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Abstract

\arious levels of nadeguate-representation of biogeochemical processes in current

biogeochemistry models contributes to a large uncertainty in carbon budget quantification.

Here, we present an uncertainty analysis with detatled-microbial-mechanismswere

incorporated-into-a process-based biogeochemistry model, the Terrestrial Ecosystem Model

(TEM), that was incorporated with detailed microbial mechanisms. Ensemble regional

simulations with the new model (MIC-TEM) estimated the carbon budget of the Arctic
ecosystems is 76.0+114.8 Pg C during the 20t century, -3.1+61.7 Pg C under the RCP 2.6
scenario and 94.7+46 Pg C under the RCP 8.5 scenario during the 215t century. Positive
values indicate the regional carbon sink while negative values are source to the atmosphere.
Compared to the estimates using a simpler soil decomposition algorithm in TEM, the new
model estimated that the Arctic terrestrial ecosystems stored 12 Pg less carbon over the 20t
century, 19 Pg C and 30 Pg C less under the RCP 8.5 and RCP 2.6 scenarios, respectively,
during the 21t century. When soil carbon within depths 30 cm, 100 cm and 300 cm was
considered as initial carbon in the 21% century simulations, the region was estimated to
accumulate 65.4, 88.6, and 109.8 Pg C, respectively, under the RCP 8.5 scenario. In contrast,
under the RCP 2.6 scenario, the region lost 0.7, 2.2, and 3 Pg C, respectively, to the
atmosphere. We conclude that the future regional carbon budget evaluation largely
depends on whether or not the adequate microbial activities are represented in earth

system models and the sizes of soil carbon considered in model simulations.
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1. Introduction

Northern high-latitude soils and permafrost contain more than 1,600 Pg carbon (Tarnocai
et al., 2009). Climate over this region has warmed in recent decades (Serreze and Francis, 2006)
and the increase is 1.5 to 4.5 times the global mean (Holland and Bitz, 2003). Warming-induced
changes in carbon cycling are expected to exert large feedbacks to the global climate system

(Davidson and Janssens, 2006; Christensen and Christensen, 2007; Oechel et al., 2000).

Warming is expected to accelerate soil C loss by increasing soil respiration, but
increasing nutrient mineralization, thereby stimulating plant net primary production (NPP)
(Mack et al., 2004). Thus, the variation of climate may switch the role of the Arctic system
between a C sink and a source if soil C loss overtakes NPP (Davidson et al., 2000; Jobbagy and
Jackson, 2000). Process-based biogeochemical models such as TEM (Hayes et al., 2014; Raich
and Schlesinger, 1992; McGuire et al., 1992; Zhuang et al., 2001, 2002, 2003, 2010, 2013),
Biome-BGC (Running and Coughlan, 1988), CASA (Potter et al., 1993), CENTURY (Parton et
al., 1994) and Biosphere Energy Transfer Hydrology scheme (BETHY) (Knorr et al., 2000) have
been widely used to quantify the response of carbon dynamics to climatic changes (Todd-Brown
et al., 2012). An ensemble of process-based model simulations suggests that arctic ecosystems
acted as a sink of atmospheric CO: in recent decades (McGuire et al., 2012; Schimel et al., 2013).
However, the response of this sink to increasing levels of atmospheric CO2 and climate change is
still uncertain (Todd-Brown et al., 2013). The IPCC 5% report also shows that land carbon
storage is the largest source of uncertainty in the global carbon budget quantification (Ciais et al.,

2013).
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Much of the uncertainty is also due to the_relatively lower levels of—iradequate

representation of ecosystem processes that determine the exchanges of water, energy and C
between land ecosystems and the atmosphere (Wieder et al., 2013), and ignorance of some key
biogeochemical mechanisms (Schmidt et al., 2011). For example, heterotrophic respiration (Rn)
is the primary loss pathway for soil organic carbon (Hanson et al., 2000; Bond-Lamberty and
Thomson, 2010), and it generally increases with increasing temperature (Davidson and Janssens,
2006) and moisture levels in well-drained soils (Cook and Orchard, 2008). Moreover, this
process is closely related to soil nitrogen mineralization that determines soil N availability and
affects gross primary production (Hao et al., 2015). To date, most models treated soil
decomposition as a first-order decay process, i.e., CO- respiration is directly proportional to soil
organic carbon. However, it is not clear if these models are robust under changing environmental
conditions (Lawrence et al., 2011; Schimel and Weintraub, 2003; Barichivich et al., 2013) since
they often ignored the effects of changes in biomass and composition of decomposers, while
recent empirical studies have shown that microbial abundance and community play a significant
role in soil carbon decomposition (Allison and Martiny, 2008). The control that microbial activity
and enzymatic kinetics imposed on soil respiration suggests the need for explicit representation
of microbial physiology, enzymatic activity, in addition to the direct effects of soil temperature
and soil moisture on heterotrophic respiration (Schimel and Weintraub, 2003). Recent
mechanistically-based models explicitly incorporated with the microbial dynamics and enzyme
Kinetics that catalyze soil C decomposition have produced notably different results and a closer

match to contemporary observations (Wieder et al., 2013; Allison et al., 2010) indicating the need
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for incorporating these microbial mechanisms into large-scale earth system models to quantify
carbon dynamics under future climatic conditions ((Wieder et al., 2013; Allison et al., 2010).

