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13 Abstract: There are four components of carbon (C) pools in a natural forest ecosystem: vegetation, soil, litter
14 and woody debris. Quantifying these C pools and their contributions to forest ecosystems is important in
15 understanding C cycling in forests. Here, we investigated these four C pools in nine beech (Fagus L., Fagaceae)
16 forests along an altitudinal gradient in southwest China. We found that the C pools of beech forest ecosystems
17 ranged from 190.7 to 503.9 Mg C ha™, mainly attributed to vegetation C (accounting for 33.7-73.9%) and
18 soil C (accounting for 24.6-65.4%). No more than 4% of ecosystem C pools were stored in woody debris
19 (0.25-3.4%) and litter (0.2—-0.7%). Ecosystem C storage increased significantly with altitude, where the
20 vegetation and woody debris C pools increased concomitantly with increasing altitude, while those of litter
21 and soil exhibited no significant variations. The forest stand age was found to be a key driver of such altitudinal
22 patterns, especially for vegetation C storage. The present study provides reliable data for understanding the
23 structure and function of Chinese beech forests, and emphasizes the importance of considering the influence
24 of stand age on C accumulation.

25 Keywords: ecosystem carbon storage, carbon components, Fagus forests, stand age, altitudinal gradient
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1 Introduction

Forests are among the most vital carbon (C) pools on earth, where these C pools play a key role in C cycling in
terrestrial ecosystems (Pan et al., 2011). There are four components of C stocks in a natural forest ecosystem:
vegetation, woody debris, litter, and soil (IPCC, 2013). The quantities and contributions of these four
components of forest C stocks are affected by numerous factors, such as climate (Aplet and Vitousek, 1994);
stand age (Pregitzer and Euskirchen, 2004); stand conditioning; the origin, type, and structure of the forest (Niu
et al., 2009); and even management (He et al., 2013) and disturbance (Zhang and Wang, 2010), where climate
and stand age (or time since disturbance) are among the key drivers (Aplet and Vitousek, 1994; Gower et al.,
1997). It has been reported that the C pools in the forest ecosystems of China were dominantly attributed to
those of vegetation and soil (Fang et al., 2007; 2014). In addition, the C storage and ratios of litter and woody
debris in China’s forests were far lower than those of other temperate forests around the globe (Zhu et al.,
2017a). Recently, ecologists have not only focused on the C storage attributed to vegetation, but have also given
more attention to C storage in the soil (Yang et al., 2008, 2014; Chen et al., 2015), as well as to that of litter and
woody debris (Hu et al., 2015; Zhu et al., 2017b). To shed more light on how forest ecosystems respond to the
ongoing climate change and human disturbance, it is essential to evaluate the contributions of all aspects of C
storage in forest ecosystems in a comprehensive manner.

With increases in altitude, there forms an environmental gradient which mirrors the complicated variations
in climatic factors (e.g. air temperature and precipitation), topography, and other environmental conditions
(K&ner, 2007). The C storage of vegetation generally tended to decrease over long altitudinal gradients due to
climatic and nutrient limitations on growth (Vitousek et al., 1992; Aplet and Vitousek, 1994; Leuschner et al.,
2007; Alves et al., 2010; Zhu et al., 2010), while shorter altitudinal gradients might exhibit different patterns
(Alves et al., 2010). For instance, aboveground biomass (AGB) was reported to increase with increasing altitude
in tropical forests in Brazil (Alves et al., 2010) and Ethiopia (Girma et al., 2014), and in the moist temperate
forest in Western Himalaya (Gairola et al., 2011). For the C storage of soil in the forest ecosystems, there has
been no consistent altitudinal patterns (Vitousek et al., 1992; Garten and Hanson, 2006; Zhu et al., 2010; Girma
et al., 2014). Despite the abovementioned studies on altitudinal patterns of the C storage in forest ecosystems,
most of them just explored parts of the ecosystem C pools (e.g., Kakubari, 1991; Alves et al., 2010), or ignored
the differences in stand age and forest types (e.g., Zhu et al., 2010), which might vary substantially with altitude
(Zhang et al., 2009; Alves et al., 2010). In some regions, forests are more likely to be disturbed by human
activities at lower altitudes, usually resulting in younger forests, and thus less C accumulation (Zhang et al.,
2009; Alves et al., 2010). Generally speaking, in aging forest stands, the C storage of both the ecosystem and
vegetation tended to increase (Gower et al., 1997; Pregitzer and Euskirchen, 2004; Zhang et al., 2009; Zhu et
al., 2017b), while that of the soil, woody debris, and litter varied as well (Gower et al., 1997; Pregitzer and
Euskirchen, 2004; Peichl & Arain, 2006; Nave et al., 2010; Li et al., 2011). To date, very few studies have
focused on the integrative effects of altitude and stand age (or disturbance) on C storage and its distribution in
forest ecosystems (Zhang et al., 2009; Alves et al., 2010).

