: Implications from the ^{13}C compositions of particles
872 and solutes. *Limnology and Oceanography*, 37, 857-871, 1992.

873 Raymond, P.A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman,
874 D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais,
875 P., Guth, P.: Global carbon dioxide emissions from inland waters. *Nature* 503, 355-
876 359, 2013.

877 Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M.D., Seneviratne, S.I., Zscheischler,
878 J., Beer, C., Buchmann, N., Frank, D.C., Papale, D., Rammig, A., Smith, P., Thonicke, K.,
879 van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.: Climate extremes and the
880 carbon cycle. *Nature* 500, 287–295. 2013

881 Ribaudo, C., Bartoli, M., Longhi, D., Castaldi, S., Neubauer, S.C., and Viaroli, P.: CO₂ and
882 CH₄ fluxes across a *Nuphar lutea* (L.) Sm. Stand. *J. Limnol.* 71, 200-210, 2012.

883 Richey, J.E., Melack, J.M., Aufdenkampe, A.K., Ballester, V.M. & Hess, L.: Outgassing from
884 Amazonian rivers and wetlands as a large tropical source of atmospheric CO₂.
885 *Nature*, 416, 617-620, 2002.

886 Ryan, M.G. and Law, B.E.: Interpreting, measuring, and modeling soil respiration.
887 *Biogeochem.* 73, 3–27, 2005.

888 Saunders M.J., Jones M.B. and Kansiime F.: Carbon and water cycles in tropical papyrus
889 wetlands. *Wetlands Ecol. Manage.* 15, 489-498, 2007.

890 Saunois, M. et al.: The global methane budget: 2000-2012. *Earth System Science Data*, 8,
891 697-751, 2016.

892 Sawakuchi, H.O. Neu, V., Ward, N.D., Barros M.L.C., Valerio, A.M., Gagne-Maynard, W.,
893 Cunha, A.C., Less, D.F.S., Diniz, J.E.M., Brito, D.C., Krusche, A.V. and Richey, J.E.:
894 Carbon Dioxide Emissions along the Lower Amazon River. *Front. Mar. Sci.*, 21
895 doi.org/10.3389/fmars.2017.00076, 2017.

896 Schwalm, C.R., et al.: A model-data intercomparison of CO₂ exchange across North
897 America: Results from the North American Carbon Program site synthesis. *J.*
898 *Geophys. Res.*, 115, G00H05, 2010.

899 Segarra, K.E.A., Schubotz, F., Samarkin, V., Yoshinaga, M.Y., Hinrichs K.-U., an Joye S.B.,
900 High rates of anaerobic methane oxidation in freshwater wetlands reduce
901 potential atmospheric methane emissions, *Nature communications*, 6, 7477, doi:
902 10.1038/ncomms8477, 2015.

903 Sharifi, A., Kalin, L., Hantush, M.M., Isik, S., and Jordan, T.E.: Carbon dynamics and export
904 from flooded wetlands: A modeling approach. *Ecol. Model.* 263, 196–210, 2013.

905 Sjögersten, S., Black, C.R., Evers, S., Hoyos-Santillan, J., Wright, E.L., and Turner, B.L.:
906 Tropical wetlands: A missing link in the global carbon cycle? *Global Biogeochem.*
907 *Cycles* 28, 1371–1386, 2014.

908 Sobek, S., Tranvik, L.J., and Cole, J.J.: Temperature independence of carbon dioxide
909 supersaturation in global lakes, *Global Biogeochem. Cycles*, 19, GB2003,
910 doi:10.1029/2004GB002264, 2005.

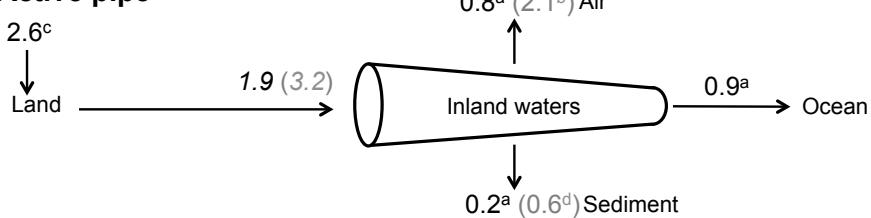
911 Stöckli, R., Lawrence, D.M., Niu, G.-Y., Oleson, K.W., Thornton, P.E., Yang, Z.-L., Bonan, G.B.,
912 Denning A.S., and Running S.W.: Use of FLUXNET in the Community Land Model
913 development. *J. Geophys. Res. Biogeosci.*, 113, doi:10.1029/2007JG000562, 2008.