This study advanced a microbe-based biogeochemistry model (MIC-TEM) based on an
extant Terrestrial Ecosystem Model (TEM) (Raich and Schlesinger, 1992; McGuire et al., 1992;
Zhuang et al., 2001, 2002, 2003, 2010, 2013; Hao et al., 2015). In MIC-TEM, the heterotrophic
respiration is not only a function of soil temperature, soil organic matter (SOM) and soil
moisture, but also considers the effects of dynamics of microbial biomass and enzyme kinetics
(Allison et al., 2010). The verified MIC-TEM was used to quantify the regional carbon dynamics

in northern high latitudes (north 45 °N) during the 20" and 21° centuries.

2. Methods

2.1 Overview

Below we first briefly describe how we advanced the MIC-TEM by modifying the soil
respiration process in TEM (Zhuang et al., 2003) to better represent carbon dynamics in
terrestrial ecosystems. Second, we describe how we parameterized and verified the new model
using observed net ecosystem exchange data at representative sites and how simulated net
primary productivity (NPP) was evaluated with Moderate Resolution Imaging Spectroradiometer
(MODIS) data to demonstrate the reliability of new model at regional scales. Third, we present
how we applied the model to the northern high latitudes for the 20" and 21 centuries. Finally,
we introduce how we conducted the sensitivity analysis on initial soil carbon input, using

gridded observation-based soil carbon data of three soil depths during the 21% century.
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2.2 Model description

TEM is a highly aggregated large-scale biogeochemical model that estimates the dynamics of
carbon and nitrogen fluxes and pool sizes of plants and soils using spatially-yexplicit-referenced
information on climate, elevation, soils and vegetation (Raich-and-Sehlesinger1992:-McGuire et
al., 1992; Zhuang et al., 2003, 2010; Melillo et al., 1993). To explicitly consider the effects of
microbial dynamics and enzyme Kinetics on large-scale carbon dynamics of northern terrestrial
ecosystems, we developed MIC-TEM by coupling version 5.0 of TEM (Zhuang et al., 2003,
2010) with a microbial-enzyme module (Hao et al., 2015; Allison et al., 2010). Our modification
of the TEM improved the representation of the heterotrophic respiration (Rn) from a first-order

structure to a more detailed structure (Fig. S1).

In TEM, heterotrophic respiration Ry is calculated as a function of soil organic carbon

(SOC), sei-temperature temperature sensitivity of heterotrophic soil respiration (Qzo), soil

moisture (f (MOIST)), and the gram-specific decomposition constant Kg:

temp

Ry=Ky#8S0C=*Q ° =f(MOIST)

(1)

Where_temp-BF is soil temperature at top 20 cm_(units: °C). CO» production from SOC pool is
directly proportional to the pool size, and the activity of decomposers only depends on the built-
in relationships with soil temperature and moisture (Todd-Brown et al., 2012). Therefore, the
changes in microbial community composition or adaption of microbial physiology to new
conditions were not represented in TEM. However, current studies indicate that soil C
decomposition depends on the activity of biological communities dominated by microbes
(Schimel and Weintraub, 2003), implying that the biomass and composition of the decomposer

community can’t be ignored (Todd-Brown et al., 2012).
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We thus revised the first-order soil C structure in TEM to a second-order structure
considering microbial dynamics and enzyme kinetics according to Allison et al. (2010). In MIC-
TEM, heterotrophic respiration (Rr) is calculated as:

R1=ASSIM*(1-CUE) )
Where ASSIM and CUE represent microbial assimilation and carbon use efficiency, respectively.

ASSIM is modeled with a Michaelis-Menten function:

DOC
Kmuptake+DOC

ASSIM = Vmax,take *MIC * 3

Where DOC is dissolved organic carbon and Vmax,,,e is the maximum velocity of the

reaction and calculated using the Arrhenius equation:

Eayptake
— * - *
Vmaxuptake - Vrnaxuptakeo e R+(temp+273) (4)

where Vmax ke, is the pre-exponential coefficient, Eayptake is the activation energy for the

reaction (Jmol™), R is the gas constant (8.314 Jmol*K™), and temp is the temperature in Celsius

under the reaction occurs. Here we used soil temperature at top 20 cm.-

Besides, Kmuyptake ¥attie-is calculated as a linear function of temperature:

Kmuptake =Km *temp + Kmuptakeo (5)

uptakesiope

Microbial biomass MIC is modeled as:

dMIC

- = ASSIM * CUE — DEATH — EPROD (6)

Where microbial biomass death (DEATH) and enzyme production (EPROD) are modeled as
proportional to microbial biomass with_rate constants-censtant-+ates rgeath and renzprod:

DEATH = r.,, *MIC (7

EPROD = rg,proq*MIC (8)
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Where rgeath and renzprod are the rate constantsratie of microbial death and enzyme production,
respectively.