Besides, previous studies have focused on either tropical or temperate forest ecosystems, with much less
attention given to subtropical forests, which are unneglectable in global C cycling. The net ecosystem
productivity (NEP) of East Asian monsoon subtropical forests was estimated to account for 30% of the total
NEP of Asian forests (Yu et al., 2014). The beech (Fagus L., Fagaceae) forests are widespread in temperate and
subtropical mountain regions of China (Cao, 1995). As representative trees in temperate broadleaved forests in

the Northern Hemisphere (Fang and Lechowicz, 2006), the biomass and C storage of beech forests have been

Page 3



Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-242
Manuscript under review for journal Biogeosciences
Discussion started: 7 June 2018

(© Author(s) 2018. CC BY 4.0 License.

69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107

extensively explored in Europe (F. sylvatica), Japan (F. crenata) and the USA (F. grandifolia) (e.g., Mund,
2004; Poivesan et al., 2005; Takadi, 1969; Martin and Bailey, 1999; Jenkins et al., 2001), both on local
(Kakubari, 1991; Mund, 2004) and regional scales (Poivesan et al., 2010). However, the C pools of beech forests
in China have seldom been studied (Zhou et al., 2018). On the southeast slope of Mt. Fanjingshan, there is a
concentrated and consecutive distribution of beech forests over a wide range of altitude (1000-2020 m), which
is quite unique for beech forests in China (Fei et al., 1999). To our best knowledge, there is no such a wide
range of altitudinal gradient on local scales in any other regions for Chinese beeches. Thus, this area is ideal for
exploring the C storage and distribution in Chinese beech forest ecosystems and their response to varying
environmental conditions on a local scale.

In the present study, nine beech forest stands were investigated along an altitudinal gradient from 1095 to
1930 m on Mt. Fanjingshan. The four components of C pools (i.e. vegetation, soil, litter and woody debris)
were estimated. Here, we aimed to 1) quantify the C storages and distributions of the beech forest ecosystems
along the altitudinal gradient, 2) evaluate the key driving factors of altitudinal patterns of C storage on an

ecosystem level, and 3) compare the C storage and distribution patterns with beech forests worldwide.
2 Materials and Methods

2.1 Study sites

The present study was conducted on Mt. Fanjingshan, which is located in the northeast part of Guizhou Province,
Southwest China (27.78-28.02N, 108.60-108.81<E). This region features a humid subtropical monsoon
climate with a mean annual temperature (MAT) of 5.0-17.0<C, where the mean annual precipitation (MAP) is
approximately 1100-2600 mm. The altitudinal range of Mt. Fanjingshan is > 2000 m, and thus it has a relatively
complete vertical vegetation gradient. On Mt. Fanjingshan, there are representative beech forests in subtropical
China, which are consecutive and cover a relatively large area (Editorial Board of the Scientific Survey of the
Fanjingshan Mountain Preserve Guizhou Province, China, 1986). Here, evergreen and deciduous broad-leaved
forests dominated by the genus Fagus are one of the main forest types, appearing at 1000-2020 m (Fei et al.,
1999). While F. longipetiolata grows at lower altitudes in comparison to F. lucida, the latter species mainly
appears at 1400-1900 m. Soils in the beech forests are mountainous yellow soil or yellow-brown soil.