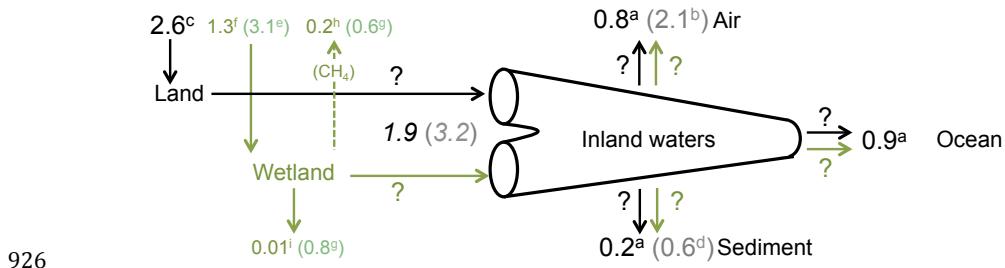
914

915 Tranvik L.V. et al.: Lakes and reservoirs as regulators of carbon cycling and climate.
916 Limnol. Oceanogr. 54: 2298–2314, 2009.

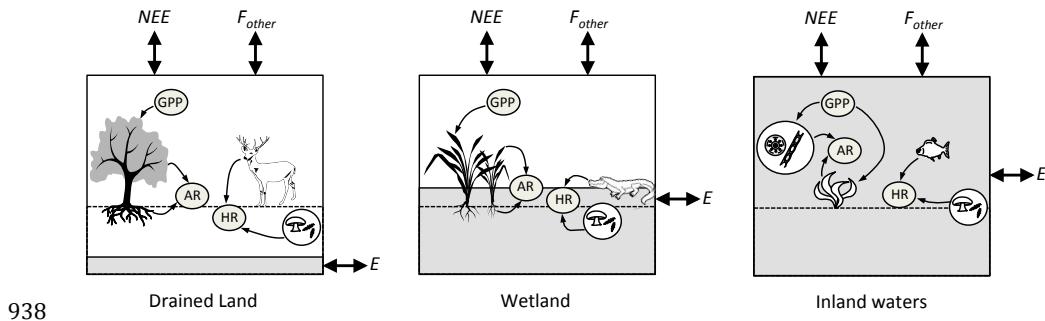
917 Tsypin M. and Macpherson G.L.: The effect of precipitation events on inorganic carbon in
918 soil and shallow groundwater, Konza Prairie LTER Site, NE Kansas, USA. Applied
919 Geochemistry 27, 2356–2369, 2012.

920 Ward, N.D., Keil, R.G., Medeiros, P.M., Brito, D., Cunha, A.C., Dittmar, T., Yager, P.L.,
921 Krusche, A.V., and Richey J.E.: Degradation of terrestrially derived macromolecules
922 in the Amazon River. Nature Geosci. 6, 530–533, 2013.