DOC is part of soil organic carbon:

dDOoC

= DEATH * (1 — MICtoSOC) + DECAY + ELOSS — ASSIM 9)

where MICtoSOC is carbon input ratio as dead microbial biomass to SOC, representing the
fraction of microbial death that flows into SOC, and is set as a constant value according to

Allison et al. (2010). SOC dynamics are modeled:

dsocC

= Litterfall + DEATH * MICtoSOC — DECAY (10)

Where Litterfall is estimated as a function of vegetation carbon (Zhuang et al., 2010). The

enzymatic decay of SOC is calculated as:

SocC
Km+S0C

DECAY = V., *ENZ * (11)

Where Vmax is the maximum velocity of the reaction and calculated using the Arrhenius equation:

Ea
Vmax = Vmaxo*e R+(temp+273) (12)

The parameters Km and carbon use efficiency (CUE) are temperature sensitive, and calculated
as a linear function of temperature between 0 and 50°C:

Km = Kmslope*temp + Km, (13)

CUE = CUEg)op *temp + CUE, (14)
Where CUEslope and CUEo are parameters for calculating CUE, and Kmsiope and Kmg are
parameters for calculating Km. The values of CUEg,pe, CUE ), Kmsiope, and Kmo were derived

from Allison et al. (2010).

ELOSS is also a first-order process, representing the loss of enzyme:
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ELOSS = oy 1065 *ENZ (15)

Where renzioss IS the rate constantratie of enzyme loss. Enzyme pool (ENZ) is modeled:

=T=EPROD-ELOSS (16)

Heterotrophic respiration (Rn) is an indispensable component of soil respiration (Bond-
Lamberty and Thomson, 2010), and closely coupled with soil nitrogen (N) mineralization that

determines soil N availability, affecting gross primary production (GPP).

2.3 Model parameterization and validation

The variables and parameters of these microbial dynamics and their impacts on soil C
decomposition were detailed in Allison et al. (2010) (Table 1). Here we parameterized MIC-
TEM for representative ecosystem types in northern high latitudes based on monthly net
ecosystem production vity-(NEP, gCm2 mon™) measurements from AmeriFlux network
(Davidson et al., 2000) (Table S1). The results for model parameterization wereas presented in
Fig. S2. Another set of level 4 gap-filled NEP data was used for model validation at site level
(Table S2). The site-level monthly climate data of air temperature (°C), precipitation (mm) and
cloudiness (%) were used to drive the model. Gridded MODIS NPP data from 2001 to 2010 were
used to evaluate regional NPP simulations. The MODIS NPP data was developed by the MOD17
MODIS project. The product name is Net Primary Production Yearly L4 Global 1 km. The
critical parameter used in MOD17 algorithm is conversion efficiency parameter €. More
information about the MODIS NPP product can be found at

https://neo.sci.gsfc.nasa.gov/view.php?datasetld=MOD17A2 M PSN.
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In TEM, NPP is calculated as:

NPP=GPP-Ra (17)

Where GPP is gross primary production, and Ra is autotrophic respiration.  GPP is defined as:

GPP = Cpqe * f(PAR) * f(phenology) + f (foliage) * f (T) * £(CO;) * F(NA) * F(FT) (g

Where Cmax IS the maximum rate of carbon assimilation, PAR is photosynthetically active

radiation, and f(phenology) represents the effects of leaf area (Raich et al., 1991). The function

f(foliage) represents the ratio of canopy leaf biomass relative to maximum leaf biomass (Zhuang

et al., 2002). T is monthly air temperature, and f(CO,) represents the effects of elevated

atmospheric CO» (McGuire et al., 1997: Pan et al.,1998). The function f(NA) models the limiting

effects of plant nitrogen status on GPP (McGuire et al., 1992: Pan et al., 1998). The function f

(FT) represents the effects of freeze-thaw (Zhuang et al., 2003Fan-etal—1999).

For detailed GPP and Ra calculations, see Zhuang et al. (2003).