The study sites were located on the southeast slope of Mt. Fanjingshan. In May of 2017, nine beech forest
plots (600 m?) were set up at 50-150 m intervals along an altitudinal gradient from 1095 to 1930 m (27.90—
27.91N, 108.70-108.72<E). In the lower three plots (1095-1221 m), the dominant species were F.
longipetiolata, while the six plots above 1400 m were dominated by F. lucida. In addition to the genus Fagus,
other dominant tree species were within the genera Cyclobalanopsis, Castanopsis, and Lithocarpus of Fagaceae;
as well as species from the family Lauraceae (mostly evergreen species). Common species in the understory
shrub layer are Yushania brevipaniculata and species from Theaceae, Lauraceae, Symplocaceae, Ericaceae, and
Aquifoliaceae, while the herb layer is dominated by Pteridium spp., Carex spp., and Viola spp.

Of the nine beech plots, the lower two plots were secondary forests (disturbed by fires in the 1970’s), and
the other seven plots were primary forests. Detailed information of the plots is listed in Table 1.

In the present study, plots were not replicated as it is difficult to find stands with similar community

structure and environmental conditions at each altitude (Li et al., 2011).

2.2 Field investigations
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Basic site information was recorded at each plot (i.e. latitude, longitude, altitude, slope, aspect, forest origin,
and disturbance type). The C densities (storage per unit area, Mg C ha!) of vegetation (trees, shrubs, and herbs),

woody debris, litter, and soil were investigated and sampled respectively.

2.2.1 Vegetation carbon storage

The DBH (cm) and height (m) were measured for all living trees with a diameter at breast height (DBH) > 3
cm within each plot. Each plot (600 m?) was divided into six subplots (10 <10 m in size) and shrubs (including
young trees [DBH < 3 cm]) from two subplots were investigated in detail to obtain the number, base diameter
of the stem, height, and coverage of each species. Allometric equations for trees and shrubs in near regions were
used to calculate the biomass of each species in each plot (Tables S1, 2), and the biomass of shrubs was
calculated using the mean values of the two subplots. Herbs from 1 <1 m subplots were harvested and weighed
after oven drying at 65<C to a constant weight. Subsequently, with the above- and belowground parts treated
separately, the oven-dried herb samples were ground for C analysis using an Elemental Analyser (2400 I1 CHN
Elemental Analyser; Perkin-Elmer, Boston, MA, USA) (Zhu et al., 2015). For trees and shrubs, an assumed
factor of 0.5 was adopted to convert live biomass to C content (Myneni et al., 2001).

2.2.2 Woody debris and litter carbon storage

In this study, woody debris was divided into coarse woody debris (CWD) and fine woody debris (FWD). CWD
was defined as dead wood with a diameter > 10 cm at the larger end, including standing snags and fallen logs.
FWD was regarded as dead wood with a diameter of 2 to 10 cm (Zhu et al., 2017a). In each plot (600 m?), DBH
(cm) and height (m) were measured for all standing snags, while the lengths, diameters of middle and both ends,
and decay degrees (1-4) of fallen logs were also measured (Zhu et al., 2017a). CWD samples with different
decay degrees were selected, and for each log, three sections (10-20 cm length discs) were weighed after oven
drying at 85<C to a constant weight and the volumes were also measured. The ratio of oven-dried weight to the
volumes of the CWD discs was extrapolated to estimate the biomass of CWD with different decay degrees in
the plot. The volumes of standing snags and fallen logs were calculated using Eg. (1):
md?L

= 1
Volume 2 (1)

Where d (cm) is the average diameter of the fallen logs or the DBH of standing shags, and L (m) is the length
or height of the logs. In addition, the C content of the CWD samples was also determined using an elemental
analyser.

Within each plot (600 m?), FWD from the forest floor was collected and weighed. Three 1 <1 m subplots
were randomly set up for litter investigation and all litter (including fallen leaves, small dead wood with a
diameter of < 2 cm, and other plant debris) within the subplots was collected and weighed. To determine the C
content of FWD and litter, three samples of each were obtained and weighed after oven drying at 65 <C for 48
hours, and subsequently ground and sieved (1 mm).