923 Wetzel R.G.: Wetlands as metabolic gates. J. Great Lakes Res. 18: 529–532, 1992.
924
925


a. Passive pipe

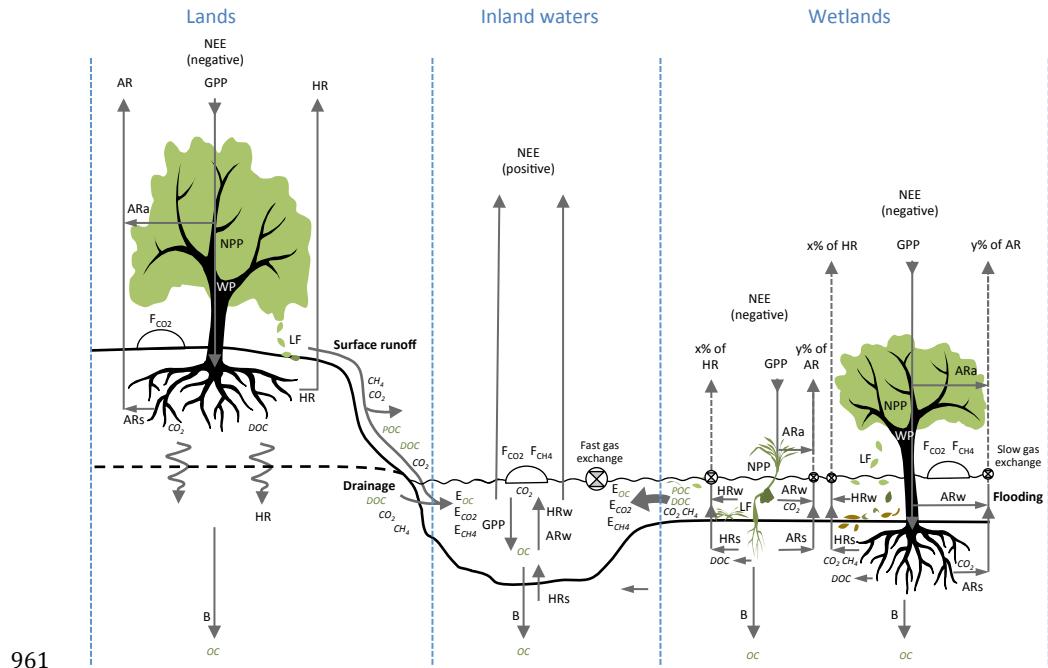
b. Active pipe



c. Re-plumbed active pipe

926

927 Fig. 1. An update of the active pipe concept, including wetlands in the C budget of inland
 928 waters. ^a from Cole et al. (2007); ^b from Raymond et al. (2013) (note that the estimate of
 929 global CO₂ outgassing from Cole et al. (2007) is similar to that of Lauerwald et al. 2015);
 930 ^c calculated as the difference between land use change and net land flux in Ciais et al.
 931 (2013); ^d from Tranvik et al. (2009); ^e from Lu et al. (2016); ^f from Lu et al. (2016)
 932 corrected for a global wetland surface area of Downing et al. (2009); ^g from Mitsch et al.
 933 (2013); ^h from Saunois et al. (2016); ⁱ corrected from Mitsch et al. (2013), according to
 934 Bridgman et al. (2014). Numbers in italics are calculated as the sum of all others fluxes
 935 and include a high (grey) and a low (black) estimate. Black arrows represent C
 936 originating from well-drained, terrestrial ecosystems, and green arrows represent
 937 wetland C.


938

939 Fig. 2. Relationship among the carbon (C) fluxes (in italics) that determine net
940 ecosystem carbon balance (NECB) (the net of all C imports to and exports from the
941 ecosystem), and the metabolic fluxes (inside grey oval) that determine net ecosystem
942 production (NEP). (Adapted from Chapin et al. 2006 to include aquatic compartments).

943 The boxes represent the ecosystems (drained land, wetland, inland waters). Fluxes
944 contributing to NECB are (i) net ecosystem exchange (NEE) with the atmosphere
945 (emissions to or uptake from the atmosphere of carbon dioxide, CO_2); (ii) fluxes of
946 carbon forms other than CO_2 (F_{other}), which include methane (CH_4), carbon monoxide
947 (CO), and volatile organic C (VOC); (iii) lateral export (E) or import of dissolved organic
948 and inorganic C and particulate organic C by hydrological transport and other processes
949 such as animal movement, wind deposition and erosion, and anthropogenic transport or
950 harvest. In this study, we consider F_{other} as the flux of CH_4 from the ecosystem to the
951 atmosphere, and E as hydrological export from the ecosystem as POC, DOC, dissolved
952 CO_2 and dissolved CH_4 . Fluxes contributing to NEP are gross primary production (GPP)
953 and ecosystem respiration (ER). ER includes autotrophic respiration (AR) by the
954 different components of vegetation (leaves, wood, roots and photosynthetic microbes)
955 and heterotrophic respiration (HR) by prokaryotes, fungi and animals. The shaded
956 volume in each box indicates the part of the ecosystem occupied by water. GPP and ER
957 occur mostly above the water table in well-drained ecosystems, partly above and below

958 the water table in wetland ecosystems, and exclusively in water and sediments in
959 aquatic ecosystems.
960

961

962 Fig. 3 Functional differences of carbon metabolism and hydrological export in well-
 963 drained and flooded land. NEE: net ecosystem exchange; GPP: gross primary production;
 964 NPP: net primary production; WP: wood production; LF: litter fall; AR: autotrophic
 965 respiration; ARa: autotrophic respiration in air; ARw: autotrophic respiration in water;
 966 ARs: autotrophic respiration in soils and sediments; HR: heterotrophic respiration; HRw
 967 heterotrophic respiration in water; HRs heterotrophic respiration in sediments; B: long-
 968 term burial in soils and sediments. POC: particulate organic C; DOC: dissolved organic C;
 969 EOC: export of organic carbon (sum of DOC and POC); ECO2: export of dissolved CO2; ECH4:
 970 export of dissolved CH4; FCO2 and FCH4: fluxes of CO2 and CH4 at the soil-air or water-air
 971 interface (as determined with static chambers). Note that, by convention, NEE is
 972 opposite in sign to GPP and NPP because NEE is defined by atmospheric scientists as a C
 973 input to the atmosphere, whereas GPP and NPP are defined by ecologists as C inputs to
 974 ecosystems (Chapin et al. 2006). C export to river systems results from the interactions
 975 between metabolic processes and C transport processes between air, plants, soils,

976 sediments and waters and are fairly different in wetlands ecosystems (right) and
977 terrestrial, never-flooded, ecosystems (left). In terrestrial systems, carbon export occurs
978 as surface runoff and drainage and includes a small fraction of LF, root exudation, ARs,
979 and HR. In contrast, in flooded wetlands (right), almost all LF and root exudation (that
980 releases DOC), as well as a substantial fraction of ecosystem respiration
981 (ARw+ARs+HRw+HRs) are transferring C to the aquatic system as OC and dissolved
982 gases; in addition, slow gas exchange (low gas transfer velocity) in protected wetlands
983 favours lateral export of dissolved CO₂ and CH₄. These lateral C fluxes are enhanced in
984 wetlands compared to drained systems and should generate strong discrepancies
985 between ecosystem metabolic fluxes (GPP, NPP, ER, and NECB) and vertical C fluxes
986 measured in the field with static chambers (F_{CO₂} and F_{CH₄}), and eddy covariance towers
987 (NEE).

988

989