The parameterization was conducted with a global optimization algorithm SCE-UA (Shuffled

complex evolution) (Duan et al., 1994) to minimize the difference between the monthly

simulated and measured NEE at these sites (Fig. S2). The cost function of the minimization is:
Obj = i, (NEPgps;-NEPgjp, ;) (19)

Where NEP,, ; and NEF;,,, ; are the observed and simulated NEP, respectively. k is the number

of data pairs for comparison. Other parameters used in MIC-TEM were default values from TEM
5.0 (Zhuang et al., 2003, 2010). The optimized parameters were used for model validation and

regional extrapolations.

10
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2.4 Regional simulations

Two sets of regional simulations for the 20" century using MIC-TEM and TEM at a spatial
resolution of 0.5° latitude x 0.5° longitude were conducted. Gridded forcing data of monthly air
temperature, precipitation, and cloudiness were used, along with other ancillary inputs including
historical atmospheric CO> concentrations, soil texture, elevation, and potential natural
vegetation. Climatic inputs vary over time and space, whereas soil texture, elevation, and land
cover data are assumed to remain unchanged throughout the 20" century, which only vary
spatially. The transient climate data during the 20™" century was organized from the Climatic
Research Unit (CRU TS3.1) from the University of East Anglia (Harris et al., 2014). The
spatially-explicit data include potential natural vegetation (Melillo et al., 1993), soil texture

(Zhuang et al., 2003) and elevation (Zhuang et al., 2015).

Similarly, two sets of simulations were conducted driven with two contrasting climate
change scenarios (RCP 2.6 and RCP 8.5) over the 21% century. The future climate change
scenarios were derived from the HadGEM2-ES model, which is a member of CMIP5 project
(https://esgf-node.lInl.gov/search/cmip5/). The future atmospheric CO> concentrations and
climate forcing from each of the two climate change scenarios were used. The simulated NPP, Rn
and NEP by both models (TEM 5.0 and MIC-TEM) were analyzed. The positive NEP represents
a COq sink from the atmosphere to terrestrial ecosystems, while a negative value represents a
source of CO; from terrestrial ecosystems to the atmosphere.

Besides, in order to test the parameter uncertainty in our model, we conducted the

regional simulations with 50 sets of parameters for both historical and future studies. The 50 sets

11
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of parameters were obtained according to the method in Tang and Zhuang (2008). The upper and

lower bounds of the regional estimations were generated based on these simulations.

2.5 Sensitivity to initial soil carbon input

Future carbon dynamics can be affected by varying initial soil carbon amount. In the standard
simulation of TEM, the initial soil carbon amount for transient simulations was obtained from
equilibrium and spin-up periods directly for each grid cell in the region. To test the sensitivity to
the initial soil carbon amount in transient simulations for the 21% century, we used empirical soil
organic carbon data extracted from the Northern Circumpolar Soil Carbon Database (NCSCD)
(Tarnocai et al., 2009), as the initial soil carbon amount. The 0.5° x 0.5° soil carbon data
products for three different depths of 30cm, 100cm and 300cm were used. The sensitivity test
was conducted for transient simulations under the RCP 2.6 and RCP 8.5 scenarios. To avoid the
instability of C-N ratio caused by replacing the initial soil carbon pool with observed data at the
beginning of transient period, initial soil nitrogen values were also generated based on the soil
carbon data and corresponding C-N ratio map for transient simulations (Zhuang et al., 2003;

Raich and Schlesinger, 1992).

3. Results

3.1 Model verification at site and regional levels

With the optimized parameters, MIC-TEM reproduces the carbon dynamics well for alpine
tundra, boreal forest, temperate coniferous forest, temperate deciduous forest, grasslands and wet

tundra with R? ranging from 0.70 for Ivotuk to 0.94 for Bartlett Experimental Forest (Fig. S3,
12
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table S3). In general, model performs better for forest ecosystems than for tundra ecosystems.
The temporal NPP from 2001 to 2010 simulated by MIC-TEM and TEM were compared with
MODIS NPP data (Fig. S4). Pearson correlation coefficients are 0.52 (MIC-TEM and MODIS)
and 0.34 (TEM and MODIS). NPP simulated by MIC-TEM showed higher spatial correlation
coefficients with MODIS data than TEM (Fig. S5). By considering more detailed microbial
activities, the heterotrophic respiration is more adequately simulated using the MIC-TEM. The
simulated differences in soil decomposition result in different levels of soil available nitrogen,
which influences the nitrogen uptake by plants, the rate of photosynthesis and NPP. The spatial
correlation coefficient between NPP simulated by MIC-TEM and MODIS is close to 1 in most

study areas, suggesting the reliability of MIC-TEM at the regional scale.