2.2.3 Soil carbon storage

Three replicated soil profiles were randomly sampled within each plot (600 m?). And in the nine plots, the
deepest soil depth was 50 cm. Thus, soils were sampled separately at four depths (0-10, 10-20, 20-30, and 30—
50 cm). The soil bulk density was estimated using a 100 cm? standard container (50.5 mm in diameter and 50

mm in height), and soil samples were oven-dried at 105<C to a constant weight to measure soil gravimetric
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moisture. At each depth, a second soil sample (approx. 300 g) was taken for C content analysis. The samples
were air dried at room temperature (approx. 25<C), rocks and plant debris removed, and subsequently ground
and sieved (0.15 mm) for the determination of C content.

In each plot, the ages of ten beech trees with the relatively largest DBH values were determined by tree

ring analysis, and the oldest age of the ten trees was used to represent the stand age (Worbes et al., 2003).

2.3 Statistical Analyses

The relationships between different components of the ecosystem C pools and altitude, as well as the stand age,
were plotted using linear regression analyses. A one-way analysis of variance (ANOVA) and the least
significant difference post hoc test (LSD) were conducted to compare the differences in soil C storage among

the nine plots and different soil depth, and the C pools of beech forests on Mt. Fanjingshan and other regions.
3 Results

3.1 Vegetation carbon storage

The C storage of vegetation of the beech forests ranged from 64.4 to 364.3 Mg C ha*. Across the nine forests,
the tree layer accounted for the dominant proportion of the vegetation C (63.5-360.7 Mg C ha™, accounting for
98.3-99.2%), which was substantially larger than the shrub (0.6-4.6 Mg C ha™, 0.5-1.7%) and herb layers
(0.03-0.35 Mg C ha, 0.01-0.3%) (Figure 1a; Table 2). Vegetation C storage of the beech forests increased
significantly as altitude increased from 1095 m to 1930 m (F = 31.9, P < 0.001). The C storage of both the tree
and shrub layers tended to increase significantly with increased altitude (R? = 0.82, P < 0.001; R? = 0.64, P <
0.01, respectively), while the herb layer exhibited no significant variation (Figure 1a). Furthermore, the
aboveground biomass C storage accounted for the majority of vegetation C storage (54.3-270.2 Mg C ha%,
accounting for 73.7-84.4%), and both the above- and belowground biomass C storage increased significantly
as altitude increased (R? = 0.83, P < 0.001; R? = 0.79, P = 0.001, respectively; Figure 1b).

3.2 Carbon storage in litter and woody debris

Litter C storage varied between 0.7 and 1.5 Mg C ha*across the nine forests, while the C storage of woody
debris was 0.2-14.6 Mg C ha™*. The C storage of woody debris was mainly attributed to CWD, which composed
over 90% of the total woody debris C storage (1.0-14.6 Mg C ha%, 92.5-96%) in most plots, with the exception
of three plots that varied between 41.8-62.5% (0.2-0.7 Mg C ha™). As altitude increased, the C storage of
woody debris increased significantly (F = 18.9, P = 0.003), mainly owing to the increase in CWD (R? = 0.73,
P = 0.003; Figure 2a). The C storage of FWD exhibited an increasing trend despite statistically insignificant (R?
=0.43, P = 0.056; Figure 2a), while litter C storage exhibited no significant altitudinal patterns (Figure 2a).
The relationship between the C storage of plant debris and vegetation was further explored. VVegetation C
storage appeared to exert no significant effect on litter C storage (Figure 2b). For woody debris, there was a
positive but insignificant response to the increase in vegetation C storage (R? = 0.40, P = 0.067). CWD also
showed a slight but insignificant increasing trend (R? = 0.41, P = 0.06), while FWD exhibited no significant

variation as vegetation C storage increased (Figure 2b).

3.3 Carbon storage in soils

Soil C storage in the nine forests ranged from 88.342.0 to 229.7481.3 Mg C ha?, and with the exception of the
relatively higher value of 229.7 +81.3 Mg C ha™* from the plot at 1136 m, soil C storage in the other plots
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varied between 88.3 2.0 and 124.8 +19.5 Mg C ha* (Table 2). Across the nine plots, the contribution of the
upper three soil layers (0-10, 10-20, 20-30 cm) were similar and significantly larger than that in the deepest
layer (30-50 cm) (P < 0.001), but the distribution patterns of C storage along the soil depth varied at different
altitude (Table 2). As altitude increased, C storage in the second layer (10-20 cm) decreased slightly (F = 5.8,
P =0.02), while the total soil C storage and C storages of other vertical layers (0-10, 20-30, 30-50 cm) all
exhibited no significant trends (Table 2). The effects of the other C components (vegetation, woody debris and

litter) on soil C storage were also explored, but no significant effects were observed.

3.4 Distribution of ecosystem carbon storage in the four carbon components

The ecosystem C storage of the nine forests varied between 190.7 and 503.9 Mg C ha™', where the dominant
contributors were vegetation (accounting for 33.7-73.9%) and soil (24.6-65.4%). The contribution of woody
debris and litter C storage was relatively lower (0.25-3.4%) in comparison to vegetation and soil, where only
0.05-3.1% could be attributed to woody debris and 0.2-0.7% to litter (Table 2). The ecosystem C storage
increased significantly with increased altitude (F = 9.7, P = 0.02; Table 2). The patterns of contribution to
ecosystem C storage also changed with increasing altitude, where the contribution of vegetation C storage was
33.7% at 1095 m, subsequently increased to 73.9% at 1580 m, and remained stable thereafter (71.5-72.5%)
(Table 2). In contrast, the contribution of soil to ecosystem C storage decreased with increasing altitude, which
was around two-thirds (65.4%) in the lowest forest, and declined to one quarter (24.6%) of the total C storage
in the highest plot (Table 2). The contribution of litter C storage exhibited no significant altitudinal trends, while
that of woody debris C storage increased in fluctuation from 0.4% to 2.9% with increasing altitude (Table 2).

4 Discussion

4.1 Contribution patterns of carbon components of the ecosystems and comparisons with beech forests

worldwide

Mt. Fanjingshan is quite unique and ideal for studies of Chinese beech forests as it has the widest altitudinal
range of Chinese beech forests at a local scale of any region. The C storages of different C pools in the beech
forest ecosystems on Mt. Fanjingshan were comparable to those with similar range of stand age in other
countries and regions worldwide (Table 3; Figure 3). The total ecosystem C storage averaged 335 Mg C ha*
(ranging from 190.7 to 503.9 Mg C ha!) on Mt. Fanjingshan, exhibiting no significant difference with that of
beech forests in Europe (averaging 308 Mg C ha*) and Mt. Yueliangshan in southeast China (averaging 319
Mg C hal) (P > 0.1; Table 3). And the C storages of vegetation, soil and plant debris were also similar to that
of Europe, Mt. Yueliangshan, or Japan (P > 0.05; Table 3). According to Pregitzer and Euskirchen (2004), the
average ecosystem C storage of temperate forests worldwide with different stand ages (< 200 years old) ranged
from 121 to 537 Mg C ha%, also close to the values observed in this study.

Herein, the distribution patterns of C storage of beech forests were also comparable to those of beech
forests in Europe and Mt. Yueliangshan (Table 3), as well as other types of temperate and subtropical forests in
China (e.g., Niu et al., 2009; Zhang and Wang, 2010; Zhu et al., 2017b). In these forests, the accumulation of
ecosystem C storage was mainly attributed to vegetation and soil C, and the contribution of plant debris was
relatively minor (< 4%; Table 3). However, the relative contributions of litter and woody debris observed in the
forests of China and beech forests in Europe seemed far lower than that in some temperate forests in other
regions of the world (8-47%) (Harmon et al., 2001; Martin et al., 2005; Woodall and Liknes, 2008; Pan et al.,
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2011), possibly because of the differences in stand history, disturbance regime and the standards of stand
selection (Zhu et al. 2017b).