3.2 Regional carbon dynamics during the 20t century

The equifinality of the parameters in MIC-TEM was considered in our ensemble regional
simulations to measure the parameter uncertainty (Tang and Zhuang, 2008). Here and below, the
ensemble means and the inter-simulation standard deviations are shown for uncertainty measure,
unless specified as others. These ensemble simulations indicated that the northern high latitudes
act from a carbon source of 38.9 Pg C to a carbon sink of 190.8 Pg C by different ensemble
members, with the mean of 64.2+21.4 Pg at the end of 20" century while the simulation with the
optimized parameters estimates a regional carbon sink of 77.6 Pg with the interannual standard
deviation of 0.21 Pg C yr'* during the 20" century (Fig 1). Simulated regional NEP with
optimized parameters using TEM and MIC-TEM showed an increasing trend throughout the 20™"

century except a slight decrease during the 1960s (Fig. 2). The Spatial distributions of NEP

13
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simulated by MIC-TEM for different periods in the 20" century also show the increasing trend
(Fig 3). Positive values of NEP represent sinks of CO> into terrestrial ecosystems, while negative
values represent sources of CO> to the atmosphere. From 1900 onwards, both models estimated a
regional carbon sink during the 20" century. With optimized parameters, TEM estimated higher
NPP and Ry at 0.6 PgC yr't and 0.3 PgC yr than MIC-TEM, respectively, at the end of the 20"
century (Fig. 2). The MIC-TEM estimated a carbon sink increase from 0.64 to 0.83 PgCyr*
during the century while the estimated increase by TEM was much higher (0.28 PgCyr™) (Fig. 2).
At the end of the century, MIC-TEM estimated NEP reached 1.0 PgCyr? in comparison with
TEM estimates of 0.3 PgCyr. TEM estimated NPP and Ry are 0.5 Pg Cy rt and 0.3 Pg C yr?
higher, respectively. As a result, TEM estimated that the region accumulated 11.4 Pg more
carbon than MIC-TEM. Boreal forests are a major carbon sink at 0.55 and 0.63 Pg C yr*!
estimated by MIC-TEM and TEM, respectively. Alpine tundra contributes the least sink. Overall,
TEM overestimated the sink by 12.5% in comparison to MIC-TEM for forest ecosystems and
16.7% for grasslands. For wet tundra and alpine tundra, TEM overestimated about 20% and 33%

in comparison with MIC-TEM, respectively (Table 2).

3.3 Regional carbon dynamics during the 21 century

Simulated rRegional annual NPP and Rn increases under the RCP 8.5 scenario acecordingte
simulations-with both models (Fig. 4). With optimized parameters, MIC-TEM estimated NPP
increases from 9.2 in the 2000s to 13.2 PgCyr in the 2090s, while TEM--predicted NPP is 2.0
Pg C yr? higher in the 2000s and 0.3 Pg C yr! higher in the 2090s (Fig. 4). Similarly, TEM also

overestimated Ry by 1.7 Pg C yr? in the 2000s and 0.25 Pg C yr* higher in the 2090s,
14
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respectively (Fig. 4). As a result, the regional sink increases from 0.53 Pg C yrin the 2000s, 1.4
Pg C yrtin the 2070s, then decreases to 1.1 Pg C yr* in the 2090s estimated by MIC-TEM (Fig.
4). Given the uncertainty in parameters, MIC-TEM predicted the region acts as a carbon sink
ranging from 48.7 to 140.7 Pg, with the mean of 71.7+26.6 Pg at the end of 21% century, while
the simulation with optimized parameters estimates a regional carbon source of 79.5 Pg with the
interannual standard deviation of 0.37 Pg C yr during the 21% century (Fig 4). TEM predicted a
similar trend for NEP, which overestimated the carbon sink with magnitude of 19.2 Pg compared
with the simulation by MIC-TEM with optimized parameters. Under the RCP 2.6 scenario (Fig.
4), the increase of NPP and Ry is smaller from 2000 to 2100 compared to the simulation under
the RCP 8.5. MIC-TEM predicted that NPP increases from 9.1 to 10.9 Pg C yr, TEM estimated
1.6 Pg C yr higher at the beginning and 0.9 Pg C yr?* higher in the end of the 21% century (Fig.
4). Consequently, MIC-TEM predicted NEP fluctuates between sinks and sources during the
century, with a neutral before 2070, and a source between -0.2 - -0.3 Pg C yr! after the 2070s.
As a result, the region acts as a carbon source of 1.6 Pg C with the interannual standard deviation
of 0.24 Pg C yr! estimated with MIC-TEM and a sink of 27.6 Pg C with the interannual
standard deviation of 0.2 Pg C yrestimated with TEM during the century (Fig. 4). When
considering the uncertainty source of parameters, MIC-TEM predicted the region acts from a
carbon source of 64.8 Pg C to a carbon sink of 58.6 Pg C during the century with the mean of -

3.3+20.3 Pg at the end of 21% century (Fig 4).