4.2 Altitudinal patterns of carbon storage in the beech forest ecosystems

In the present study, the C storage of vegetation was observed to increase with increasing altitude (1095-
1930 m) on Mt. Fanjingshan, differing from the general decreasing tendency (e.g., Vitousek et al., 1992;
Leuschner et al., 2007; Zhu et al., 2010) or the hump-shaped variation pattern as observed in the F. crenata
forests in the Naeba Mountains (550-1500 m) in central Japan (Satoo, 1973; Kakubari, 1991). Nevertheless,
similar increasing trends have also been reported in some tropical and temperate mountain forests worldwide
(e.g., Zhang et al., 2009; Alves et al., 2010; Gairola et al., 2011; Girma et al., 2014), and the stand age or
disturbance regime was found to be one of the key drivers (Zhang et al., 2009; Alves et al., 2010). Thus, we
further investigated the stand age of beech forests on Mt. Fanjingshan and explored its relationships with the C
storage of different C pools. Here, the stand age tended to increase with increasing altitude (R? = 0.56, P = 0.02;
Figure 4a), as plots at lower altitudes have suffered from more human disturbance. And vegetation C storage
was found to concomitantly increase with stand age (R? = 0.72, P = 0.004; Figure 4b). The positive effects of
stand age on vegetation C storage have also been reported in many studies on boreal, temperate, and subtropical
natural forests and plantations (Pregitzer and Euskirchen, 2004; Peichl and Arain, 2006; Bradford and
Kastendick, 2010; Zhu et al., 2017b). And for beech forests worldwide, vegetation C storage also tended to
increase with increasing stand age (Figure 5b). Thus, stand age was possibly one of the key driving factors of
the altitudinal changes in vegetation C storage in the beech forests on Mt. Fanjingshan.

The C storage of woody debris exhibited positive altitudinal tendency, while that of litter showed no patterns,
and both showed no significant relationships with stand age (Figure 4b). Different stand age patterns have been
reported in some previous studies (Pregitzer and Euskirchen, 2004; Jandl et al., 2007; Bradford and Kastendick,
2010) and in beech forests worldwide (Figure 5b, c), while there were similar results as well (Zhu et al., 2010;
Zhu et al., 2017a). The C storage of plant debris was mainly controlled by aboveground biomass (input) and
the rate of decomposition (output) (Zhu et al., 2017a). Herein, vegetation C storage tended to increase with
increasing altitude, resulting in the increased input of plant debris. At the same time, decreased air temperature
led to the slower decomposition rate, and thus the lower output. Therefore, the C storage of woody debris
exhibited an increasing altitudinal pattern. However, the lack of a significant relationship between the C storage
of litter and altitude or stand age is likely a result of the relatively faster decomposition rate of litter, thereby
facilitating a balance between the input and output (Zhu et al., 2017a).

In this study, the C storage of soil also exhibited no significant patterns in relation to altitude (Figure 2) or
stand age (Figure 4b). Previous studies have demonstrated that there was no consistent response of soil C storage
to changes in altitude, which has been shown to increase (Garten and Hanson, 2006; Zhu et al., 2010), decrease
(Vitousek et al., 1992), or remain relatively stable (Vitousek et al., 1992). Soil C storage usually tended to
accumulate in aging forests (Hooker & Compton, 2003; Pregitzer and Euskirchen, 2004), but it will be affected
by numerous factors such as previous land use, climate and vegetation types (Paul et al. 2002; Peichl and Arain,
2006). Therefore, with increasing stand age, the U-shaped variation or no significant trends of soil C storage
have also been observed (Paul et al. 2002; Peltoniemi et al., 2004). In beech forests worldwide, there was no
significant relationships between stand age and soil C storage as well (Figure 5e). The insignificant variation of

soil C storage to altitude or stand age on Mt. Fanjingshan was probably related to the previous land use and
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disturbance of the beech forests at lower altitudes. As abovementioned, the lower two beech forests were post-
fire secondary forests, which might have accumulated large quantities of C in soil before the dramatic
disturbance (Paul et al., 2002; Nave et al., 2010). In addition, the input and output of soil organic C are affected
by numerous factors, and plots at lower altitudes generally suffered more from human disturbance (Pregitzer
and Euskirchen, 2004; Zhang et al., 2009). Therefore, soil C storages in younger beech forests at lower altitudes
showed no significant difference to those in older forests at higher altitudes.