3.4 Model sensitivity to initial soil carbon

15



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Under the RCP 2.6, without replacing the initial soil carbon with inventory-based estimates

(Tarnocai et al., 2009)* in model simulations, TEM estimated that the regional soil organic

carbon (SOC) is 604.2 Pg C and accumulates 12.1 Pg C during the 21% century. When using

estimated soil carbon (Tarnocai et al., 2009), 4 within depths of 30cm, 100cm and 300cm as

initial pools in simulations, TEM predicted that regional SOC is 429.5, 689.3 and 1003.4 Pg C in
2000, and increases by 9.9, 16.0 and 22.8 Pg C at the end of the 21% century, and the regional
cumulative carbon sink is 20.4, 34.0, and 48.1 Pg C, respectively during the century. In contrast,
using the same inventory-based SOC estimates, MIC-TEM projected that the region acts from a
cumulative carbon sink to a source at 0.7, 2.2, and 3.0 Pg C, respectively. Under the RCP 8.5,
both models predicted that the region acts as a carbon sink, regardless of the magnitudes of
initial soil carbon pools used, with TEM projected sink of 71.7, 120, and 155.6 Pg C and a much
smaller cumulative sink of 65.4, 88.6, and 109.8 Pg C estimated with MIC-TEM, respectively

(Table 3).

4. Discussion

During the last few decades, a greening accompanying warming and rising atmospheric
CO:z in the northern high latitudes (>45° N) has been documented (McGuire et al., 1995;
McGuire and Hobbie, 1997; Chapin and Starfield, 1997; Stow et al., 2004; Callaghan et al., 2005;
Tape et al., 2006). The large stocks of carbon contained in the region (Tarnocai et al., 2009) are
particularly vulnerable to climate change (Schuur et al., 2008; McGuire et al., 2009). To date, the
degree to which the ecosystems may serve as a source or a sink of C in the future are still
uncertain (McGuire et al., 2009; Wieder et al., 2013). Therefore, accurate models are essential for

predicting carbon—climate feedbacks in the future (Todd-Brown et al., 2013). Our regional
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simulations indicate the region is currently a carbon sink, which is consistent with many previous
studies (White et al., 2000; Houghton et al., 2007), and this sink will grow under the RCP 8.5
scenario, but shift to a carbon source under the RCP 2.6 scenario by 2100. MIC-TEM shows a
higher correlation between NPP and soil temperature (R=0.91) than TEM (R=0.82), suggesting

that MIC-TEM is more sensitive to environmental changes (Table S4).

Our regional estimates of carbon fluxes by MIC-TEM are within the uncertainty range
from other existing studies. For instance, Zhuang et al. (2003) estimated the region as a sink of
0.9 Pg C yr! in extratropical ecosystems for the 1990s, which is similar to our estimation of 0.83
Pg C yr! by MIC-TEM. White et al. (2000) estimated that, during the 1990s, regional NEP
above 50 °N region is 0.46 Pg C yr! while Qian et al. (2010) estimated that NEP increased from
0 to 0.3 Pg C yr* for the high-latitude region above 60 °N during last century, and reached 0.25
Pg C yr! during the 1990s. White et al. (2000) predicted that, from 1850 to 2100, the region
accumulated 134 Pg C in terrestrial ecosystems, in comparison with our estimates of 77.6 Pg C
with MIC-TEM and 89 Pg C with TEM. Our projection of a weakening sink during the second
half of the 21% century is consistent with previous model studies (Schaphoff et al., 2013). Our
predicted trend of NEP is very similar to the finding of White et al. (2000), indicating that NEP
increases from 0.46 Pg C yrtin the 2000s and reaches 1.5 Pg C yr in the 2070s, then decreases

to 0.6 Pg C yrt in the 2090s.

The MIC-TEM simulated NEP generally agrees with the observations. However, model
simulations still deviate from the observed data, especially for tundra ecosystems. The deviation
may be due to the uncertainty or errors in the observed data, which do not well constrain the

model parameters. Uncertain driving data such as temperature and precipitation are also a source
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of uncertainty for transient simulations. In addition, we assumed that vegetation will not change
during the transient simulation. However, over the past few decades in the northern high latitudes,
temperature increases have led to vegetation changes (Hansen et al., 2006), including latitudinal
treeline advance (Lloyd et al., 2005) and increasing shrub density (Sturm et al., 2001). Vegetation
can shift from one type to another because of competition for light, N and water (White et al.,
2000). For example, needleleaved trees tend to replace tundra gradually in response to warming.
In some areas, forests even moved several hundreds of kilometers within 100 years (Gear and
Huntley, 1991). The vegetation changes will affect carbon cycling in these ecosystems. In
addition, we have not yet considered the effects of management of agriculture lands (Cole et al.,
1997), but Zhuang et al. (2003) showed that the changes in agricultural land use in northern high

latitudes have been small.