The ecosystem C storage of the beech forests also increased with increasing altitude, and was mainly
attributed to increases in vegetation C, while the contribution of soil C storage declined concomitantly. As
abovementioned, the stand age tended to increase as altitude increased, and increasing stand age led to a slight
despite insignificant increase in ecosystem C storage (Figure 4). Similar age patterns have also been observed
in beech forests worldwide (Figure 5e, f). It has been widely reported that the C storages of both the ecosystem
and vegetation tended to increase in aging forest stands (Gower et al., 1997; Pregitzer and Euskirchen, 2004;
Zhu et al., 20173, b), and in older forests, the majority of ecosystem C storage was attributed to vegetation,
while soil was the dominant contributor of C storage in younger forests (Pregitzer and Euskirchen, 2004; Zhang
and Wang, 2010).

4.3 Potential limitations

The C storage and contributions of different ecosystem components in nine beech forests were fully
investigated and estimated along an altitudinal gradient on Mt. Fanjingshan. However, some limitations of the
sampling and analyses may influence the accuracy of the results. For example, it was difficult to replicate the
plots owing to the conditions of the study site (Li et al., 2011). Therefore, the limited quantities of samples
could lead to bias in model-based analyses. Furthermore, the estimation of the C storage of trees and shrubs
using species-specific allocation equations and the broadly-applied conversion factor of 0.5 used to estimate
the C concentration could have resulted in estimation errors (Li et al., 2011; Ma et al., 2018).

5 Conclusions

The present study investigated the C storage and contributions of different ecosystem components
(vegetation, woody debris, litter, and soil) in nine beech forests along an altitudinal gradient on Mt. Fanjingshan.
The results show that the ecosystem C storage of the beech forests ranged from 190.7 to 503.9 Mg C ha%, and
was mainly attributed to vegetation C (from 64.4 to 364.3 Mg C ha?, accounting for 33.7-73.9%) and soil C
(from 88.3 2.0 t0 229.7 +81.3 Mg C ha%, 24.6-65.4%). No more than 4% of the ecosystem C storages were
stored in woody debris (0.25-3.4%) and litter (0.2-0.7%). The values of C storage and the distribution patterns
of beech forests on Mt. Fanjingshan are comparable to that in other regions worldwide. The ecosystem C storage
increased significantly with increasing altitude. In regards to components of the forest ecosystems, the C storage
in vegetation and woody debris increased concomitantly with altitude, while that of litter and soil showed no
significant variations. The stand age was found to be one of the key drivers of such altitudinal patterns,
especially for vegetation C storage. Not only does the present study provide reliable data for understanding the
structure and function of beech forests in China, it also suggests that the effects of stand age and previous land
use or disturbance should be given more weight in studies regarding forest ecosystem C storage. In the future,
more detailed and comprehensive surveys will be indispensable in enhancing the accuracy of estimations, where

other factors except for climatic factors and stand age also deserve more consideration.
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Figure 1. Changes in vegetation carbon storage of Fagus forests along an altitudinal gradient on Mt.
Fanjingshan. (a) Different life forms (trees, shrubs and herbs), and (b) Above- and belowground vegetation

carbon storage.
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Figure 2. Changes in plant debris carbon storage of Fagus forests along an altitudinal gradient on Mt.

Fanjingshan. (a) Altitudinal patterns, and (b) the effects of vegetation carbon storage. CWD, coarse woody

debris; FWD, fine woody debris.
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475  Figure 3. Distribution of Fagus stands with carbon storage variables worldwide.
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478  Figure 4. Altitudinal changes of stand age (a) and relationships between stand age and the components of
479  carbon storage (b) in Fagus forest ecosystems on Mt. Fanjingshan.
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Figure 5. The relationships of stand age and different ecosystem carbon components (a-€) and their relative

contribution (f) in Fagus forests worldwide. Legends in panels a, c-e are the same as those in panel b. Abbreviations:
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Mt. FJS, Mt. Fanjingshan; Mt. YLS, Mt. Yueliangshan in Guizhou Province, Southwest China.
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