The largest limitation to this study is that we have not explicitly considered the fire
effects. Warming in the northern high latitudes could favor fire in its frequency, intensity,
seasonality and extent (Kasischke and Turetsky, 2006; Johnstone and Kasischke, 2005; Soja et al.,
2007; Randerson et al., 2006; Bond-Lamberty et al., 2007). Fire has profound effects on northern
forest ecosystems, altering the N cycle and water and energy exchanges between the atmosphere
and ecosystems. Increase in wildfires will destroy most of above-ground biomass and consume
organic soils, resulting in less carbon uptake by vegetation (Harden et al., 2000), leading to a net
release of carbon in a short term. However, a suite of biophysical mechanisms of ecosystems
including post-fire increase in the surface albedo and rates of biomass accumulation may in turn,
exert a negative feedback to climate warming (Amiro et al., 2006; Goetz et al., 2007), further

influence the carbon exchanges between ecosystems and the atmosphere.
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Moreover, carbon uptake in land ecosystems depends on new plant growth, which
connects tightly with the availability of nutrients such as mineral nitrogen. Recent studies have
shown that when soil nitrogen is in short supply, most terrestrial plants would form symbiosis
relationships with fungi; hyphae provides nitrogen to plants, in return, plants provide sugar to
fungi (Hobbie and Hobbie, 2008, 2006; Schimel and Hattenschwiler, 2007). This symbiosis
relationship has not been considered in our current modeling, which may lead to a large

uncertainty in our quantification of carbon and nitrogen dynamics.

Shift in microbial community structure was not considered in our model, which could
affect the temperature sensitivity of heterotrophic respiration (Stone et al., 2012). Michaelis-
Menten constant (Km) could also adapt to climate warming, and it may increase more
significantly with increasing temperature in cold-adapted enzymes than in warm-adapted
enzymes (German et al., 2012; Somero et al., 2004; Dong and Somero, 2009). Carbon use
efficiency (CUE) is also a controversial parameter in our model. Empirical studies in soils
suggest that microbial CUE declines by at least 0.009 °C™ (Steinweg et al., 2008), while other
studies find that CUE is invariant with temperature (Lopez-Urrutia and Moran, 2007). Another
key microbial trait lacking in our modeling is microbial dormancy (He et al., 2015). Dormancy is
a common, bet-hedging strategy used by microorganisms when environmental conditions limit
their growth and reproduction (Lennon and Jones, 2011). Microorganisms in dormancy are not
able to drive biogeochemical processes such as soil CO» production, and therefore, only active
microorganisms should be involved in utilizing substrates in soils (Blagodatskaya and Kuzyakov,
2013). Many studies have indicated that soil respiration responses to environmental conditions

are more closely associated with the active portion of microbial biomass than total microbial
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biomass (Hagerty et al., 2014; Schimel and Schaeffer, 2012; Steinweg et al., 2013). Thus, the
ignorance of microbial dormancy could fail to distinguish microbes with different physiological

states, introducing uncertainties to our carbon estimation.

5. Conclusions

This study used a more detailed microbial biogeochemistry model to investigate the carbon
dynamics in the region for the past and this century. Regional simulations using MIC-TEM
indicated that, over the 20" century, the region is a sink of 77.6 Pg C. This sink could reach to
79.5 Pg C under the RCP 8.5 scenario or shift to a carbon source of 1.6 Pg under the RCP 2.6
scenario during the 21% century. On the other hand, traditional TEM overestimated the carbon
sink under the RCP 8.5 scenario with magnitude of 19.2 Pg than MIC-TEM, and predicted this
region acting as a carbon sink with magnitude of 27.6 Pg under the RCP 2.6 scenario during the
21% century. Using recent soil carbon stock data as initial soil carbon in model simulations, the
region was estimated to shift from a carbon sink to a source, with total carbon release at 0.7- 3
Pg by 2100 depending on initial soil carbon pools at different soil depths under the RCP 2.6
scenario. In contrast, the region acts as a carbon sink at 55.4 - 99.8 Pg C in the 21% century under
the RCP 8.5 scenario. Without considering more detailed microbial processes, models estimated
that the region acts as a carbon sink under both scenarios. Under the RCP 2.6 scenario, the
cumulative sink ranges from 9.9 to 22.8 Pg C. Under the RCP 8.5 scenario, the cumulative sink
is even larger at 71.7 - 155.6 Pg C. This study indicated that more detailed microbial
physiology-based biogeochemistry models estimate carbon dynamics very differently from using

a relatively simple microbial decomposition-based model. The comparison with satellite
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products or other estimates for the 20" century suggests that the more detailed microbial

decomposition shall be considered to adequately quantify C dynamics in northern high latitudes.
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Figure 1. Simulated annual net primary production (NPP, top panel), heterotrophic respiration
(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM with

ensemble of parameters.
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Figure 2. Simulated annual net primary production (NPP, top panel), heterotrophic respiration
(RH, center panel) and net ecosystem production (NEP, bottom panel) by MIC-TEM and

TEM, respectively.
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RCP 2.6 scenario with MIC-TEM and TEM 5.0, respectively. The decadal running mean is
applied. The grey area represents the upper and lower bounds of simulations.
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Table 1. Parameters associated with more detailed microbial dynamics in MIC-TEM

Process Parameter Units Initial Description Parameter range Reference
Value
Vmax,peake, mg DOC cm (mg 9.97e6 Maximum microbial uptake Hao et al. (2015)
biomass cm-3)* h! rate [1.0e4, 1.0e8]
Eayptake kJ mol* 47 Activation energy - Allison et al. (2010)
Assimilation Kmuptake l mg cm degree™! 0.01 Temperature regulator of - Allison et al. (2010)
sope MM for DOC uptake by
microbes
Kmypeake, mg cm-3 0.1 Temperature regulator of - Allison et al. (2010)
MM for DOC uptake by
microbes
CUEgope degree? -0.016 Temperature regulator of - Allison et al. (2010)
CO; production carbon use efficiency
CUE, - 0.63 Temperature regulator of - Allison et al. (2010)
carbon use efficiency
Vmax, mg SOCcm3(mgEnz 9.17e7 Maximum rate of converting Hao et al. (2015)
cmd)tht SOC to soluble C [1.0e5, 1.0e8]
Decay Ea kJ mol? 47 Activation energy - Allison et al. (2010)
Kmslope mg cm degree™! 5 Temperature regulator of - Allison et al. (2010)
MM for enzymatic decay
Kmg mg cm-3 500 Temperature regulator of - Allison et al. (2010)
MM for enzymatic decay
Tdeath st 0.02 Microbial death fraction - Allison et al. (2010)
Partition coefficient for dead - Allison et al. (2010)
MIC turnover MICtoSOC 50 microbial biomass between
the SOC and DOC pool
TenzProd st 5.0e-4  Enzyme production fraction - Allison et al. (2010)
ENZ turnover
TEnzLoss st 0.1 Enzyme loss fraction - Allison et al. (2010)
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Table 2. Partitioning of average annual net ecosystem production (as Pg C per year) for six vegetation types during the 20t century

MIC-TEM (PgC yr?) TEM 5.0 (PgC y?)
Alpine tundra 0.03 0.04
Boreal forest 0.39 0.45
Conifer forest 0.09 0.09
Deciduous forest 0.16 0.18
Grassland 0.06 0.07
Wet tundra 0.05 0.06

Total 0.78 0.89




Table 3. Increasing of SOC, vegetation carbon (VGC), soil organic nitrogen (SON), vegetation nitrogen (VGN) from 1900 to 2000, and total carbon
storage during the 21°% century predicted by two models with observed soil carbon data of three different depths under (a) RCP 2.6 and (b) RCP 8.5.

(a)
Model Units: Pg Without (control) 30cm 100cm 300cm
SOC/SON in 2000 604.2/27.0 429.5/19.0 689.3/31.6 1003.4/46.2
Increase of SOC
during the 21% century 121 99 16.0 228
VGC/VGN in 2000 318.3/1.48 238.4/1.05 394.2/1.80 556.7/2.53
Increase of VGC
TEM 5.
>0 during the 21% century 155 10.5 18.0 253
Increase of total
carbon storage during 27.6 20.4 34.0 48.1
the 21% century
SOC/SON in 2000 591.5/26.8 420.3/18.6 686.0/31.2 990.7/45.3
Increase of SOC
during the 21% century 2.0 1.2 24 2.9
VGC/VGN in 2000 309.7/1.42 230.1/1.02 374.4/1.71 548.6/2.45
MIC-TEM Increase of VGC
during the 21% century 04 05 0.2 01
Increase of total
carbon storage during -1.6 -0.7 -2.2 -3.0

the 21% century
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(b)

Model Units: Pg Without (control) 30cm 100cm 300cm
SOC/SON in 2000 610.2 /27.9 431.9/19.1 693.8/31.8 1007.1/46.4
Increase of SOC during the 21% century ~ 44.2 33.0 56.5 74.6

TEM 5.0 VGC/VGN in 2000 324.9/1.50 242.1/1.07 399.6/1.83 570.2/2.57
Increase of VGC during the 21% century ~ 54.5 38.7 63.5 81.0
Increase of total carbon storage during 98.7 717 120.0 155.6
the 21% century
SOC/SON in 2000 596.0/27.1 424.6/18.8 689.1/31.5 995.5/46.1
Increase of SOC during the 21% century  33.3 27.4 36.9 42.9
VGC/VGN in 2000 316.0/1.44 233.5/1.02 380.0/1.72 568.3/2.56

MIC-TEM Increase of VGC during the 21% century ~ 46.2 37.0 51.7 56.9
Increase of total carbon storage during 795 65.4 38.6 109.8

the 21% century

35



